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In this work, we build upon the image compression framework developed by Ballé et al. 

and adapt it for block-based image coding. An autoencoder is trained to learn forward 

and inverse transforms to encode image blocks into latent features. When the autoencoder 

model is directly applied on small blocks, spatial redundancy cannot be fully utilized. 

Therefore, it is crucial to use reconstructed border pixels to exploit spatial redundancy 

across adjacent blocks. We propose three different models to incorporate border 

information to the autoencoder framework: the first using a post-decoder denoiser, the 

second using border pixels to predict latent features, and the third using border pixels to 

predict parameters for the distribution of latent features. We discussed the procedure to 

train these models and evaluated their rate-distortion performance. Our final model has a 

higher rate-distortion performance than JPEG2000 but is slightly below Ballé’s model. 
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1. Introduction 

1.1 Background 

Image compression is an important and widely studied problem in engineering. With 

the increasing prevalence of high-definition image and video contents, there is a need to 

improve image compression efficiency beyond current image coding standards. Image 

compression is usually achieved by transforming the input image into a more energy 

compact latent space. Then the latent space data can be quantized and losslessly 

compressed into shorter bit-stream. The coded bit-stream is decoded and inverse 

transformed back to image domain on the decoder side. The goal of an image coder is to 

minimize the error caused by coding, while also minimizing the bits needed to code the 

image. 

Deep learning-based coding methods have shown to have higher performance than 

image coding standards such as JPEG2000 which uses discrete wavelet transformation. 

Deep learning-based coding allows for a set of nonlinear transformation to be learned for 

more efficient mapping of pixels from image into a latent space than linear transforms 

used by traditional image codecs. This can be done with an autoencoder structure, where 

encoder and decoder are trained to learn the forward and inverse transforms. 

1.2 Related Works 

A deep learning based autoencoder compression framework was developed by Ballé 

et al., where the encoder and decoder were constructed using convolutional layers with 

GDN activation [1]. An end-to-end optimization of the network’s rate-distortion 
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performance was achieved by minimizing both rate and distortion loss through gradient 

descent with the loss function: 

𝑅 + 𝜆 ∙ 𝐷 = 𝐸𝑥~𝑝(𝑥)[− 𝑙𝑜𝑔2 𝑝𝑦̂(𝑦̂)] +   𝜆 ∙ 𝐸𝑥~𝑝(𝑥)‖𝑥 − 𝑥̂‖      (1), 

where  𝑦̂ is the quantized latent tensor, and 𝑥 and  𝑥̂ are original and decoded image, and 

𝜆 is the Lagrange multiplier that determines rate-distortion trade-off. The latent tensor 𝑦 

is modeled as a gaussian random variable, and the quantized latent 𝑦̂ is losslessly 

compressed with entropy coder. To allow for gradient propagation, quantization was 

simulated by adding a uniform gaussian noise to the latent tensors during training. 

Another work by Ballé et al. extend upon the above framework by adding a 

hyperprior network for more efficient entropy coding [2]. The hyperprior network 

encodes a hyper-latent tensor 𝑧 as side information. The hyper-latent provides a 

hyperprior for the gaussian probability model used in entropy coding of the latent tensor 

𝑦̂. 

1.3 Block-based coding 

In the deep learning framework developed by Ballé et. al., as well subsequent studies 

based on that framework, a whole image was taken as input to the autoencoder [3]. While 

coding the whole image is convenient and effective for a single image, it is also possible 

to code an image by dividing the image into small blocks and individually code each 

block. Block-based coding makes it possible to incorporate inter-frame temporal 

prediction for video coding, and is widely adopted in international video coding 

standards. 
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In this work, we will adapt the autoencoder with hyperprior structure to perform 

block-based image coding and utilize border information to improve coding performance. 

We will consider the Border Pixels region shown in Figure 1.1 as the border for the 

16x16 target block. In the coding of each 16x16 block in an image, our models will take a 

32x48 patch that encloses the target block as input, and information is extracted from the 

border to help code the target block. 

1.4 Training and Evaluation Methodology 

The standard test image set Kodak was used as a test set [8]. To evaluate the 

performance of our models developed in the subsequent chapters, we use Peak Signal to 

Noise Ratio (PSNR)  

𝑃𝑆𝑁𝑅 = 10 log10

2552

𝑀𝑆𝐸
, 𝑀𝑆𝐸 = ||𝑥 − 𝑥̂||2

2      (2) 

and bits per pixel (BPP) estimated by entropy 

BPP = 𝐸𝑥~𝑝(𝑥)[− log2 𝑝𝑦̂(𝑦̂)] + 𝐸𝑥~𝑝(𝑥)[− log2 𝑝𝑧̂(𝑧̂)]      (3) 

as evaluation criteria. 

These metrics are calculated for each decoded image in the Kodak dataset and the 

average PSNR and BPP among all images is taken to be the performance of a model. One 

important note is that although BPP is calculated through entropy estimate, we have 

experimentally verified that the practical bit rate: length of coded bit stream divided by 

number of pixels, is very close to the estimated entropy (within 2%) when a range coder 

is employed to perform entropy coding. 
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In our initial testing of the models, we made the assumption that border pixels are 

perfectly reconstructed, which means during decoding, border pixel values are taken from 

the original image. This assumption was made for the ease of evaluation and comparison, 

but it leads to higher performance than what is actually achievable. In chapter 6, we will 

discuss this in more detail. 

To train the models, we use the COCO dataset which has an abundance of images 

with similar resolution as Kodak test images [7]. Blocks of 32x48 were randomly 

extracted from COCO as training examples. The final train set has 200,000 blocks. Adam 

optimizer was used with a learning rate of 10−4. The batch size was set to 50. Each 

network was trained for 200 epochs and convergence was generally reached within 200 

epochs. 

1.5 Outline 

The thesis is organized as follows: 

In chapter 2, we will adapt the autoencoder structure directly on 16x16 blocks without 

using border information and compare the performance to whole-image coding. 

In chapter 3-5, we propose three different models to incorporate border information to 

the autoencoder structure and evaluate their performance. 

Figure 1.1: Layout of a 32x48 patch. The middle 16x16 block is the target. 16 

rows and columns to the top and left of the target block is considered as border. 

The unknown pixels to the right are filled with zero. 
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In chapter 6, we conduct a more accurate evaluation our final model by using 

decoded border instead of clean border when decoding an image. 

In chapter 7, we conclude the findings in this thesis and discuss future directions of 

research. 
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2. Autoencoder Adapted for Block-based Coding 

Based on the autoencoder structure in [2], we made some modifications to adapt it for 

block-based coding. The number of strided convolution layers was decreased to two for 

both the encoder and decoder to account for the small block size. In our initial 

experiments, we have tried to replace GDN by leaky ReLU activation followed by batch 

normalization. This led to a 0.5dB decrease in PSNR, in line with the result in [5] where 

GDN activation was found to have a better performance. We have also tried to decrease 

the number of channels to 64 and 32 for a more light-weight network. However, it was 

found that to achieve comparable results, the channel size has to remain large.  

Encoder Decoder Hyper  

Encoder 

Hyper  

Decoder 
Conv: 3x3 c192 s1 Deconv: 3x3 c192 s2 Conv: 3x3 c192 s1 Deconv: 3x3 c192 s2 

GDN IGDN Leaky ReLU Leaky ReLU 

Conv: 3x3 c192 s2 Deconv: 3x3 c192 s1 Conv: 3x3 c192 s2 Deconv: 3x3 c192 s2 

GDN IGDN Leaky ReLU Leaky ReLU 

Conv: 3x3 c192 s1 Deconv: 3x3 c192 s2 Conv: 3x3 c192 s2 Deconv: 3x3 c192 s1 

GDN IGDN   

Conv: 3x3 c192 s2 Deconv: 3x3 c192 s1   

 

Table 1. Layer details for autoencoder. Each row corresponds to a layer in the respective 

network module. For example, 3x3 c192 s1 means that a 3x3 kernel is used, number of 

channels is 192, and the stride is 1. GDN stands for generalized divisive normalization, 

and IGDN stands for inverse GDN. 



7 
 

 

With this setup, we trained the model for four different lambda values, each 

correspond to a point on the RD curve. The resulting performance is shown in Figure 2.2. 

The performance is much lower than what was achieved by the Ballé model. This was 

expected since decreasing the input size to 16x16 prohibited the network to fully utilize 

spatial redundancy in an image. To achieve better performance, border information 

should be utilized. 

Figure 2.1: Autoencoder structure with 16x16 block input 

Figure 2.2 : Autoencoder performance on 16x16 blocks 
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3. Autoencoder with Denoiser 

Our first attempt to incorporate border information into the network is to add a 

Denoiser network following the output of the autoencoder. The Denoiser network takes 

the decoded block and its border as inputs and perform noise removal on the decoded 

block while also trying to smooth the discontinuity between the block and its border. For 

the Denoiser network, we used the Group Residual Dense Network, which was shown to 

be effective in compression artifact reduction [5]. We reduced the number of RDBs to 

two to reduce complexity of the model. 

With the addition of Denoiser, the network learns to send less information that can be 

predicted from the border, leaving the Denoiser to recover those information when 

reconstructed border becomes available. The performance of this network is shown in  

Figure 3.2. Compared to the autoencoder alone, the denoiser achieved a higher PSNR and 

lower BPP. This improvement is very significant for low bit-rate models.  

Figure 3.1: Autoencoder + Denoiser model 
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 Some sample outputs of this network are shown in Figure 3.3, the first column 

shows the original block before coding, the second column shows the pre-denoised block 

along with its border, and the third column shows the final denoised block. From the 

intermediate outputs, we can see that most of the details in the original block is present, 

even those edges that can be predicted from the border is sent with the latent tensor. 

Information such as color can be easily predicted from the border, so it is less accurately 

reconstructed from the latent tensor alone. This shows that the Autoencoder + Denoiser 

network is working as intended, but still not effective enough to reduce the amount of 

border information in the latent tensor. 

 

 

Figure 3.2: Performance of Autoencoder + Denoiser Network 
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Figure 3.3: Sample outputs from Autoencoder + Denoiser Network 
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4. Difference Network 

To help the autoencoder learn to encode less information from the border, we 

designed another network in which a residual of the latent tensor is encoded rather than 

the original latent. We first build a Border Prediction module to capture the information 

from border which can be used to predict the latent features from the autoencoder.  This 

is achieved using six convolutional layers which takes the 32x48 border as input and 

output a 24-channel feature map. This process can be viewed as intra-prediction 

operation to fill in missing values for the zero region. And a large kernel size of 5x5 was 

chosen so that the receptive field is large enough to fill in those zero values. After intra-

prediction, the 16x16 region in the feature map corresponding to the target block is taken 

out and encoded to 4x4x192 tensor by two strided convolution layers. The resulting 

tensor has the same size as the latent tensor. 

We call this border predicted tensor 𝑦𝑏𝑜𝑟𝑑𝑒𝑟. And if the network is trained properly, it 

should predict the latent tensor as close as possible. To enforce this, the difference 

between the latent tensor 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 and 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 is taken, and the resulting difference tensor 

𝑦𝑑𝑖𝑓𝑓 is entropy coded and sent to the decoder. 

𝑦𝑑𝑖𝑓𝑓 = 𝑦𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑦𝑏𝑜𝑟𝑑𝑒𝑟     (4) 
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By minimizing the bit-rate needed to code 𝑦𝑑𝑖𝑓𝑓, the Border Prediction module learns 

to output a tensor that has a high correlation to 𝑦𝑐𝑒𝑛𝑡𝑒𝑟, so that their difference will have a 

lower variance and lower entropy.  

The same operation to calculate 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 can be done at the decoder side using 

reconstructed border as input, and this reconstructed 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 is added to the 

decoded  𝑦̂𝑑𝑖𝑓𝑓 to obtain 𝑦̂𝑐𝑒𝑛𝑡𝑒𝑟. 

Figure 4.1: Border Prediction module, activation is leaky ReLU followed by 

batch normalization 

 

Figure 4.2: Difference Network 

 



13 
 

The performance of this network is shown in Figure 4.3. Compared to Autoencoder + 

Denoiser Network, PSNR increased by 0.27dB and BPP reduced by 0.071 on average. 

To demonstrate that the Border Prediction module is working properly to perform 

intra-prediction, we included some sample outputs in Figure 4.4. The third column shows 

the pre-denoised output block when only 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 is supplied as input to the decoder. In 

other words, no bit is used to send any information from the target block, and the output 

shows what can be predicted using border pixels alone. In the first and second examples, 

the border has clear edges that continue from the border into the target block. And using 

only the border pixels, the network was able to predict these edges accurately. In the third 

example, there is a red object in the center block that cannot be predicted from the border. 

The network predicts the most likely scenario that a straight edge continues from the 

Figure 4.3: Difference Network performance 
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border. In this case, the prediction does not match the original block accurately, therefore, 

more bits would be needed to encode the presence of the red object. 

 

 

 

 

 

 

Figure 4.4: Sample outputs of the Difference Network. Original block (left column), 

pre-denoised outputs using 𝑦̂𝑑𝑖𝑓𝑓 +  𝑦𝑏𝑜𝑟𝑑𝑒𝑟 to decode (middle column) and 

using only 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 to decode (right column) 
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5. Entropy Parameters Prediction Network 

With the idea of generating prediction from border pixels, we implemented a third 

network that utilizes border to more accurately generate parameters for the probability 

model used in entropy coding. In the previous two networks, we have used only variance 

as parameter (and kept mean equal to zero) for the gaussian probability model for each 

element in the latent tensor. A more recent work has shown that modeling the gaussian 

probability using both mean and variance can further improve the RD performance [3].  

In this network, we combine the hyper latent tensor and prediction from border pixels 

to generate mean and variance. This approach is an extension to the Difference Network. 

Because using border pixels to generate the mean is equivalent to the goal of the 

Difference Network, where the Border Prediction module tries to predict the latent tensor. 

Since the mean of a Gaussian probability is also the most probable value, generating the 

mean is same as predicting the latent tensor itself.  

In addition, the hyper latent tensor is also entropy coded using gaussian model 

conditioned on the border pixels, whereas before, it used a non-parametric piecewise 

linear model which requires training and is fixed after training is done. 

To predict entropy parameters, we added two networks (Mean and Variance 

Prediction Network A and B) that take the output from Border Prediction and generate 

the required entropy parameters for latent and hyper latent. Network A concatenates the 

tensors 𝑦𝑏𝑜𝑑𝑒𝑟 and 𝑧̂ along the channel dimension and pass it through two layers of 1x1 

convolutions with leaky ReLU activation. Network B takes 𝑦𝑏𝑜𝑟𝑑𝑒𝑟 as input and uses 3x3 

convolution of stride 2 to further downsample the 4x4 tensor to 1x1. The output channel 
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size is two times the latent channel size. One half of the output channel is used as mean, 

and the other half is used as variance.  

In addition to this model, we have also tested a model where the hyperprior network 

was not used at all. Mean and variance parameters for 𝑦 are directly predicted by the 

Border Prediction network. Although for this model, some bits were saved by not sending 

the hyper latent 𝑧, the mean and variance prediction from border alone are not as accurate 

as combining border and hyper latent. This model achieved the same performance as the 

Difference network, and therefore we chose the better performing model in Figure 5.1. 

Figure 5.1: Entropy Parameter Prediction Network 
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The performance of all three networks utilizing border information is shown in Figure 

5.2. The performance of the Entropy Parameter Prediction Network is the highest among 

our three models. 

 

 

 

 

 

 

 

 

Figure 5.2: Performance of all three network utilizing border information 
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6. Compression Performance Evaluation 

6.1 Using reconstructed border in decoding 

 In our previous experiments, we had made the assumption that border pixels are 

perfectly reconstructed for the ease of comparing different network structures. In this 

section, we conduct a more practical evaluation of network performance by decoding 

each block in an image using previous decoded blocks as border. Because of lossy 

compression, border pixels differ from their original once they are decoded. It was 

expected that this will incur some degradation in performance of the network.  

As each block is decoded raster scan order, the difference of each block from their 

original accumulate, since in the decoding process of each block, the border pixels are 

used to denoise the current block. And when error in the border accumulate, the error in 

output blocks also increase correspondingly. Ideally, the autoencoder part of the network 

Figure 6.1: Degradation in performance when border is decoded pixels 
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should spend more bits to keep the error from growing, but because a denoiser is used at 

the end of the network, error from the border inevitably affect the target pixels.  

We also observed that the performance degradation is more significant for the models 

trained for low bit rate than for higher bit rate models. This is because for higher rate 

models, the decoded pixels are closer to the original and the error propagated to 

succeeding blocks are less. 

 

Figure 6.2: Sample decoded image 1 using network trained with clean border 

Original Image (left), decoded Image (center), lengths of bit-stream for each block (right) 

PSNR = 28.638      BPP = 0.439 
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Two images from the Kodak dataset are decoded using the third network and are 

shown in Figures 6.2 and 6.3. The images have a color shift that is more severe towards 

the right side of the image, where error from decoding accumulates the most. 

6.2 Training using noisy/decoded border 

Although border error cannot be completely eliminated, we can train our network to 

suppress this error. In our previous training process, we have used error-free border as 

training examples. When the network encounter decoded input of a different distribution 

from the training set, it cannot generalize to these outliers. To make the network learn to 

account for coding error, we modified our dataset to purposefully include error in border 

pixels. We have only tested this with the 𝜆 = 0.01 model. 

Because the coding error followed a gaussian distribution, one attempt was to add a 

gaussian noise to the border with the same variance, while the target block remained 

noise-free. This simple modification increased the PSNR by 0.73dB, and BPP reduced by 

0.03. 

Figure 6.3: Sample decoded image 1 using network trained with clean border 

Original Image (left), decoded Image (center), lengths of bit-stream for each block 

(right) 

PSNR = 31.19      BPP = 0.259 
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Our second attempt was to use actual decoded pixels as border for training. First, we 

code images from the COCO dataset using a network trained on clean borders. Then we 

extract blocks from this processed dataset using the same procedure as before, but the 

border is replaced by the decoded version. This modified dataset is then used to train a 

new network. This approach achieved a higher gain in PSNR of 1.98dB, and BPP 

reduction by 0.06.  

 

Figure 6.4: Comparison of performance when clean/decoded border is used in training 

and testing 

 

Figure 6.5: Sample decoded image 1 using network trained with decoded border 

Original Image (left), Decoded Image (right) 

PSNR = 31.238      BPP = 0.360 
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In the sample decoded images above, color shift in the previous decoded samples are 

no longer present. Although PSNR for these two images are higher, block artifacts are 

significantly more visible in these images. Block artifacts are supposed to be removable 

by the denoiser, as it was designed to smooth the discontinuity between adjacent blocks. 

However, because of the way we modified our data, border pixels in the training samples 

are from a different distribution than the target block. When the denoiser train on these 

samples, it was unable to learn a set of filters that smooth this discontinuity. More 

investigation into how to address this block artifact is needed. 

 

 

 

 

Figure 6.6: Sample decoded image 2 using network trained with decoded border 

Original Image (left), Decoded Image (right) 

PSNR = 33.22      BPP = 0.196 
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7. Conclusion 

7.1 Summary of results 

In this work, we adapted the autoencoder structure for whole-image coding to work 

on 16x16 block size. The main challenge is figuring out how to utilize border information 

to exploit spatial redundancy across adjacent blocks. We designed and evaluated three 

models to incorporate border information. Although our initial results show comparable 

performance to whole-image autoencoders, performance of our model degrade when 

error is present in reconstructed border. We partially mitigated this degradation by 

modifying the training dataset to account for this error. 

7.2 Future work 

The decoded images of our final model have a significant block artifact because of 

the modifications made to the training set. One possible improvement is to modify the 

training procedure to train parts of the model separately. First train a model without the 

denoiser and generate training data from this model. Then train the denoiser using such 

data, with a loss on the entire 32x48 patch to ensure that the output patch matches the 

original. This training procedure may help the denoiser to better smooth discontinuity 

between blocks. 

The models trained in this work are all trained with fixed 𝜆 value and are optimized 

for a fixed bitrate. A recent study proposed a method to train a single model conditioned 

on a variable 𝜆 value [6]. And by tuning the 𝜆 value various bitrate can be achieved. Such 
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variable rate model will be more convenient for practical use than having to train and 

store separate models for different bitrate. 

Finally, block-based structure allows us to easily extend this study to video coding. 

For example, we can add a component to our model for block-based temporal prediction. 

Features generated from temporal prediction can be combined with border prediction to 

predict probability distribution of latent features. 
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Appendix 

Numerical values for model performance (trained and tested with clean border) 

  

 

𝜆 = 0.01 

 

 

𝜆 = 0.025 

 

 

𝜆 = 0.05 

 

 

𝜆 = 0.075 

Compare with 

Autoencoder 

Only 

(averaged over 

all 𝜆) 

BPP PSNR BPP PSNR BPP PSNR BPP PSNR BPP PSNR 

Autoencoder 

Only 

0.554 31.13 0.860 34.45 1.18 36.73 1.42 38.05 - - 

Autoencoder 

+ Denoiser 

0.399 31.81 0.751 34.44 1.08 36.62 1.32 37.87 -0.116 +0.095 

Difference 

Network 

0.394 32.11 0.691 34.70 0.980 36.86 1.20 38.15 -0.187 +0.365 

Entropy 

Parameters 

Prediction 

0.372 32.29 0.646 34.90 0.937 36.99 1.15 38.22 -0.227 +0.51 

 

Performance comparison when tested with decoded border 

Entropy 

Parameters 

Prediction 

Network 

 

𝜆 = 0.01 

 

𝜆 = 0.025 

 

𝜆 = 0.05 

 

𝜆 = 0.075 

BPP PSNR BPP PSNR BPP PSNR BPP PSNR 

Test with 

clean border 

0.372 32.29 0.646 34.90 0.937 36.99 1.15 38.22 

Test with 

decoded 

border 

0.461 29.20 0.724 33.41 1.02 36.20 1.24 37.60 
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