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Lecture Outline

• Overview of image recovery problems

• Basics of Optimization (review)

• Least squares formulation and solution (review)

• Lp norm, convex relaxation

• Regularization
– Sparsity in a transformed domain (Lasso problem)

– Smoothness (least squares solution)

– Total variation 

• Denoising using soft thresholding in transform domain

• ISTA for solving Lasso

• ADMM: general method

• ADMM for specific problems: Lasso, TV

• Dictionary learning

• Application for images



Image Recovery Problems

• Reorder an image (or image block) into a vector  x

• Denoising: remove additive noise on pixel values 
– y= x+n

• Deblurring (bluring kernel h, with matrix representation H)
– y = h*x+n = H x +n

• Completion/in-painting: filling in missing pixels (covered by letters, 
logos, etc)
– y= M x+n (M: mask indicating which pixels are known/missing)

• Compressive sensing
– y = H x +n, H is the imaging operator (MRI, CT, etc.), y has smaller 

dimension than x

• General Problem: 
– Recover x from y, assuming y=  G x+n

• Note: For large images, we do not use vector/matrix operation, 
rather “operator” (e.g. convolution or transform) (matrix-free)
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Image Denoising Using Sparse Modeling
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From Shapiro’s Coursera Course on Image Processing, Lecture on Sparse Modeling and Compressed Sensing.



Image Inpainting Using Sparse Modeling
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From Shapiro’s Coursera Course on Image Processing, Lecture on Sparse Modeling and Compressed Sensing.



Compressive Sensing for Medical Imaging

• Sensing matrix applied to an entire image

• MRI: 
– Measure 2D DFT of the image (k-space)

– Each row of the sensing matrix is a DFT Basis

– Using fewer measurements (fewer DFT coefficients than number of 
pixels) to reduce imaging time

• CT: 
– Measure line integrals along different directions of an image 

(Radon transform)

– Each row of the sensing matrix corresponds to the sum along a 
particular line connecting x-ray transmitter and receiver

– Using fewer measurements to reduce radiation exposure

• How to recover an image from incomplete measurements?
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Review: Basics of Optimization 

• Unconstrained optimization 

• Constrained optimization: can change to unconstrained with 
Lagrangian method

• Local vs. Global minimum

• Convex optimization
– Loss function is convex, constraint set is convex

• For convex problem, every local minimum is a global minimum.
– If the objective function J(x) is continuously differentiable, can obtain 

solution by setting derivative of J(x) to 0

• Convex relaxation: 
– Approximate a non-convex problem by a convex problem so that it is easy to 

solve. 

– Investigate the conditions under which the two give equal or similar solutions
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Convex Function and Convex Sets
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Non convex convex

From Katsagelos’s Coursera Course on Image Processing, Lecture on Sparsity.



Gradient Descent Method

• Iteratively update the current estimate in the direction opposite the gradient 
direction.

• The solution depends on the initial condition. Reaches the local minimum closest to 
the initial condition if the stepsize is chosen properly.

• Yield global optimal if J is convex, regardless initial solution
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Least Squares Methods

• Model: yMX1 = HMxNxNx1 +nNx1

• M=N: H is square and invertible  (deblurring)
– x= H-1 y = x+ H-1 n

– If H is ill conditioned (near singular), noise will blow up

• M>N: H is tall (more measurements than unknowns)
– Least squares: minimize J(x)= ||Hx-y||2

– Set derivative of J(x) = 0 -> x =  (HT H )-1 HT y
• Can also amplify noise

• M<N: H is fat (compressive sensing, in-painting)
– Underdetermined problem, infinite solutions

– Minimum norm solution:  minimize ||x||2, subject to y=Hx
• X = HT(H  HT) -1y  , sensitive to noise!
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http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/index.html
http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/least_squares_SP.pdf



Regularization: General Ideas

• Given measurements (data): y = Hx+n
– H represent blurring or imaging operator

– Typically assuming noise n is Gaussian

• Prior knowledge that can be formulated as 
minimizing R(x)
– Necessary for underdetermined problem

• Minimizing
– J(x) = ||Hx – y||2 + R(x)

• Desirable property for R(x):
– Convex, so that J(x) has a unique minimum
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Sparsity-Based Regularization

• Represent the original image in a transform/dictionary
– Dictionary is a redundant transform with more bases (known as atoms) than 

the number of signal samples

– x = T xt (Columns in T are basis vectors or atoms)

• The transform/dictionary T is chosen such that the coefficients are sparse 
(many zeros)

– Ex: DCT transform (block wise), Wavelet  transform (whole image)

– Can also specifically design transform/dictionary to enhance sparsity

• Recover the image by minimizing the number of non-zeros (L0)
– R(x) = ||xt||0;  Non convex

• Relax L0 by L1 norm (Convex relaxation)
– R(x) = ||xt||1

• Instead of recovering x directly, recover xt instead
– y= Hx + n = HT xt +n= G xt + n; G=HT

– J(xt) = ||G xt – y||2 +  𝜆 || xt ||1    (L2-L1 problem, for Gaussian noise)

– J(xt) = ||G xt – y||1 + 𝜆 || xt ||1    (L1-L1 problem, for Laplacian noise)
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From [Gonzalez2008] 

Wavelet 
coefficients are 
sparse!



L0, L1, L2, Lp Norm

• Which one is convex?

• Minimizing L2 puts more penalty on large values -> many small but 
non-zero values

• Minimizing L1 puts proportional penalty on small and large values ->  
many zeros and several large values (sparse)

• L1 is a convex surrogate of L0
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Sparsity of Solution by Minimizing Lp Norm
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From Katsagelos’s Coursera Course on Image Processing, Lecture on Sparsity.



L2 vs. L1 Solution

Yao Wang, 2017 EL6123: Image and Video Processing 16

From Katsagelos’s Coursera Course on Image Processing, Lecture on Sparsity.



Denoising Using Orthonormal Transform

• Denoising: H=I (no blurring)

• T is orthonormal: TH T = T TH = I (H represents transpose and 
conjugate)

• Assume y=x+n, x=T xt

• Apply forward transform TT to y: TT y = TT x + TT n
– yt= xt + nt

– If n is i.i.d (Covariance matrix  
ଶ ) and T is orthonormal, nt is 

also i.i.d. with same variance.

• Consider the problem of y= x+n (x,y,n are all transform 
coefficients)
– J(x) = ||y-x||2 + ||x||1
– Have closed-form solution!
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Soft Thresholding

• What to minimize:

• The variables are uncoupled!

• Just need to know how to minimize

(x and y are scalars here)

• Setting gradient to zero yields: 

• Derive on the board
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http://eeweb.poly.edu/iselesni/lecture_notes/Soft
Thresholding.pdf



How to determine regularization parameter ?

• Assuming coefficients x=w follows Laplacian distribution with STD σ

• Assuming n follows Gaussian distribution with STD σn

• Maximum a posteriori (MAP) estimator

• Notation: y=w+n
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[ref]: http://eeweb.poly.edu/iselesni/lecture_notes/SoftThresholding.pdf
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[ref]:http://eeweb.poly.edu/iselesni/lecture_notes
/SoftThresholding.pdf



Wavelet Domain Image Denoising Using Soft 
Thresholding

• Wavelet transform is an orthonormal transform

• Apply wavelet transform to a noisy image to obtain y

• Modify the coefficients y based on signal and noise statistics
– If noise is Gaussian N(0,σn), true signal coeff is Laplacian with STD σ

– Soft-thresholding (shrinkage function)

• Inverse wavelet transform

• Remove noise yet not blurring the edges!

• How to estimate signal and noise statistics?
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[ref]:http://eeweb.poly.edu/iselesni/lecture_notes
/SoftThresholding.pdf



Subband Adaptive Thresholds

• Wavelet signal variances differ among subbands

• Should estimate the variance for each subband

• But the observed subbands are noisy!

• For each subband:
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[ref]:http://eeweb.poly.edu/iselesni/lecture_notes/SoftThresholding.pdf



Yao Wang, 2019 ECE-GY 6123: Image and Video Processing 23

From: Sendur, Levent, and Ivan W. Selesnick. "Bivariate shrinkage functions for wavelet-based denoising 
exploiting interscale dependency." IEEE Transactions on signal processing 50.11 (2002): 2744-2756. 
http://eeweb.poly.edu/iselesni/bishrink/BiShrinkTSP.pdf



Sparse Recovery in Underdetermined Setting

• y = Hz + n = G x + n, G=HT is fat (MxN, M<N)
– y: M measurements; H: MxK

– z: K unknown elements

– x: N coefficients, transform matrix T: KxN; z=Tx

• Application scenarios
– Denoising: y is direct noisy measurement of signal, H=I (M=K), G=T is 

a dictionary (KxN, K<N)

– Deblurring: A=H T:  H is complete measurement (M=K), T is a 
dictionary

– Compressed sensing: H (MxK) is a compressed imaging operator 
(M<K, less measurements than unknowns), T is either orthonormal 
(N=K) or overcomplete (K<N)

– In-painting: A = M T: M is the mask of known pixels (M<K), T is either 
orthonormal (K=N) or overcomplete (K<N)

• GT G \= I, cannot change to a problem of yt= xt+nt

– Cannot directly use soft thresholding!
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Multiple Forms of L1 Problem

• Noise free measurements y=Gx

ଵ

• Noisy measurements
– P1: ଵ ଶ

• Need to know noise variance

– P2: ଶ
ଶ

ଵ

• Need to know sparsity of x (number of non-zeros)

– P3: Bring constraint to the objective function:

ଶ
ଶ

ଵ (LASSO problem)

• Need to set regularization parameter properly
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Solving LASSO Problem

• ISTA /FISTA

• ADMM
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Iterative Soft Thresholding Algorithm (ISTA)

• Solving LASSO Problem: min

• Through majorization-minimization (MM), each step solve a single 
variable problem (using Soft thresholding)

• Convergence very slow, but easy to implement

• For faster convergence, choose 
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Original ISTA paper:
For derivation, see Selesnick’s note on Sparse Signal Recovery at 
http://eeweb.poly.edu/iselesni/lecture_notes/sparse_signal_restoration.pdf

a =maxeig(HTH )



Special Case of ISTA: H is an Orthonormal 
Operator

• If H=B represents an orthonormal transform: Hx is 
inverse transform, HTy is forward transform

• When H is orthonormal 

• This means that only one iteration is sufficient. Solution 
is simply soft-thresholding of the original coefficients 
– Reduces to the previous solution with orthonormal transform!
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HTH = I,a =1, xk+1 = soft(HT y,
l
2
)



Faster Algorithms

• Faster ISTA (FISTA): Converge much faster!
– A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding

algorithm for linear inverse problems. SIAM J. Imag. Sci., 
2(1):183{202, 2009.

• SALSA (split variable augmented Lagrangian shrinkage algorithm)
– M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo. Fast image 

recovery using variable splitting and constrained optimization. IEEE 
Trans. Image Process., 19(9):2345-2356, September 2010.

– M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo. An 
augmented Lagrangian approach to the constrained optimization 
formulation of imaging inverse problems. IEEE Trans. Image Process., 
20(3):681-695, March 2011.

• Explanation using Proximal operators
– http://stanford.edu/~boyd/papers/pdf/prox_slides.pdf

– http://stanford.edu/~boyd/papers/pdf/prox_algs.pdf
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ADMM Algorithm

• A flexible optimization algorithm that can handle many 
convex optimization problems
– Represent different terms of the objective function using 

additional variables and introducing constraints

• Built on the Lagrangian multiplier method

• Solve the dual problem 

• Add quadratic penalty (method of multipliers) to ease 
update of the dual variable and be more robust

• Note: Notations are different from before (y is not 
measurement!)
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[Ref] Distributed Optimization and Statistical Learning via the Alternating Direction Method of 
Multipliers (Boyd, Parikh, Chu, Peleato, Eckstein)
https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf



Lagrangian Method for Constrained Problem
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Need to solve for both the multiplier y and unknown x!

Cropped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Lagrangian multiplier



Dual Problem (Optional)
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Cropped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Lagrangian multiplier



Dual Ascent (Optional)
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Cropped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Need to select  properly!



Dual Decomposition (optional)
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Cropped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf



Dual Decomposition (optional)
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Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf



Method of Multipliers (optional)
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Cropped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf



Alternating direction method of multipliers 
(ADMM)
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Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Typical use case:
f(x) is quadratic in x
g(z) contains L1 norm
B= diagonal

Minimizing a quadratic problem, with closed-form solution

Soft thresholding if B=diagonal

Can be grouped as \rho/2 ||y/rho+ (Ax+Bz-c)||^2 by completing square



ADMM Advantages
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Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf



ADMM for LASSO
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Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

• LASSO problem:

• Derive in class
– ADMM formulation

– Augmented objective function

– x minimization

– z minimization

– y update



ADMM for LASSO
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Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Introducing a new variable on any term with L1 norm 
and add  corresponding constraints
Note: matrix A here is not the same as in previous slide

• LASSO problem:



Comparison of 
ISTA and ADMM

• ADMM is usually much 
faster than ISTA to 
reach a reasonable 
(practically acceptable) 
solution, but then 
slows down to reach 
the optimal more 
accurate solution.

• Plot from Amirhossein 
Khalilian-Gourtani
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“Smooth” Regularization

• Assume the signal is smooth (difference between pixels is small)
– Difference between pixels z(n)=x(n)-x(n-1) -> z=Dx

– D can also be second-order difference operator. D=?

• 2D image:
– Can perform 1D difference along rows and columns respectively, 

yielding ଵ (row-wise), ଶ (column-wise), 

– If we order an image into a vector x row-by-row, how do D1, D2 look?

• Maximize smoothness = Minimize difference magnitude
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http://eeweb.poly.edu/iselesni/lecture_notes/least_squares/least_squares_SP.pdf

𝐷 =

1 0 0
−1 1 0
0 −1 1

⋯
0
0
0

⋮ ⋱ ⋮
0   0    0 ⋯ 1



Smooth Regularization Using Least Squares

• Using squared magnitude of difference 

• Optimization problem (1D)
– Minimize: ଶ ଶ

డ

డ௫
் ்

்  ் ିଵ ்

– Directly inverting the matrix is not computationally efficient

– Can find corresponding filters corresponding to ்  ் ିଵ ்

• Optimization problem (2D)
– Minimize: ଶ

ଵ ଵ
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– Alternatively, perform 1D operation horizontally, and then vertically

• Tend to blur edges (many small differences)
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Total Variation (TV) Regularization

• Instead of using squared magnitude of the difference, using L1

– Minimizing L2 tend to yield small solution: all elements are small

– Minimizing L1 tend to yield sparser solution: each element is either 0 
or large 

– With L1 on Dx, the difference between two nearby pixels are either 0, 
or have large difference

– TV tend to yield piecewise smooth images, keeping sharp edges

• Anisotropic TV (sum of TV in each direction, anisotropic TV): 
 

,

ଵ ଵ ଶ ଵ ଵ
ଵ

ଶ

• Isotropic TV (magnitude of TV in multiple direction): TV: 

ଶ ଶ
 

,

ଵ/ଶ

ଵ ଶ
ଶ

ଶ ଶ
ଶ ଵ/ଶ
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ADMM for TV-Based Deblurring of 1D Signal

• Minimize J(x) = ½ |Ax-b|2 + |Fx|1
– F is the first-order or second order difference operator 

• note notation change

– Have F in front of x, not possible to do soft thresholding directly. 
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Homework: derive the above ADMM solution!

For denoising: A=I,  and if F corresponds to a single 1D difference operator for 1D signal, 
the matrix to be inverted is tridiagonal, and can be inverted in O(N) flops.

ADMM Trick: Introduce z=Fx

Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf



ADMM for TV Denoising/Debluring for 
Images/Video (Optional)

• Previous algorithm still works for anisotropic TV using vector 
representation

• However, FT F is not a simple tridiagonal matrix any more

• Matrix free operations through Fourier Transform! 

• Following use different notations!

• L2+TV: (good for Gaussian noise)

• L1+TV (Good for Laplacian noise)

S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill and T. Q. Nguyen, "An Augmented Lagrangian
Method for Total Variation Video Restoration," in IEEE Transactions on Image Processing, vol. 20, 
no. 11, pp. 3097-3111, Nov. 2011.

https://ieeexplore.ieee.org/document/5779734
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TV Based Deblurring
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S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill and T. Q. Nguyen, "An Augmented 
Lagrangian Method for Total Variation Video Restoration," in IEEE Transactions on Image 
Processing, vol. 20, no. 11, pp. 3097-3111, Nov. 2011.
https://ieeexplore.ieee.org/document/5779734



Other Ways for TV denoising

• Can also be solved using MM
– http://eeweb.poly.edu/iselesni/lecture_notes/TVDmm/index.html
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ADMM for Least Absolute Deviations

• Regression to minimize sum of absolute error instead of squared 
error (more robust to outliers)

• Original problem (assuming b=Ax+n)
– Minimize ||Ax-b||1

• ADMM formulation:

• ADMM solution? 
– Homework (optional)
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[Ref] Distributed Optimization and Statistical Learning via the Alternating Direction Method 
of Multipliers (Boyd, Parikh, Chu, Peleato, Eckstein)
https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf



Image Inpainting
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From Katsagelos’s Coursera Course on Image Processing, Lecture on Sparsity.



ADMM for Image Completion

• Known samples are related to all samples through a 
mask: b = Mx
– Properties of M: Diagonal, M MT=I,  MTM=diag(m)

– see Selesnick_sparse_sp_intro.pdf

• All samples are represented through a transform x=Tz

• Constraint: b= MTz = Gz

• Two formulations
– Requiring the known values to be retained: using Gz=b as a 

constraint, minimizing |z|1
– Alternative (assuming known values are noisy): Minimize |Gz-

b|^2 + |z|1
– How to solve using ADMM?

– homework!
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Dictionary Learning

• Want to use a transform/dictionary that has the 
sparsest representation

• Given many data samples bi (e.g. image blocks), how 
to determine the dictionary (atoms ak, k=1,2,…)?
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From Katsagelos’s Coursera Course on Image Processing, Lecture on Sparsity.



Transform / Dictionary Learning (Optional)

• Non-redundant orthonormal transform 
– KLT maximizes energy compaction, not sparsity

– Sparse orthogonal transform (SOT)
• O. G. Sezer, O. G. Guleryuz and Y. Altunbasak, "Approximation and Compression 

With Sparse Orthonormal Transforms," in IEEE Transactions on Image Processing, 
vol. 24, no. 8, pp. 2328-2343, Aug. 2015.

• Redundant transform (dictionary)
– KSVD (iterative algorithm)

• Given a dictionary, solve sparse coding problem (given A and bi, solve x_i to minimize 
|x_i|_0 (matching pursuit), or minimize |x_i|_1 (LASSO)

• Then Update the dictionary (through SVD)

• M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An Algorithm for Designing 
Overcomplete Dictionaries for Sparse Representation," in IEEE Transactions on 
Signal Processing, vol. 54, no. 11, pp. 4311-4322, Nov.

– Online learning
• Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2009. Online 

dictionary learning for sparse coding. In Proceedings of the 26th Annual International 
Conference on Machine Learning (ICML '09). ACM, New York, NY, USA, 689-696. 
https://www.di.ens.fr/willow/pdfs/icml09.pdf
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Image Denoising With Dictionary Learning
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From Shapiro’s Coursera Course on Image Processing, Lecture on Sparse Modeling and Compressed Sensing.



Application to Images

• Processing each image block separately 
– Using DCT or other fixed dictionary

– Using learnt dictionary that maximizes sparsity
• Non-redundant (SOT) vs. redundant dictionary (KSVD)

– Can use overlapping blocks to remove boundary effect

• Process the entire image
– Using wavelet transforms (orthonormal)

– Using wavelet frames (redundant transform, satisfying T TT=I)
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More Advanced Techniques

• Using overlapping image blocks
– Average results from overlapping reconstructed blocks 

– Overlapping provides significant gain!

• Dictionary learning
– Same dictionary applied to all (overlapping) blocks

– Pretrained dictionary: Using blocks from training images

– Image adaptive dictionary: Using image blocks in the given 
(noisy/incomplete) image to learn the dictionary

– Online adaptation: Dictionary is updated with each new sample 
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Image Denoising (with Overlapping Blocks and 
Image Adaptive Dictionary)
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From Shapiro’s Coursera Course on Image Processing, Lecture on Sparse Modeling and Compressed Sensing.



Image Inpainting (with Overlapping Blocks and 
Image Adaptive Dictionary)
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From Shapiro’s Coursera Course on Image Processing, Lecture on Sparse Modeling and Compressed Sensing.



Image Inpainting (with Overlapping Blocks and 
Image Adaptive Dictionary)
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From Shapiro’s Coursera Course on Image Processing, Lecture on Sparse Modeling and Compressed Sensing.



Summary

• Regularization using prior knowledge:
– Image is sparse in a properly chosen transform/dictionary (transform 

based methods)

– Image is smooth everywhere except near edges (TV-based methods)

– Both need to minimize L0 norm

• Convex relaxation: 
– Relax L0 to L1 

• Optimization approach for solving L2-L1 problem
– Soft thresholding

– ISTA

– ADMM

• How to set regularization parameter \lambda?
– Given signal and noise distribution, can set optimally based on MAP 

formulation

– Generally has to use “trial-and-error”
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Reading Assignment

• Notes by Prof. Ivan Selesnick
– http://eeweb.poly.edu/iselesni/lecture_notes/

– Least_squares_SP.pdf, sparse_SP_intrp.pdf, sparse_signal_restoration.pdf, 
SoftThresholding.pdf

• ADMM

– Distributed Optimization and Statistical Learning via the 
Alternating Direction Method of Multipliers (Boyd, Parikh, Chu, 
Peleato, Eckstein. Sec. 2,3,6. 
https://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.p
df
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Other References

• Some excellent review papers:
– M. Zibulevsky and M. Elad, "L1-L2 Optimization in Signal and Image Processing," in IEEE 

Signal Processing Magazine, vol. 27, no. 3, pp. 76-88, May 2010. 
https://ieeexplore.ieee.org/document/5447114

– Mairal, Julien, Francis Bach, and Jean Ponce. "Sparse modeling for image and vision 
processing." Foundations and Trends® in Computer Graphics and Vision 8.2-3 (2014): 85-
283. https://arxiv.org/abs/1411.3230 (including dictionary learning)

– Chambolle, Antonin, and Thomas Pock. "An introduction to continuous optimization for 
imaging." Acta Numerica 25 (2016): 161-319.  https://hal.archives-ouvertes.fr/hal-
01346507/document

• Other links
– Coursera Course by Prof. Katsaggelos, 

https://www.coursera.org/learn/digital/home/welcome

– Coursera Course by Prof. Shapiro, https://www.coursera.org/learn/image-
processing/home/welcome

– Homepage of Prof. John Wright’s course on sparsity: 
http://www.columbia.edu/~jw2966/6886_Fa2015.html

– M. Elad, Sparse and redundant representations: From Theory to Applications in Signal and 
Image Processing,  Springer, 2010.  http://www.springer.com/us/book/9781441970107

– Patrick L. Combettes† and Jean-Christophe Pesquet, “Proximal Splitting Methods in Signal 
Processing,” https://arxiv.org/pdf/0912.3522.pdf
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Softwares

• Sparse Modeling Software
– http://spams-devel.gforge.inria.fr/

• Optimization Software
– Matlab: linprog, quadprog

– http://cvxr.com/cvx/
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Written Homework

1. In the MAP formulation of the wavelet denoising problem in slides 
19-21, we assumed that the wavelet coefficients follow a 
Laplacian distribution. Derive a corresponding solution if the 
coefficients follow a Gaussian distribution. 

2. As described in the class, image deblurring using TV 
regularization can generally be formulated as the following 
optimization problem:

x= argminx { J(x) = ½ |Ax-b|2 + |Fx|1 }
Where F is the first-order or second order difference operator 

Reformulate the problem so that it can be solved using ADMM and 
derive the corresponding iterative algorithm for solving the problem.

3.   For the image completion problem (Slide 50-51), propose one 
ADMM formulation and the corresponding iterative algorithm.
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Review: Basics of Optimization 

• Unconstrained optimization: 

• Constrained optimization

• Local vs. Global minimum

• Convex optimization
– Loss function is convex, constraint set is convex

• For convex problem, every local minimum is a global 
minimum.

• Convex relaxation: Approximate a non-convex problem 
by a convex problem so that it is easy to solve. But 
need to study the conditions under which the two give 
equal or similar solutions
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Convex Function and Convex Sets
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Unconstrained Optimization and Gradient 
Descent

• Unconstrained:  x*= argmin J(x)

• Necessary condition: Gradient of J(x)=0:

• If there are close form solution for the above equation, 
we are done!

• If not, use gradient descent

• If J(x) is convex, there is only one local minimum
– Does not matter what is the initial condition x(0)
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J(x) = 0



Gradient Descent Method

• Iteratively update the current estimate in the direction opposite the gradient 
direction.

• The solution depends on the initial condition. Reaches the local minimum closest to 
the initial condition

• Yield optimal solution if J is convex regardless initial solution
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Method of Lagrange Multipliers

• Convert a constrained problem with Equality constraint 
to a non-constrained problem

• Original Problem:
– Min J(x)

– Subject to g(x)=c

• Augmented problem
– Min L(x)=J(x)+λ (g(x)-c))

– Necessary condition: Gradientx, λ L(x, λ)=0

– Equivalent to solve: 
• Gradient x J(x)= -λ gradientx g(x) 

• g(x)=c
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A “sloppy” Way

• Just minimize L(x, λ) for some chosen λ

• λ controls the weighting between the original cost and 
constraint

• Trial and error to see which λ yields best solution 
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Other More Advanced Method

• When some terms of J(x) are not differentiable but 
convex

• MM (majorization minimization)
– Selesnick’s note on Sparse Signal Recovery at 

http://eeweb.poly.edu/iselesni/lecture_notes/sparse_signal_rest
oration.pdf

• ADMM (Alternating direction method of multipliers) 
– Boyd’s et al, “Distributed Optimization and Statistical Learning 

via the Alternating Direction Method of Multipliers.”

– http://web.stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf

• Proximal Splitting
– Patrick L. Combettes† and Jean-Christophe Pesquet, “Proximal 

Splitting Methods in Signal Processing,” 
https://arxiv.org/pdf/0912.3522.pdf
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Review: Vector Derivatives
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From: http://eeweb.poly.edu/iselesni/lecture_notes/sparse_signal_restoration.pdf

• Note: Chain Rule Apply
• Trick: Think of all 

variables as scalars, and 
order items so that the 
dimension matches for 
matrix multiplications



Review: Solution of Linear Equations

• Solving  AMxN xNx1 =bMx1

• M: # equations,  N: # unknowns (dimension of vector)

• M=N, A is Full Rank: Uniquely determined 

• M>N: Over-determined
– Least squares solution

• M<N: Under-determined
– Need extra constraint!
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Uniquely Determined (M=N)
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If A is full rank (all columns are non-linearly correlated)



Over-Determined Problem (M>N)
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Least squares solution = 
Unconstrained Optimization

J(x)= |Ax-b|22=(Ax-b)T (Ax-b)



Under-Determined Problem (M < N)

• Infinitely many solutions

• Needs to make use of 
prior knowledge about x 
(called priors) (known as 
regularization)

• The prior knowledge can 
usually be represented 
as a cost function J(x)

• Change to constrained 
optimization problem 
with equality constraint:
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Minimum L2-Norm Solution (Easy!)

• Among all solutions, find one 
with minimum energy (=L2 
norm square)

• L2 Norm: 

• Optimization problem:

• Solution (Using Lagrange 
Method)
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