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Outline

• Supervised learning: General concepts
– Loss functions

• Neural network and training
– From single perceptron to multi-layer perceptrons
– Gradient descent for model training, Back propagation

• Convolutional network
– Why using convolution
– Multichannel convolution
– Pooling
– Receptive field

• Deep networks
– Large dataset, deep models
– Stochastic gradient descent: general concept 
– Data Preprocessing and Regularization

• Training, validation and testing and cross validation
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Supervised Learning

• Given a dataset with many samples
– Each sample has an input signal xi (e.g. an image) and a ground truth 

output yi (e.g. a class label or a segmentation map)
• Learning objective

– Learn a function or model (parameterized by 𝜃) that maps x to y: 
"𝑦 =f(x;𝜃)

– The function may not be represented by a closed-form representation. 
– Ex: with a neural net, 𝜃 includes the weights and biases in all layers  

• Formulate as an optimization problem
– 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛! ∑" 𝐿 "𝑦" , 𝑦" + 𝜆𝑅(𝜃)

• Loss is the sum of losses for all training samples, all sharing the same 
parameter𝜃

• R(𝜃):  regularization term based on desirable properties of 𝜃

• Generalization ability of a learnt model
– The model should perform well on testing samples not used for training. 

Performance is measured on testing samples. More on this later.
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Classification vs. Regression

• Classification
– Each input x (e.g. an image or features of the image) is 

mapped to a class label !𝑦 (e.g. a person, dog, etc.), and there 
are only a finite number of classes

– Predicted output is the probability for each possible class (sum 
to 1) 

– Typical loss function 
• Binary classification: binary cross entropy
• Multi-class: cross entropy

• Regression
– Each input x is mapped to one or multiple continuous values !𝑦
– Typical loss: MSE
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Loss Function:  Regression

• Regression case:  
– 𝑦! = target variable for sample 𝑖
– Typically continuous valued

• Output layer:
– !𝑦! = 𝑧"! = estimate of 𝑦!

• Loss function:  Use L2 loss

𝐿 𝜃 =$
456

7
𝑦4 − '𝑦4 8

• For vector 𝒚4 = 𝑦46, … , 𝑦49 , use vector L2 loss

𝐿 𝜃 =$
456

7
𝒚4 − +𝒚4 8

8 =$
456

7
$

:56

9
𝑦4; − '𝑦4,;

8
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Loss Function:  Binary Classification

• Binary classification:  
– Sample: 𝑥" with label 𝑦" = {0,1} = class label,
– Predicted output: "𝑦"= 𝑃 𝑦" = 1 𝑥" , 𝜃 ; 1 − "𝑦"= 𝑃 𝑦" = 0 𝑥" , 𝜃
– Output given by sigmoid on 𝑧#," : "𝑦"=

%
%&'!"#,%

• Objective: maximize the likelihood (probability of 𝑦! given 𝑥! for all 
samples, assuming independence among samples)
– 𝑃 𝒚 𝑿, 𝜽 = ∏"(%

) 𝑃 𝑦" 𝑥" , 𝜃

• Maximizing the likelihood = minimizing negative log likelihood:
𝐿 𝜃 = −∑"(%) ln 𝑃 𝑦" 𝑥" , 𝜃

= −∑"(%) 𝑦" ln "𝑦" + (1 − 𝑦") ln (1− "𝑦")

– Called the binary cross-entropy
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activate when 𝑦!=1 activate when 𝑦!=0
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Loss Function:  Multi-Class Classification

• Use one-hot-encoding to describe the label 𝑦!

𝑦" = (𝑦"%, … , 𝑦"*), 𝑦"+= K1 𝑦" = 𝑘
0 𝑦" ≠ 𝑘 𝑘 = 1,… , 𝐾

• Output: !𝑦!= !𝑦!,$, … , !𝑦!,% ; !𝑦!,&= 𝑃 𝑦! = 𝑘 𝑥!, 𝜃

– Output given by softmax on 𝑧#," : "𝑦",+ =
'"#,%&

∑ℓ '
"#,%(

• Negative log-likelihood given by:

𝐿 𝜃 = −O
"
ln 𝑃 𝑦" = 𝑘 𝑥" , 𝜃 = −O

"
O

+(%

*
𝑦"+ ln "𝑦",+

– Called the categorical cross-entropy or just cross-entropy
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Selecting the Right Loss Function

• Depends on the problem type
• Always compare final output '𝑦4 with target 𝑦4
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Problem Target  𝒚𝒊 Output  𝒛𝑶𝒊 Loss function Formula

Regression 𝑦# = Scalar real %𝑦# = Prediction of 𝑦#
Scalar output / sample

Squared / L2 
loss

'
#
𝑦# − %𝑦# $

Regression with 
vector samples

𝒚# = (𝑦#%, … , 𝑦#&) %𝑦#' = Prediction of 𝑦#'
𝐾 outputs / sample

Squared / L2 
loss

'
#,'

𝑦#' − %𝑦#,'
$

Binary 
classification

𝑦) = {0,1} %𝑦# = Prob. for class 1
Scalar output / sample

Binary cross 
entropy

−'
#
𝑦# ln %𝑦# + (1 − 𝑦#) ln (1− %𝑦#)

Multi-class 
classification

𝑦) = {1,… , 𝐾} %𝑦#' = Prob. for class k
𝐾 outputs / sample 

Categorical 
cross entropy −'

#
'

'*%

&
𝑦#' ln %𝑦#,'
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How to Approximate a Function?

• Many possibilities!
– Lead to different types of models

• Linear regression
• Logistic regression (for classification): linear followed by a sigmoid 

function to convert to probability
• Support vector machine for classification/regression
• Decision tree for classification/regression
• Neural Networks (multi-layers of logistic regression)

– A two layer network can approximate any function with sufficient 
number of hidden nodes 

• Convolutional networks
– Special neural nets that exploit spatial/temporal structure of data such 

as images and videos
– Each layer uses multiple convolution filters
– Needs many layers but each layer with small number of parameters
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Outline

• Supervised learning: General concepts
– Loss functions

• Neural network and training
– From single perceptron to multi-layer perceptrons
– Gradient descent for model training, Back propagation

• Convolutional network
– Why using convolution
– Multichannel convolution
– Pooling

• Deep networks
• Training of deep networks

– Stochastic gradient descent: general concept 
– Data Preprocessing and Regularization

• Training, validation and testing and cross validation
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General Structure of Neural Networks

• Input:   𝒙 = 𝑥6, ⋯ , 𝑥P
• Hidden layer:  

– Linear transform:  𝒛' = 𝑾'𝒙 + 𝒃'
– Activation function:  𝒖' = 𝑔()* 𝒛'

• (element wise operation)

• Output layer:  
– Linear transform:  𝒛" = 𝑾"𝒖' + 𝒃"
– Output function: 5𝒚 = 𝑔+,* 𝒛"

• This is known as Multilayer Perceptron (MLP) 
• Can be used for classification or regression, with 

different output functions
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A Single Neuron (Perceptron)

• First combine input variables 𝑥-
using an affine transform
– 𝑧 = ∑-𝑊-𝑥- + 𝑏 ,
– 𝑊-: Weights; b: Bias

• Then apply a element-wise nonlinear 
mapping (activation function 𝑔(𝑧))
– "𝑦 = 𝑔 𝑧

• This is a simple model of a human 
neuron.
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What can a perceptron do?

• For binary classification (= logistic 
regression)
– 𝑧 = ∑-𝑊-𝑥- + 𝑏
– "𝑦 = )

)*+!" (sigmoid activation)
– "𝑦 is probability of belonging to class 1

– "𝑦 = %
.
, when 𝑧 = 0

– 𝑧 = 0 linearly separates all possible 
points 𝒙 by a hyperplane defined by 
𝑊 and 𝑏

• Works great if the two classes are 
linearly separable!
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What if not linearly separable?
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A Two-Stage Classifier

• Input sample:  𝒙 = 𝑥$, 𝑥. /

• First step:  Hidden layer
– Take 𝑁/ = 4 linear discriminants
𝑧/,% = 𝒘/,%

0 𝑥 + 𝑏/,%
⋮
𝑧/,), = 𝒘/,1

0 𝑥 + 𝑏/,1
– Make a soft decision on each 

linear region
𝑢/,2 = 𝑔 𝑧/,2 = ⁄1 (1 + 𝑒34,,-)

• Second step:  Output layer
– Linear step  𝑧# = 𝑤#0𝑢/ + 𝑏#
– Soft decision: "𝑦 = 𝑔(𝑧#)
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Step 1 Outputs and Step 2 Outputs

• Each output from step 1 is from a 
linear classifier with soft decision 
(Logistic regression)

• Final output is a weighted average of 
step 1 outputs using the weights 
indicated on top of the figures
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𝑥+

𝑥%
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Two-Layer Neural Net for Binary Classification

• Hidden layer:  𝒛' = 𝑾'𝒙 + 𝒃', 𝒖' = 𝑔(𝒛')
• Output layer:  𝒛" = 𝑾"𝒖' + 𝒃", !𝑦 = 𝑔(𝒛")
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𝒙

Input

𝒛, = 𝑾,𝒙 + 𝒃,
Sigmoid
𝑔(𝒛,)

Soft binary 
decision

Hidden layer

𝒛, 𝒖,

𝒛- = 𝑾-𝒖, + 𝒃-

%𝑦𝒛-

Sigmoid
𝑔(𝒛-)

Output layer

Hidden layer does not have to use sigmoidal. tanh( ) / ReLU is more often used.
Can have more than one hidden layers. 
Also known as a “Multi-Layer Perceptron” (MLP)
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Two-Layer Neural Net for Multiple Outputs

• Hidden layer:  𝒛' = 𝑾'𝒙 + 𝒃', 𝒖' = 𝑔()* 𝒛' (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑠𝑒)
• Output layer:  𝒛" = 𝑾"𝒖' + 𝒃"
• Output:  5𝒚 = 𝑔+,*(𝒛")
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(𝒚 = 𝑔;<=(𝒛>)

𝒙

Input

𝒛? = 𝑾?𝒙 + 𝒃?
Activation
𝑔?(𝒛?)

Hidden layer

𝒛? 𝒖?

𝒛> = 𝑾>𝒖? + 𝒃>

𝒛>

Output layer

Output Mapping

(𝒚
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Output Activation

• Last layer depends on type of response
• Binary classification:  𝑦 = ±1

– 𝑧! is a scalar
– Hard decision: #𝑦 = sign 𝑧! (not differentiable)
– Soft decision (sigmoid): #𝑦 = 𝑃 𝑦 = 1 𝑥 = ⁄1 (1 + 𝑒"##) (probability 

of class 1)
• Multi-class classification:  𝑦 = 1,… , 𝐾

– Ground truth label y is K-dimension 
• One-Hot Encoding, Ex. 3 class, class 2: y=[0, 1, 0]

– 𝒛! = 𝑧!,%, ⋯ , 𝑧!,&
' is a vector 

– #𝑦( = 𝑃 𝑦 = 𝑘 𝑥 (probability of class k)

– Softmax activation: #𝑦( = 𝑆( 𝒛! = +
"#,&

∑( +
"#,(

• Regression: 𝒚 ∈ 𝑅3
– 7𝒚 = 𝒛! (linear output layer)
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Sigmoid nonlinearity converts z to a probability of being one class, and is used 
for binary classification. Not used in intermediate layers.

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf
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From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Yao Wang, 2021 ECE-GY 6123: Image and Video Processing 23
From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf

z

min



Number of Parameters of a Two Layer Network

Layer Parameter Symbol Number parameters
Hidden layer Bias 𝑏! 𝑁!

Weights 𝑊! 𝑁!𝑑
Output layer Bias 𝑏" 𝐾

Weights 𝑊" 𝐾𝑁!
Total 𝑁! 𝑑 + 1 + 𝐾(𝑁! + 1)

24

◦ 𝑑 = input dimension, 𝑁?= number of hidden units, 𝐾=output dimension
◦ 𝑁/ is a free parameter. Should be chosen properly.

𝒙

Input 

𝒛? = 𝑾?𝒙 + 𝒃?
Activation
𝑔?(𝒛?)

Hidden layer

𝒛? 𝒖?

𝒛> = 𝑾>𝒖? + 𝒃>

𝒛>

Output layer

Output mapping

𝒖> (or (𝒚)
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Representation Power: what function can an 
MLP represent?

• 1 layer: a linear classifier (separating two classes by a
hyperplane)

• 2 layer (1 hidden layer + 1 output)
– Theoretically can represent any function with sigmoid activation 

and sufficient hidden nodes
– G. Cybenko, Approximation by Superpositions of Sigmoidal 

Function, 1989
– Michael Nielsen: A visual proof that neural nets can compute 

any function
– However, very wide 2-layer MLP may not be better than narrow 

deep models in practice
– Beyond 3 or 4 layers are not helpful with fully connected layers 

• For conv layers, deeper is better!
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How many hidden nodes?
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More hidden nodes allow the network to represent more complicated partition between two 
classes but are also more prone to overfitting (fitting to noise in the training data)

Generally high capacity network with appropriate regularization is preferred over smaller 
networks

Figure from https://cs231n.github.io/neural-networks-1/



Pop Quiz

• What is supervised learning? 

• What is a perceptron and what can it do? 

• What is a multi-layer perceptron (MLP) and what can it do?

• How many parameters in a layer with N input, M output? 

• Why do we use MLP?
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Pop Quiz (w/ answers)

• What is supervised learning? 
– Given samples 𝑥!, 𝑦! , learn a mapping function y = 𝑓 𝑥, θ (or parameter q) so 

that <𝑦! = 𝑓 𝑥!, θ is close to 𝑦!, ∀𝑖. Different methods using different functional 
forms f( ).

• What is a perceptron and what can it do? 
– A perceptron computes a weighted sum of input components plus a bias, 

followed by a nonlinear activation. 
– It can separate samples by a hyperplane. Perfect for linearly separable classes

• What is a multi-layer perceptron (MLP) and what can it do?
– Each layer contains multiple perceptrons
– Can separate non-linearly separable clusters

• How many parameters in a layer with N input, M output? 
– (N+1)M

• Why do we use MLP
– 2 layers can represent any function, depending on the number of nodes in each 

layer, but in practice we don’t use more than 4 layers
– MLP mimics how our brain works!
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Training a Neural Network

• Given data:  𝒙4, 𝑦4 , 𝑖 = 1,… ,𝑁
• Learn parameters:  𝜃 = (𝑊_, 𝑏_,𝑊 , 𝑏`)

– Weights/filters and biases for hidden and output layers
• Will minimize a loss function: 𝐿 𝜃

6𝜃 = argmin
a
𝐿 𝜃

– 𝐿 𝜃 = measures how well parameters 𝜃 fit training data 𝒙!, 𝑦!
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Selecting the Right Loss Function

• Depends on the problem type
• Always compare final output '𝑦4 with target 𝑦4

30

Problem Target  𝒚𝒊 Output  𝒛𝑶𝒊 Loss function Formula

Regression 𝑦# = Scalar real %𝑦# = Prediction of 𝑦#
Scalar output / sample

Squared / L2 
loss

'
#
𝑦# − %𝑦# $

Regression with 
vector samples

𝒚# = (𝑦#%, … , 𝑦#&) %𝑦#' = Prediction of 𝑦#'
𝐾 outputs / sample

Squared / L2 
loss

'
#,'

𝑦#' − %𝑦#,'
$

Binary 
classification

𝑦) = {0,1} %𝑦# = Prob. for class 1
Scalar output / sample

Binary cross 
entropy

−'
#
𝑦# ln %𝑦# + (1 − 𝑦#) ln (1− %𝑦#)

Multi-class 
classification

𝑦) = {1,… , 𝐾} %𝑦#' = Prob. for class k
𝐾 outputs / sample 

Categorical 
cross entropy −'

#
'

'*%

&
𝑦#' ln %𝑦#,'
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Training with Gradient Descent

• Neural network training:  Minimize loss function

6𝜃 = argmin
a
𝐿 𝜃 , 𝐿 𝜃 =$

456

7

𝐿4(𝜃, 𝒙4, 𝑦4)

– 𝐿!(𝜃, 𝒙!, 𝑦!) = loss on sample 𝑖 for parameter 𝜃
• Standard gradient descent:

𝜃;b6 = 𝜃; − 𝛼𝛻𝐿 𝜃; = 𝜃; − 𝛼$
456

7

𝛻𝐿4(𝜃;, 𝒙4, 𝑦4)

– Each iteration requires 
• Compute 𝑁 loss functions (forward pass)
• Compute gradients (backward pass)
• Update the network parameters

31Yao Wang, 2021 ECE-GY 6123: Image and Video Processing



Gradient Descent Method

• Iteratively update the current estimate in the direction opposite the gradient 
direction.

• The solution depends on the initial condition. Reaches the local minimum closest to 
the initial condition

• Yield optimal solution only if J is convex regardless initial solution
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Not a good initial

A good initial

Appropriate
stepsize

Stepsize 
too big

A non convex loss function



Computation Graph & Forward Pass

• Neural network loss function can be computed via a computation 
graph

• Sequence of operations starting from measured data and parameters
• Loss function computed via a  forward pass in the computation graph

– 𝑧/," = 𝑊/𝑥" + 𝑏/
– 𝑢/," = 𝑔567(𝑧/,")
– 𝑧#," = 𝑊#𝑢/," + 𝑏#
– "𝑦" = 𝑔897(𝑧#,")
– 𝐿 = ∑" 𝐿"( "𝑦" , 𝑦")

33

𝑥 𝑧/

𝑊/ , 𝑏/

𝑢/ 𝑧#

𝑊# , 𝑏#

𝐿(𝜃)

𝑦

Observed variable

Trainable variable

Computed variables

<𝑦
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Gradient Calculation through Back Propagation

• Backpropagation: 
– Compute gradients backwards
– Work one node at a time using 

Chain Rule
• First compute all derivatives of all the 

variables
– ⁄𝜕𝐿 𝜕 "𝑦
– ⁄𝜕𝐿 𝜕𝑧#from ⁄𝜕𝐿 𝜕 "𝑦, ⁄𝜕 "𝑦 𝜕𝑧#
– ⁄𝜕𝐿 𝜕𝑢/ from ⁄𝜕𝐿 𝜕𝑧# , ⁄𝜕𝑧# 𝜕𝑢/
– ⁄𝜕𝐿 𝜕𝑧/ from ⁄𝜕𝐿 𝜕𝑢/ , ⁄𝜕𝑢/ 𝜕𝑧/

• Then compute gradient of parameters:
– ⁄𝜕𝐿 𝜕𝑊# from ⁄𝜕𝐿 𝜕𝑧# , ⁄𝜕𝑧# 𝜕𝑊#

– ⁄𝜕𝐿 𝜕𝑏# from ⁄𝜕𝐿 𝜕𝑧# , ⁄𝜕𝑧# 𝜕𝑏#
– ⁄𝜕𝐿 𝜕𝑊/ from ⁄𝜕𝐿 𝜕𝑧/ , ⁄𝜕𝑧/ 𝜕𝑊/
– ⁄𝜕𝐿 𝜕𝑏/ from ⁄𝜕𝐿 𝜕𝑧/ , ⁄𝜕𝑧/ 𝜕𝑏/

34

𝑥 𝑧/

𝑊/ , 𝑏/

𝑢/ 𝑧#

𝑊# , 𝑏#

𝐿(𝜃)

𝑦

<𝑦
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Back-Propagation Example

• 2-layer MLP with 𝑀 hidden units, single output unit
– Sigmoid activation, binary cross entropy loss
– 𝑁 samples, 𝐷 input dimension 

• Loss for sample i:
– 𝐿" = −𝑦" ln "𝑦" − (1 − 𝑦") ln 1 − "𝑦"
– "𝑦"=

%
%&'!"0%

, 𝑧8"= ∑-𝑊#,",-𝑢/,- + 𝑏#,-

• Gradient backprop:

– :;%
: <=%

= − =%
<=%
+ %3=%

%3 <=%
, : <=%
:4#,%

= − +!"0%
)*+!"0%

, :4#,%
:>#,%,1

= 𝑢/,- ,
:4#,%
:?#,1

= 1

– :;%
:4#,%

= :;%
: <=%

: <=%
:4#,%

– :;%
:>#,%,1

= :;%
:4#,%

:4#,%
:>#,%,1

– …
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𝑥 𝑧/

𝑊/ , 𝑏/

𝑢/ 𝑧#

𝑊# , 𝑏#

𝐿(𝜃)

𝑦

<𝑦
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Recap: Training with Gradient Descent

• Neural network training:  Minimize loss function

B𝜃 = argmin
1
𝐿 𝜃 , 𝐿 𝜃 =I

!2$

3

𝐿!(𝜃, 𝒙!, 𝑦!)

– 𝐿"(𝜃, 𝒙" , 𝑦") = loss on sample 𝑖 for parameter 𝜃
• Standard gradient descent:

𝜃&4$ = 𝜃& − 𝛼𝛻𝐿 𝜃& = 𝜃& − 𝛼I
!2$

3

𝛻𝐿!(𝜃&, 𝒙!, 𝑦!)

– Each iteration requires 
• Compute 𝑁 loss functions (forward pass)
• Compute gradients (backward pass)
• Update the network parameters

• Luckily, with modern ML platforms, you can call built-in functions 
for gradient calculation and updates!
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Pop Quizzes

• How do you train a MLP?
• Loss function for classification?
• Loss function for regression?
• How to determine the gradient?
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Pop Quizzes

• How do you train a MLP?
– Set up a loss function
– Derive the gradient
– Update the model parameters based on the gradient repeatedly 

until converge
• Loss function for classification?

– Cross entropy
• Loss function for regression?

– Typically Mean Square Error
• How to determine the gradient?

– Using the Chain rule.
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Outline

• Supervised learning: General concepts
– Loss functions

• Neural network and training
– From single perceptron to multi-layer perceptrons
– Gradient descent for model training, Back propagation

• Convolutional network
– Why using convolution
– Multichannel convolution
– Pooling
– Receptive field

• Deep networks
• Training of deep networks

– Stochastic gradient descent: general concept 
– Data Preprocessing and Regularization

• Training, validation and testing and cross validation
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Convolutional Network

• MLP uses fully-connected layers: 
– In each layer, each output is a weighted sum of all the inputs followed 

by a non-linearity
– If the input is an image, each output of the first layer will depend on all 

the pixels
– In image processing, we benefit from local operations (convolution), to 

detect local patterns (motivated by visual system computation)
• Convolutional network uses convolutional layers

– Each layer produces multiple output feature maps, each obtained by 
convolving each input feature map and sum all convolved feature 
maps (multi-channel convolution)

– Each layer is specified by the filter corresponding to each output map. 
Multiple filters are used to produce multiple maps

– Motivated by visual system processing using local computations
– Significantly smaller number of parameters for the same number of 

output at each layer
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Example network
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Convolutional layers
For feature extraction 

2D convolution with  
Activation and 
pooling / sub-sampling

Fully connected layers
For Classification task

Matrix multiplication &
activation

• Alex Net
• Each convolutional 

layer has:
– 2D convolution
– Activation (eg. 

ReLU)
– Pooling or sub-

sampling

96 
feature 
maps of 
size 
55x55 
each

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural 
networks." Advances in neural information processing systems. 2012.



What does convolution do?

• Convolution:  Find local feature by sliding a 
filter 

• Large image:  𝑋 𝑁@×𝑁A (e.g. 512 x 512)
• Small filter:  𝑊 𝐾@×𝐾A (e.g. 8 x 8)
• At each pixel 𝑖, 𝑗 compute:

𝑍 𝑖, 𝑗 = K
B#CD

E#F@

K
B$CD

E$F@

𝑊 𝑘@, 𝑘A 𝑋[𝑖 + 𝑘@, 𝑗 + 𝑘A]

– Correlation of 𝑊 with image box starting at 𝑖, 𝑗
– 𝑍 𝑖, 𝑗 is large if feature is present around 𝑖, 𝑗
– This is convolution WITHOUT reversal!
– Should have been called Correlation!
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Filter 𝑾 Image 𝑿 𝑍[𝑖, 𝑗]

High

Low



Why Convolution Layers?

• Exploit two properties of images
– Dependencies are local

• No need to have each output unit connect to all pixels
– Spatially stationary statistics

• Translation invariant dependencies
• Slide the same filter over all input pixels

• LeCun et al. 1989 (LeNet)
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Convolution with/without reversal

• In signal processing and math, convolution includes flipping:

𝑧 𝑛$, 𝑛. = I
&G25

%G6$

I
&H25

%G6$

𝑤[𝑘$, 𝑘.]𝑥[𝑛$ − 𝑘$, 𝑛. − 𝑘.]

– For this class, we will call this convolution with reversal
• But, in many neural network packages, convolution does not 

include flipping:

𝑧 𝑛$, 𝑛. = I
&G25

%G6$

I
&H25

%G6$

𝑤[𝑘$, 𝑘.]𝑥[𝑛$ + 𝑘$, 𝑛. + 𝑘.]

– Will call this convolution without reversal (= correlation)
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Boundary Effect
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Input imageValid region Output depends on both inside and outside boundary pixels

Filter mask

“valid” “same” “full”

N-K+1 K

N N N+K-1

When the desired output size is “same” as input, it is better to zero pad before conv. in all sides 
of the input with a border width=[K/2]!

𝑧 𝑛@, 𝑛A = K
B$CD

E$F@

K
B#CD

E$F@

𝑤[𝑘@, 𝑘A]𝑥[𝑛@ + 𝑘@, 𝑛A + 𝑘A]



Boundary Handling

• Suppose inputs are 
– 𝑥, size 𝑁%×𝑁6,  𝑤: size 𝐾%×𝐾6,  𝐾% ≤ 𝑁%, 𝐾6 ≤ 𝑁6
– 𝑧 = 𝑥 ∗ 𝑤 (without reversal)

𝑧 𝑛%, 𝑛6 = A
(278

&2"%

A
()78

&2"%

𝑤[𝑘%, 𝑘6]𝑥[𝑛% + 𝑘%, 𝑛6 + 𝑘6]

• Different ways to define outputs
• Valid mode: 0 ≤ 𝑛R < 𝑁R − 𝐾R + 1, 0 ≤ 𝑛S < 𝑁S − 𝐾S + 1

– Requires no zero padding
• Same mode:  Output size 𝑁R×𝑁S

– Usually use zero padding of input images on the right and bottom
• Full mode: Output size (𝑁R+𝐾R − 1)×(𝑁S+𝐾S − 1)

– Not used often in neural networks
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Convolutional Inputs & Outputs

• Inputs and outputs are images with multiple channels
– Number of channels also called the depth

• Can be described as tensors
• Input tensor,  𝑋 shape (𝑁$, 𝑁., 𝑁!7)

– 𝑁%, 𝑁. =	input	image	size
– 𝑁"@ = number of input channels

• Output tensor, 𝑍 shape (𝑀$, 𝑀., 𝑁+,*)
– 𝑀%, 𝑀. =	output	image	size	(=	input	image	size	except	for	strided conv.)
– 𝑁897 = number of output channels
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Multi-Channel Convolution

• Weight and bias:  
– 𝑊: Weight tensor, size (𝐾@, 𝐾A, 𝑁!I, 𝑁;<=)
– 𝑏: Bias vector, size 𝑁;<=

• Convolutions performed over each input channel and added over channels

𝑍 𝑖@, 𝑖A, 𝑚 = K
B#CD

E#F@

K
B$CD

E$F@

K
ICD

J%&F@

𝑊 𝑘@, 𝑘A, 𝑛,𝑚 𝑋[𝑖@ +𝑘@, 𝑖A + 𝑘A, 𝑛] + 𝑏[𝑚]

• For each output channel 𝑚, input channel 𝑛
– Computes 2D convolution with𝑊[: , : , 𝑛,𝑚] (2D filters of size 𝐾@×𝐾A)
– Sums results over 𝑛
– Different 2D filter for each input channel and output channel pair

• # filter parameters in each layer
– Filter coefficients: 𝐾'𝐾(𝑁)*𝑁+,- , Biases: 𝑁+,-
– Total: (𝐾'𝐾(𝑁)* + 1)𝑁+,-

• Computation complexity: 
– 𝑁'𝑁(𝐾'𝐾(𝑁)*𝑁+,- multiplications (without stride)
– Significantly more than conventional conv. if you have many input and output channels!
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Pooling

• Pooling 
– Aggregate 𝑆×𝑆 pixels in each output channel to 1 pixel
– Different methods (max, average, down-sampling)
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Figure from https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/


Strided Convolution

• If we are going to down sample by a factor of 2 after convolution, 
we don’t have to compute the convolution results for every pixel. 
Instead we could compute convolution for every other sample (both 
horizontally and vertically)

• Stride-s means to skip (s-1) samples
• For 2D: skip in both directions
• Input feature map size: 𝑁$, 𝑁.
• Output feature map size: 𝑀$, 𝑀., 𝑀$=

3H
8
, 𝑀.=

3G
8

• Computations: 
– 𝑁'𝑁(𝐾'𝐾(𝑁)*𝑁+,- multiplications (without stride)
– 𝑀'𝑀(𝐾'𝐾(𝑁)*𝑁+,- multiplications (with stride), reduce by a factor of 𝑠(

• In practice, it may be better to use non-strided conv, followed by 
max pooling
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Receptive Field
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R=3x3

R=5x5

R=7x7

R=3x3

R=7x7

R=15x15

3x3 Conv without stride

3x3 Conv with stride 2
With stride 2, we can reach a 
receptive field of 15 with 3 layers.
Without stride, it will take 7 Layers!
The two networks have the same 
number of parameters

Receptive field = 
The number of pixels in the 
input image that affects the 
output at a layer (also called 
perceptive field)

A large receptive field is desired 
to use global information for 
decision making. 



Receptive Field 

Yao Wang, 2021 ECE-GY 6123: Image and Video Processing 52
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What do convnet learn?
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• AlexNet first layer
– 96 filters
– Size 11 x 11 x 3
– Applied to image of 224 x 224 x 3

• What do these learned features 
look like?

• Selective to basic low-level 
features

– Curves, edges, color transitions, 
…



What filter size to use?

• Compare 1 layer with 7x7 filters vs. 3 layers with each with 3x3 
filters plus nonlinear activation

• Same receptive field
• Which one is better? Assuming input and output both have 16 

channels
• 1 layer with 16 7x7 filters, feature map size 256x256 

– 16x16x7x7+16=12560 parameters and only 1 non-linear activation
– 16x16x7x7x256x256=822 million multiplications

• 3 layers with 3x3 filters
– 3* (16x16x3x3+16)= 6960 parameters and 3 non-linear activations
– 3* (16x16x3x3x256x256)=452 million multiplications

• Using more layers each with small filters enjoys fewer parameters, 
less computations and higher presentation power! 

• Benefit of deeper networks with small filters
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Convolution vs Fully Connected

• Convolution exploits translational invariance
– Same features is scanned over whole image

• Greatly reduces number of parameters
– Nin input channels of size N1xN2, Nout output channels with size 

M1xN2
– Fully connected network: Nin*Nout*N1*N2*M1*M2+Nout*M1*M2
– Convolutional network with K1xK2 filter: Nin*Nout*K1*K2+Nout

• Example:  Consider first layer in LeNet
– 32 x 32  image (1 channel) to 6 channels using 5 x 5 filters
– Creates 6 x 28 x 28 outputs (keeping only the valid region)
– Fully connected would require 32 x 32 x 6 x 28 x 28 + 6 x 28 x 28 = 

4.9 million parameters!
– Convolutional layer requires only 6 x 5 x 5 + 6 = 156 parameters 
– Reserve fully connected layers for last few layers (for non-image 

output such as classification).
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Pop Quizzes

• Why do we use convolutional networks
• What is the # of parameters for a layer with Nin input channel, Nout output 

channels with filter size of KxK
• What is the receptive field of a conv. layer ?
• Why do we want a large receptive field?
• Why do we do pulling?
• What is strided convolution?
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Pop Quizzes (w/ Answers)

• Why do we use convolutional networks
– Can extract local features/patterns that may appear any where
– Follow the translational invariance operation of the eye/brain
– Can significantly reduce the network parameters for images or other spatio-temporal 

signals
• What is the # of parameters for a layer with Nin input channel, Nout output channels 

with filter size of KxK
– Nin * Nout * K*K (filters) + Nout (bias)

• What is the receptive field of a conv. layer ?
– The number of pixels in the input image that affects the output at a layer

• Why do we want a large receptive field?
– To be able to see more global information

• Why do we do pulling?
– To aggregate information spatially and to reduce the spatial size of subsequent layers
– Require fewer layers to reach the same receptive field

• What is strided convolution?
– Equivalent to convolution followed by down-sampling, but avoiding unnecessary 

computations
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How do we train conv net?

• Can use the same approach for training the neural net, but the 
network parameters include the filters and biases, in addition to
any fully connected layers 

• Need to take gradients with respect to the filter coefficients
• Nontrivial if we have many many layers (i.e. deep networks)
• Computationally expansive if we have many many training samples
• The success of deep networks is propelled by 

– Large dataset (images from the internet and cloud sourcing annotation)
– ”smart” gradient descent algorithms (Stochastic Gradient Descent) 
– advances in computing (GPU and parallel computing)
– Open source development platforms
– Open source trained models and codes
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Outline

• Supervised learning: General concepts
– Loss functions

• Neural network and training
– From single perceptron to multi-layer perceptrons
– Gradient descent for model training, Back propagation

• Convolutional network
– Why using convolution
– Multichannel convolution
– Pooling
– Receptive field

• Deep networks
– Large dataset, deep models
– Stochastic gradient descent: general concept 
– Data Preprocessing and Regularization

• Training, validation and testing and cross validation
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Large-Scale Image Classification

• Pre-2009, many image recognition systems worked on relatively 
small datasets
– MNIST:  10 digits
– CIFAR 10 (right)
– CIFAR 100
– …

• Small number of classes (10-100)
• Low resolution (eg. 32 x 32 x 3)

• Performance saturated
– Difficult to make significant advancements

60

https://www.cs.toronto.edu/~kriz/cifar.html
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ImageNet (2009) 

• Better algorithms need 
better data

• Build a large-scale image 
dataset 

• 2009 CVPR paper:
– 3.2 million images
– Annotated by 

mechanical turk
– Much larger scale than 

any previous 
– 1000 classes

• Hierarchical 
categories

• Continuously growing
– 14 million images as of

3/2021, 21,841 classes

61

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. 
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 248-255). IEEE.
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ILSVRC 

• ImageNet Large-Scale Visual 
Recognition Challenge

• First year of competition in 2010 
• Many developers tried their 

algorithms
• Many challenges:

– Objects in variety of positions, 
lighting

– Occlusions
– Fine-grained categories

(e.g. African elephants vs. Indian 
elephants)

– …
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Deep Networks Enter 2012

• 2012:  Stunning breakthrough by 
the first deep network

• “AlexNet”  from U Toronto
• Easily won ILSVRC competition

– Top-5 error rate: 15.3%, second 
place:  25.6% 

• Soon, all competitive methods are 
deep networks
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Alex Net

• Alex Krizhevsky, Ilya Sutskever,  Geoffrey E. Hinton,  University of 
Toronto, 2012

• Key idea:  Build a deep neural network
• 60 million parameters, 650000 neurons
• 5 conv layers + 3 FC layers
• Final layer is 1000-way softmax
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Why using many layers?
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Biological Inspiration

• Processing in the brain uses multi-layer processing 
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Outline

• Supervised learning: General concepts
• Neural network architecture

– From single perceptron to multi-layer perceptrons
• Convolutional network architecture

– Why using convolution and many layers
– Multichannel convolution
– Pooling

• Deep networks
– Recent history
– Review of model training pipeline
– Stochastic gradient descent: general concept 
– Data Preprocessing and Regularization

• Training, validation and testing and cross validation
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Model Training 

• Given a network architecture, how to determine the 
weights/filters?

• Set up a loss function based on the given task
• Update the network parameters to minimize the loss 

using gradient descent
– Stochastic gradient descent (SGD) for large training 

dataset
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Selecting the Right Loss Function

• Depends on the problem type
• Always compare final output '𝑦4 with target 𝑦4

69

Problem Target  𝒚𝒊 Output  𝒛𝑶𝒊 Loss function Formula

Regression 𝑦# = Scalar real %𝑦# = Prediction of 𝑦#
Scalar output / sample

Squared / L2 
loss

'
#
𝑦# − %𝑦# $

Regression with 
vector samples

𝒚# = (𝑦#%, … , 𝑦#&) %𝑦#' = Prediction of 𝑦#'
𝐾 outputs / sample

Squared / L2 
loss

'
#,'

𝑦#' − %𝑦#,'
$

Binary 
classification

𝑦) = {0,1} %𝑦# = Prob. for class 1
Scalar output / sample

Binary cross 
entropy

−'
#
𝑦# ln %𝑦# + (1 − 𝑦#) ln (1− %𝑦#)

Multi-class 
classification

𝑦) = {1,… , 𝐾} %𝑦#' = Prob. for class k
𝐾 outputs / sample 

Categorical 
cross entropy −'

#
'

'*%

&
𝑦#' ln %𝑦#,'

Yao Wang, 2021 ECE-GY 6123: Image and Video Processing



Training with Gradient Descent

• Neural network training:  Minimize loss function

6𝜃 = argmin
a
𝐿 𝜃 , 𝐿 𝜃 =$

456

7

𝐿4(𝜃, 𝒙4, 𝑦4)

– 𝐿!(𝜃, 𝒙!, 𝑦!) = loss on sample 𝑖 for parameter 𝜃
• Standard gradient descent:

𝜃;b6 = 𝜃; − 𝛼𝛻𝐿 𝜃; = 𝜃; − 𝛼$
456

7

𝛻𝐿4(𝜃;, 𝒙4, 𝑦4)

– Each iteration requires computing 𝑁 loss functions and 
gradients

– But, gradient computation is expensive when data size 𝑁 large
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Stochastic Gradient Descent

• In each step:
– Select random small 

“mini-batch”
– Evaluate gradient on 

mini-batch
– Update using this

gradient

• For 𝑡 = 1 to 𝑁steps
– Select random mini-batch 

𝐼 ⊂ {1,… ,𝑁}
– Compute gradient 

approximation:

𝑔= =
1
|𝐼|
K
!∈L

𝛻𝐿(𝑥!, 𝑦!, 𝜃)

– Update parameters:
𝜃=M@ = 𝜃= − 𝛼=𝑔=

71

Full set of 
training 
samples

e.g. 50,000 in 
MNIST

Randomly 
selected 
mini-batch

e.g. 100 
samples

Learning rate
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SGD Theory (Advanced, Optional)

• Expectation of Mini-batch gradient = true gradient :

𝐸 𝑔* =
1
𝑁
I

!2$

3
𝛻𝐿(𝑥!, 𝑦!, 𝜃) = 𝛻𝐿(𝜃*)

• Hence can write 𝑔* = 𝛻𝐿 𝜃* + 𝜉*,
– 𝜉*= random error in gradient calculation,  𝐸 𝜉* = 0
– SGD update:  𝜃*4$ = 𝜃* − 𝛼*𝑔*, 𝜃*4$ = 𝜃* − 𝛼*𝛻𝐿 𝜃* − 𝛼*𝜉*

• Robins-Munro:  Suppose that 𝛼* → 0 and ∑*𝛼* = ∞.  Let 𝑠* =
∑&25* 𝛼&

– Then 𝜃* → 𝜃(𝑠*) where 𝜃(𝑠) is the continuous solution to the 
differential equation:

𝑑𝜃(𝑠)
𝑑𝑠 = −𝛻𝐿(𝜃)

• High-level  take away:  
– If step size is decreased, random errors in sub-sampling are 

averaged out
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SGD Practical Issues

• Terminology:
– Suppose minibatch size is 𝐵. Training size is 𝑁
– Each training epoch includes updates going through all non-

overlapping minibatches

– There are )
A

steps per training epoch

• Data shuffling
– In each epoch, randomly shuffle training samples
– Then, select mini-batches in order through the shuffled training 

samples.
– It is critical to reshuffle in each epoch!

• How to use the minibatch gradient?
– Many optimization algorithms
– ADAM is widely used
– https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/content/

1/adam_pres.pdf
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ADAM Optimizer

• How to choose and adapt the learning rate 𝛼z in SGD?
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𝑚= (Moment) = Moving average of gradient

𝑣= = Moving average of element wise 
gradient square (non-centered variance)

Update using moment, with learning 
rate inversely proportional to the STD

[Adam: A Method for Stochastic Optimization, Kingma & Ba, arXiv:1412.6980] 
https://arxiv.org/pdf/1412.6980.pdf



Learning Rate Scheduling

• Constant learning rate typically not optimum
• The learning rate should be gradually reduced as the

loss reduces
• Typically start with a relatively large initial learning rate 

(e.g. 10^-3), reduce by a factor (say 0.9) after every T
epochs

• Initial learning rate and decay factor may be determined 
by trial and error (through validation data)
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Outline

• Supervised learning: General concepts
• Neural network architecture

– From single perceptron to multi-layer perceptrons
• Convolutional network architecture

– Why using convolution and many layers
– Multichannel convolution
– Pooling

• Deep networks
• Model training

– Loss functions
– Stochastic gradient descent: general concept 
– Data Preprocessing and Regularization

• Training, validation and testing and cross validation
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Initialization and Data Normalization 

• When the loss function is not convex, solution by gradient descent 
algorithm depends on the initial solution

• Typically weights are initialized to random values near zero.
• Starting with large weights often lead to poor results.
• Normalizing data to zero mean and unit variance allows all input 

dimensions be treated equally and facilitate better convergence.
• With normalized data, it is typical to initialize the weights to be 

uniform in [-0.7, 0.7] [ESL]
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Regularization: Penalizing large weights

• To avoid the weights get too large, can add a penalty term 
explicitly, with regularization level 𝜆

• Ridge penalty 
𝑅 𝜃 =O

B,2

𝑤/,B,2. +O
2,+

𝑤#,2,+. = 𝑤/ . + 𝑤# .

• Total loss
𝐿9:; 𝜃 = 𝐿 𝜃 + 𝜆𝑅 𝜃

• Change in gradient calculation
• Typically used regularization

– L2 = Ridge: Shrink the sizes of weights
– L1: Prefer sparse set of weights
– L1-L2: use a combination of both
– Norm constraint: 𝑤/ . < c
– Should only turn on this regularization after a few epochs
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Regularization: Batch normalization

• In addition to normalize the input 
data, also normalize the input to each 
intermediate layer within each batch

– Invariant to intensity shift
• Then rescale the data using two 

parameters (to be learnt)
• For each output in a fully connected 

layer or a feature map in a conv layer, 
save the training data mean 𝜇 and 
STD 𝜎 as well

– K feature maps: 4K parameters

• Add a Batch Normalization layer after 
each conv/fully connected layer 
before nonlinear activation!

• Can use a higher learning rate and 
hence converge faster
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Sergey Ioffe, Christian Szegedy: Batch Normalization: 
Accelerating Deep Network Training by Reducing Internal 
Covariate Shift.
https://arxiv.org/pdf/1502.03167v3.pdf

https://www.youtube.com/watch?v=nUUqwaxLnWs
https://towardsdatascience.com/batch-normalization-in-
neural-networks-1ac91516821c
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Regularization: Dropout

• Drop some percentage 
(Dropout Rate, e.g. p=50%) of 
nodes in each layer both in 
forward and backward pass in 
each training epoch

• Implemented by setting a 
certain input elements to this 
layer to zero, but scaling the 
output of each node by 1/p

• Dropout forces a neural 
network to learn more robust 
features that are useful in 
conjunction with many 
different random subsets of 
the other neurons.

• Reduces overfitting
• Need more epochs to 

converge but each epoch 
takes less time
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Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural 
networks from
overfitting”, JMLR 2014
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Data Augmentation

• When the training data are limited, can generate additional samples based on the 
anticipated diversity in the input data

• Image augmentation: by shifting, scaling, rotating the original training images
• Can provide significant performance boost when you have small training data

from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(

featurewise_center=False,  # set input mean to 0 over the dataset
samplewise_center=False,  # set each sample mean to 0
featurewise_std_normalization=False,  # divide inputs by std of the dataset
samplewise_std_normalization=False,  # divide each input by its std
zca_whitening=False,  # apply ZCA whitening
rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)
horizontal_flip=True,  # randomly flip images
vertical_flip=False)  # randomly flip images
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From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf
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Outline (Part I)

• Supervised learning: 
– General concepts 
– Classification vs. regression

• Neural network architecture
– From single perceptron to multi-layer perceptrons

• Convolutional network architecture
– Why using convolution and many layers
– Multichannel convolution
– Pooling

• Model training
– Loss functions
– Stochastic gradient descent: general concept 
– Data Preprocessing and Regularization

• Training, validation and testing and cross validation
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Training, Validation, and Testing

• Goal: use training data to learn a model that works well on unseen data!
• Randomly split the data set to training, validation, and testing subsets

– Each set should contain the same percentages of different classes as the entire dataset 

• Train (using SGD) on the training set and compute both training loss and 
validation loss (on the validation set) in successive epochs and plot loss curves

– The training loss should decrease in successive epochs
– But the validation loss may not!
– Stop when validation loss starts to increase
– Use the trained network on the testing set to evaluate performance
– Can also use the validation loss to optimize other hyperparameters, including model architecture

• When the training error at convergence is still large, the network architecture 
does not have enough representation power. 

– Need to modify network architecture to be more complex (more layers or more feature maps)

• When the training error is very small but the validation error is large, the network 
is overfit. 

– Stop earlier, and if necessary modify network architecture.
– Regularization to reduce overfit (weight regularization, batch norm, drop out)
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Check for Overfitting

To reduce overfitting
• Use more regularization 

(stronger weight penalty, 
Batch norm, drop out)

• Use more data
augmentation
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Figure from https://cs231n.github.io/neural-networks-3/
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Model Architecture / Hyperparameter Tuning

• To compare among multiple model structures (e.g. #layers, # 
filters, filter sizes) and hyperparameters of the same structure (e.g. 
initial learning rate, learning rate decay schedule, regularization 
strength)

• Split data to training/validation/testing
– For each candidate model structure / hyperparameter

• Train on the training set, evaluate on the validation set
– Determine the structure with best validation performance
– Retrain the network using training and validation set together using the 

best structure
– Evaluate the performance of the trained model on the test set
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Cross Validation with Small Dataset

• When the available data set is small
• Partition to training and testing 
• Within the training set

– Divide to K-folds
– For each candidate model structure / hyperparameter setting

• Using (K-1) fold for training, and 1 fold for validation;
• Repeat K times
• Average performance for all validation folds

– Determine the best structure / hyperparameter with the best average validation 
performance

– Train the chosen structure using the entire training set
– Instead of dividing to K-folds, can randomly draw 1/K percent for validation and 

use remaining (K-1)/K percent for training, and average validation performance 
over many random drawings.

• Evaluate the trained model on the testing set (held-out set)
• Training and testing set and each fold/draw within the training set should 

contain the same percentages of different classes as the entire dataset
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Model Structure Selection
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Better to have big model and regularize, than unfit with small model.

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf



Summary: Building a Conv Net

• Define a network structure
– Conv layer + fully connected layers 
– Add batch normalization and drop out (in fully connected layers only)

• Set up a loss function based on the given task
– Need to add proper regularization on weights

• Partition data to training, validation and testing
– Preprocess data (zero-mean, unit variance)
– Augment training data 

• Perform stochastic gradient descent on training set
– Calculate gradient for each minibatch 
– Update the model parameters (ADAM optimizer preferred)
– Evaluate the loss for training and validation set after each epoch

• Observe both training loss and validation loss curves
– Decide when to stop
– If training or validation loss is still very large, try to alter network structure

• Fortunately, you don’t have to write the code from scratch!
– Many deep learning frameworks allow us to build/train/test a model relatively easily
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Deep Learning Frameworks
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PyTorch

• We will use PyTorch for this class
• Many built-in utilities for

– Defining the network
– Defining the loss function
– Perform SGD

• See PyTorch tutorial
– https://pytorch.org/tutorials/beginner/deep_learning_60min_blit

z.html
– https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#s

phx-glr-beginner-blitz-cifar10-tutorial-py
• Attend tutorials by TAs
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Pop Quizzes

• How is SGD different from standard gradient descent?
• Why is SGD helpful?
• How does ADAM optimizer differ from SGD?
• How should you set and adjust the learning rate?
• What is batch normalization and why?
• What is drop-out and why?
• What are some tricks to help the training?
• How do you make your learnt model generalizable to 

unseen data?
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Pop Quizzes (1) (w/ answers)

• How is SGD different from standard gradient descent?
– Gradient descent: computing the loss and gradient for all training samples and 

then update the model
– SGD: computing the loss and gradient for one minibatch of samples at a time 

and update the model based on the batch gradient, iterate among batches and 
then repeat after random shuffling of the total training set.

• Why is SGD helpful?
– Reduce the memory cost, and allow multiple updates being done within each 

run of the entire training set, critical for large dataset
• How does ADAM optimizer differ from SGD?

– Gradient descent: update using the gradient of the current batch
– Adam: update using the “moment” = moving average of the batch gradient, 

which is less noisy, loss function less oscillating.
• How should you set and adjust the learning rate?

– Relatively large learning rate in the beginning and gradually reduce, to help the
network converge
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Pop Quizzes (2) (w/ answers)

• What is batch normalization and why?
– Normalize the input to the next layer to be zero mean and unit variance
– Help to reduce the arbitrary scaling of the filter coefficients/weights

• What is drop-out and why?
– Randomly drop out some nodes to make the training more robust
– Only use in fully connected layers

• What are some tricks to help the training?
– Data augmentation
– L2 or L1 penalty on the weights of fully connected layers 
– Normalized filter coefficients
– Batch norm and drop out
– Using a good optimizer, e.g. Adam
– Learning rate scheduling

• How do you make your learnt model generalizable to unseen data?
– Training/validation/testing split
– Cross validation
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What should you know

• Be able to answer all the pop quizzes!

95



Recommended Readings

• Material for the machine learning class developed by Sundeep 
Rangan:
– https://github.com/sdrangan/introml/blob/master/sequence.md

• Material from Standard Univ. class CS231n Convolutional Neural 
Networks for Visual Recognition
– lecture note https://cs231n.github.io/

• https://pytorch.org/tutorials/
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Written Assignment (1)

1. For the simple network structure shown below (1 conv layer followed by downsampling and 1 fully connected 
layer)

1) Determine the number of trainable parameters. Assume the input image is gray scale (one channel, with height=H, 
width=W).

2) What is the receptive field (relative to the input image) of the output at layer 2 (before ReLu Box)?
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H

W

3
3

2
2

FlattenReLu Sigmoid

Two 3x3 
filters w/ 
bias+ReLu

2x2 max 
Pooling

Weighted 
combination with 
bias



Written Assignment (2)

2. Consider the following simple convolutional network architecture used for image denoising 
1) Determine the number of trainable parameters. Write down clearly the number of parameters in each layer, so that you can 

get partial credits.
2) What is the receptive field sizes (relative to the input image) of the filters in each layer? 
3) A simple loss function for denoising is the mean squares error between the ground-truth (noise-free) image and the 

denoised image.  Define the total loss function for all samples in a batch. Use %𝑦𝑖,𝑘 𝑚, 𝑛 to represent the k-th color 
component of the i-th denoised image, and 𝑦𝑖,𝑘 𝑚, 𝑛 the corresponding noise-free image. 

4) Let the j-th feature map for the i-th input image after Layer 2 be described by 𝑧𝑖,𝑗 𝑚, 𝑛 . The filters in Layer 3 be denoted by 
ℎ𝑗,𝑘 𝑚, 𝑛 and the biases by 𝑏𝑘, where j is the index of the input feature map, and k is the index of the output color channels. 
Express the output %𝑦𝑖,𝑘 𝑚, 𝑛 as a function of 𝑧𝑖,𝑗 𝑚, 𝑛 , ℎ𝑗,𝑘 𝑚, 𝑛 , 𝑏𝑘.

5) Define the gradient of the loss function with respect to the parameters  ℎ𝑗,𝑘 𝑚, 𝑛 , 𝑏𝑘 .
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H

W

5
5

3
3

Layer 1
5x5 filters w/ bias

+ ReLU

3
3

48 feature 
channels

48 feature 
channels

Noisy image
3 color channels

Denoised image
3 color channels

Layer 2
3x3 filters w/ bias

+ ReLU

Layer 3
3x3 filters w/ bias
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