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Department of Electrical & Computer Engineering, NYU Tandon School of Engineering      Spring 2020 
              EL6123 --- IMAGE AND VIDEO PROCESSING      Yao Wang 

 
 

Exam 
Open book. But you are not allowed to discuss with any other people. Failure to observe this rule will result in a grade of Fail. 

Please start to scan and upload your solution (preferably in a single pdf file) no later than 6:00PM. The submission site will close at 
6:15. Please make sure your writing is legible. Make sure that you write your name and ID on your answer sheets.  

If you have questions, you can send chat messages via Zoom or call:  
Yao Wang 732-939-3399, Jacky Yuan: 718-312-9126, Bolin Liu: 332-201-2787. 

 
Solution 

 
1. (6pt) In the figure below, three images are given in Figs. (a-c), three histograms are given in Figs. (d-f), and three transformations 

for contrast enhancement are given in Figs. (g-i). For each image, specify which histogram corresponds to this image, and which 
transformation is best to enhance its contrast.  

 

 
Solution: 
The overall correspondences: 

Image Histogram Transform  
(a) (f) (g) 
(b) (d) (i) 
(c) (e) (h) 
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2. (15 pt) Three filters are given below: 

𝐻" =
1
8
&
0 1 0
1 4 1
0 1 0

) , 𝐻+ = &
−1 0 1
−2 0 2
−1 0 1

),				𝐻/ = &
0 −1 0
−1 4 −1
0 −1 0

) 

 
(a) (9pt) For each filter, just based on the filter coefficients, can you say what is the function of the filter? Is the filter 

separable? If yes, please write the corresponding vertical and horizontal filters.  
(b) (6pt) For the first filter, derive its discrete space Fourier Transform H(u,v). Please simplify your result so that it is 

represented as a real function only. Plot H(u,0) and H(0,v). Based on the the plot of frequency response, can you tell 
what is the function of the filter? Is this observation consistent with what you get in part (b)?  

Solution: 
(a) H1 is a low pass filter and is used for smoothing. This is because all coefficients are positive and sum to 1. Not 

separable 
H2 is Separable with      ℎ1 = [1	2	1], 	ℎ4 = [−1	0	1]. This filter can be used for detecting vertical edge.  This is 
because the vertical filter ℎ1	coefficients are all positive and sum to 1, and hence it is lowpass and performs smoothing 
vertically, while the horizontal filter 	ℎ4	coefficients have both positive and negative values and sum to 0, and hence 
detect the changes. Note that 	ℎ4 is technically bandpass, but if you said it is high pass, we will not deduct points. 
H3 is a high pass filter because the coefficients are both positive and negative coefficients and sum to 0.  It is used for 
detecting isolated points (local extrema) because it takes the difference between the center and all its surrounding pixels. 
(if you said that it detects edges in all directions, we did not deduct points). Not separable. Note that this is NOT a 
high emphasis or sharpening filter. A high emphasis filter will sum to 1, but have both positive and negative 
coefficients. 

(b) H1:𝐻(𝑢, 𝑣) = "
9
	:4 + 𝑒𝑗2𝜋𝑢 + 𝑒−𝑗2𝜋𝑢 + 𝑒𝑗2𝜋𝑣 + 𝑒−𝑗2𝜋𝑣? = "

@
(2 + cos2𝜋𝑢 + cos2𝜋𝑣)	

H(u, 0) = "
@
(3 + cos 2𝜋𝑢); H(0, v) = "

@
(3 + cos2𝜋𝑣), plots shown below. We can see that it is low-pass in both 

horizontal and vertical direction. In fact, it is low pass in all directions. This is consistent with the observation of H1 in 
(a) based on filter coefficients. 
 

 
Following are not required: 
H2:	𝐻(𝑢, 𝑣) = :2 + 𝑒𝑗2𝜋𝑢 + 𝑒−𝑗2𝜋𝑢)(−𝑒𝑗2𝜋𝑣 + 𝑒−𝑗2𝜋𝑣? = 2(1 + cos2𝜋𝑢)(−2j) sin 2𝜋𝑣	
																							= −4𝑗(1 + 𝑐𝑜𝑠2𝜋𝑢) sin2𝜋𝑣		
H(u, 0) = 0 ; H(0, v) = −8𝑗 sin2𝜋𝑣 
H3:	𝐻(𝑢, 𝑣) = :4 − 𝑒𝑗2𝜋𝑢 − 𝑒−𝑗2𝜋𝑢 − 𝑒𝑗2𝜋𝑣 − 𝑒−𝑗2𝜋𝑣? = 2(2 − cos 2𝜋𝑢 − cos2𝜋𝑣) 
H(u, 0) = 2(1 − cos2𝜋𝑢); H(0, v) = 2(1 − cos2𝜋𝑣) 
 

 
3. (10pt) For the image below, determine its 2-level Gaussian Pyramid and Laplacian Pyramid. Use averaging of 2x2 pixels for 

downsampling, use nearest neighbor replication for interpolation.  
(a) (4pt) Determine its 2-level Gaussian Pyramid and Laplacian Pyramid. Use averaging of 2x2 pixels for downsampling, 

use nearest neighbor replication for interpolation.  
(b) (2pt) One way to remove noise from the original image is by assuming the Laplacian image (not the top level image, 

which is a low-passed image) is sparse and apply soft-thresholding. Show the soft-thresholed Laplacian image with a 
threshold of 1. 

(c) (4pt) Show the final reconstructed image from the soft-thresholded Laplacian pyramid. 
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7 5 4 3 
5 3 3 2 
4 3 2 1 
3 2 1 0 

              Solution: 

(a) G+ = P
7 5 4 3
5 3 3 2
4 3 2 1
3 2 1 0

S  Downsampling by averaging every 2x2 samples, we get:	

G" = T5 3
3 1U.			Then interpolating by nearest neighbor (which means to replicate each pixel to 2x2), we  generate : 

R+ = P
5 5 3 3
5 5 3 3
3 3 1 1
3 3 1 1

S	 

 L" = G" = T5 3
3 1U		L+ = G+ − R+ =  P

2 0 1 0
0 −2 0 −1
1 0 1 0
0 −1 0 −1

S 

(b) L"Y = L" = T5 3
3 1U .	Applying	softthreshold	to	each	element	in	L2	yields	L+

Y =  P
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

S 

(c) R+Y = 𝑈𝑝(L"Y ) = P
5 5 3 3
5 5 3 3
3 3 1 1
3 3 1 1

S		 G+Y = 	R+Y + 𝐿+Y = 	 P
6 5 3 3
5 4 3 3
3 3 1 1
3 3 1 1

S	 

 
Note that for this problem, you are asked to only decompose to two levels. Some of you did 3 levels. As long as the 
solution is correct, no points are deducted. 

4. (12pt) An image captured by a camera is generally perturbed by camera noise.  If you reorder the image row-by-row into a vector, 
and denote the original image by a vector x, the captured image by a vector y, you can write y=x+n. One way to remove the noise 
is by assuming i) The noise has a small L2 norm; and ii) The image is generally smoothly changing except at the edges. This 
second assumption can be mathematically formulated as requiring the sum of the absolute difference between two horizontally 
adjacent pixels, denoted by ‖𝐷m𝑥‖", is small, and similarly, the sum of the absolute difference between two vertically adjacent 

pixels, denoted by ‖𝐷o𝑥‖",  is small. The second assumption can also be cast as ‖𝐷𝑥‖" is small, where  𝐷 = p𝐷m𝐷o
q. Under these 

assumptions,  denoising problem can be formulated as an optimization problem as described below: 
𝑥 = 	argmin	{	‖𝑥 − 𝑦‖++ + 𝜆‖𝐷𝑥‖" }  (*) 

(a) (4pt) Formulate the matrix 𝐷m and 𝐷o.  
(b) (4pt) Formulate the optimization problem in (*) into a form that can be solved by ADMM (show the original constrained 

optimization problem and the augmented Lagrangian cost function).  
(c) (4pt) Show the ADMM iterations to solve the problem. 
Solution: 
(a) 𝐷m should be a sparse matrix, and in each row, it should have only two non-zero values in two adjacent elements, 1 and 

-1, indicating the difference between two adjacent samples in the same row. Note that if you have N samples in each 
row, you can only take (N-1) differences. So if the image has a dimension of M by N, the matrix 𝐷m has a dimension of 
M(N-1) by MN. For example, if the image dimension is 3 by 3, 

𝐷m =

⎣
⎢
⎢
⎢
⎢
⎡ 1 −1

1 −1
1 −1

1 −1
1 −1

1 −1⎦
⎥
⎥
⎥
⎥
⎤

 

𝐷o is also a sparse matrix and in each row, it should have only two non-zero values separated by N elements, 1 and -1, 
indicating the difference between two pixels in the same column but two adjacent rows.  Note that you have N rows, 
you can only take (M-1) differences. So if the image has a dimension of M by N, the matrix 𝐷o has a dimension of (M-
1)N by MN. For example, if the image dimension is 3 by 3, 
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𝐷o =

⎣
⎢
⎢
⎢
⎢
⎡ 1 1

−1
−1

1 −1
1 −1

1
1

−1
−1⎦
⎥
⎥
⎥
⎥
⎤

 

Note as long as your solution has 1 and -1 next to each other in 𝐷m and has 1 and -1 separated by N elements in 𝐷o, you 
get full points. 

(b) To solve the problem using ADMM, we introduce another variable 𝑧 = 𝐷𝑥, so that the L1 norm is applied to z. The 
optimization problem is equivalent to: 

minimize	‖𝑥 − 𝑦‖++ + 𝜆‖𝑧‖"	
subject	to	𝐷𝑥 − 𝑧 = 0	

To solve the problem using ADMM, we first formulate the augmented Lagrangian, where 𝜃 represents the Lagrangian 
multiplier (dual variable): 
𝐿 = ‖𝑥 − 𝑦‖++ + 𝜆‖𝑧‖" + 𝜃�(𝐷𝑥 − 𝑧) +

𝜌
2
[‖𝐷𝑥 − 𝑧‖++	] 

Note that if you chose to add a factor of "
+
 in front of the term ‖𝑥 − 𝑦‖++, we did not deduct points. The solution in (c) 

would be slightly different, but as long as you did correctly, it is fine. 
Note that some of you used y to represent the Lagrangian variable, which is also used to denote the noisy 
measurement. This is a serious problem and 2pts are taken away. However, if your solution in Part (c ) is correct 
with this wrong formulation, we do not further deduct points. 
Some of you changed the measurement variable to b, and then used y to indicate the Lagrangian variable. That is fine. 
 

(c) In each ADMM iteration, we update x, z, and 𝜃 sequentially as follows: 
x minimization step can be solved by setting: 
𝑑𝐿
𝑑𝑥 = 2(𝑥 − 𝑦)+ 𝐷�𝜃 + 𝜌𝐷�(𝐷𝑥 − 𝑧) = 2(𝑥 − 𝑦) + 𝜌𝐷� �

1
𝜌 𝜃 + 𝐷𝑥 − 𝑧

� = 0	

This leads to		
𝑥��" = (2𝐼 + 𝜌𝐷�𝐷)�"(2𝑦 + 𝜌𝐷�𝑧� − 𝐷�𝜃�) 
To solve the z-minimization problem, we can rewrite L : 

𝐿 = �|𝑥 − 𝑦|�
+
+ 𝜆�|𝑧|�

"
+
𝜌
2
p
2
𝜌 𝜃

�(𝐷𝑥 − 𝑧) + �|𝐷𝑥 − 𝑧|�
+q 

The last part can be rewritten by completing the square, leading to 

𝐿 = 	 �|𝑥 − 𝑦|�
+
+ 𝜆�|𝑧|�

"
+
𝜌
2
�
1
𝜌 𝜃 + 𝐷𝑥 − 𝑧

�
+

−
𝜌
2
�
1
𝜌 𝜃

�
+

 

    
Ignoring terms which do not depend on z, and rescale by 1/�

+
, we get 

𝑧��" = 𝑎𝑟𝑔𝑚𝑖𝑛 �
2𝜆
𝜌
‖𝑧‖" + �𝑧 − 𝐷𝑥��" −

𝜃�

𝜌
�
+

� = 𝑠𝑜𝑓𝑡(𝐷𝑥��" +
𝜃�

𝜌 ,
𝜆
𝜌) 

 
𝜃 update step is simply: 
𝜃��" = 𝜃� + 𝜌(𝐷𝑥��" − 𝑧��") 
 

 
5. (12pt) You are given two images taken under different view angles. Assume that the two images are related by a bilinear 

mapping.   
(a) (6pt) Given 4 pairs of corresponding feature point positions: (𝑢�, 𝑣�) in image 1 and (𝑥�,𝑦�) in image 2, n=1,2,…,4. 

How do you determine the bilinear mapping parameters? Formulate a matrix equation to solve the mapping parameters.  
(You can assume that the matrix you try to invert is non-singular) 

(b) (6pt) Suppose you have detected N (N>>4) corresponding pairs of features in these two images, but not all the 
correspondences are correct. Describe how would you determine the bilinear parameters using the RANSAC method.  
Write it as an algorithm flow chart 

Solution: 
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(a) Suppose the bilinear mapping of point pair i (i=1,2,3,4) is: 

𝒛𝒊 = T
𝑥�
𝑦�U = p 𝑎� + 𝑎"𝑢� + 𝑎+𝑣� + 𝑎/𝑢�𝑣�𝑏� +	𝑏"𝑢� +	𝑏+𝑣� +	𝑏/𝑢�𝑣�

q = p1 𝑢� 𝑣� 𝑢�𝑣� 0 0 0 0
0 0 0 0 1 𝑢� 𝑣� 𝑢�𝑣�

q

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑎�
𝑎"
𝑎+
𝑎/
𝑏�
𝑏"
𝑏+
𝑏/⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝑨𝒊𝒄	

then we can stack all 4 point pairs equation vertically : 
	

P

𝒛𝟏
𝒛𝟐
𝒛𝟑
𝒛𝟒

S = 	 P

𝑨𝟏
𝑨𝟐
𝑨𝟑
𝑨𝟒

S 𝒄	 ⇒ 𝒛 = 𝑨𝒄 ⇒ 𝒄 = 𝑨�"𝒛 

 
A more efficient solution is to solve a and b separately, since the equations for them are independent and you only need 
to invert a 4x4 matrix. Specifically, you can set up two equations: 
 

P

1 𝑢" 𝑣" 𝑢"𝑣"

1 𝑢@ 𝑣@ 𝑢@𝑣@

S ¤

𝑎�
𝑎"
𝑎+
𝑎/

¥ = ¤

𝑥"
𝑥+
𝑥/
𝑥@

¥ 			𝑜𝑟		𝑩𝒂 = 𝒙,			𝒂 = 𝑩�"𝒙  

P

1 𝑢" 𝑣" 𝑢"𝑣"

1 𝑢@ 𝑣@ 𝑢@𝑣@

S P

𝑏�
𝑏"
𝑏+
𝑏/

S = ¤

𝑦"
𝑦+
𝑦/
𝑦@

¥ 	𝑜𝑟		𝑩𝒃 = 𝒚,			𝒃 = 𝑩�"𝒚  

 
(b) The	RANSAC	algorithm	would	consist	of	the	following	steps 

1. Randomly select (or sample) 4 pairs from all candidate pairs  
2. Compute the bilinear mapping parameters X using selected pairs with the method in question(a)  
3. Apply resulting mapping to all candidate pairs and evaluate the mapping error (Euclidean distance) at each pair 

 E± 	= ‖𝒛±– 	h(𝐮±, 𝐚, 𝐛)‖+	 if	E± > T (threshold), consider pair l outlier. 
4. Count the number of inliers for this trial  
5. Repeat the process S times  
6. Return the mapping with the largest inlier count 
7. Refit the mapping using least square fit with all inlier pairs 

 
6. (15pt) Given two images of the same scene taken from two different view angles, we would like to stitch them into a single 
image based on feature correspondences. Describe the steps (in words) that you would take to accomplish this task. Be sure 
to include all the steps necessary, and briefly describe the method that you can use in each step.  
 
Solution: 
When the two images are taken from different angles of the same scene, the geometric relations between the two images can usually 
be approximated well by the homography mapping, as long as the observed scene is quite far from the camera so that all the observed 
points in the scene can be considered to line on a plane. We could fuse the following steps to stitch them together. 

1. Detect features in each image (e.g. Harris or SIFT feature or multiscale Harris) 
2. Determine a descriptor for each feature point (e.g. SIFT feature or HoG a block surrounding the feature point) 
3. For each feature point in image one, find the point in another image with most similar feature descriptor 

l For SIFT descriptor, L2 distance is often used to measure similarity 
l Using Brute force or advance algorithms like K-D tree to get the point with shortest distance. 
l Reject points which have a large distance even with the closest matching point or have two matching points with very 

similar distance. 
4. Determine the homography parameters a using RANSAC using the candidate pairs of corresponding features determined 

from step 3. This is necessary, as some of the candidate pairs may be incorrect. For this step, it is important to know which 
frame you want to use as a reference frame. Let us say image F is the reference, and you want to warp G to F. Let us say 
pixels in F are denoted by (u,v), and pixels in G are denoted by (x,y). You would want to use the inverse mapping 𝐱 =
𝐡(𝐮, 𝐚), so that for every pixel u in F, you find its corresponding position x in G. 

5. Warp G to F’ using the homography mapping determined in step 4, 𝐱 = 𝐡(𝐮, 𝐚).  



6 

6. Blend the image F’ and F together. In the area whether the two images overlap, you can use average or weighted average. A 
more sophisticated approach is Laplacian blending. You should also perform gain compensation if there are contrast 
difference between F and G. 

 
Some more specifics about the warping and blending steps: (specifics not required, but if you did not mention how to treat overlapping 
region or gain compensation, -1pt. If you did not mention the direction of the mapping function relative to the reference frame, -1pt) 
1. Warp G to G’ so that G’ aligns with F. Use the transform from 2 as the inverse mapping function 

a) For each point (u, v) in the image G’ to be obtained, find its corresponding point (x, y) in the original image G using the 
mapping function 𝐱 = 𝐡(𝐮,𝐚), and let G’(u, v) = G(x, y) 

b) if the mapped point (x,y) is not an integer sample, interpolate from nearby integer samples in G. 
2. Blend G’ and F 

a) Determine the size of the stitched image. Ideally, one should find out the appropriate size based on the corresponding 
positions of the 4 corner points of image G after warping to image F. For simplicity, we can set 
width = sum of widths of the two images; height=sum of the heights of the two images.  

b) Find area of overlapping between F and G’ 
c) Blend in the overlapping area. This can be done by either a simple approach (Average), Distance based weighting or using 

pyramid representation 
d) If there are contrast difference between F and G, perform gain normalization 

 
 
7. (15pt) Consider the Lucas-Kanade (LK) method for flow estimation. 

(a) (10pt) Consider two successive frames shown below. Using the Lucas-Kanade (LK) method to determine the optical 
flow vector of the center pixel. To determine the horizontal and vertical gradient image, you should simply use the 
difference of two horizontally and vertically adjacent pixels. That is, Ix(m,n)=I(m,n)-I(m,n-1); Iy(m,n)=I(m,n)-I(m-1,n). 
Your solution should show the horizontal, vertical and temporal gradient image, the moment matrix and the final 
estimated flow vector. You should use a 3x3 neighborhood block surrounding the center pixel. 

(b) (5pt) Under what conditions, the LK method may fail? Will the EBMA method also fail in those cases? 
 

 
 

Solution: 
(a) Horizontal gradient image of F = F(t)  	I»(m, n): 

 

0 0 5 0 0 

0 0 5 0 0 

5 0 0 0 0 

5 0 0 0 0 

5 0 0 0 0 
 
vertical gradient image of F = F(t)  I¼(m,n): 

0 0 5 5 5 

0 0 0 0 0 

5 5 0 0 0 
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0 0 0 0 0 

0 0 0 0 0 
 
The temporal gradient image is I½ = F(t) − F(t + 1): 

0 0 5 0 0 

0 0 5 0 0 

5 5 5 0 0 

0 0 0 0 0 

0 0 0 0 0 
The Lukas-Kanade method solves the motion at each pixel based on the spatial and temporal gradient in a small 
neighborhood using the following equations 

 
Using the gradient images determined above and using the values within the 3x3 neighborhood surrounding the center 
pixel, we obtain 

T25 0
0 25U T

𝑢
𝑣U = − T2525U 

 
 
Which has a solution of u = −1, v = −1. 
 

(b) i) LK would fail if the block surrounding a pixel has edge in one direction, because the moment matrix would be non-
invertible. But EBMA would still work.  

ii) LK would fail is motion is large, but EBMA would still work as long as the motion is within the search range. 
iii) Both methods assume all pixels in a block has the same translational motion, and would fail if this assumption 

does not hold. 
iv) Both methods would not work well in flat regions. LK method will have a singular moment matrix, while EBMA 

can find arbitrary match. 
Grading: -1 point if missing any one of the above. 

 
 

              
8. (15 pt) Consider the following simple convolutional network architecture used for image denoising  

(a) (3pt) Determine the number of trainable parameters. Write down clearly the number of parameters in each layer, so that you 
can get partial credits. 

(b) (3pt) What is the perceptive field sizes (relative to the input image) of the filters in each layer?  
(c) (2pt) A simple loss function for denoising is the mean squares error between the ground-truth (noise-free) image and the 

denoised image.  Define the total loss function for all samples in a batch. Use 𝑦¾�,�(𝑚, 𝑛) to represent the k-th color 
component of the i-th denoised image, and 𝑦�,�(𝑚, 𝑛) the corresponding noise-free image.  

(d) (2pt) Let the j-th feature map for the i-th input image after Layer 2 be described by 𝑧�,¿(𝑚, 𝑛). The filters in Layer 3 be 
denoted by ℎ¿,�(𝑚, 𝑛) and the biases by 𝑏�, where j is the index of the input feature map, and k is the index of the output 
color channels. Express the output 𝑦¾�,�(𝑚, 𝑛) as a function of 𝑧�,¿(𝑚, 𝑛), ℎ¿,�(𝑚, 𝑛), 𝑏�. 

(e) (5pt) Define the gradient of the loss function with respect to the parameters  ℎ¿,�(𝑚, 𝑛), 𝑏� . 
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Solution: 
(a) Trainable parameters: 

Layer 1: 48 × (3 × 5 × 5 + 1) = 3648 
Layer 2: 48 × (48 × 3 × 3 + 1) = 20784 
Layer 3: 3 × (48 × 3 × 3 + 1) = 1299 
Total : 3648+20784+1299 = 25731 

(b) Perceptive field sizes 
Layer 1: 5 × 5 
Layer 2: 7 × 7	
Layer	3:	9 × 9 

(c) L = MSE = ∑ Å	𝑦¾�,�(𝑚, 𝑛) −	𝑦�,�(𝑚, 𝑛)Æ
+

�,�,Ç,� .	 

Ideally you should have a scale factor of "
/	È	É	Ê

 in front of the sum, where I is the number of images in a batch, M and N 
are the numbers of rows and columns of each image. 3 indicate 3 color components. Then your solution for the 
gradients below will have the same scale factor. Your solution would be considered correct regardless whether you 
added the scale factor. 

(d) 𝑦¾�,�(𝑚, 𝑛) = ∑ 𝑧�,¿(𝑚 + 𝑠, 𝑛 + 𝑙)ℎ¿,�(𝑠, 𝑙) + 𝑏�¿Ì",..,@9,ÍÌ�",�,",±Ì�",�,"   
(OK if you write s=0,1,2; l=0,1,2, or if you do not specify the range of j,s,l) 

(e) Using the chain rule 
𝑑𝐿

𝑑	ℎ¿,�(𝑠, 𝑙)
= Î

𝑑𝐿
𝑑𝑦¾�,�(𝑚, 𝑛)�,Ç,�

	
𝑑𝑦¾�,�(𝑚, 𝑛)
𝑑ℎ¿,�(𝑠, 𝑙)

	and
𝑑𝐿
𝑑	𝑏�

= Î
𝑑𝐿

𝑑𝑦¾�,�(𝑚, 𝑛)�,Ç,�

	
𝑑𝑦¾�,�(𝑚, 𝑛)

𝑑𝑏�
		

in	which		
𝑑𝐿

𝑑𝑦¾�,�(𝑚, 𝑛)
= 2 Å𝑦¾�,�(𝑚, 𝑛) −	𝑦�,�(𝑚, 𝑛)Æ	

	
𝑑𝑦¾�,�(𝑚, 𝑛)
𝑑ℎ¿,�(𝑠, 𝑙)

= 𝑧�,¿(𝑚 + 𝑠, 𝑛 + 𝑙)	and	
𝑑𝑦¾�,�(𝑚, 𝑛)

𝑑𝑏�
= 1	

therefore	we	get:	
𝑑𝐿

𝑑	ℎ¿,�(𝑠, 𝑙)
= Î 2Å𝑦¾�,�(𝑚, 𝑛) −	𝑦�,�(𝑚, 𝑛)Æ

�,Ç,�

	𝑧�,¿(𝑚 + 𝑠, 𝑛 + 𝑙)	

𝑑𝐿
𝑑	𝑏�

= Î 2Å𝑦¾�,�(𝑚, 𝑛) −	𝑦�,�(𝑚, 𝑛)Æ
�,Ç,�

	 

 
 

H

W

5
5

3
3

Layer 1
5x5 filters w/ bias

+ ReLU

3
3

48 feature 
channels

48 feature 
channels

Noisy image
3 color channels

Denoised image
3 color channels

Layer 2
3x3 filters w/ bias

+ ReLU

Layer 3
3x3 filters w/ bias


