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Last Lecture

• 2-D motion vs. optical flow

• Optical flow equation and ambiguity in motion estimation

• General methodologies in motion estimation
– Motion representation

– Motion estimation criterion

– Optimization methods

• Lucas-Kanade Flow Estimation Method and KLT tracker

• Block Matching Algorithm
– EBMA algorithm 

– Half-pel EBMA

– Hierarchical EBMA (HBMA)

• Deformable image registration (Skipped, optional)
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Summary 1: General Methodology

• What causes 2D motion?
– Object motion projected to 2D
– Camera motion
– Optical flow vs. true 2D motion

• Constraints for 2D motion
– Optical flow equation
– Derived from constant intensity and small motion assumption
– Ambiguity in motion estimation

• Estimation criterion:
– DFD (constant intensity)
– OF (constant intensity+small motion)
– Regularization (motion smoothness or other prior knowledge)

• Search method:
– Exhaustive search, gradient-descent, multi-resolution
– Least squares solution under optical flow equation
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Summary 2: Motion Estimation Methods

• Pixel-based motion estimation (also known as optical flow 
estimation)
– Most accurate representation, but also most costly to estimate
– Need to put additional constraints on motion of neighboring pixels
– Lucas-Kanade method

• Assuming motion in the neighborhood is the same
• Using Taylor expansion

– How to handle large motion: iterative refinement, multiresolution
– KLT tracker: apply LK method on feature points only
– Automatically yield fractional accuracy

• Block-based motion estimation, assuming each block has a 
constant motion
– Good trade-off between accuracy and speed
– EBMA and its fast but suboptimal variant is widely used in video 

coding for motion-compensated temporal prediction.
– HBMA can not only reduce computation but also yield physically more 

correct motion estimates 

Yao Wang, 2020 ECE-GY 6123: Image and Video Processing 4



This Lecture

• Background modeling and moving object detection
– Low rank+sparse decomposition (RPCA)

• Camera motion estimation

• Object tracking

• Video shot segmentation

• Video stabilization
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Background Modeling and Object Detection

• Main applications: 
– Visual surveillance (Road, Airport, Parking lot, In home security,…)

– Activity pattern discovery: e.g. # of people, # of cars 

• In most applications, we want to detect the moving objects 

• In some applications, we want to form a complete background from 
video frames
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Moving Object Detection 

• Simple idea
– Assuming background is stationary, color changes only at 

moving regions

– Take difference between two frames, detect pixels with large 
difference.

– Post processing is needed to form smooth, connected 
foreground regions
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Moving object detection by examining frame 
difference

• Frame at t:  f(x,y,t)

• Frame Difference at t:  e(x,y,t)=|f(x,y,t)-f(x,y,t-1)|

• Thresholding the difference to highlight pixels with large change

• Postprocessing
– Remove isolated foreground pixels due to false detection

– Find a connected blob covering the foreground pixels (blob detection, 
connectivity analysis, and other tools in openCV/Matlab)

– Alternative: Put a bounding box covering all detected foreground pixels 
after removing isolated pixels

• Show example
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>> img1=imread('frame31.jpg');
>> img2=imread('frame32.jpg');
>> img1=rgb2gray(img1);
>> img2=rgb2gray(img2);
>> img1=int16(img1);
>> img2=int16(img2);
>> diff=abs(img1-img2);

>> figure(1),imshow(img1,[])
>> figure(2),imshow(img2,[])
>> figure(3),imshow(diff,[]) 
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>> figure(3),imshow(diff,[]) 
>> max(max(diff))
>> diffT=(diff>20);
>> figure(4),imshow(diffT,[])
>> diffTM=medfilt2(diffT,[5 5]);
>> figure(5),imshow(diffTM,[])



Problem with frame difference

• The background may not be stationary
– Tree leaf motion

– Lighting change

– Camera motion

• More advanced methods are needed to compensate for such  
changes
– Background modeling (later)
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Challenges for Background Modeling

• Illumination change (background looks different at 
different times of the day, under different weathers)

• Camera jitter causes changes in the background 

• Shadow effect (Shadow is slowly moving, may be 
falsely considered moving object without proper 
treatment)

• Stationary foreground objects (e.g. parked cars) are 
hard to differentiate from background
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Challenge due to Illumination Changes
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Foreground detected using the MoG algorithm

From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 
Recent Patents on Computer Science , 1(3):219–237, November 2008.



Challenge due to Dynamic Background
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Foreground detected using the MoG algorithm

From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 
Recent Patents on Computer Science , 1(3):219–237, November 2008.



Challenge due to Shadows
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Foreground detected using the MoG algorithm

From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 
Recent Patents on Computer Science , 1(3):219–237, November 2008.



Background Modeling (Threshold-Based)

• Simple method
– Averaging all frames (hoping moving objects will be averaged out over 

a long period of time)

– Work well when the camera is stationary and illumination is nearly 
constant, and you can average many many frames

• Recursive update
– The background up to the previous frame Bt-1

– Given a new frame Ft, form difference  D(x,y)=Ft(x,y)-Bt-1(x,y)

– If |D(x,y)|< T, assign (x,y) to Background, use F(x,y) to update Bt-1(x,y).

– Bt(x,y)=(1-a) Bt-1(x,y)+ aFt(x,y)
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Background Modeling using GMM

• Modeling the colors at each pixel using a Gaussian mixture model 
(GMM) (aka  mixture of Gaussian or MoG)

– Recursively update the GMM parameter at each pixel

• Initial paper:  
– Stauffer, Chris, and W. Eric L. Grimson. "Adaptive background mixture models 

for real-time tracking." Computer Vision and Pattern Recognition, 1999. IEEE 
Computer Society Conference on.. Vol. 2. IEEE, 1999.

– http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf

• A good review: 
– T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture 

of Gaussians for foreground detection: A survey. Recent Patents on Computer 
Science , 1(3):219–237, November 2008.

• Not required for this class
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Foreground Detection using GMM-based Approaches
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From: T. Bouwmans, F. El-Baf, and B. Vachon. Background modeling using mixture of Gaussians for foreground detection: A survey. 
Recent Patents on Computer Science , 1(3):219–237, November 2008.



Background Separation 
Using Low Rank + Sparse Decomposition

• Main idea
– Reorder pixels in each frame into a vector

– Put successive frame vectors as columns of a matrix M

– If all the frames are the same (stationary), then all columns will be the 
same, the matrix has rank 1

– If all the frames only differ by a scale factor (e.g. due to illumination 
change), the matrix still has rank 1

– If all the frames vary from each other slightly, generally the matrix has 
a low rank (each frame is a linear combination of a few other frames)

– If there is a moving object in the scene, the matrix may not be low rank 
any more

– Generally, M may be decomposed into a low rank matrix L 
(corresponding to slowly changing background) and a sparse matrix S 
(corresponding to moving foreground, occupying only a sparse set of 
pixels)
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Stacking Video frames in a Matrix
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M = L + S
L: Background, low rank
S: Moving foreground, sparse

How to find L and S from M?



Rank of a Matrix and 
Singular Vector Decomposition (SVD)

• Rank = # of independent columns (or rows) in a matrix

• Rank = # non-zero singular values of the matrix

• SVD: any matrix can be decomposed as

்
௥ ௥ ௥

்
ோ

௥ୀଵ
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Low-rank+Sparse Decomposition

• Given M, determine L and S, so that
– M=L+S, L is low rank, S is sparse (Small L0 norm)

• Mathematical formulation 
– min 𝑅𝑎𝑛𝑘 𝐿 + 𝜆 𝑆 ଴, subj to 𝐿 + 𝑆 = 𝑀. (Original problem)

– Hard to solve!

• Candes et al and Wright et al proved, under some conditions and for a 
suitably chosen , the above problem is equivalent to

– min 𝐿 ∗ + 𝜆 𝑆 ଵ, subj to 𝐿 + 𝑆 = 𝑀. (Convex relaxed problem) 

– 𝐿 ∗ is the Nuclear Norm of L (Sum of singular values of L)

– Convex problem, and can be solved through ADMM (iterative SVD and soft 
thresholding)

• Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM 
(JACM), 58(3), 11.

• Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009). Robust principal component analysis: Exact 
recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information processing 
systems (pp. 2080-2088).

• https://sites.google.com/site/backgroundsubtraction/available-implementation/recent-background-
modeling/background-modeling-via-rpca
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Principle Component Analysis (PCA)

• Original formulation of PCA
– Given observation vectors xi, form matrix M=[x1, x2,…, xN]

– Covariance matrix  C=M MT

– Principle components = Eigenvectors of C: ௜ ௜ ௜, 

– SVD of M: ்

் ் ் ଶ ் ଶ

– Principle components can be found using SVD on M: ௜ is eigenvector with 
eigenvalue ௜ ௜

ଶ

• Another interpretation of PCA
– Finding a low rank approximation of M with minimal L2 error

ଶ, subj to 

– L=SVD of M with K largest singular values: 
• 𝑀 = 𝑈𝑆𝑉் -> L = 𝑈𝑆௄𝑉்
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Robust PCA (RPCA)

• PCA: ଶ, subj to 
– the principle components are greatly affected by outliers (noise with 

large values)

• Robust PCA:  ଴, subj to 
– S represent “outliers”, which occur rarely but can be large

– RPCA=Low Rank+Sparse Decomposition!

• Under mild conditions, RPCA is equivalent to solve

∗ ଵ, subj to .
– Also known as Principle Component Pursuit or PCP

– Can be solved using ADMM 
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Alternating direction method of multipliers 
(ADMM, Review)
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Croped from: https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf

Typical use case:
f(x) is quadratic in x
g(z) contains L1 norm
B= diagonal

Minimizing a quadratic problem, with closed-form solution

Soft thresholding if B=diagonal

Can be grouped as \rho/2 ||y/rho+ (Ax+Bz-c)||^2 by completing square



ADMM Solution of L+S
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• Original relaxed problem:

• Augmented Lagrangian:

• ADMM: Solve L and S alternatingly, each with closed form solution

Find the SVD of 𝑋 = 𝑀 − 𝑆 + 𝜇ିଵ𝑌,
soft hresholding singular values with threshold 𝜇ିଵ

L-minimization: 

S-minimization: 

From: Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.



L+S Using ADMM
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From: Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.
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From: Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11.



Variations of RPCA (not required)

• Complexity issue:
– ADMM requires solving SVD in each iteration

– Many fast algorithms have been developed

• Robustness to noise:
– Beyond the moving object, variations in the measurement matrix M 

may be due to camera noise, dynamic background (moving tree 
leaves, ocean waves, etc)

– Requiring M=L+S exactly may not be appropriate

– Stable PCP:
• M= L+S+E, where E represents small random variations

• min 𝐿 ∗ + 𝜆 𝑆 ଵ, subj to 𝑀 − 𝐿 − 𝑆 ி ≤ 𝛿

– Alternate formulation
• min 𝐿 ∗ + 𝜆ଵ 𝑆 ଵ+𝜆ଶ 𝑀 − 𝐿 − 𝑆 ி

ଶ

• T. Bouwmans, E. Zahzah, “Robust PCA via Principal Component Pursuit: A Review for a Comparative 
Evaluation in Video Surveillance”, Special Issue on Background Models Challenge, Computer Vision and Image 
Understanding, CVIU 2014, Volume 122, pages 22–34, May 2014. [pdf] 
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Pop Quiz

• Is thresholding the frame difference a good method to 
detect moving objects? 

• Where does it fail?

• What is the assumption of RPCA method?

• Can RPCA handle lighting changes of background?

• Can RPCA handle dynamic background (tree leaves, 
water movement)?

• What is the objective function that RPCA minimizes?

• How to find the optimal solution?

Yao Wang, 2020 ECE-GY 6123: Image and Video Processing 30



Camera Motion Estimation: Applications

• To enable object detection under camera motion
– First warp images using estimated camera motion so that the 

background parts are aligned, then check for moving regions or 
applying RPCA

• To enable registration of two frames under different 
camera views and stitching 

• To form a complete background image from a video 
sequence captured by a moving camera
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Camera Motion Estimation 
(aka Global Motion Estimation)

• Feature-based vs. intensity-based
– Feature-based: First determine some corresponding feature points 

(using feature detector and descriptor) in both images, then try to fit 
the correspondences into a chosen mapping model (covered 
previously)

• Least squares
• Robust fitting: RANSAC

– Intensity-based: Directly determine the motion field (or motion 
parameters) so that the intensities of corresponding pixels match 
(focus in this lecture)

• Direct vs. indirect estimation under intensity-based 
approach
– Direct: Directly finding the motion parameters
– Indirect: First find dense motion field, then fit the motion field to a 

chosen motion model
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Camera Motion Model (Review)

• If two images F and G are taken of the same scene 
from different view points, they are related by a 
geometric mapping or transformation

• What determines the mapping function? 
– Need to know camera 3D->2D projection geometry

– Need to know how to model camera motion
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x0 in F corresponds to x1 in G

Mapping function:
x1 = h(x0)
or
x1=hx(x0,y0), y1=hy(x0,y0) 



Planar Homography: Mapping for Points on the 
Same Plane (Review)
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Let the plane be represented by Z=aX+bY+c,

previous general relation becomes
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Approximation of Projective Mapping 
by Affine and Bilinear Model (Review)

• Affine (6 parameters):

– Affine model sufficiently capture mapping due to in-plane 
camera motion (scaling, roll and translation in x,y only)

– Also known as affine homography

• Bilinear (8 parameters):
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Direct Estimation

• Parameterize the DFD error in terms of the motion parameters, 
and estimate these parameters by minimizing the DFD error

Ex: Affine motion:
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Exhaustive search or gradient descent method can be used to find a
that minimizes EDFD

When the motion is small, can also minimize the error to the optical 
flow equation at each pixel, EOF

Weighting wn coefficients depend on the importance of pixel xn.



Global Translation Estimation

• Simple global motion: Every pixel is moved by the same 
amount due to camera in-plane shift (global translation)

• How to find the global translation?

• Exhaustive search: Applying EBMA to the entire frame
– Find the shift between the anchor frame and the target frame 

so that the matching error is minimal

– Integer or fractional pel search

– Matching error should be calculated over overlapping pixels 
only, and the error should be normalized by the number of 
pixels in the overlapping area (average error / pixel)

• When the global translation is known to be small, the 
shift can be determined by solving an equation derived 
from optical flow constraint
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Estimating Global Shift

• Think of the whole anchor frame f1 as a block

• Find the match of f1 in the target frame f2 by evaluating matching 
error with all possible shifts

• =EBMA using the whole anchor frame as the template! 

Yao Wang, 2020 ECE-GY 6123: Image and Video Processing 38

Anchor 
frame f1

Target 
frame, f2 



Sample MATLAB Code
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function [dx,dy]=GlobalMVEstimation1(f2, f1,Rx, Ry)
%finding global MV of f2 with respect to f1
%Rx and Ry are search range (maximum possible absolute shift)

[H,W]=size(f);[Hr,Wr]=size(fr);Maxerror=255; dx=0;dy=0;
for (k=-Ry:Ry, l=-Rx:Rx) %try all possible shifts

error=0;count=0;
for (m1=1:Hr,n1=1:Wr) 

m2=m1+k;n2=n1+l;
if ((m2>0) & (m2 <=H) &( n2>0) &( n2<=W))

count+=1;
error += abs(f1(m1,n1)-f2(m2,n2);

end
end
error=error/count;
if (error<maxerror)

dy=k,dx=l,maxerror=error;
end

end
%This script is not very efficient. How do you improve it by not looping through m1,n1 and 
checking “if …”



Alternate Faster Implementation
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function [dx,dy]=GlobalMVEstimation2(f2, f1,Rx, Ry)
%finding global MV of f2 with respect to f1
%Rx and Ry are search range (maximum possible absolute shift)

[H,W]=size(f2);[Hr,Wr]=size(f1);Maxerror=255; dx=0;dy=0;
for (k=-Ry:Ry, l=-Rx:Rx) %try all possible shifts

error=0;count=0;
mb=…, me=…, nb=…, ne=…
count=(me-mb+1)*(nb-ne+1);

%mb,me,nb,ne should be determined so that mb>=1 & mb+k>=1, similarly me<=Hr & 
me+k<=H. Similarly for nb,ne

error=sum(sum(abs(f1(mb:me,nb:ne)-f2(mb+k:me+k,nb+l:be+l))))/count;
if (error<maxerror)

dy=k,dx=l,maxerror=error;
end

end

%Hint:  To satisfy mb>=1 & mb+k>=1, we can set mb=max(1,1-k)



Global Affine Transformation

• Affine mapping is a good approximation of the global motion due to 
camera motion, especially for far-away view

• Global Affine Transformation (6 parameters)

• Special cases:
– Translation only: 
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Direct Estimation of Affine Motion: 
Minimizing DFD Error

• Parameterize the DFD error in terms of the motion parameters, 
and estimate these parameters by minimizing the DFD error

Ex: Affine motion:
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Exhaustive search of all 6 parameters is computationally prohibitive!
Using gradient descent method. 

Weighting wn coefficients depend on the importance of pixel xn.



Direct Estimation of Affine Motion Using Gradient Descent Method 
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Implementation Details: Gradient Vector Calculation
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First order gradient descent (starting from some initial condition):
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• Simple implementation (using centered difference)

• Convolves with filters that approximate the gradient 
operation

– Sobel operator

– Derivative of Gaussian filters (see previous lecture notes)
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Implementation Details: Gradient Image Calculation
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How to determine the initial solution?

• If the anticipated rotation is small, may assume only 
translation is present. Estimate the translation 
parameters using the global translation estimation 
algorithm.

• If the anticipated translation is also small, can assume
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When to stop the iteration?

• When the energy functional being minimized stop decreases

• Energy function at (l+1) iteration

• At end of (l+1) iteration, check
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Solving Affine Mapping Using Optical Flow Constraint
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B includes all pixels in a frame



A Closer Look at the Equation …
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Iterations using the Optical Flow Approach

• The solution is accurate only if the true motion is small.

• When the true motion is not necessarily small, use an iterative 
approach
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At the (l+1)-th iteration: 

Update the predicted image, error image, and gradient images using 

y
2
(l ) = warp(y

2
,T (l )),e(l ) =y

1
-y

2
(l ) ,G

x
(l ) = warp(G

x
,T (l )),G

y
( l) = warp(G

y
,T (l )),

Find the new affine mapping T=(a ,b) using the optical flow based approach, 

with y
2
,e,G

x
 , G

y
replaced by y

2
(l ) ,e(l ) ,G

x
(l ) , G

y
(l ).

Update the overall mapping function T (l+1) =T(a ,b)T (l ).

T (l+1) : x® x '= x +a
0
+a

1
x +a

2
y , y® y '= y +b

0
+b

1
x +b

2
y

T (l) : x '® x ''= x '+a
0
(l ) +a

1
(l)x '+a

2
(l ) y '; y '® y ''= y '+b

0
(l) +b

1
(l )x '+b

2
(l ) y ';

Overall motion:

x ''= x +a
0
+a

1
x +a

2
y +a

0
(l ) +a

1
(l )(x +a

0
+a

1
x +a

2
y)+a

2
(l )( y +b

0
+b

1
x +b

2
y)

= x +a
0
(l+1) +a

1
(l+1)x +a

2
(l+1) y

a
0
(l+1) = a

0
+a

0
(l ) +a

1
(l )a

0
+a

2
(l )b

0
,a

1
(l+1) = a

1
+a

1
(l )(1+a

1
)+a

2
(l )b

1
,a

2
(l+1) = a

2
+a

1
( l)a

2
+a

2
(l )(1+b

2
)

y ''= y +b
0
(l+1) +b

1
(l+1)x +b

2
(l+1) y

b
0
(l+1) = b

0
+b

0
(l ) +b

1
(l )a

0
+b

2
(l )b

0
,b

1
( l+1) = b

1
+b

1
(l )(1+a

1
)+b

2
(l )b

1
,b

2
(l+1) = b

2
+b

1
( l)a

2
+b

2
(l )(1+b

2
)



Indirect Estimation of Global Motion

• First find the dense motion field using pixel-based or block-based 
approach (e.g. EBMA), or find motion vectors at selected feature 
points, resulting in a sequence of data pairs pairs 

• Then finding the motion model parameters to satisfy the equations:

• The parameters for dx and dy can be solved separately by fitting 
the models for dx and dy separately if dx and dy do not share 
parameters (e.g. affine or bilinear motion).

• Can use the same approaches described previously from 
determining the ”mapping” parameters from feature 
correspondences. Here each pixel or block and its corresponding 
pixel or block forms a feature correspondence.
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Least Squares Fitting for Affine Model
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• Weighting wn coefficients 
depend on the accuracy of 
estimated motion at  xn.

• This is similar to the 
“feature-based” approach, 
but now we use the dense 
motion vectors found for all 
pixels or small blocks.



Problem with Least Squares Fitting

• Estimated motions at some pixels may be grossly wrong (outliers)

• Outliers can significantly impact the global motion estimation 
results when using square error, leading to errors in object 
detection as well

• Alternatives:
– Instead of minimizing the square error, minimize the L0 norm  (very 

hard)

– Convex relaxation: Minimize L1 norm instead. 
• Computationally more demanding than minimizing L2 error, but solvable.

– RANSAC method if based on feature correspondence (May not be 
computationally feasible based on dense motion vectors)

– Can also iterative weighted least square: the weights are smaller for 
pixels with larger fitting errors in the previous iteration
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How to determine the parameters of 
Homography given a dense motion field?

• Previously described for the case using a set of 
corresponding feature points.
– Feature correspondence

– Least squares or RANSAC

• Same approach can be applied to all pixels
– RANSAC may be not practical 
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Pop Quiz

• What is the difference between direct and indirect methods?

• What are the two ways to set up your intensity-based objective function?

• What is the pros and cons using the optical flow equation to set up your 
optimization criterion?

• How would you estimate the global translation based on the optical flow 
equation?

• How would you estimate the homography parameters between two frames 
using the indirect method?
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Moving Object Detection under Camera Motion

• Moving objects induce different motion than the camera motion

• Because moving objects are typically small in a frame, the pixels 
corresponding to these objects can be considered as “outliers”

• First determine camera motion by minimizing the error over all 
pixels (or feature points), then detect pixels with large error (in 
intensity or position)

• Moving objects are the outliers!
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Region-Based Motion Estimation (Optional)

• Assumption: the scene consists of multiple objects, with the region 
corresponding to each object (or sub-object) having a coherent 
motion
– Physically more correct than block-based, mesh-based, global motion 

model

• Method:
– Region First: Segment the frame into multiple regions based on 

texture/edges, then estimate motion in each region using the global 
motion estimation method

– Motion First: Estimate a dense motion field, then segment the motion 
field so that motion in each region can be accurately modeled by a 
single set of parameters

• This can be done by clustering: partition all all pixels into different groups 
based on their motion similarity, using e.g. K-means algorithm

– Joint region-segmentation and motion estimation: iterate the two 
processes 



Layered Motion Estimation (Optional)
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Wang, J. Y. A. and Adelson, E. H. (1994). Representing moving images with layers. IEEE
Transactions on Image Processing , 3(5):625–638.

See [Szeliski2010] Sec. 8.5.



Object Tracking

• Suppose you identified a person or an object in one frame, and you 
want to find how does it move in the subsequent frames.

• How do you do that?

• Simple approach:
– If you put a bounding box over the person, then the color pattern within 

the bounding box (template block) should not change much even if the 
box is moving over time

– We can find how does the box move by searching for a same sized 
box with similar color pattern in successive frames –known as 
template matching

– Can be accomplished by using the EBMA method repeatedly on two 
adjacent frames, where the block is the object bounding box in the 
current frame (anchor frame), and you find the matching block in the 
next frame (target frame)
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Object Tracking by Template Matching

• >> figure(2),imshow(img2,[])

• >> figure(1),imshow(img1,[])
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>> figure(1),imshow(img1,[])
>> figure(2),imshow(img2,[])
>> x0=112,y0=59,x1=175,y1=202
>> Rx=24,Ry=10
>> template=img1(y0:y1,x0:x1);
>> [xm,ym,matchblock]=EBMA(template,img2,x0,y0,Rx,Ry);
>> xm, ym



Problems with Template Matching

• The shape and appearance of the object may change if the motion is not 
just a shift

– Search for the parameters of possible object motion to minimize the intensity 
difference after motion compensation in the object region. (See following for 
global motion estimation)

• Different parts of the object may move differently

• Some parts may disappear, new parts may appear (occlusion issues)

• More sophisticated algorithms are needed to solve these challenges 
(outside the scope of this lecture)

• However, when two frames are very close in time (e.g under high frame 
rate), the movement of most objects are small and simple block matching 
can work quite well
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Other Alternatives for Object Tracking

• Previous approach 
– Detect in one frame, track in future frames

– Often loose track after a while

• Extension of template matching
– Allow “affine” or “homography” mapping between the current block and 

the tracked block

– Find the best mapping parameters that minimizes the color differences

• Yet another alternative
– Detect feature points in the object in the current frame

– Find correspond features in the next frame (e.g. KLT tracker) 

– Repeat in successive frames to form “tracklets”

– The number of identified corresponding points will reduce over time

– May need to form a candidate box that covers the tracked points so far 
and identify additional new feature points in new frames  (KLT tracker)
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How to track multiple objects (Optional)

• Can detect multiple objects in a starting frame and track 
each one independently.
– Challenging if these objects cross each other at some frame

• Can also use feature points
– Detect all feature points in the current frame

– Link correspond features in following frames using KLT tracker to form 
“tracklets”

– Merge tracklets belonging to the same object 
• Motion consistency, spatial adjacency

• Using a clustering algorithm to identify clusters, so that within each cluster 
the feature points are nearby and have similar global motion
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R obust V ehicle Tracking for U rban Tra cffi V ideos at Intersections
LiC.,Chiang A.,D oblerG.,W ang Y.,Xie K .,O zbay K.,GhandehariM .,Zhou J.,W ang D .

CenterforUrban Science + Progress (CUSP),N ew York University
D epartm ent ofElectricaland Com puterEngineering,N ew York University

PaperID 96

Introduction

1 A robust system to autom atically extract vehicle
trajectory data from video data obtained by existing tra cffi

cam eras from the N ew York C ity D epartm ent of
Transportation (N Y C D O T ).

2 A utom atic trajectory inform ation w illbe used to develop
realistic surrogate safety m easures to both identify
high risk locations and assess im plem ented safety
im provem ents.

Figure 1: A representation ofthe steps in ourvehicle tracking system .

K LT T racklet G eneration

Figure 2: The KLT tracking result shows the effects of perspective as wellas

the stationary points which are to be lteredfi out as non-vehicle tracklets in

subsequentsteps. Feature points are shown in red and tracklets in green.

M otivation and O b jectives

W e develop a robust,unsupervised vehicle tracking system for videos ofvery congested road intersections in urban environm ents.
R aw tracklets from the standard K anade-L ucas-T om asi(K LT ) tracking algorithm are treated as sam ple points and grouped to
form di erenff t vehicle candidates. Each tracklet is described by m ultiple features including position,velocity,and a foreground score
derived from robust P C A background subtraction. B y considering each tracklet as a node in a graph, we build the adjacency
m atrix for the graph based on the feature sim ilarity between the tracklets and group these tracklets using spectralem bedding and
D irichelet P rocess G aussian M ixture M odels.T he proposed system yields excellentperform ance fortra cffi videos captured
in urban environm ents and highw ays.

C hallenges from U rban Street L evel V ideos

Figure 3:Trackletsareshown before(left)and after(right) lteringfi and sm ooth-

ing. N ote thatthe lteringfi processrem oves the m ajority ofstationary pointson

building corners and streetpaint.

1 H igh degree ofpartial occlusions in dense tra cffi

2 Vehicles have deform able app earances due to view ing
angles as opposed to the high bird’s eye view

3 Tra cffi lights at the intersection lead to vehicle stop-and-go
conditions

4 N Y C D O T surveillance videos have low resolution (480×640
pixels),frequent illum ination changes am ong fram es

T racklet C lustering

Figure 4: The resultsofthe rPCA foreground/background separation are shown

forboth street-levelN YCD O T (top) and N GSIM (bottom ) video.

1 T he adjacen cy m atrix between two tracklets is de nedfi

as,
ln = − • (1)

1 is a weight vector for each feature in
≡( m ax m ax m ax cen m ax).

2 m ax ≡m ax | ( )− ( )|is the m axim um p ositional
separation along the tracklet

3 m ax ≡m ax | ( )− ( )|and

m ax ≡m ax | ( )− ( )|are the m axim um velocity
separations in two dim ensions along the tracklet

4 cen m ax ≡m ax | cen ( )− cen ( )|is the m axim um separation of
the center of m ass of the blob lab els

R esult

Figure 5: The initialgroups from thresholding adjacency m atrix (top) and the

clustered results for allKLT tracklets(m iddle) are shown forN GSIM (left) and

N YCD O T (right)videos. The nalfi extracted trajectoriesafterspectralclustering

and D PGM M are shown in the (bottom ) panels.

1 P ersp ective T ransform ation: W arping the non-parallel
trajectories into parallel

2 H ard thresholding is thresholded according to

m ax ≤ to form connected com ponents w hich are never
separated by m ore than a distance .

3 Sp ectral em b edding and D irichlet P rocesss
G aussian M ixture M odel(D PG M M ) to identify the
num ber ofclusters autom atically and labeleach tracklet.

Contact: Chenge Li,chenge.li@nyu.edu



Challenges with Object Tracking

• The shape and appearance of the object may change if the motion is not 
just a shift

– Search for the parameters of possible object motion to minimize the intensity difference 
after motion compensation in the object region. (See following for global motion estimation)

• Different parts of the object may move differently

• Some parts may disappear, new parts may appear (occlusion issues)

• Many advanced algorithms have been developed to solve these 
challenges (outside the scope of this lecture)

• Good references:
– Yilmaz, Alper, Omar Javed, and Mubarak Shah. "Object tracking: A survey." Acm

computing surveys (CSUR) 38.4 (2006): 13. 
http://7xq232.com1.z0.glb.clouddn.com/talk/2013.12.20-Student.Workshop.pdf

– Wu, Yi, Jongwoo Lim, and Ming-Hsuan Yang. "Online object tracking: A 
benchmark." Proceedings of the IEEE conference on computer vision and pattern 
recognition. 2013. http://www.cv-
foundation.org/openaccess/content_cvpr_2013/papers/Wu_Online_Object_Tracking_2013
_CVPR_paper.pdf
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Deep Learning for Object Tracking (Optional)

• Many possible approaches

• Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to 
track at 100 fps with deep regression networks." European 
Conference on Computer Vision. Springer, Cham, 2016. 
https://arxiv.org/pdf/1604.01802, 
http://davheld.github.io/GOTURN/GOTURN.html

• Bertinetto, Luca, Jack Valmadre, Joao F. Henriques, Andrea 
Vedaldi, and Philip HS Torr. "Fully-convolutional siamese networks 
for object tracking." In European conference on computer vision, 
pp. 850-865. Springer, Cham, 2016. 
https://arxiv.org/pdf/1606.09549.pdf

• Work at NYU Video Lab

• Not required
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GOTURN (Matching in Feature Domain)
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Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to track at 100 fps with 
deep regression networks." European Conference on Computer Vision. Springer, Cham, 
2016. https://arxiv.org/pdf/1604.01802, 



Yao Wang, 2020 ECE-GY 6123: Image and Video Processing 68

Held, David, Sebastian Thrun, and Silvio Savarese. "Learning to track at 100 fps with 
deep regression networks." European Conference on Computer Vision. Springer, Cham, 
2016. https://arxiv.org/pdf/1604.01802, 



Multiple Object Tracking Using Deep Learning

• Detect and track multiple objects

• Conventional approach
– Detect individual objects in each frame, then associate 

corresponding objects (Detect and then track)

• Work at NYU video lab
– Detect a “tube” in a video segment that contains the object in 

successive frames

– Chenge Li, Gregory Dobler, Xin Feng, Yao Wang “TrackNet: 
Simultaneous Object Detection and Tracking and Its 
Application in Traffic Video Analysis“.
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Tracking by Detection in Individual Frames 
(Conventional Approach)

Single frame object detection
(results of faster-region-CNN on one frame)

Multiple frame object detection
(results of applying faster-region-CNN on each 
frame. Need to determine which boxes in different 
frames correspond to the same object )
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Extending Region-CNN For Moving Object 
Detection in Video

• Consider a video segment 
consisting of multiple frames

• Detecting a tube bounding each 
moving object 

• Use 3D and 2D convolution for 
feature extraction (C3D and VGG)

• Generate object proposals 
(bounding tubes of various sizes 
and orientations)

• Refine proposals and classify 
each detected tube (car, van, bus, 
pedestrian, …)

Yao Wang, 2020 ECE-GY 6123: Image and Video Processing 71





Video Results
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Pixel-Wise Object Tracking
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Proposed Framework

• Two stage tracking:

• The global model predicts a region of interests (RoI) in the new frame based on 
the segmentation masks of past frames.
• Employs a convolutional LSTM structure to generate the latent feature 

characterizing the object motion.

• The local model segments the RoI to identify pixels belonging to the object.
• Also uses a convolutional LSTM structure whose memory state evolves with

object appearance.

• The two-stage framework is robust to significant appearance shift, occlusion, and 
large motion and varying object sizes.

• Yilin Song, Chenge Li, Yao Wang “Pixel-wise object tracking“, Initial version: Nov. 2017, 
Last updated: July 2018.
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Video Results



Video Shot Boundary Detection 
(or Scene Change Detection)

• A video often contains different shots, each has a coherent scene

• How to divide a video into separate shots or detect scene change?
– An important first step for video analysis

• Simple approach:
– Frame difference: if sum of DFD is large, there is a scene change

– Sensitive to changes due to camera motion, object motion, illumination 
variation

– Does not work well in gradual transitions

• More advanced approaches
– Based on difference in color histogram, entropy of color distribution

– Machine learning based approach

Yao Wang, 2020 ECE-GY 6123: Image and Video Processing 78



TRECVID Competition

– TRECVID  (TREC Video Retrieval Evaluation) is sponsored by NIST to 
encourage research in digital video indexing and retrieval. It has 
focused on different video analysis tasks. Shot boundary detection 
was one

• http://trecvid.nist.gov/

– Smeaton, Alan F., Paul Over, and Aiden R. Doherty. "Video shot 
boundary detection: Seven years of TRECVid activity." Computer 
Vision and Image Understanding 114.4 (2010): 411-418. 
http://doras.dcu.ie/4080/1/sbretro.pdf. Contain results up to 2005

– Liu, Z., Gibbon, D., Zavesky, E., Shahraray, B., & Haffner, P. (2007, 
November). AT&T research at trecvid 2006. In Proc. TRECVID 
Workshop (pp. 19-26). (best in TRECVid2006 SBD Competition) 
https://www.researchgate.net/profile/Behzad_Shahraray/publication/22
4718827_A_Fast_Comprehensive_Shot_Boundary_Determination_Sy
stem/links/02e7e51a8b6cea0546000000.pdf
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Video Stabilization

• A video may be unstable due to unwanted camera 
motion

• Especially prevalent in home video captured by hand-
held cameras with a “shaky hand”

• Also prevalent in aerial surveillance video

• Goal: remove the motion due to unwanted camera 
motion, so that the video plays smoothly

• Demo
– http://www.sri.com/newsroom/video/acadia-real-time-video-

stabilization-demo
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General Approach

• Estimate camera motion between every two adjacent 
frames
– Assuming a global translation is often sufficient

– More generally using affine to account for tilt or homography to 
account for out of plane rotation

– Can use either feature-based on intensity-based approaches

• Smooth motion parameters in time (to remove shaking, 
but keep the smooth camera motion)

• Warping each frame so that it undergoes the smoothed 
motion between frames
– Remove undesired global motion due to hand shaking

• Filling missing pixels (on the border) in each frame 
(image completion)
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Global Motion 
Smoothing
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From [1]

Kalman filtering approach:
Separating observed motion 
parameters into intentional 
and unwanted motion [Ref 2]

[2] A. Litvin, J. Konrad, and W. Karl, 
“Probabilistic Video Stabilization Using Kalman
Filtering and Mosaicking,” Proc. IS&T/SPIE 
Symp. Electronic Imaging, Image, and Video 
Comm., pp. 663-674, 2003.



Motion Correction Needed

• Original global motion parameters between successive 
frames In-1 and In: an

– xn= xn-1+h(xn-1,an)

• Smoothed parameters: bn

• Correction needed for frame n
– Observed pixel location xn=xn-1+h(xn-1,an)

– Desired pixel location x’n= xn-1+h(xn-1,bn)

– Correction needed: x’n=xn+h(xn-1,bn)-h(xn-1,an)=xn+d(xn-1,bn, an)

– Should warp xn in Ix to x’n in stabilized frame I’n
– Using inverse mapping I’(x’n)=I(xn=x’n-d(xn-1,bn, an))

• Special case: Consider only a global translation
– d(xn-1,bn, an)=bn,-an: difference in smoothed translation and 

original translation
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Sample Results: Considering Translation only
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From: Y. Matsushita, E. Ofek, W. Ge, X. Tang, H.-Y. Shum, “Full-Frame Video Stabilization with 
Motion Inpainting,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE 
INTELLIGENCE, VOL. 28, NO. 7, JULY 2006



Video Completion 
by Motion Inpainting [Ref 1]
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Pop Quiz

• What are the major steps in stabilization?
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Pop Quiz (Answer)

• What are the major steps in stabilization?

• Global motion (mapping) estimation -> motion 
parameter smoothing -> warping based on the 
difference of the smoothed motion and the measured 
motion -> image completion
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Summary (1): Background/Foreground 
Separation

• Simple approach for background modeling/ moving object 
detection: Using average or median of frames to form the 
background image. Pixels different from the background are 
considered to belong to moving objects.

• Not robust to changes due to illumination, shadow, background 
dynamics, and noise.

• GMM modeling of background: optional

• Robust PCA solution: 
– smooth background forms a low rank matrix, moving object leads to 

sparse entries in the matrix, Solve Low rank + sparse decomposition 
problem

– Should understand the basic mathematical principle.

– Does not work if there is camera motion

• When the camera is moving, one has to estimate the camera 
motion and finding regions with different motion as objects.
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Summary (2): Camera Motion Estimation

• Camera motion induced motion field models:
– Homography is accurate when the imaged scene is faraway

– Affine is accurate when the camera motion is in plane (rotation, zooming, shifting) 

• Direct method: Determine the motion parameters directly by minimizing 
the intensity matching errors

– Minimizing the DFD error over all pixels in a frame
• No closed form solution,  can be solved using gradient descent 

• Should know how to set up the energy function, the gradient, and the iterations

– Minimizing the optical flow equation error
• Can lead to a linear equation with closed-form solutions  

• Should know how to set up the energy function, obtain the linear equation by setting the gradient to 
zero

• Optical flow equation is only accurate if the motion at every pixel is small, which is usually not true 
for camera motion.

• Can get around by iterative warping.

• Indirect method: Estimate the pixel-wise or block-wise motions first and 
then determine the motion parameters that best fit these motion vectors

– Least squares fitting

– Robust estimation

– Similar to methods applied for feature-based correspondence
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Summary (3): Object Tracking

• Single object tracking
– Simple method: Template matching

– KLT tracker on feature points of a single object

• Multiple object tracking (optional)
– KLT tracker + clustering of points based on motion model 

(same object should follow consistent motion)

• Deep learning methods for object tracking (optional)
– Single objects

– Multiple objects
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Summary (4): Other related applications

• Video shot boundary detection
– Simple method: based on frame difference energy. Sensitive to 

lighting changes or object motion

– Based on difference in color histogram or entropy

• Video stabilization 
– Global motion estimation, motion parameter smoothing, warping, 

missing pixel interpolation

Yao Wang, 2020 ECE-GY 6123: Image and Video Processing 91



Tools for motion estimation, object detection and 
tracking

• Python tools for motion estimation and object detection
– http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_o

bject_tracking.html

– cv2.calcOpticalFlowPyrLK()
• This function computes the flow at a set of feature points, using pyramid 

representation

– cv2.calcOpticalFlowFarneback()
• This function computes dense flow (at every pixel)

– cv2.BackgroundSubtractorMOG2() 

– cv2.BackgroundSubtractorMOG()

• KLT tracker
– https://github.com/TimSC/PyFeatureTrack (3rd party package)

• Tutorial on object detection and tracking using OpenCV
– https://www.intorobotics.com/how-to-detect-and-track-object-with-opencv/
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Useful Resources for Background Subtraction

• Background subtraction:
– http://bmc.iut-auvergne.com/ (some datasets)

– https://sites.google.com/site/backgroundsubtraction/ (algorithm, datasets, 
codes)

– changedetection.net (large dataset)
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Reading Assignments

• [Szeliski2010] Richard Szeliski, Computer Vision: Algorithms and Applications. 2010.  Chap. 8. 
(Mainly 8.2 and 8.5 for this lecture)

• [Wang2002] Wang, et al, Digital video processing and communications. Sec. 6.7,6.8, Apx. A, B.

• T. Bouwmans, E. Zahzah, “Robust PCA via Principal Component Pursuit: A Review for a 
Comparative Evaluation in Video Surveillance”, Special Issue on Background Models 
Challenge, Computer Vision and Image Understanding, CVIU 2014, Volume 122, pages 22–34, 
May 2014. [pdf] 

• Other optional references:
• Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM 

(JACM), 58(3), 11.

• T. Bouwmans, “Traditional and Recent Approaches in Background Modeling for Foreground Detection: An 
Overview”, Computer Science Review, 2014.[pdf]

• Andrews Sobral and Antoine Vacavant. A comprehensive review of background subtraction algorithms evaluated 
with synthetic and real videos. Computer Vision and Image Understanding, 122:4-21, 2014

• Yilmaz, Alper, Omar Javed, and Mubarak Shah. "Object tracking: A survey." Acm computing surveys 
(CSUR) 38.4 (2006): 13. http://7xq232.com1.z0.glb.clouddn.com/talk/2013.12.20-Student.Workshop.pdf

• Wu, Yi, Jongwoo Lim, and Ming-Hsuan Yang. "Online object tracking: A benchmark." Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2013. http://www.cv-
foundation.org/openaccess/content_cvpr_2013/papers/Wu_Online_Object_Tracking_2013_CVPR_paper.pdf

• Stauffer, Chris, and W. Eric L. Grimson. "Adaptive background mixture models for real-time tracking." Computer 
Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.. Vol. 2. IEEE, 1999. 
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Written Assignment

• Answer all the quiz questions

• Suppose you model the global motion between two frames by a bilinear 
transform. You would like to determine the bilinear transform parameters 
by minimizing the sum of squared differences between corresponding 
pixels in the two frames. Formulate the minimization function and its 
gradient with respect to the motion parameters. From the gradient, can 
you find the closed-form solution? If yes, derive the solution. If not, 
describe a gradient descent algorithm for finding the solution.

• Instead of minimizing the sum of squared differences between 
corresponding pixels in the two frames, you can assume the motion is 
small and apply the optical flow constraint at each pixel. Formulate the 
minimization function and its gradient with respect to the motion 
parameters. From the gradient, can you find the closed-form solution? If 
yes, derive the solution. If not, describe a gradient descent algorithm for 
finding the solution.
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