

Block-based Image Coding with Autoencoder and

Border Information

THESIS

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCE (Electrical Engineering)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Zhongzheng Yuan

May 2020

Block-based Image Coding with Autoencoder

and Border Information

THESIS

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCE (Electrical Engineering)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Zhongzheng Yuan

May 2020

 Approved:

 Advisor Signature

 Date

 Department Chair Signature

 Date

University ID: N15965747

Net ID: zy740

5/19/2020

selesi
New Stamp

selesi
Text Box
May 20, 2020

ii

Approved by the Guidance Committee:

Major: Electrical Engineering

 Yao Wang

 Professor

 Electrical and Computer Engineering

 Date

 Elza Erkip

 Professor

 Electrical and Computer Engineering

 Date

 Yong Liu

 Professor

 Electrical and Computer Engineering

 Date

May 19, 2020

May 19, 2020

5/19/2020

iii

Vita

Zhongzheng (Jacky) Yuan was born in Guangzhou China. He started his

undergraduate education in New York University Tandon School of Engineering in

September 2015 and graduated with a Bachelor of Science degree in Electrical

Engineering. He continued his graduate education in NYU starting in September

2019. He studied this thesis in NYU Video Lab from May 2019 to May 2020.

iv

Acknowledgements

I would like to thank my advisor Prof. Yao Wang for all her support, valuable

insights, and encouragement through the past year. Her guidance helped me in all

the time of this research and writing of this thesis, and her rigorous attitude toward

research has always inspired me to improve.

I am grateful to Prof. Elza Erkip and Prof. Yong Liu for serving on my committee

and giving valuable advices.

I would like to thank our lab member Jeffrey Mao, who worked on this research

project with me and having done some of the initial study on the denoiser model.

His support and encouragements kept me moving forward at times when I am in

frustration. I would also like to thank visiting member to our lab, Haojie Liu, for

his experienced advices on deep learning and compression.

Last, but not least, I would like to thank my parents for their unconditional love and care,

and always being there for me when I need the warmth of home.

v

ABSTRACT

Block-based Image Coding with Autoencoder and Border Information

by

Zhongzheng Yuan

Advisor: Prof. Yao Wang

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (Electrical Engineering)

May 2020

In this work, we build upon the image compression framework developed by Ballé et al.

and adapt it for block-based image coding. An autoencoder is trained to learn forward

and inverse transforms to encode image blocks into latent features. When the autoencoder

model is directly applied on small blocks, spatial redundancy cannot be fully utilized.

Therefore, it is crucial to use reconstructed border pixels to exploit spatial redundancy

across adjacent blocks. We propose three different models to incorporate border

information to the autoencoder framework: the first using a post-decoder denoiser, the

second using border pixels to predict latent features, and the third using border pixels to

predict parameters for the distribution of latent features. We discussed the procedure to

train these models and evaluated their rate-distortion performance. Our final model has a

higher rate-distortion performance than JPEG2000 but is slightly below Ballé’s model.

vi

Table of Contents

Vita ... iii

Acknowledgements .. iv

Abstract ... v

Table of Contents ... vi

List of Figures ... vii

1. Introduction ... 1

1.1 Background ... 1

1.2 Related Works ... 1

1.3 Block-based coding ... 2

1.4 Training and Evaluation Methodology ... 3

1.5 Outline ... 4

2. Autoencoder Adapted for Block-based Coding ... 6

3. Autoencoder with Denoiser .. 8

4. Difference Network ... 11

5. Entropy Parameters Prediction Network ... 15

6. Compression Performance Evaluation ... 18

6.1 Using reconstructed border in decoding.. 18

6.2 Training using noisy/decoded border .. 20

7. Conclusion ... 23

7.1 Summary of results.. 23

7.2 Future work ... 23

Appendix ... 25

Bibliography ... 26

vii

List of Figures

Figure 1.1: Layout of a 32x48 patch ... 4

Figure 2.2: Autoencoder structure with 16x16 block input .. 7

Figure 2.2: Autoencoder performance on 16x16 blocks ... 7

Figure 3.1: Autoencoder + Denoiser model .. 8

Figure 3.2: Performance of Autoencoder + Denoiser ... 9

Figure 3.3: Sample outputs from Autoencoder + Denoiser .. 10

Figure 4.1: Border prediction module ... 12

Figure 4.2: Difference Network .. 12

Figure 4.3: Difference Network performance ... 13

Figure 4.4: Sample outputs of Difference Network .. 14

Figure 5.1: Entropy Parameter Prediction Network ... 16

Figure 5.2: Performance of all three networks.. 17

Figure 6.1: Degredation in performance when border is decoded pixels 18

Figure 6.2: Sample decoded image 1 using network trained with clean border 18

Figure 6.3: Sample decoded image 2 using network trained with clean border 20

Figure 6.4: Comparison of performance ... 20

Figure 6.5: Sample decoded image 1 using network trained with decoded border 20

Figure 6.6: Sample decoded image 2 using network trained with decoded border 21

1

1. Introduction

1.1 Background

Image compression is an important and widely studied problem in engineering. With

the increasing prevalence of high-definition image and video contents, there is a need to

improve image compression efficiency beyond current image coding standards. Image

compression is usually achieved by transforming the input image into a more energy

compact latent space. Then the latent space data can be quantized and losslessly

compressed into shorter bit-stream. The coded bit-stream is decoded and inverse

transformed back to image domain on the decoder side. The goal of an image coder is to

minimize the error caused by coding, while also minimizing the bits needed to code the

image.

Deep learning-based coding methods have shown to have higher performance than

image coding standards such as JPEG2000 which uses discrete wavelet transformation.

Deep learning-based coding allows for a set of nonlinear transformation to be learned for

more efficient mapping of pixels from image into a latent space than linear transforms

used by traditional image codecs. This can be done with an autoencoder structure, where

encoder and decoder are trained to learn the forward and inverse transforms.

1.2 Related Works

A deep learning based autoencoder compression framework was developed by Ballé

et al., where the encoder and decoder were constructed using convolutional layers with

GDN activation [1]. An end-to-end optimization of the network’s rate-distortion

2

performance was achieved by minimizing both rate and distortion loss through gradient

descent with the loss function:

𝑅 + 𝜆 ∙ 𝐷 = 𝐸𝑥~𝑝(𝑥)[− 𝑙𝑜𝑔2 𝑝𝑦̂(𝑦̂)] + 𝜆 ∙ 𝐸𝑥~𝑝(𝑥)‖𝑥 − 𝑥̂‖ (1),

where 𝑦̂ is the quantized latent tensor, and 𝑥 and 𝑥̂ are original and decoded image, and

𝜆 is the Lagrange multiplier that determines rate-distortion trade-off. The latent tensor 𝑦

is modeled as a gaussian random variable, and the quantized latent 𝑦̂ is losslessly

compressed with entropy coder. To allow for gradient propagation, quantization was

simulated by adding a uniform gaussian noise to the latent tensors during training.

Another work by Ballé et al. extend upon the above framework by adding a

hyperprior network for more efficient entropy coding [2]. The hyperprior network

encodes a hyper-latent tensor 𝑧 as side information. The hyper-latent provides a

hyperprior for the gaussian probability model used in entropy coding of the latent tensor

𝑦̂.

1.3 Block-based coding

In the deep learning framework developed by Ballé et. al., as well subsequent studies

based on that framework, a whole image was taken as input to the autoencoder [3]. While

coding the whole image is convenient and effective for a single image, it is also possible

to code an image by dividing the image into small blocks and individually code each

block. Block-based coding makes it possible to incorporate inter-frame temporal

prediction for video coding, and is widely adopted in international video coding

standards.

3

In this work, we will adapt the autoencoder with hyperprior structure to perform

block-based image coding and utilize border information to improve coding performance.

We will consider the Border Pixels region shown in Figure 1.1 as the border for the

16x16 target block. In the coding of each 16x16 block in an image, our models will take a

32x48 patch that encloses the target block as input, and information is extracted from the

border to help code the target block.

1.4 Training and Evaluation Methodology

The standard test image set Kodak was used as a test set [8]. To evaluate the

performance of our models developed in the subsequent chapters, we use Peak Signal to

Noise Ratio (PSNR)

𝑃𝑆𝑁𝑅 = 10 log10

2552

𝑀𝑆𝐸
, 𝑀𝑆𝐸 = ||𝑥 − 𝑥̂||2

2 (2)

and bits per pixel (BPP) estimated by entropy

BPP = 𝐸𝑥~𝑝(𝑥)[− log2 𝑝𝑦̂(𝑦̂)] + 𝐸𝑥~𝑝(𝑥)[− log2 𝑝𝑧̂(𝑧̂)] (3)

as evaluation criteria.

These metrics are calculated for each decoded image in the Kodak dataset and the

average PSNR and BPP among all images is taken to be the performance of a model. One

important note is that although BPP is calculated through entropy estimate, we have

experimentally verified that the practical bit rate: length of coded bit stream divided by

number of pixels, is very close to the estimated entropy (within 2%) when a range coder

is employed to perform entropy coding.

4

In our initial testing of the models, we made the assumption that border pixels are

perfectly reconstructed, which means during decoding, border pixel values are taken from

the original image. This assumption was made for the ease of evaluation and comparison,

but it leads to higher performance than what is actually achievable. In chapter 6, we will

discuss this in more detail.

To train the models, we use the COCO dataset which has an abundance of images

with similar resolution as Kodak test images [7]. Blocks of 32x48 were randomly

extracted from COCO as training examples. The final train set has 200,000 blocks. Adam

optimizer was used with a learning rate of 10−4. The batch size was set to 50. Each

network was trained for 200 epochs and convergence was generally reached within 200

epochs.

1.5 Outline

The thesis is organized as follows:

In chapter 2, we will adapt the autoencoder structure directly on 16x16 blocks without

using border information and compare the performance to whole-image coding.

In chapter 3-5, we propose three different models to incorporate border information to

the autoencoder structure and evaluate their performance.

Figure 1.1: Layout of a 32x48 patch. The middle 16x16 block is the target. 16

rows and columns to the top and left of the target block is considered as border.

The unknown pixels to the right are filled with zero.

5

In chapter 6, we conduct a more accurate evaluation our final model by using

decoded border instead of clean border when decoding an image.

In chapter 7, we conclude the findings in this thesis and discuss future directions of

research.

6

2. Autoencoder Adapted for Block-based Coding

Based on the autoencoder structure in [2], we made some modifications to adapt it for

block-based coding. The number of strided convolution layers was decreased to two for

both the encoder and decoder to account for the small block size. In our initial

experiments, we have tried to replace GDN by leaky ReLU activation followed by batch

normalization. This led to a 0.5dB decrease in PSNR, in line with the result in [5] where

GDN activation was found to have a better performance. We have also tried to decrease

the number of channels to 64 and 32 for a more light-weight network. However, it was

found that to achieve comparable results, the channel size has to remain large.

Encoder Decoder Hyper

Encoder

Hyper

Decoder
Conv: 3x3 c192 s1 Deconv: 3x3 c192 s2 Conv: 3x3 c192 s1 Deconv: 3x3 c192 s2

GDN IGDN Leaky ReLU Leaky ReLU

Conv: 3x3 c192 s2 Deconv: 3x3 c192 s1 Conv: 3x3 c192 s2 Deconv: 3x3 c192 s2

GDN IGDN Leaky ReLU Leaky ReLU

Conv: 3x3 c192 s1 Deconv: 3x3 c192 s2 Conv: 3x3 c192 s2 Deconv: 3x3 c192 s1

GDN IGDN

Conv: 3x3 c192 s2 Deconv: 3x3 c192 s1

Table 1. Layer details for autoencoder. Each row corresponds to a layer in the respective

network module. For example, 3x3 c192 s1 means that a 3x3 kernel is used, number of

channels is 192, and the stride is 1. GDN stands for generalized divisive normalization,

and IGDN stands for inverse GDN.

7

With this setup, we trained the model for four different lambda values, each

correspond to a point on the RD curve. The resulting performance is shown in Figure 2.2.

The performance is much lower than what was achieved by the Ballé model. This was

expected since decreasing the input size to 16x16 prohibited the network to fully utilize

spatial redundancy in an image. To achieve better performance, border information

should be utilized.

Figure 2.1: Autoencoder structure with 16x16 block input

Figure 2.2 : Autoencoder performance on 16x16 blocks

8

3. Autoencoder with Denoiser

Our first attempt to incorporate border information into the network is to add a

Denoiser network following the output of the autoencoder. The Denoiser network takes

the decoded block and its border as inputs and perform noise removal on the decoded

block while also trying to smooth the discontinuity between the block and its border. For

the Denoiser network, we used the Group Residual Dense Network, which was shown to

be effective in compression artifact reduction [5]. We reduced the number of RDBs to

two to reduce complexity of the model.

With the addition of Denoiser, the network learns to send less information that can be

predicted from the border, leaving the Denoiser to recover those information when

reconstructed border becomes available. The performance of this network is shown in

Figure 3.2. Compared to the autoencoder alone, the denoiser achieved a higher PSNR and

lower BPP. This improvement is very significant for low bit-rate models.

Figure 3.1: Autoencoder + Denoiser model

9

 Some sample outputs of this network are shown in Figure 3.3, the first column

shows the original block before coding, the second column shows the pre-denoised block

along with its border, and the third column shows the final denoised block. From the

intermediate outputs, we can see that most of the details in the original block is present,

even those edges that can be predicted from the border is sent with the latent tensor.

Information such as color can be easily predicted from the border, so it is less accurately

reconstructed from the latent tensor alone. This shows that the Autoencoder + Denoiser

network is working as intended, but still not effective enough to reduce the amount of

border information in the latent tensor.

Figure 3.2: Performance of Autoencoder + Denoiser Network

10

Figure 3.3: Sample outputs from Autoencoder + Denoiser Network

11

4. Difference Network

To help the autoencoder learn to encode less information from the border, we

designed another network in which a residual of the latent tensor is encoded rather than

the original latent. We first build a Border Prediction module to capture the information

from border which can be used to predict the latent features from the autoencoder. This

is achieved using six convolutional layers which takes the 32x48 border as input and

output a 24-channel feature map. This process can be viewed as intra-prediction

operation to fill in missing values for the zero region. And a large kernel size of 5x5 was

chosen so that the receptive field is large enough to fill in those zero values. After intra-

prediction, the 16x16 region in the feature map corresponding to the target block is taken

out and encoded to 4x4x192 tensor by two strided convolution layers. The resulting

tensor has the same size as the latent tensor.

We call this border predicted tensor 𝑦𝑏𝑜𝑟𝑑𝑒𝑟. And if the network is trained properly, it

should predict the latent tensor as close as possible. To enforce this, the difference

between the latent tensor 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 and 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 is taken, and the resulting difference tensor

𝑦𝑑𝑖𝑓𝑓 is entropy coded and sent to the decoder.

𝑦𝑑𝑖𝑓𝑓 = 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 (4)

12

By minimizing the bit-rate needed to code 𝑦𝑑𝑖𝑓𝑓, the Border Prediction module learns

to output a tensor that has a high correlation to 𝑦𝑐𝑒𝑛𝑡𝑒𝑟, so that their difference will have a

lower variance and lower entropy.

The same operation to calculate 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 can be done at the decoder side using

reconstructed border as input, and this reconstructed 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 is added to the

decoded 𝑦̂𝑑𝑖𝑓𝑓 to obtain 𝑦̂𝑐𝑒𝑛𝑡𝑒𝑟.

Figure 4.1: Border Prediction module, activation is leaky ReLU followed by

batch normalization

Figure 4.2: Difference Network

13

The performance of this network is shown in Figure 4.3. Compared to Autoencoder +

Denoiser Network, PSNR increased by 0.27dB and BPP reduced by 0.071 on average.

To demonstrate that the Border Prediction module is working properly to perform

intra-prediction, we included some sample outputs in Figure 4.4. The third column shows

the pre-denoised output block when only 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 is supplied as input to the decoder. In

other words, no bit is used to send any information from the target block, and the output

shows what can be predicted using border pixels alone. In the first and second examples,

the border has clear edges that continue from the border into the target block. And using

only the border pixels, the network was able to predict these edges accurately. In the third

example, there is a red object in the center block that cannot be predicted from the border.

The network predicts the most likely scenario that a straight edge continues from the

Figure 4.3: Difference Network performance

14

border. In this case, the prediction does not match the original block accurately, therefore,

more bits would be needed to encode the presence of the red object.

Figure 4.4: Sample outputs of the Difference Network. Original block (left column),

pre-denoised outputs using 𝑦̂𝑑𝑖𝑓𝑓 + 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 to decode (middle column) and

using only 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 to decode (right column)

15

5. Entropy Parameters Prediction Network

With the idea of generating prediction from border pixels, we implemented a third

network that utilizes border to more accurately generate parameters for the probability

model used in entropy coding. In the previous two networks, we have used only variance

as parameter (and kept mean equal to zero) for the gaussian probability model for each

element in the latent tensor. A more recent work has shown that modeling the gaussian

probability using both mean and variance can further improve the RD performance [3].

In this network, we combine the hyper latent tensor and prediction from border pixels

to generate mean and variance. This approach is an extension to the Difference Network.

Because using border pixels to generate the mean is equivalent to the goal of the

Difference Network, where the Border Prediction module tries to predict the latent tensor.

Since the mean of a Gaussian probability is also the most probable value, generating the

mean is same as predicting the latent tensor itself.

In addition, the hyper latent tensor is also entropy coded using gaussian model

conditioned on the border pixels, whereas before, it used a non-parametric piecewise

linear model which requires training and is fixed after training is done.

To predict entropy parameters, we added two networks (Mean and Variance

Prediction Network A and B) that take the output from Border Prediction and generate

the required entropy parameters for latent and hyper latent. Network A concatenates the

tensors 𝑦𝑏𝑜𝑑𝑒𝑟 and 𝑧̂ along the channel dimension and pass it through two layers of 1x1

convolutions with leaky ReLU activation. Network B takes 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 as input and uses 3x3

convolution of stride 2 to further downsample the 4x4 tensor to 1x1. The output channel

16

size is two times the latent channel size. One half of the output channel is used as mean,

and the other half is used as variance.

In addition to this model, we have also tested a model where the hyperprior network

was not used at all. Mean and variance parameters for 𝑦 are directly predicted by the

Border Prediction network. Although for this model, some bits were saved by not sending

the hyper latent 𝑧, the mean and variance prediction from border alone are not as accurate

as combining border and hyper latent. This model achieved the same performance as the

Difference network, and therefore we chose the better performing model in Figure 5.1.

Figure 5.1: Entropy Parameter Prediction Network

17

The performance of all three networks utilizing border information is shown in Figure

5.2. The performance of the Entropy Parameter Prediction Network is the highest among

our three models.

Figure 5.2: Performance of all three network utilizing border information

18

6. Compression Performance Evaluation

6.1 Using reconstructed border in decoding

 In our previous experiments, we had made the assumption that border pixels are

perfectly reconstructed for the ease of comparing different network structures. In this

section, we conduct a more practical evaluation of network performance by decoding

each block in an image using previous decoded blocks as border. Because of lossy

compression, border pixels differ from their original once they are decoded. It was

expected that this will incur some degradation in performance of the network.

As each block is decoded raster scan order, the difference of each block from their

original accumulate, since in the decoding process of each block, the border pixels are

used to denoise the current block. And when error in the border accumulate, the error in

output blocks also increase correspondingly. Ideally, the autoencoder part of the network

Figure 6.1: Degradation in performance when border is decoded pixels

19

should spend more bits to keep the error from growing, but because a denoiser is used at

the end of the network, error from the border inevitably affect the target pixels.

We also observed that the performance degradation is more significant for the models

trained for low bit rate than for higher bit rate models. This is because for higher rate

models, the decoded pixels are closer to the original and the error propagated to

succeeding blocks are less.

Figure 6.2: Sample decoded image 1 using network trained with clean border

Original Image (left), decoded Image (center), lengths of bit-stream for each block (right)

PSNR = 28.638 BPP = 0.439

20

Two images from the Kodak dataset are decoded using the third network and are

shown in Figures 6.2 and 6.3. The images have a color shift that is more severe towards

the right side of the image, where error from decoding accumulates the most.

6.2 Training using noisy/decoded border

Although border error cannot be completely eliminated, we can train our network to

suppress this error. In our previous training process, we have used error-free border as

training examples. When the network encounter decoded input of a different distribution

from the training set, it cannot generalize to these outliers. To make the network learn to

account for coding error, we modified our dataset to purposefully include error in border

pixels. We have only tested this with the 𝜆 = 0.01 model.

Because the coding error followed a gaussian distribution, one attempt was to add a

gaussian noise to the border with the same variance, while the target block remained

noise-free. This simple modification increased the PSNR by 0.73dB, and BPP reduced by

0.03.

Figure 6.3: Sample decoded image 1 using network trained with clean border

Original Image (left), decoded Image (center), lengths of bit-stream for each block

(right)

PSNR = 31.19 BPP = 0.259

21

Our second attempt was to use actual decoded pixels as border for training. First, we

code images from the COCO dataset using a network trained on clean borders. Then we

extract blocks from this processed dataset using the same procedure as before, but the

border is replaced by the decoded version. This modified dataset is then used to train a

new network. This approach achieved a higher gain in PSNR of 1.98dB, and BPP

reduction by 0.06.

Figure 6.4: Comparison of performance when clean/decoded border is used in training

and testing

Figure 6.5: Sample decoded image 1 using network trained with decoded border

Original Image (left), Decoded Image (right)

PSNR = 31.238 BPP = 0.360

22

In the sample decoded images above, color shift in the previous decoded samples are

no longer present. Although PSNR for these two images are higher, block artifacts are

significantly more visible in these images. Block artifacts are supposed to be removable

by the denoiser, as it was designed to smooth the discontinuity between adjacent blocks.

However, because of the way we modified our data, border pixels in the training samples

are from a different distribution than the target block. When the denoiser train on these

samples, it was unable to learn a set of filters that smooth this discontinuity. More

investigation into how to address this block artifact is needed.

Figure 6.6: Sample decoded image 2 using network trained with decoded border

Original Image (left), Decoded Image (right)

PSNR = 33.22 BPP = 0.196

23

7. Conclusion

7.1 Summary of results

In this work, we adapted the autoencoder structure for whole-image coding to work

on 16x16 block size. The main challenge is figuring out how to utilize border information

to exploit spatial redundancy across adjacent blocks. We designed and evaluated three

models to incorporate border information. Although our initial results show comparable

performance to whole-image autoencoders, performance of our model degrade when

error is present in reconstructed border. We partially mitigated this degradation by

modifying the training dataset to account for this error.

7.2 Future work

The decoded images of our final model have a significant block artifact because of

the modifications made to the training set. One possible improvement is to modify the

training procedure to train parts of the model separately. First train a model without the

denoiser and generate training data from this model. Then train the denoiser using such

data, with a loss on the entire 32x48 patch to ensure that the output patch matches the

original. This training procedure may help the denoiser to better smooth discontinuity

between blocks.

The models trained in this work are all trained with fixed 𝜆 value and are optimized

for a fixed bitrate. A recent study proposed a method to train a single model conditioned

on a variable 𝜆 value [6]. And by tuning the 𝜆 value various bitrate can be achieved. Such

24

variable rate model will be more convenient for practical use than having to train and

store separate models for different bitrate.

Finally, block-based structure allows us to easily extend this study to video coding.

For example, we can add a component to our model for block-based temporal prediction.

Features generated from temporal prediction can be combined with border prediction to

predict probability distribution of latent features.

25

Appendix

Numerical values for model performance (trained and tested with clean border)

𝜆 = 0.01

𝜆 = 0.025

𝜆 = 0.05

𝜆 = 0.075

Compare with

Autoencoder

Only

(averaged over

all 𝜆)

BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR

Autoencoder

Only

0.554 31.13 0.860 34.45 1.18 36.73 1.42 38.05 - -

Autoencoder

+ Denoiser

0.399 31.81 0.751 34.44 1.08 36.62 1.32 37.87 -0.116 +0.095

Difference

Network

0.394 32.11 0.691 34.70 0.980 36.86 1.20 38.15 -0.187 +0.365

Entropy

Parameters

Prediction

0.372 32.29 0.646 34.90 0.937 36.99 1.15 38.22 -0.227 +0.51

Performance comparison when tested with decoded border

Entropy

Parameters

Prediction

Network

𝜆 = 0.01

𝜆 = 0.025

𝜆 = 0.05

𝜆 = 0.075

BPP PSNR BPP PSNR BPP PSNR BPP PSNR

Test with

clean border

0.372 32.29 0.646 34.90 0.937 36.99 1.15 38.22

Test with

decoded

border

0.461 29.20 0.724 33.41 1.02 36.20 1.24 37.60

26

Bibliography

[1] Ballé, Johannes, Valero Laparra, and Eero P. Simoncelli. "End-to-end optimized

image compression." arXiv preprint arXiv:1611.01704 (2016).

[2] Ballé, Johannes, et al. "Variational image compression with a scale hyperprior." arXiv

preprint arXiv:1802.01436 (2018).

[3] Minnen, David, Johannes Ballé, and George D. Toderici. "Joint autoregressive and

hierarchical priors for learned image compression." Advances in Neural Information

Processing Systems. 2018.

[4] Ballé, Johannes. "Efficient nonlinear transforms for lossy image compression." 2018

Picture Coding Symposium (PCS). IEEE, 2018.

[5] Cho, Seunghyun, et al. "Low Bit-rate Image Compression based on Post-processing

with Grouped Residual Dense Network." Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops. 2019.

[6] Choi, Yoojin, Mostafa El-Khamy, and Jungwon Lee. "Variable Rate Deep Image

Compression With a Conditional Autoencoder." Proceedings of the IEEE International

Conference on Computer Vision. 2019.

[7] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European

conference on computer vision. Springer, Cham, 2014.

[8] Kodak. http://r0k.us/graphics/kodak/. 1999.

http://r0k.us/graphics/kodak/

