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1. Introduction. Brain connectivity refers to several aspects of organization4

between different brain regions and can be studied using a broad range of analysis5

approaches. Three fundamental approaches to brain connectivity analysis have been6

studied in the literature: anatomical, functional, and directed connectivity.7

Anatomical connectivity studies the physical or structural connections linking8

distinct units within a nervous system. Only invasive tracing studies are able to9

unanimously demonstrate these type of connections. Functional connectivity, on the10

other hand, is a fundamentally statistical concept. This type of connectivity studies11

the statistical dependencies between distributed and often spatially remote neuronal12

units. Measuring techniques such as correlation or covariance, spectral coherence or13

phase-locking can be utilized in this type of study. Directed connectivity describes14

the directional effect of one neural unit over another and in a sense is the union of15

structural and functional connectivity. This can also be referred to as discovering16

causal relations between distinct neural systems.17

Here we focus on study of directed connectivity. In general the study of directed18

connectivity (or in fact any parametric causal inference) consists of application of19

three consecutive steps:20

• model specification,21

• model identification, and22

• model inference.23

Therefor in order to study the directed connectivity, we first need to specify a class24

of models represented with a set of parameters. We then identify the best model25

describing our data by fitting the model to the data and optimizing for the model26

parameters. Finally, we will leverage the characteristics of the identified model to27

infer the connectivity between different regions. Note that these steps are the ma-28

jor paradigm of any data-based causal inference such as Dynamic Causal Modeling29

(DCM) and Granger Causal Modeling (GCM).30

In this study we investigate a class of models know as Autoregressive Hidden31

Markov Models (ARHMMs). Note that we are interested in analysing brain signals32

recorded while the subject is performing a task. It is safe to assume that the state33

of the brain changes at different parts of the task as time progresses. For instance,34

take auditory repetition as a task where the subject listens to a word and is asked35

to repeat it. One can assume four major states while performing the task: resting,36

perception, pre-articulation, and articulation. It is safe to assume that the switching37

between these states depends on the specific word used in each trial. Consequently, it38

is beneficial to leverage a class of models that can represent such behavior. By using39

ARHMM as our model class, we can learn the progression of the states in each trail40

as a Markov model in an unsupervised fashion.41

When choosing a class of models for analysis it is crucial to select a class of models42

that are appropriate for future analysis and inference. Our ultimate goal is to infer43

the directed connectivity from the fitted model. ARHMMs have the added benefit44

that they present each brain-state by an AR model which makes the connectivity45
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2 ESTIMATING DIRECTED CONNECTIVITY VIA ARHMM

analysis possible via the relation of Granger causality and AR models.46

In the following sections we will first briefly discuss the different notions of causal-47

ity. Then, we introduce the AR and ARHMMs models. Additionally, we discuss the48

partial directed coherence which is a measure of Granger causality based on the AR49

coefficients. Finally, we provide experimental results on ECoG recorded signals.50

2. Different notions of causality. The notion of causality is an epistemologi-51

cal concept and can be interpreted in different ways. It is beneficial to briefly review52

the common definitions of causality in the literature. Note that, the problem of track-53

ing down the cause for a phenomenon, is a common yet complex question. A naive54

interpretation may suggest equating the causality with high values of correlation (i.e.55

degree of correlation between two variables or two time series). Although simple, this56

approach does not address the cause-and-effect relation and complexities associated57

with it. In order to address the complexities associated with understanding of causal-58

ity, rigorous ways to approach this problem have been developed in different fields of59

science. The major fields dealing with such questions include econometrics, dynamic60

systems, and information theory to name a few.61

Here, we are interested in causal inference over time series data, and thus we will62

be dealing with stochastic processes and causal relations between them. Our main63

objective is to review the major definitions and tools developed for causal inference64

especially in the field of neuroscience. More details can be found in review texts in65

the literature [5, 11, 13]. There are two distinct properties with practical relevance66

that causality can generally be defined by:67

• temporal precedence: cause precedes the effect; and68

• physical influence: perturbation of the cause changes the effect [13].69

The temporal precedence is mainly considered in information theoretic definitions of70

causality such as Granger causal modeling (GCM). Whereas, physical influence is71

the back-bone of the methods from control theory such as dynamic causal modeling72

(DCM).73

2.1. Granger causality. Granger causality is a popular method for defining74

and inferring causal relations in time-series data and was operationalized by Granger75

for autoregressive models [7]. In simple terms, Granger causality (G-causality) is76

based on temporal precedence and predictability. In formal terms, let X and Y be77

stationary random processes. Additionally, denote:78

• all the information in the universe till time i with Ui = {Ui−1, · · · , U−∞},79

• all the information in X till time i with Xi = {Xi−1, · · · , X−∞},80

• the variance of the residual of predicting Yi using Ui with σ2 (Yi|Ui).81

Then we can define X G-causes Y iff σ2 (Yi|Ui) < σ2 (Yi|Ui/Xi). Note that the82

required access to all the information of the universe is unrealistic. In practice, we83

can replace U with a limited set of observed time series.84

2.2. Dynamic causal modeling. Physical influence speaks to the notion of85

intervention and control, and is the basis for the DCM type of causality [13]. In DCM86

we physically act upon (e.g., fix) the activity at one node and effectively remove any87

other physical influence this node receives. This means that inferences based on the88

effects of an intervention are somewhat different in nature from those based on purely89

observational effects and require proper experimental setup design and probabilistic90

calculus. On the other hand, in GCM the observations are the center of study. The91

focus of this article is on Granger type of causality.92
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2.3. A Tangential Discussion about a Causal Hierarchy. In this section,93

we briefly discus a topic slightly tangential but related to our main discussion and94

introduce a three-level hierarchy that arises from the theory of causal models. A more95

extensive discussion is presented in the technical report by Pearl [10]. This hierarchy96

classifies the causal information depending on the type of questions that each class is97

capable of answering. Table 1 gives a brief summary of each class in this hierarchy98

[10].99

Table 1
A three-level hierarchy of causality from causal model theory [10]

Level Mathematical Symbol Typical Questions
1- Association P (y|x) How would seeing X change my belief in Y?
2- Intervention P (y|do(x), z) What if I do X?
3- Counterfactuals P (yx|x′, y′) What if I acted differently?

The first level is called “Association” since it purely involves statistical relations100

observed by the data and the questions at this level require no causal information.101

This level is characterized by conditional probability, i.e. the probability of event102

Y = y given that we observed X = x. Bayesian networks or other machine learning103

tools are effective in performing such evidential computations from the data.104

The second level, called “Intervention”, entails not only observing what is, but105

also changing what we see. The questions in this level have the form “What will106

happen if we do X?” and because such questions cannot be answered purely by the107

data, interventions are placed higher than associations in the hierarchy. In terms of108

probability, this level is characterized as the probability of event Y = y given that109

we intervene and set the value of X = x and observe the event Z = z. Causal110

Bayesian networks and randomized trials are tools that can be utilized for answering111

such questions.112

The last level of hierarchy, named “Counterfactuals”, deals with models that113

answer the queries of the form “What would happen had we done X?”. Note that114

such questions encompass the interventional and associational queries but not the115

other way around. Expressions of the type “the probability of that the event Y = y116

would be observed had X been x, given that we actually observed X = x′ and117

Y = y′.” characterize the Counterfactuals. These queries can only be answered when118

we possess functional or structural equation models.119

This hierarchy, although tangential to our main discussion, illustrates a formal120

restriction of causal modeling. When dealing with cause-and-effect relationships, one121

needs to be mindful of the properties of the question being answered and choose122

the proper tools to define and solve the problem. Otherwise, however novel and123

sophisticated, the tools from the lower levels of the hierarchy cannot answer the124

queries related to higher levels.125

3. Model specification and identification. In this section, we first introduce126

the autoregressive (AR) model and then extend it to the autoregressive hidden Markov127

model (ARHMM).128

3.1. Autoregressive Model. Autoregressive processes are random processes129

with a specific temporal structure. In these models, the signal at each time point,130

x(t) ∈ Rn is a linear combination of the signal at previous time-points and a random131

innovation ε(t) ∼ N (0, I). The dynamics of the system is described by a tensor of132

AR coefficients A = [Ap]
P
p=1 ∈ RP×n×n (an n × n matrix for each time lag p) and a133
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covariance matrix Q. The dynamics of the system for an AR model of order P can134

be described as135

(3.1) x(t) =

p∑
p=1

Apx(t− p) +Q
1
2 ε(t), 1 ≤ t ≤ T.136

Consequently, the parameters of the AR models are Θ = {A,Q}.137

In order to estimate the parameters of the AR model, equation (3.1) can be138

written as139

x(t) +A1x(t− 1) + · · ·+APx(t− P ) = e(t)140

where e(t) is a zero-mean uncorrelated noise vector with covariance matrix Q. By141

multiplying with xT (t− k) for k = 1, · · · , P and taking expectation of both sides, we142

get to the Yule-Walker equations143

(3.2) R(−k) +A1R(−k+1) + · · ·+APR(−k+P ) = 0 where Rk = x(t)xT (t+ k).144

We estimate the covariance matrix Rk by145

R̂k =
1

T − k

T∑
t=1

x(t)xT (t+ k),146

and we average over trials if multiple trials are available. Note that (3.2) contains Pn2

equations and the same number of unknown model parameters. Although one can
simply solve these equations to obtain the model coefficients, the Levinson, Wiggins,
Robinson (LWR) algorithm is a more robust solution procedure [9]. Note that the
covariance matrix Q is estimated as a byproduct of the LWR algorithm [3]. For the
estimated AR model to be stable, the roots of the characteristic polynomial

det(αP I + αP−1A1 + · · ·+ αA(P−1) +AP ) = 0

must satisfy |α| < 1 or equivalently, the largest eigenvalue of the companion matrix,147

F , must be smaller than one.148

F =


A1 A2 · · · AP
In 0 · · · 0
...

. . . · · ·
...

0 · · · In 0

149

Note that the AR process is a linear model and has the inherent assumption that150

the signal x can be modeled with an stationary process. Ding et al. propose to model151

short windows of signal with separate AR models to overcome this challenge [3].152

3.2. Autoregressive Hidden Markov Models. The AR model is linear and153

is not well suited for describing brain activity over a long period of time. Note that154

we are interested in analysing the brain activity while performing a task, and it is safe155

to assume that the state of the brain changes as time progresses. We ideally want to156

utilize a model that is rich enough to capture this state behavior.157

Hidden Markov Model (HMM) is a latent state representation that describes the158

observed signals as a consequence of an unobserved latent state. The probability of159

occurrence of a state is modeled via a Morkov process. Let st denote the state of the160

system at each time point t, and st ∈ {1, · · · , S} for a total of S states. As a result,161
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the transition probability from state i at time t to state j at time t+ 1 can be given162

as Φi,j = Pr (st+1 = j|st = i).163

Autoregressive Hidden Markov Model combines AR stochastic dynamics with164

HMMs such that each latent state indicates a different AR process [6]. As a result, for165

each state a different AR process with state-specific dynamics and noise covariance166

are estimated. Note that the switching between states is controlled by a Markov167

process and is estimated in an unsupervised manner. Additionally, the switching of168

states makes the ARHMM effectively nonlinear. A pictorial representation of the169

ARHMM model is shown in figure 1. Application of ARHMM for different types of170

brain activity has been studied in the literature [2, 12].171

Fig. 1. A pictorial representation of the ARHMM.

To formally introduce the ARHMM, let st denote the state of the system at each172

time point t, and st ∈ {1, · · · , S} for a total of S states. The transition matrix of173

the states is Φ = [Φi,j ] = [Pr (st+1 = j|st = i)] ∈ RS×S with initial state probability174

φ0 ∈ RS . For each state s we have the AR coefficients Ap(s) and the noise covariance175

matrix Q(s) where p = 1, · · · , P for AR models of order P . Then, the ARHMM176

model can be written as177

(3.3) x(t) =

p∑
p=1

Ap(st)x(t− p) +Q
1
2 (st)ε(t), 1 ≤ t ≤ T.178

Consequently, the parameters that need to be estimated in the ARHMM can be179

described as Θ = {Φ, φ0, A(s), Q(s) : ∀s = 1, · · · , S}.180

The parameters of ARHMM can be estimated via the expectation maximization181

(EM) algorithm [4]. The key steps of the EM algorithm are Expectation step (E-step)182

which computes the expectation of the likelihood function by including unobserved183

data as if they were observed, and Maximization step (M-step) which updates the es-184

timate of model parameters by maximizing the expected likelihood function computed185

in E-step. The Likelihood function after each E-step can be written as186

L(Θ) = E
{

log Pr(x1:T , s1:t|Θ)|x1:T ,Θ
Old
}
.187

The M-step estimates the model parameters Θ by computing arg maxΘ L(Θ).188

4. Model inference: Estimating Granger Causality from AR model. In189

this section we describe the method to estimate the directed connectivity from the190

fitted AR coefficients. Directed coherence (DC), discrete transfer function (DTF),191

and Granger causality test (GCT) are examples of the possible avenues for estimating192

the Granger causality from the AR model. In this study, we use the notion of the193

partial directed coherence which is a frequency-domain approach to describing the194

relationships (direction of information flow) between multivariate time series [1].195
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4.1. Partial Directed Coherence. n order to analyze the Granger causality196

in terms of the AR model and also provide a frequency domain picture for Granger197

causality, Baccala et al. defined the partial directed coherence (PDC) [1]. Although198

one may statistically test for the hypothesis Aij = 0, a frequency domain picture is199

missing for most of such tests. The PDC factor is defined as200

(4.1) πij(f) =
Āij(f)√

ĀH.j (f)Ā.j(f)
201

where202

Āij(f) =

{
1−

∑p
τ=1Aij(τ) exp (−2πifτ) , if i = j

−
∑p
τ=1Aij(τ) exp (−2πifτ) otherwise

203

Some properties of PDC are 0 ≤ |πij(f)|2 ≤ 1 and
∑n
i=1 |πij(f)|2 = 1 ∀1 ≤ j ≤ n.204

As a result, PDC ranks the relative interaction strengths with respect to a given signal205

source. Note that the PDC matrix measures the Granger causality from AR coeffi-206

cients. As a result, PDC can be calculated for each state of the ARHMM separately207

based on the estimated AR coefficients. An example from [1] showing the PDC for a208

network described by following equations is presented in figure 2.209 

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t)

x2(t) = 0.5x1(t− 1) + ε2(t)

x3(t) = −0.4x1(t− 3) + ε3(t)

x4(t) = −0.5x1(t− 2) + 0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε4(t)

x4(t) = −0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε5(t)

210

Fig. 2. An example of the PDC for a network [1]

5. Experimental results. In this section, we provide a few experimental results211

showing the estimated states and connectivity matrices for a subject performing the212

auditory repetition task. We will show results for the same trial data when locked to213

perception and locked to production.214

5.1. Experimental setup. the auditory repetition task involves a subject hear-215

ing a word and then repeating it. The ECoG signal is recorded during the task via a216

grid of electrodes covering the cortical regions related to language processing. ECoG217

This manuscript is for review purposes only.



ESTIMATING DIRECTED CONNECTIVITY VIA ARHMM 7

signals were preprocessed with high-gamma band-pass filter (70-150 Hz). The en-218

velope of the filtered signal was then extracted by a Hilbert Huang transform. We219

normalize the signal from each electrode by its mean and standard deviation. Finally,220

the signal was downsampled to 200 Hz. We identified twenty electrodes that are ac-221

tive during the task and are in the regions related to the auditory task. The selected222

electrodes are shown in figure 3.223

Fig. 3. Selected electrodes depicted on the annotated brain.

For each experiment, as an initialization, we fit an AR model to windows of 100ms224

with 50ms overlap. Then we calculate the PDC for each window and cluster the225

windows based on the PDCs using k-means clustering algorithm. The AR parameters226

for each state in ARHMM are initialized by the average of the AR parameters in the227

corresponding cluster.228

5.2. ARHMM results when locked to perception period. In this section229

we present the results when we select windows of the recorded signal such that each230

window starts 60ms before the stimulus is presented at each trail and the window231

length is 2 second. The signal for the selected electrodes is shown in figure 4.232

The resulting states and PDC matrices from the ARHMM model with S=5, P=3233

are shown in figure 5. Figure 5(a) shows the estimated states per trial per time point234

on the left and the probability of the estimated state on the right. The red lines show235

the start and end of stimulus and production part as depicted on the time-line. As236

we can observe, s=1 corresponds to a resting state and the PDC for this state does237

not show any activity as expected. The next state is s=3 which starts shortly after238

the stimulus starts. The PDC for this state shows connectivity mostly from the STG239

region to IFG and precentral and postcentral (motor and sensory) regions. The next,240

s=2, is the pre-articulation state. The PDC for this states shows activity within IFG241

and toward sensory and motor regions. Finally, states s=4 and s=5 correspond to242

articulation. The PDC for these states show activity from motor and sensory regions243

back to STG. The recovered states and observed relations follow the expected behavior244

from the literature.245

5.3. ARHMM results when locked to production period. In this section246

we present the results when we select windows of the recorded signal such that each247

window is centered at when the speech production starts at each trail and the window248

length is 2 second. The signal for the selected electrodes is shown in figure 6.249

The resulting states and PDC matrices from the ARHMM model with S=5, P=3250

are shown in figure 5. Figure 5(a) shows the estimated states per trial per time point251

on the left and the probability of the estimated state on the right. The red lines252

show the start and end of stimulus and production part as depicted on the time-line.253
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8 ESTIMATING DIRECTED CONNECTIVITY VIA ARHMM

Fig. 4. Signal in each electrode when locked to perception period. The x-axis on each plot shows
the time and the y-axis shows the trial number. The black lines show start and end of stimulus and
start and end of production, respectively.

Fig. 5. Result of the ARHMM for signal when locked to perception.

The recovered states in this case and their corresponding PDC matrices show similar254

behavior as the case when locked to perception. The flow of information follows255

similar pattern that further enforces the results of the ARHMM.256
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Fig. 6. Signal in each electrode when locked to production period. The x-axis on each plot shows
the time and the y-axis shows the trial number. The black lines show start and end of stimulus and
start and end of production, respectively.

Fig. 7. Result of the ARHMM for signal when locked to production period.

6. Discussion and Conclusion. In this article we reviewed some of the tech-257

niques for estimating the directed connectivity between different cortical regions from258

ECoG recordings. We utilized the ARHMM method to model the signal in time as259

a set of AR-processes that are switched via a hidden state variable. This allows us260

to estimate the brain-state in an unsupervised fashion and reduce the assumptions261

on the model. Additionally, the switching between states makes the ARHMM effec-262

tively non-linear and more suitable for describing brain activity. Furthermore, the263
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connectivity defined by Granger causality can be estimated via the notion of partial264

directed coherence from the AR coefficients at each state. Additionally, partial di-265

rected coherence gives a frequency domain picture of the directed connectivity that266

can be beneficial for further analysis.267

In future work we aim to further extend the developed framework and investigate268

the results of ARHMM for different tasks and between different subjects. Note that269

an inherent problem of the ARHMM model and more specifically solving for the270

model parameters via expectation maximization is the computational instability of271

this algorithm as the number of electrodes increases. Recently, Linderman et al.272

proposed a Bayesian framework for learning and inference of a class of models closely273

related to ARHMM [8]. They leverage the recent Poly-gamma auxiliary variable274

techniques and develop algorithmic solutions in the framework of Bayesian learning275

that are scalable, fast, and efficient. We aim to study such techniques to develop276

more stable algorithms that allow for solve for more cortical nodes and investigate277

the connectivity in finer details.278
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