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AN ABSTRACT
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Hao Hu

Advisors: Yao Wang and Yong Liu

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy (Electrical Engineering)

January 2012

Given the ever-increasing Internet video demands, how to handle the large video traffic

over the current network is an active research area. The main objective of this thesis is to

improve end users’ video experience by considering application layer system optimization,

scalable video coding and Peer-to-Peer technology.

Scalable Video Coding (SVC) is well positioned in the low-cost Peer-to-Peer (P2P)

video streaming network. We model such system in utility maximization framework to

understand the interplay between system efficiency, user fairness and incentive. We propose

to use taxation mechanisms to strike the right balance between them. The proposed scheme

guarantees the streaming rate of a node is at least proportional to its uploading contribution.

The left-over uploading bandwidth (taxed portion) from all nodes is used to help “slow”

peers, therefore improves the social welfare. The tax rate works as a knob controlling the

tradeoff between the three aspects. We then propose practical taxation-based P2P layered

streaming designs and validate its performance with extensive trace-driven simulations.

To facilitate SVC-based system design, we propose a rate-quality model for scalable

video with temporal and amplitude scalability that can be easily incorporated into a net-
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work maximization framework. The associated optimal layer extraction is done by layer

ordering within each Group of Pictures (GOP) such that each additional layer provides the

best possible quality gain over the bitrate increment. The proposed rate-quality model and

layer ordering scheme are evaluated with various sequences ranging from slow to intensive

motion.

Based on the proposed rate-quality model, we investigate a proxy-based solution for

adapting the SVC streams at the edge of a wireless network. The proxy iteratively allocates

rates of different video streams to maximize a weighted sum of video qualities. Given the

rate allocation, appropriate video layers are transmitted to end users. Simulation studies

show that our scheme consistently outperforms TCP-friendly rate control (TFRC) in terms

of agility to track link qualities and overall subjective quality. In addition, the proposed

scheme supports differential services and competes fairly with TCP flows.

Recent industrial effort has been on streaming video using HTTP protocol. Typically,

HTTP streaming relies on clients to request appropriate video chunks based on local play-

back status and bandwidth estimation. To facilitate the chunk request strategy design, we

propose a cost function for each chunk that jointly considers its contribution to the average

playback quality, the variation of playback quality and the playback buffer level. We then

show that finding the optimal chunk request strategy is a dynamic programming problem.

Due to the difficulty of predicting the underlying network dynamics and the complexity

of solving the exact problem, we propose a simple heuristic algorithm to solve it. We

implement a testbed to evaluate its performance. Furthermore, we compare the HTTP live

streaming system with TCP-based SVC live streaming to show the advantage of employing

SVC into the system.
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Chapter 1

Introduction

1.1 Challenge, Motivation and Our Approach

Nowadays, video traffic has already accounted for over 40 percent of consumer Inter-

net traffic, and the percentage is growing exponentially for the upcoming years according

to Cisco Visual Networking Index [1]. How to handle the rapid increment of video demand

over the current network infrastructure has been an active research area for years. However,

in order to keep up with the Internet Multimedia era, more work needs to be done.

1.1.1 Peer-to-Peer Video Streaming

Conventionally, Internet video is served from dedicated content servers to end-users,

e.g., Content Delivery Networks (CDN). Yet, server infrastructure is costly to meet the

video demand in terms of bandwidth costs and server hardware costs. Peer-to-Peer (P2P)

technology is attractive in the sense that it is a low cost alternative to stream video to a

large number of subscribers who are, both video consumers and suppliers. As each peer

contributes its resources, e.g., bandwidth, computational power, storage, the capacity of

the system scales up at the same pace as the number of users increases. Adoptions of the

P2P technology can be found in several commercial video streaming systems: PPlive [2],

PPstream [3], UUsee [4], just to name a few. It is also widely employed to offload the

traditional server-client based video systems [5, 6].
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Despite the success of P2P in video streaming, there are still limitations on current

solutions in terms of their robustness, scalability and performance [7]. Current systems,

e.g., PPlive, PPstream, typically employ single layered video coding structure, therefore

all peers will receive the same quality regardless of their resource contributions and band-

width constraints. In addition, any packet loss can lead to severe video quality degradation.

Scalable video coding (SVC) [8] is well positioned to overcome these limitations of the

current solutions. SVC encodes video into progressive layers. The base layer can be inde-

pendently decoded, while higher layers are decodable only if the layers beneath have been

decoded 1. The video quality perceived by a peer increases as the number of decodable

layers increases. While multiple-layer coding generally incurs coding overhead, recent ad-

vance in SVC coding has brought down the overhead to 10% [9]. It is now practical to

adopt SVC into P2P video streaming to extend its design space.

The adoption of SVC into P2P streaming faces two key design challenges:

• layer subscription: how many layers each peer should receive?

• layer scheduling: how to deliver to peers the layers they subscribed?

From the system point of view, the most efficient solution is to maximize the aggregate

video quality perceived by all peers, i.e, to optimize the social welfare. From individual

peer point of view, the solution should be fair. However, in P2P streaming, due to the dual

server-consumer role of peers, the notion of fairness is much more subtle than that in the

traditional server-client systems, where clients are only considered as resource consumers.

A solution allocating the same video quality to all peers regardless of their contributions

would not be considered as fair, and therefore would not provide incentives for peers to

contribute. A good layered P2P streaming solution has to strike the right balance between

the efficiency, fairness and incentive.

We develop analytical models and practical streaming designs to understand and con-

trol the interplay between the efficiency, fairness and incentive in layered P2P streaming.

1For simplicity, we assume the one-dimension layer structure, i.e., layer i + 1 depends on layer i, i −
1, . . . , 1. Any SVC stream can be ordered into this layer structure as will be discussed in Chapter 3.
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Specifically, we develop network-coding based utility maximization models to obtain the

most efficient layered streaming solution. The choice of peer utility function reflects the

target fairness among peers when they are considered only as video consumers. To incorpo-

rate contribution-awareness, we adopt taxation as a peer-incentive mechanism and augment

the utility maximization models to make the solution incentive-compatible. The proposed

taxation-based scheme guarantees the streaming rate of a node is at least proportional to

its uploading contribution. The left-over uploading bandwidth (taxed portion) from each

node is used to help “slow” peers, therefore improves the social welfare 2. The tax rate

works as a knob controlling the tradeoff between the system efficiency, fairness and incen-

tives. Then, we develop practical taxation-based P2P layered streaming designs, including

layer subscription strategy, chunk scheduling policy, and mesh topology adaptation. With

extensive trace driven simulations, we show that the proposed layered streaming designs

can effectively drive P2P streaming systems to the desired operating points in a distributed

fashion.

1.1.2 SVC Rate-Quality Modeling and Layer Ordering

The latest SVC standard [10] defines three types of scalabilities, i.e., temporal scala-

bility, amplitude scalability and spatial scalability, among which the first two are commonly

used. Temporal scalability allows the SVC bitstream to be extracted at different frame rate

(FR) while amplitude scalability allows different quantization stepsize (QS). By combined

usage of temporal scalability and amplitude scalability, a wide bitrate range (with a factor

of more than 10) is provided.

Due to its low complexity and flexibility, SVC has been advocated for video adaptation

to network capabilities [11]. However, two fundamental and challenging problem are yet

answered:

• What is the proper utility function for SVC streams?

2Usually, the utility function for each peer is concave and as a results, the total system-wide utility
increases.
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• Given a target bit rate, how to determine at which temporal resolution (i.e., frame

rate) and amplitude resolution (i.e., quantization stepsize (QS)) the SVC (sub)stream

should be sent?

The first problem is critical, because if we had a good utility function for SVC streams,

then the network can be optimized in a network utility maximization (NUM) framework [12]

and the optimal SVC rate can be determined. Traditional video quality metric, e.g. peak

signal-to-noise ratio (PSNR), does not accurately characterize the true QoE of a SVC coded

video with temporal scalability. Therefore, we can not directly use rate-distortion (RD)

model as a utility function. Instead, we try to derive a rate-quality (RQ) model that directly

relates the video rate with its perceptual quality.

Given a sending rate for SVC stream, one may send the video at a high frame rate,

but high QS, yielding noticeable coding artifacts in each frame. Or one may use a low

frame rate, but small QS, producing high quality frames with possible jittering. These and

other combinations can lead to very different perceptual quality. Ideally, there is optimal

combination of FR and QS that leads to the best perceptual quality, while satisfying the

target bit rate. Formally, the problem is formulated as

max Q subject to R ≤ R0, (1.1)

where Q and R stand for video quality and video rate, R0 is the rate constraint.

By leveraging the parametric models from the prior work [13] which explicitly account

for the impact of FR and QS on rate and subjective quality of the scalably encoded stream,

we are able to determine the optimal combination of FR and QS solving (1.1). A set of

equations are derived to relate the optimal FR f ∗, the optimal QS q∗, the optimal perceptual

quality Q∗ and the rate constraint R0. Then, we numerically find the optimal rate-quality

tradeoff curveQ∗(R) and propose a simple rate-quality model that correlates very well with

the curve and can be easily incorporated into network utility maximization framework.

To solve the second problem, we propose a quality optimized layer ordering strategy.

The ordering is based on the rate and quality models in [13]. The resulting ordered stream

has the property that each additional layer offers maximum quality improvement for the rate
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increment. At the same time, layer decoding dependency is satisfied. The layer ordering

can be easily implemented in the network (at proxy/CDN node) or at the original server.

With such a ordered SVC stream, the proxy/server can simply keep sending additional

layers, until the rate target is reached.

1.1.3 Proxy-Based SVC Streaming over Wireless Networks

Recent years have seen a proliferation of smart phones and constant bandwidth up-

grades in broadband mobile networks. These two factors combined have fueled the rapid

growth of mobile media traffic. The study in [1] predicts that by 2015, two-thirds of world’s

mobile data will be video. On the other hand, mobile media streaming remains a daunting

task, especially for users in a highly dynamic environment. The presence of heterogeneous

access networks and high user mobility contribute to the wide fluctuations of wireless link

qualities in terms of their throughputs and latencies. As multiple video streaming sessions

share the same access node (e.g., a cellular base station or a WiFi access point), the system

also needs to allocate wireless channel resources wisely among competing traffic flows.

It is therefore of crucial importance to have an effective video rate adaptation scheme to

strive for the best possible viewing experience of individual users in face of wide link qual-

ity fluctuations and dynamic network traffic patterns.

The challenges are multifold. First, rate adaptation for streaming video needs to

closely track fluctuations in the available wireless link bandwidth. Conventional tech-

niques such as TCP-friendly rate control (TFRC) [14], however, typically rely on end-to-

end packet statistics and fall behind abrupt changes in the underlying network conditions.

Second, existing approaches achieve fairness by allocating equal rates to all competing

flows, whereas video streams naturally differ in their utilities of rate depending on their

contents. For instance, it would be desirable for an action movie sequence to be streamed

at a higher rate than a head-and-shoulder news clip competing over the same bottleneck

wireless link. Such content-aware allocation is missing in today’s systems. Thirdly, clients

connecting to the same access node may experience different throughputs over their re-

spective wireless links, due to factors such as distance and channel fading characteristics.
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Without proper in-network information, rate adaptation decisions made at the senders can

easily lead to inefficient resource sharing. More specifically, packet transmissions over a

low-quality wireless link can block the access node from adequately serving other streams

over higher-quality links, a problem commonly known as head-of-line blocking [15].

We address the above issues in a novel rate adaptation scheme for streaming video

over a highly dynamic environment. Our design introduces a proxy at the edge of the net-

work, right where congestion over the wireless links occurs. This allows the rate adaptation

module to constantly monitor the bottleneck buffer level, which, in turn, reflects variations

in the throughput and delay of wireless links for all receivers. To strike a balance be-

tween computational complexity and efficiency, we adopt the latest SVC standard [10] for

lightweight in-network rate adaptation.

The goal of the video adaptation module at a proxy node is to maximize the overall

viewing experience of all traversing streams. We show that the problem can be decomposed

into two steps: i) to allocate the video rate for each stream based on their respective rate-

quality relations and wireless link throughputs and the common bottleneck buffer level; and

ii) to extract video packets belonging to the appropriate temporal and amplitude layers from

each scalable video stream based on the allocated rate. Given the rate-quality model we

have derived, the first subproblem of multi-stream rate allocation is solved by maximizing

the weighted sum of user qualities under a total network utilization constraint. We propose

an iterative solution, whereby the per-stream rate is calculated based on periodic updates

of bottleneck buffer level and relative link throughputs. The second subproblem can be

solved using the SVC layer ordering strategy, so that each additional layer offers maximum

quality improvement for the rate increment. The proxy can simply keep sending additional

layers, until the rate target is reached.

Extensive simulation studies confirm that the proposed scheme consistently outper-

forms conventional TFRC-based rate adaptation used in the Datagram Congestion Control

Protocol (DCCP) [16]. More specifically, our scheme adapts more swiftly in the presence

of abrupt changes in wireless link throughputs and delays. For the case of multiple streams

with heterogeneous contents and link conditions sharing the same wireless access node, the
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proposed scheme leads to higher overall subjective quality experience by all viewers than

TFRC. Furthermore, it is flexible enough to support differentiated service for video streams

with different user-specified importance levels.

1.1.4 Adaptive HTTP Video Streaming

Recent industrial trend is streaming video content over HTTP. Progressive download-

ing, a special HTTP video streaming scheme, has been very attractive for Internet mul-

timedia delivery due to its simplicity. Clients download the media chunks progressively

from the standard HTTP Web servers and can seek to desired positions in the media file

by performing byte-range requests. The play-out starts as soon as enough necessary data

is retrieved and buffered. YouTube [17], among others, now uses this approach to deliver

its huge pool of video contents. However, there are some disadvantages of progressive

downloading:

• It is not bitrate adaptive. The user will have to buffer a long time before the playback

starts or experience frequent freezes and re-buffering in case of insufficient access

bandwidth.

• It can hardly support live streaming as the content needs to be preloaded and it is not

possible to combat the bandwidth mismatch between content and network.

Adaptive HTTP streaming is a hybrid of progressive download and streaming. Like

the progressive downloading approach, it relies on clients sending pull signals to the HTTP

web server to request the media segments, thus relieving the server load. Unlike the pro-

gressive downloading approach, clients are allowed to switch between different versions

of the content encoded with different bitrates with sophisticated segments generation de-

sign. The client player strives to always retrieve the next best segment after examining a

variety of parameters related to available network resources, such as available bandwidth

and the state of the TCP connections; device capabilities, such as display resolution and

available CPU; and current streaming conditions, such as playback buffer size. The goal
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is to provide the best quality of experience by displaying the highest achievable quality,

starting up fast and reducing skips, freezes, and stutters. Seamless switching is achieved by

time-aligning different versions of the content. This approach addresses the weaknesses of

progressive downloading, and thus is advocated by several companies and organizations,

e.g. Microsoft, Apple, Adobe, MPEG, 3GPP, etc.

The Quality of Experience of this sequential requests and downloads process directly

hinges on the client’s requesting strategy. If the client requests chunks too aggressively,

e.g., with high bitrate, then he/she may experience video freeze occasionally; if the client

requests chunks too conservatively, then the available bandwidth is wasted and the video

quality is low. To facilitate the chunk request strategy design, we first define a cost func-

tion for each chunk by jointly considering its contribution to the average playback quality,

the variation of playback quality and the playback buffer level. Assuming that the cost is

additive over all video chunks, the problem of finding the optimal chunk request strategy

is de facto a Dynamic Programming problem. Due to the difficulty of predicting the un-

derlying network dynamics and the complexity of solving the exact problem, we resort to

a simple heuristic algorithm to approach it. The next chunk request is determined at the

finishing time of the previous chunk request, with play buffer fullness, throughput estima-

tion, chunk size as inputs. We implement a testbed with Apache HTTP server, DummyNet

and VLC to evaluate the algorithm’s performance in terms of average playback quality and

quality variations. In addition, we compare the adaptive HTTP streaming system with a

TCP-based SVC adaptive streaming scheme to show the potential advantage of employing

SVC into the system. In TCP-based SVC adaptive streaming, the server transmits as many

video packets as possible within each chunk in their order of importance in the allowed

time for this chunk; the allowed time is set to be a fraction of the buffered video length at

the client (the server can easily estimate it), so that the buffer underflow can be avoided.

As this scheme allows partial transmission of the video chunk, it is more flexible than cur-

rent HTTP adaptive streaming which offers no such freedom. It also alleviates the need

for the client to request appropriate chunks. Simulation results show that TCP-based SVC

adaptive streaming offers a higher average playback rate and faster convergence speed than
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adaptive HTTP streaming.

1.2 Dissertation Outline

This thesis is organized as follows. In Chapter 2, we introduce utility maximization

models to study the interplay between efficiency, fairness and incentive in layered P2P

streaming. Then we propose a taxation mechanism to adjust the balance between the so-

cial welfare and individual peer welfare. We develop practical taxation-based P2P layered

streaming designs, including layer subscription strategy, chunk scheduling policy, and mesh

topology adaptation. We then evaluate the designs with extensive trace driven simulations.

In Chapter 3, we first review the rate and subjective quality models for SVC with tem-

poral and amplitude scalability. Then we analytically derive the relations between optimal

subjective quality, optimal frame rate, optimal quantization stepsize given a bitrate. We ob-

tain the rate-quality model numerically and discuss its application to utility maximization

problems. A rate-quality optimized layer ordering scheme for SVC layers is presented and

evaluated, utilizing the rate and quality models.

In Chapter 4, we develop a quality maximization framework for rate allocation among

multiple wireless receivers under the same wireless access node. An iterative algorithm is

proposed to approach the optimal solution. Then, we discuss practical system design and

evaluate our system design with extensive simulations.

In Chapter 5, we first review existing adaptive HTTP streaming system. Then, we

propose a cost function for each chunk that jointly considers its contribution to the average

playback quality, the variation of playback quality and the playback buffer level. Next,

we convert the problem of finding the optimal chunk request strategy for all chunks of a

video into a Dynamic Programming problem and propose a heuristic algorithm to solve

it. We develop a testbed based on which various system settings are evaluated. We also

compare the adaptive HTTP streaming of single layer video, with a proposed TCP-based

SVC streaming scheme with simulation results.

Chapter 6 concludes the thesis and discusses some future research directions.
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Chapter 2

Peer-to-Peer Streaming of Layered Video Considering

Efficiency, Fairness and Incentives Through Taxation

In this chapter, we develop utility maximization models to understand the interplay

between the efficiency, fairness and incentive in layered P2P streaming. We show that tax-

ation mechanisms can be devised to strike the right balance between social welfare and

individual peer welfare. We then develop practical taxation-based P2P layered streaming

designs, including layer subscription strategy, chunk scheduling policy, and mesh topology

adaptation. Finally, we evaluate the proposed designs with extensive trace-driven simula-

tions.

2.1 Background

2.1.1 Social Welfare vs. Individual Welfare

The majority of existing P2P live streaming systems can be classified into two groups:

one group targeting at maximizing the aggregate received video quality, namely social

welfare; the other striving for the fairness among peers, or individual welfare. Fig. 2.1

depicts the relationship between these two groups of strategies, which have contradicting

goals that are not attainable simultaneously.

Taxation based incentive mechanism [18, 19] offers a flexible framework that allows

the tradeoff between individual users’ fairness/welfare and the system-wide social welfare
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Figure 2.1: Social welfare vs. personal welfare. The tax rate t determins the balance

between social welfare and personal welfare.

(see Fig. 2.1). Let ud be the upload bandwidth contributed by user d. Under a tax rate

0 ≤ t ≤ 1, the target received video rate of user d is rd = (1− t)ud + t
N

∑N
i=1 ui, where N

is the total number of peers in the system. The received video rate on a peer consists of two

parts: a fraction of its own contribution, and a fair share from the pool of taxed bandwidth.

The tax rate t adjusts the balance between individual peers’ welfare and the social welfare.

As t approaches zero, the received video rate approaches the contributed rate, mimicking

the ‘tit-for-tat’ strategy [20, 21]. As t approaches one, the received video rate is the same

for all peers, thus achieve the social optimum.

2.1.2 Layered Coding in P2P

Multi-stream coding, such as SVC [8] or MDC [22], allows users to receive the same

video with different qualities. A user’s perceived video quality is proportional to the num-

ber of received video representations. SVC encodes a video into multiple layers with nested

dependency: an upper layer becomes decodable only if all layers beneath it have been re-

ceived and decoded successfully. In contrast, MDC encodes a video into descriptions that

are independently decodable. Hence MDC is more flexible than SVC. Our goal, however,

is to design a layered P2P protocol that can be implemented and deployed in the field. The

current designs of MDC still incur much higher bandwidth overhead than that of SVC. We
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thus choose SVC over MDC. We address the challenges of supporting SVC type of inter-

correlated layered video in P2P streaming. Note here, throughout the chapter, “layered”

implicitly means that the streams have a nested dependency.

Layered coding has been applied to P2P streaming to improve the social welfare over

the traditional single layer P2P streaming. For instance, [23] studies how to use layered

coding to fully utilize the available peer upload bandwidth in a tree-based P2P overlay

multicast. [24] proposes a three-stage chunk scheduling algorithm for mesh-based layered

video streaming to achieve high throughput and low video quality jitter. In terms of achiev-

ing individual fairness/welfare, Cohen advocated a tit-for-tat algorithm in the seminar pa-

per [21]. [25] proposes a score-based incentive mechanism for P2P live streaming. [26]

proposes a service differentiated peer selection algorithm that gives peers with higher con-

tributions more flexibility in choosing neighbors, thus obtain better viewing quality. [27]

and [20] utilize layered coding to achieve fairness. Substreams/layers are traded among

peers, and peers contributing more are able to receive more in reciprocity. In contrast, we

develop taxation mechanisms to strike the right balance between social welfare and indi-

vidual peers’ welfare. The practical taxation-based P2P streaming protocol is designed to

drive the system to the desired operating point. In general, a mesh-based P2P streaming

topology is more resilient to peer churn than tree-based topology [28, 29]. Therefore, we

study mesh-based SVC P2P streaming with taxation.

2.2 Modeling Layered P2P Streaming

To gain insights into layered P2P streaming, we first develop analytical models for

layered P2P streaming systems with arbitrary topologies. The models not only allow us to

analytically study the interplay between the efficiency, fairness and incentive, but also offer

us guidelines in designing the practical system.
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2.2.1 Maximizing Efficiency

converge When peers are cooperative, they are willing to contribute their upload band-

width without any incentive mechanism. The design objective of the system is to maximize

the aggregate video quality on all peers. With layered coding, the perceived video qual-

ity on a peer is an increasing function of the number of video layers received. PSNR

(Peak Signal-to-Noise Ratio) is the standard objective metric to evaluate the quality of a

compressed video and thus can be adopted as the utility function in layered video stream-

ing. PSNR of a video coded at rate rc can be approximated by a logarithmic function

β log(rc) [30], where β is a constant related to the video feature. This approximation is

also valid in the SVC case when frame rate is fixed [8]. Let rd be the total rate of received

video layers on peer d. If the aggregate uploading capacity of the server and all peers is

U , the aggregate receiving rate on all peers is naturally bounded by
∑N

d=1 rd ≤ U . Since

log(·) is a concave function, the aggregate utility can be maximized when all peers receive

video at the same rate, i.e., rd = U
N

1. For single-layer video streaming, it was shown in [31]

that, if peers are fully connected, a two-hop relay streaming can achieve this optimal rate.

The solution for layered video streaming naturally follows if we let all peers subscribe to

the same number of video layers allowed by the rate U
N

and deliver each layer to all peers

using the two-hop relay scheme. However, it is unrealistic to have fully connected mesh in

a large-scale streaming system. For arbitrary streaming topology, the utility maximization

in layered streaming deserves more study.

Network Coding Model

We consider a SVC system where the source server encodes a video stream into L

layers with nested dependency. Layer l can be decoded if all the layers below l are received.

A peer can subscribe up to k, k ≤ L, layers. The server multicasts each layer to all peers

subscribed to it. There are L simultaneous multicast sessions, one for each layer, in the

P2P overlay network.

1Throughout this Chapter, we assume peer’s downlink bandwidth is always higher than the video steaming
rate, thus not the bottleneck.
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It is difficult to accurately model a mesh-based P2P streaming system with arbitrary

overlay topology due to the content bottleneck problem [32]. Fortunately, by assuming

network coding, we can model the system as a closed-form optimization problem for ar-

bitrary topologies with peers’ uplink capacity as the constraint. We allow the server and

peers apply network coding to video blocks. Network coding has been shown to achieve

the maximum multicast rate for single multicast session in general network topology [33].

For multiple multicast sessions, inter-session network coding might be needed to achieve

the maximal multicast rates. However, the complexity of inter-session network coding is

generally too high to be justified by its additional performance gain on top of intra-session

network coding. In this paper, we only focus on intra-session network coding. The server

and peers apply network coding to video blocks in the same layer.

Let a directed graph G = (V , E) be the overlay topology of the P2P streaming system

under study. Let S be the video source server, and R = V \S be the set of peers interested

in receiving the video. Let ~xd = (x1d, x
2
d, · · · , xLd ) be the binary vector of layers received

by peer d: xld equals to 1 if peer d received layer l, 0 otherwise. The video rate for layer l is

rl. To model network coding, we introduce gl,dij to denote the information flow of layer l on

link 〈i, j〉 ∈ E to destination peer d. For a given peer d and layer l, {gl,dij , 〈i, j〉 ∈ E} form

a legitimate flow with rate rl from the source S to d and satisfy the flow conservation on all

nodes in the network. Denote by f lij , maxd g
l,d
ij the maximum information flow on 〈i, j〉

for all receivers of layer l. According to the theory of intra-session network coding [33,34],

the multicast session for layer l is supportable if and only if a bandwidth of f lij is allocated

to layer l on link 〈i, j〉.

We are interested in seeking the optimal P2P streaming solution to maximize the ag-

gregate video experience of all peers. By adopting the PSNR-Rate model, we quantify a

user’s video experience by a utility function: Fd( ~xd) = β log(
∑L

l=1 x
l
dr
l). With notations

summarized in Table 2.1, the optimal streaming solution can be found by solving the utility

maximization problem P1.

Constraint (2.2a) of P1 guarantees the information flow conservation on each peer. In

(2.2b), f lij corresponds to the maximum information flow on 〈i, j〉 for all receivers of layer
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Table 2.1: Notations

Notation Description
V set of nodes in the system
E set of overlay links
S video source server
R = V \S receiving peers
L number of layers
rl rate of layer l
~xd = {xld} layers received by peer d
gl,dij information flow of layer l on link 〈i, j〉

to peer d
f lij bandwidth needed for layer l on link 〈i, j〉
Ud peer d’s uplink capacity
Fd( ~xd) utility function of peer d

l. In a SVC bitstream, higher layers depend on lower layers, and so peer d may request

l + 1 layer only if it has received all layers up to l. (2.2c) captures this dependency among

layers. (2.2d) is the uplink capacity constraint for all layers on all peers and the server .

2.2.2 Achieving Fairness

In the traditional resource allocation problems, utility maximization achieves differ-

ent notions of fairness between competing resource consumers. In P2P video streaming,

each peer plays a dual-role of server and consumer. We ignore peer’s server role in the

contribution-oblivious utility maximization. The obtained optimal solution can also be

interpreted as fairness among peers without considering their contributions. Within the

fairness context, it is straightforward to show that the solution of the utility maximization

problem P1 achieves the proportional fairness [35] among peers under the given overlay

topology G and node upload capacity profile U .

Another commonly used fairness measure is the weighted fairness. In the context

of layered streaming, because of the layer dependency in SVC encoding, peers have to

first retrieve lower layers. A solution achieving weighted fairness should give priority
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P1: Utility Maximization

Variables:

gl,dij continuous non-negative variable
fij continuous non-negative variable
xld binary variable

Objective:

max
∑
d∈R

log(
L∑
l=1

xldr
l) (2.1)

Constraints:

∑
〈i,j〉∈E

gl,dij −
∑
〈j,i〉∈E

gl,dji =


xldr

l, i = S

−xldrl, i = d

0, otherwise

∀d ∈ R, ∀l ≤ L (2.2a)

gl,dij ≤ f lij, ∀l ≤ L,∀d ∈ R, ∀〈i, j〉 ∈ E (2.2b)

xl+1
d ≤ xld, ∀l ≤ L, d ∈ R (2.2c)∑
l

∑
〈i,j〉∈E

f lij ≤ Ui, ∀i ∈ V (2.2d)

to streaming lower layers to peers. Weighted fair streaming solution can be obtained by

replacing the PSNR-rate utility function in P1 with a weighted-sum function. We assign

weights to layers in a decreasing order. Let wl be the weight assigned to layer l. We

have wi > wj , if i < j. Instead of using PSNR-rate model, the video experience of a

peer is characterized by the summation of the weights of all the received layers: Fd( ~xd) =∑L
l=1 x

l
dw

l. The marginal gain of receiving a lower layer outweighs that of receiving higher

layers. As a result, the optimal solution with the weighted-sum utility function will easily

satisfy the constraint (2.2c). If we further relax the binary variables xld in P1 to continuous

variables within [0, 1], the optimal solution will naturally have the property that xld > 0 only

if xkd = 1, ∀k < l. Formally, the original non-linear mixed integer programming problem
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is relaxed into the following linear programming problem.

P2: Linear Approximation

Variables:

gl,dij continuous non-negative variable
f lij continuous non-negative variable
xld ∈ [0, 1], continuous variable

Objective:

max
∑
d∈R

L∑
l=1

xldw
l (2.3)

Constraints: (2.2a), (2.2b), (2.2d)

The solution of the linear programming problem P2 gives weighted priority for peers

to receive lower layer video. Another commonly employed fairness criterion is the max-

min fairness. Similar to the max-min network flow allocation [36], the max-min fairness

in layered streaming can be achieved using a “onion-peeling” solution. We refer interested

readers to [37] for details.

2.2.3 Providing Incentives

In the previous efficiency and fairness study, we do not consider any incentive issues.

This could cause serious problem in reality. For example, if an Ethernet user with uplink

capacity of 2,000 Kbps and a DSL user with uplink capacity of 200 Kbps both receive

video at rate of 500 Kbps, why would the Ethernet user contribute more than 200 Kbps?

If we assume all peers are strategic, then the bandwidth contributed by peers will decrease

and everyone will get poor video quality. On the other hand, if the DSL user uploads video

at its full capacity, he may deserve some “help” from Ethernet users to download video at

a rate higher than 200 Kbps.

Taxation

It is well-known that, in social welfare theory, taxation can help to improve the total

utility of the whole society while maintaining a certain level of fairness. An optimal tax rate
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Figure 2.2: Utility maximization and fairness in hierarchical and random topologies. (a)

System-wide utility under hierarchical and random topologies with different peer connec-

tivity; (b) Averaged received bitrate for heterogeneous peers under hierarchical topology

with different peer connectivity; (c) Averaged received bitrate for heterogeneous peers un-

der random topology with different peer connectivity.

is usually non-linear and is complicated to determine given that taxes distort user behaviors.

Here, we adopt the simple linear taxation method in [18, 19], that is

rd = (1− t)Ud +
t

N

∑
i

Ui, (2.4)

where t is the tax rate, N is the total number of peers. Unlike the definition in [19], we

define (1− t)Ud as peer d’s entitled rate, and then map this rate to layers. All layers other

than the entitled layers are denoted as excess layers. The trade-off between efficiency,

fairness and incentive can be balanced by adjusting the tax rate t. Higher tax rate introduces

higher system utility; smaller tax rate moves closer to tit-for-tat type of fairness. When the

tax rate equals 0, the taxation degrades to the “tit-for-tat” or “bit-for-bit” strategy. In such a

system, the system utility is obviously the lowest. Some poor peers can only receive a small

portion of the video and thus obtain a rather degraded quality even though they contribute

all of their uplink bandwidth. On the opposite side, when tax rate is 1, all peers retrieve the

same video rate regardless of their contributions. Clearly, both scenarios are not desirable.
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Figure 2.3: Impact of taxation on fairness and system utility. (a) Averaged received layers

for heterogeneous peers under different tax rate; (b) Achieved system-wide utility under

different tax rate.

P2P Layered Streaming with Taxation

Two kinds of P2P layered streaming designs can be considered under taxation: Equal

share and Biased share.

Equal share: In this case, the taxation pool is equally shared by all tax payers, i.e.,

participating peers in the system, which is exactly following (2.4). To perfectly implement

the taxation scheme, one has to fully utilize the upload bandwidth available on all peers

in the system. A sophisticated scheduling design is needed to meet this requirement by

avoiding wasting bandwidth as much as possible.

Biased share: We only require a peer to receive all its entitled layers, i.e., rd ≥ (1 −

t)Ud. The bandwidth in the common taxation pool is distributed to maximize the system-

wide utility. Towards this goal, we augment the utility maximization models studied in the

previous sections by imposing an additional constraint on peer’s receiving rate. At a given

tax rate 0 < t ≤ 1, the utility maximization problem P2 can be reformulated as follows.

Constraint (2.6d) guarantees that every peer should at least receive video at a rate

proportional to its uploading contribution.
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P3: Utility Maximization under Taxation

Variables:

gl,dij continuous non-negative variable
f lij continuous non-negative variable
xld ∈ [0, 1], continuous variable

Objective:

max
∑
d∈R

L∑
l=1

xldw
l (2.5)

Constraints:

∑
〈i,j〉∈E

gl,dij −
∑
〈j,i〉∈E

gl,dji =


xldr

l, i = S

−xldrl, i = d

0, otherwise

∀d ∈ R, ∀l ≤ L (2.6a)

gl,dij ≤ f lij, ∀l ≤ L,∀d ∈ R, ∀〈i, j〉 ∈ E (2.6b)∑
l

∑
〈i,j〉∈E

f lij ≤ Ui, ∀i ∈ V (2.6c)

∑
l

xldr
l ≥ (1− t)

∑
l

∑
〈d,j〉∈E

f ldj ∀d ∈ R (2.6d)

2.2.4 Numerical Studies

To gain insights on the interplay between efficiency, fairness and incentive, we con-

ducted numerical studies on example systems with different topologies. For each system,

we solve P2 and P3 using AMPL [38]. The obtained numerical results allow us to study the

impact of streaming topology on the system performance. We first solve P2 on a streaming

overlay topology with 40 peers. There is one server and three types of peers with different

upload bandwidth as summarized in Table 2.2. The server only streams video to at most

eight Ethernet or Cable peers. We vary the peering connection degree of peers to investi-

gate the impact of peer connectivity. The maximum peer degree is 10. Peers can operate
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Figure 2.4: Examples of hierarchical and random topologies.

at two different modes to select neighbors. One is the hierarchical mode (cf. Fig. 2.4(a))

in which a peer prefers to connect to peers with the same type (with 70% probability). The

other is the random mode (cf. Fig. 2.4(b)) in which peers randomly connect to other peers,

regardless of their types. The video stream is coded in 10 layers, each layer is encoded at

rate of 100 Kbps.

Fig. 2.2 shows the results of solving P2 under different preset peering degree, averaged

over 10 runs. Fig. 2.2(a) compares the aggregated utility in hierarchical and random cases.

The Y-axe value is obtained by dividing the aggregate utility by the maximum possible

utility (here it is the case when every receiver gets U
N

). The system utility increases as

peering degree increases. The random mode gives better system wide utility. Fig. 2.2(b)

and 2.2(c) compare the average receiving rate for each type of peers under the two peering

modes. The hierarchical mode achieves higher service differentiation. In the protocol

design described in Section 2.3.3, we introduce mesh topology adaptation to ensure the

topology suits the taxation strategy.

To study the impact of taxation, we study a numerical example as shown in Fig. 2.3.

The system has 15 cable peers with uploading capacity of 1000 Kbps and 25 DSL peers

with 400 Kbps. They are hierarchically connected with degree 6. The video source is coded

in 10 layers, each with 100 Kbps. The layer weight wl is set as 2(10−l). We vary the tax rate

from 0.05 to 0.95. As can be seen from Fig. 2.3(a), when the tax rate is small, Cable peers

with higher upload capacity obtain more layers. The service differentiation provides good
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Table 2.2: Nodes’ Settings

Type Uplink Capacity Number
Server 8000 Kbps 1

Ethernet peer 4000 Kbps 3
Cable peer 1000 Kbps 12
DSL peer 400 Kbps 25

incentives for them to participate in P2P sharing. As the tax rate increases, the differences

between Cable peers and DSL peers decrease. On the other hand, system-wide utility

increases with tax rate.

From the numerical results, we obtained the following guidelines for taxation-based

P2P layered streaming design. 1) When the tax rate is small and thus the system is geared

towards high service differentiation, hierarchical topology is preferred. 2) When the tax rate

increases and the resulting system operates on a highly efficient point (high total utility), a

more random topology is preferred. 3) Receiving entitled layers should be guaranteed for

all peers and the uplink bandwidth should not be devoted to excess layers unless there is no

more request for entitled layers.

2.3 Layered P2P Streaming Protocol Design

While the analytical models allow us to understand the the trade-offs in taxation-based

layered video streaming, our ultimate goal is to design distributed mesh-based streaming

protocols to dynamically balance the needs of fairness, incentive and system efficiency. In

our design, peers form a mesh over which the video is distributed. A tracker serves as the

bootstrapping node for the system. The key design issues for such a layered P2P streaming

protocol are layer subscription, chunk scheduling, and mesh topology adaptation.

Multiple virtual streaming overlays, one for each SVC video layer, are formed among

participating peers. Due to the dependency among video layers, upper streaming overlays

must have fewer peers than lower overlays. A peer uses layer subscription scheme to deter-
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mine how many layers to subscribe to. The chunk scheduling algorithms on peers allocate

bandwidth among different overlays to balance the streaming needs of different layers. Fi-

nally, the mesh topologies need to be dynamically adjusted to adapt to the changing layer

subscription due to peer churn and/or other network dynamics.

In the theoretic framework developed in Section 2.2, network coding is adopted to

achieve the optimum multicast efficiency in general overlay topology. The gain of adopting

network coding in real P2P systems is still an open question [34]. In layered P2P stream-

ing systems, applying network coding to individual layers incurs extra coding/decoding

overhead, increases video playback delays, and makes the protocol design more complex.

Recent study [39] showed that when peers are fully connected and peer uplinks are the only

bottlenecks, network coding is not needed. Even though we don’t assume peers are fully

connected, our distributed design does not employ network coding. We will show through

simulations that the performance of the proposed mesh-based P2P streaming design is very

close to the performance bound allowed by network coding.

2.3.1 Dynamic Layer Subscription

Under linear tax rate t, the target video download rate of peer d is rd = (1 − t)Ud +

t
N

∑
i Ui, where (1 − t)Ud is peer d’s entitled rate and t

N

∑
i Ui is peer d’s excess rate.

Entitled and excess rates are then mapped to the number of entitled and excess layers. Tax

rate t is a global configuration parameter and is known to all peers. Therefore peers can

compute the number of entitled layers locally. However, the calculation of the number of

excess layers needs global information - all active peers’ uplink bandwidth. The number

of excess layers on a peer also varies as other peers join and leave the system. We develop

a distributed algorithm that probes the numbers of excess layers on peers and dynamically

adjusts peers’ layer subscriptions. The algorithm allows the system to approach the utility

maximization under taxation, and adapt to peer churn and network dynamics nicely.

Let Li denote peer i’s entitled layers, and li denote the highest layer it is subscribed

to. Motivated by the distributed utility maximization achieved by TCP in congestion con-

trol [40], we propose a distributed layer subscription algorithm with Additive Increase Ad-



24

ditive Decrease (AIAD) and exponential backoff. Upon joining the streaming session, peer

i sets its initial layer subscription, li, to be Li, the number of its entitled layers. It also starts

a retry timer, ti = rand(1, T ), where T is the retry time period. Upon the expiration of the

retry timer, if all currently subscribed layers can be received and at least one neighbor peer

possesses chunks of layer li + 1, peer i increases its subscribed layer by one, li = li + 1,

and enters a trial period of T ′. Peer i sends out requests for chunks in the newly added

layer. If peer i is able to successfully obtain most of requested chunks of the new layer at

the end of the trial period, it passes the test and the new layer subscription is accepted. Oth-

erwise, peer i reverts back to the original subscription, and enters an exponential back-off

stage. The retry timers is set to be ti = rand(1, 2kT ), where k is the number of consecutive

failures. Algorithm 1 presents the pseudo-code of this process. Meanwhile, peer i runs a

parallel subscription decrease process to ensure that it can receive all subscribed layers.

Subscription decrease process periodically monitors the status of received layers.

If the top subscribed layer, li, becomes undecodable, and peer is not in the aforemen-
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tioned trial period, peer i reduces the number of subscribed layers to li = max(li − 1, Li).

If a lower layer becomes undecodable, all higher subscribed layers are undecodable too.

The peer will drop those layers gradually one by one.

2.3.2 Chunk Scheduling

Each peer maintains a downloading window that moves forward periodically. Peers

periodically exchange chunk availability with their neighbors using buffer-maps. Neigh-

bors help each other retrieve missing chunks. Chunk scheduling decides how to issue chunk

requests to neighbor peers, and how to serve the chunk requests from neighbor peers. The

goal is to properly utilize peers’ uplink bandwidths so that peers always receive the entitled

layers and receive the subscribed excess layers with high probability. In the following, we

present the peer chunk requesting and chunk serving algorithms.

Chunk requesting

In a SVC coded video, lower layer bit-streams are more important than higher layer

bit-streams. Hence in principle, lower layer chunks should be requested before higher

layer chunks. In order to increase the data chunk diversity and improve the chance that two

peers always have chunks to exchange, we further assume that data chunks belonging to

the entitled layers are equally important. This is reasonable because the aggregated upload

bandwidth in the system is sufficient to deliver the entitled layers to all peers. There is no

need to distinguish different entitled layers.

The chunks are requested in the order of their importance: from entitled layer chunks

to excess layer chunks. A peer selects one neighbor peer that owns a missing chunk to

request for the chunk. The probability of choosing a specific peer is proportional to its

serving rate to that peer. For example, if requester R serves neighbors A, B and C with

20Kbps, 50Kbps and 30Kbps respectively, it then sends the chunk request to A, B and

C with probability 0.2, 0.5, and 0.3 respectively. Algorithm 2 presents the pseudo-code

of requesting a missing chunk. Ctot and CthisNeighbor represent the total contribution and
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contribution to the selected neighbor, respectively.

Chunk serving

Chunk serving is more sophisticated. Individual peers maintain two FIFO queues for

each neighbor (see Fig. 2.5). One queue is called entitled queue and the other is called

excess queue. Entitled queue holds chunk requests for entitled layers, while excess queue

holds chunk requests for excess layers. The chunk requests in excess queues are sorted

in ascending order of video layers, with the lowest layer chunk requests at the head. The

entitled queues have strict priority over the excess queues. Excess queues would not be

served unless all entitled queues become empty. If entitled queues become empty, the

leftover bandwidth serves the requests in excess queues in a round robin fashion. Fig. 2.5

shows the idea of this serving process. The requests for video chunks that have passed their

playback deadlines are cleared out of the queues and won’t be served.

2.3.3 Mesh Topology Adaptation

As discussed in Section 2.2, hierarchical mesh topology is more favorable than random

topology in providing differentiated services while random mesh is better for maximizing

the system-wide utility. In this section, we consider how to efficiently adapt the mesh

topology to achieve different design goals. Mesh topology adaptation is achieved through

neighbor adaptation. A peer periodically contacts the tracker to retrieve a list of candidate
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neighbors. It then applies the adaptation strategy described below to ensure the overlay

topology converge to the desired topology.

Every peer has a preset peer out-degree. If the number of neighbors falls below the

preset out-degree, a peer increases the number of neighbors by adding neighbors randomly

selected from the candidate list. If the current number of neighbors is no less than the preset

out-degree, a peer will terminate connections with some peers until its degree is one less

than the preset out-degree and then replace them with a new peer from the candidate list.

Specifically, a peer uses a replacement index (RI) to determine which peer to be replaced.

Suppose peer i needs to adapt its neighbors. Let clj be the number of retrieved chunks of

layer l from peer j, and wl be the weight associate with layer l. The replacement index

for peer j is defined to be
∑

l∈i′s entitled layers c
l
jwl. In addition, the layer weights w are set

such that wl > wk if l > k for the reasons explained below. The neighbor with the smallest

replacement index is selected and swapped out. The length of the adaptation period is

chosen as ten seconds in our design. The philosophy behind this design is two-fold.

• Layer Level: a neighbor offering high layers up to the entitled layers should stay.

There are fewer peers in the higher virtual overlay. Peers who can offer high layer

chunks are more precious and are more likely of the same class (with the same enti-
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Figure 2.6: Cumulative distribution of received video layers for different types of peers

under various tax rates.

tled layers).

• Chunk Level: among all neighbors offering chunks at the same layer, those uploading

more chunks should stay.

Algorithm 3 presents the pseudo-code of neighbor adaptation. Simulation results in Sec-

tion 2.4 indicate that the mesh topology will converge to the desired structures. At a low

tax rate, which emphasizing differentiated services, hierarchical topology is achieved. At a

large tax rate, which optimizing the system-wide utility, more random topology is realized.
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Figure 2.7: PPlive Online Users

2.4 Performance Evaluation

We conduct extensive trace-driven simulations to evaluate the performance of the pro-

posed taxation-based P2P layered streaming design. Specifically, we investigate the fol-

lowing issues: (1) the effectiveness of taxation-based incentive mechanism; (2) peer up-

link bandwidth utilization; (3) the mesh topology adaptation; (4) user/peer perceived video

quality; and (5) the convergence and optimality of AIAD layer subscription.

A flow-level event-driven simulator is developed in C++. Unless stated otherwise, the

simulations are driven by a trace collected from the measurement study of PPlive [41], a

real-world P2P live streaming system. The trace was collected from Nov 22nd 17:43, 2006

to Nov 23rd 17:43, 2006. All peer arrivals and departures are recorded during this time.

More than 100,000 participants are observed and the number of concurrent peers varies

from 100 to more than 9,000. Fig. 4.5 shows the evolution of the number of concurrent

peers.

The video is encoded into ten layers with layer rate of 100 Kbps. A ten layers SVC

coded video can be created by combining hierarchical B structure [42] coding and coarse-

grain scalability (CGS) [8] coding with acceptable overhead. More layers give the frame-

work larger operational region and more room to adjust the balance between social welfare

and individual welfare. More layers also impose more challenges on the underlying P2P

system to properly handle the layer subscription, chunk scheduling, and overlay adaption.
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There are three types of peers: DSL peers (400 Kbps), Cable peers (800 Kbps) and

Ethernet peers (1500 Kbps). The fraction of individual peer types and their respective

uplink bandwidths are summarized in Table 2.3. In our simulation, there is one video

server with upload capacity of 10 Mbps.

The peer download window is set to 30 seconds. Peers exchange buffer-maps every

second to calculate the missing chunk downloading schedule. Mesh topology adaptation is

conducted every ten seconds. The values of T and T ′ in AIAD layer subscription algorithm

are set to be 5 seconds and 10 seconds, respectively.

2.4.1 Overall System Performance

Effectiveness of Taxation Based Incentive Mechanism

To reduce the randomness introduced by short-lived peers, only peers with life time

greater than one minute are included in this experiment. In taxation based P2P streaming,

a peer’s received video quality, or the number of layers, reflects its bandwidth contribution

and the system-wide tax rate. In addition, the peers with similar bandwidth contributions

receive similar video quality. Both are true as shown in Fig. 2.6, which depicts the Cumu-

lative Distribution Functions (CDFs) of the numbers of received layers for different types

of peers at different tax rates. The peers from the same class consistently receive a simi-

lar number of layers, while the numbers of video layers received by different peer classes

are close to the optimum values–(5,9,10) under tax rate 0; (6,8,10) under tax rate 0.5 and

(7,7,8) under tax rate 0.95.

Bandwidth Utilization Efficiency

Peers’ uplink bandwidth utilization is a key performance metric for any P2P streaming

system design. If the system is not well designed, the so-called “content bottleneck” lowers

down the uplink bandwidth utilization, and degrades the average peers’ received video

quality. Content bottleneck refers to the situation that a peer receives fewer chunk requests

than it can serve and consequently the peer’s bandwidth is not fully utilized. We use uplink
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Table 2.3: Peer upload bandwidth distribution

Peer Type Uplink Bandwidth Percentage
DSL 400 Kbps 45%
Cable 800 Kbps 40%

Ethernet 1500 Kbps 15%

Table 2.4: System Bandwidth Utilization

Tax rate UBU WBR
0 99.3% 0.4%

0.5 98.0% 0.1%
0.95 93.1% 0.7%

bandwidth utilization (UBU) and wasted bandwidth ratio (WBR) as metrics for evaluating

the overall system utilization. A high BU means there is almost no content bottleneck.

Meanwhile, a chunk may become undecodable at a receiver if its arrival time is later than

its playback deadline, or its corresponding chunks in lower layers are not received. We call

such chunks as wasted chunks. To quantify the effectiveness of bandwidth utilization, we

define wasted bandwidth ratio (WBR) as the ratio of the bandwidth used to transmit wasted

chunks to the total system bandwidth. The lower the WBR the higher, the bandwidth

effectiveness.

Table 2.4 lists the UBU and the WBR for various tax rate settings. Overall, the uplink

bandwidth utilization is consistently over 90%, indicating that the protocol can efficiently

alleviate content bottleneck even without network coding. Interestingly, UBU is worse at

larger tax rates. As tax rate increases, the peers become more altruistic, which requires

more bandwidth sharing among different types of peers. Due to the peer churn and mesh

topology constraint, the bandwidth sharing may not be always possible, thus lower the

utilization. On the other hand, the WBR is pretty small for all tax rate settings, pointing to

an efficient protocol design.
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Table 2.5: Topology Statistics For tax rate 0

Neighbor Type Ethernet Cable DSL
Ethernet 28.4% 19.0% 9.0%

Cable 47.3% 58.1% 21.1%
DSL 24.3% 22.9% 69.9%

Mesh Overlay Adaptation

Mesh overlay topology plays a key role in service differentiation. Table 2.5 and 2.6

list the peer neighborhood statistics with the tax rate of 0 and 0.95, respectively. With tax

rate 0, the optimal number of video layers for Ethernet users, Cable users, and DSL users

are 10, 9, and 5, respectively. Around 76% of Ethernet peers’ neighbors are either Ethernet

or Cable users, and around 77% of Cable peers’ neighbors are either Ethernet or Cable

users. In contrast, DSL users mainly connect with other DSL users (70%). The strong bias

towards connecting with similar type of peers leads to a hierarchical mesh topology, which

allows Ethernet and Cable users to exchange higher video layers (from layer 6 to layer 10)

that are not available at DSL users.

With tax rate 0.95, all peers are supposed to receive a similar number of video layers

regardless of their individual bandwidth contributions. Numerical results in Section 2.2.4

suggest that random mesh topology is better at achieving high social welfare. Our mesh

topology adaption scheme is able to reflect this requirement. For DSL users, the fraction

of DSL neighbors is reduced from 70% (with tax rate 0) to 44%. For Ethernet users, the

fraction of DSL neighbors is increased from 24% to 40%. Compared with the mesh topol-

ogy constructed at tax rate 0, this is a more randomized topology for the peer distribution

in Table 2.3.

2.4.2 Video Quality Evaluation

To demonstrate the video quality of our system, we generate a bitstream with JSVM

9.12 [43] and use the real video trace to drive the simulations. We encode the sequence
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Table 2.6: Topology Statistics For tax rate 0.95

Neighbor Type Ethernet Cable DSL
Ethernet 21.1% 14.9% 14.5%

Cable 38.5% 39.9% 41.5%
DSL 40.4% 45.2% 44.0%

Table 2.7: Bitstream statistics (sequence FOOTBALL)

Layer Bitrate (Kbps) PSNR (dB) Framerate (fps)
1 303.8 36.97 3.75
2 420.1 38.32 3.75
3 503.0 34.89 7.5
4 595.9 36.36 7.5
5 705.3 33.65 15
6 800.4 34.73 15
7 905.8 32.32 30
8 992.4 33.91 30

FOOTBALL into a bitstream with 4 temporal layers and 2 SNR layers. We use the FixedQPEn-

coderStatic tool to do the rate control with rate mismatch setting [-3%, 1%]. The bitstream

statistics are summarized in Table 2.7. We loop the bitstream repeatedly until the simulation

ends.

Received Video Quality

Fig. 2.8 and Fig. 2.9 show the cumulative distributions of peers’ average PSNR and

framerate. Note that PSNR of higher layers might be less than lower layers. But the video

quality not only depends on PSNR but also depends on the framerate. Therefore, we present

the subjective video quality obtained by using a subjective quality model [44]. Fig. 2.10

shows the cumulative distributions of peers’ subjective quality. We can see from Fig. 2.10

that the predicted subjective quality experienced by peers matches the differential service

criterion. In addition, at a smaller tax rate, the quality gap between weak and strong peers
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Figure 2.8: Cumulative distribution of received PSNR for different types of peers under

various tax rates.
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(c) Tax rate 0.95

Figure 2.9: Cumulative distribution of received framerate for different types of peers under

various tax rates.
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(c) Tax rate 0.95

Figure 2.10: Cumulative distribution of received subjective quality for different types of

peers under various tax rates.
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(b) Tax rate 0.5
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(c) Tax rate 0.95

Figure 2.11: Cumulative distribution of smoothness index for different types of peers

under various tax rates.
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(c) Tax rate 0.95

Figure 2.12: Layer subscription evolution for different types of peers under various tax

rates.

is larger than that at a larger tax rate, which pushes the system to equal sharing of system

resources. Therefore, by tuning the tax rate, our system can operate at any desired point,

not only in terms of the rate allocation but also in terms of the video quality of experience

(QoE).

Smoothness of Received Quality

In addition to the PSNR and framerate, viewing quality could be affected by the vari-

ations of the received video layers over time as well. QoE is degraded if the number of

received video layers changes frequently. We define the following smoothness index to

quantify the playback smoothness of the received video.

SI =
1

K

K∑
k=0

|v(k)− v(k − 1)|
v(k)

, (2.7)

where v(k) is the received decodable layers at time period k, and K is peer’s total number

of online time period. The time period is one second. Large smoothness index indicates

bad viewing quality caused by frequent layer increasing/droping. Fig. 2.11 shows the CDFs

of smoothness index under different tax rates. Under all scenarios, peers contributing more

enjoy smoother video playback. We also observed that as tax rate increases, the smoothness

indexes for bandwidth-rich peers increase, while the smoothness indexes for bandwidth-
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poor peers decrease. We suspect this is caused by the peering topology at different tax

rates.

As discussed in Section 2.4.1, a hierarchical topology is formed at tax rate 0. DSL

peers are mainly connected with other DSL peers and have to actively look for bandwidth

resources, which causes more layer changes. In contrast, Ethernet and Cable users are

mainly connected with each other, and have abundant bandwidth within the cluster. Thus

fewer layer changes. As tax rate increases, the overlay topology becomes more randomized.

Different peers have equal/similar access to bandwidth, leads to similar smoothness index.

2.4.3 Layer Subscription Convergence

In order to examine the behavior of the layer subscription algorithm without the impact

of peer churn, a static topology with 500 peers is used in this experiment. The peers’

uplink bandwidth follows the distribution as stated in Table 2.3. We randomly pick one

peer from each bandwidth category and plot the evolution of its layer subscription. We

also vary the tax rate to examine its impact. Fig. 2.12 shows the layer subscription process

over time with tax rate of 0, 0.5, and 0.95, respectively. With tax rate of zero, peers are

entirely selfish. The Ethernet peers with bandwidth of 1500 Kbps receive all ten layers.

The leftover bandwidth subsidizes other peers. As a result, the optimal layer subscription

for Cable and DSL peers are 9 layers and 5 layers, respectively. With tax rate of 0.5, the

optimal layer subscription for DSL, Cable, and Ethernet peers are 6 layers, 8 layers, and 10

layers, respectively. Finally, with tax rate of 0.95, peers are altruistic and every peer should

receive 700 Kbps except for the Ethernet peers (800 Kbps). Since video is encoded at 100

Kbps per layer, there are more “free” bandwidth in this case, introducing minor oscillations

in layer subscription. In all cases, AIAD algorithm is able to quickly converge to the target

subscription layer and peers stay in their optimal layers for most of the time.
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(b) CDF of smoothness index

Figure 2.13: System performance of LayerP2P protocol.

2.4.4 Performance Comparison with Existing Protocol

In this section, we present the performance comparison between LayerP2P [45] and

our proposed design. The design objective for LayerP2P is to provide incentive for peers

to upload. It allows peers to trade layers with each other. This corresponds to a special

case of our design with zero tax rate. We compare LayerP2P with our system at tax rate

0 Fig. 2.13 and Fig. 2.14 show the cumulative distributions of peers receiving layers and

smoothness index of the two systems. As can be seen in Fig. 2.13(a), LayerP2P is able to

provide differential services to different peers, but there exists larger variations of receiving

layers for all peers compared with Fig. 2.14(a). LayerP2P also performs worse in terms of

the video playback smoothness. Comparing Fig. 2.13(b) with Fig. 2.14(b), one can infer

that peers would experience more jitters in LayerP2P system.

Table 2.8 summarizes the UBU, WBR and overhead of the two systems. LayerP2P

is able to achieve a high UBU as the proposed design. However, the WBR is significantly

larger for LayerP2P which results in more jitters. In addition, LayerP2P has a much higher

overhead (5X) than the proposed design. In other words, the proposed design has a much

better chunk scheduling efficiency.
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Figure 2.14: System performance of the proposed protocol.

Table 2.8: Comparison of UBU, WBR and overhead between LayerP2P and the proposed

design

Protocol UBU WBR Overhead
LayerP2P 98.1% 5.9% 211.3826
Proposed 99.3% 0.4% 41.0242

Table 2.9: Performance comparision: noDLS vs DLS

Scenario L̄D L̄C L̄E UBU WBR Overhead
noDLS 4.67 9.01 10 99.6% 3.3% 89.20
DLS 5.21 8.94 10 99.3% 0.4% 41.02
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2.4.5 Impact of Different Modules

To evaluate the impact of different algorithm modules, we conducted comparison sim-

ulation studies by disabling/enabling different modules. We conducted experiments for tax

rate of 0, 0.5 and 0.95 respectively. The trends are essentially the same. In this section, we

only present the results for tax rate of 0.

Impact of Dynamic Layer Subscription

Table 2.9 summarizes the system performance of two scenarios: noDLS and DLS. In

noDLS case, all peers subscribe to all layers while in DLS case, peers use dynamic layer

subscription as described in Sec. 2.4.5. L̄D, L̄C and L̄E denote the average numbers of

received layers on DSL peers, Cable peers and Ethernet peers respectively. The overhead

is measured by the average number of chunk requests sent out by a peer in one slot. It can

be seen that, without DLS, peers are sending out more chunk requests on average than with

DLS. In addition, the WBR is much higher without DLS, and consequently, a much lower

request success ratio. DLS is more important for “weak” peers because they are supposed

to receive fewer layers. For example, a DSL peer is allowed to receive 5 layers, but it sends

out chunk requests of all layers without DLS. This does not only increase the overhead but

also reduce the chance of getting lower layer requests served.

Impact of Chunk Scheduling

We substitute the proposed chunk scheduling algorithm with a purely random chunk

scheduling algorithm. With random scheduling, for a missing chunk, a peer randomly pick

a neighbor possessing the chunk to download the chunk. Fig. 2.15 shows peers’ receiving

profile with the two scheduling algorithms. It can be seen in Fig. 2.15(a) that random

scheduling is inadequate to provide good differential service. Even for peers of the same

type, the receiving rates vary over a wide range.
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Figure 2.15: Cumulative distribution of received layers for different peers of two schedul-

ing algorithms.

Impact of Mesh Adaptation

Intuitively, peers with higher bandwidth benefit more from mesh adaptation. They can

increase their chunk request fulfillments by probing for “strong” peers. Fig. 2.16 shows the

cumulative distributions of the received video layers for Cable and Ethernet peers under

two settings: enabling mesh adaptation and disabling mesh adaptation. In the latter case,

the connection between two peers will never terminate until one is offline. It can be seen

that, with mesh adaptation, peers can receive more layers on average than without mesh

adaptation. For example, with mesh adaptation, more than 70% peers can receive more

than 9 layers, while the number is only 40% without mesh adaptation.

2.4.6 Impact of Severe Peer Churns

In this section, we evaluate the performance of our system when there is severe peer

churn. We extract the “spike” of the PPlive trace between time 18:00 to 22:00 and use it to

drive the simulator. The results are shown in Fig. 2.17 and Fig. 2.18.

From Fig. 2.17, we can see that peers’ receiving layers during flash crowd period

are still quite stable in all three tax rate settings. Peers of the same type receive similar

numbers of layers and the system can effectively provide service differentiation among

different types of peers. On the other hand, severe peer churn indeed degrades peers’
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Figure 2.16: Cumulative distribution of received layers for Cable and Ethernet peers with

mesh adaptation and without mesh adaptation.
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(c) Tax rate 0.95

Figure 2.17: Cumulative distribution of received layers for different types of peers during

severe peer churn.

receiving quality. For example, at tax rate 0, all Ethernet peers received 10 layers during

normal peer churn whereas only about 50% Ethernet peers received 10 layers. Fig. 2.18

shows the smoothness index of peers under severe peer churn. Compared with Fig. 2.11,

it can be noticed that the system performs slightly worse during severe peer churn but the

performance is still acceptable.

Table 2.10 summarizes the uplink bandwidth utilization (UBU) and wasted bandwidth

ratio (WBR) during severe peer churn. At tax rate 0 and 0.5, severe peer churn does not

impact too much as UBU and WBR are very close to those under normal peer churn. How-

ever, the UBU drops at tax rate 0.95, which means that the system efficiency is adversely



43

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

smoothness index

p
er

ce
n

ti
le

 

 

ether
cable
dsl

(a) Tax rate 0

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

smoothness index

p
er

ce
n

ti
le

 

 

ether
cable
dsl

(b) Tax rate 0.5

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

smoothness index

p
er

ce
n

ti
le

 

 

ether
cable
dsl

(c) Tax rate 0.95

Figure 2.18: Cumulative distribution of smoothness index for different types of peers

during severe peer churn.

Table 2.10: System Bandwidth Utilization During Severe Peers Churn

Tax rate UBU WBR
0 99.2% 1.0%

0.5 98.1% 0.1%
0.95 87.5% 0.2%

impacted by severe peer churn at high tax rate.

From the above results we see that the system is running more efficiently during slow

to moderate peer churn period than during severe peer churn period. Nevertheless, our sys-

tem is still capable of handling severe peer churn and provides an acceptable performance.

Flash crowd is a well-known challenge for P2P streaming. We will further address this

challenging issue in our future work.

2.5 Summary

In summary, we develop utility maximization models to understand the interplay be-

tween the efficiency, fairness and incentive in layered P2P streaming. The models enable

us to numerically investigate the impact of peering strategies and chunk scheduling poli-

cies on the fundamental trade-offs between the above three factors. We further integrate
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taxation-based incentive mechanism into P2P layered streaming, and develop a practical

streaming system. Taxation-based P2P streaming allows us to freely adjust the balance

between the social welfare and individual peer welfare. Extensive trace-driven simulations

demonstrate that the proposed designs can effectively drive layered P2P streaming systems

to operating points with the desired balance between efficiency, fairness and incentive.
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Chapter 3

SVC Rate-Quality Modeling and Layer Ordering

This chapter presents the rate-quality modeling for scalable video with focus on the

joint temporal and amplitude scalability. In addition, a SVC layer ordering strategy is pro-

posed such that each additional layer provides best quality gain given the bitrate increment.

As will be shown later, the rate-quality model and layer ordering strategy can be easily used

for video adaptation within network utility maximization framework.

3.1 Background

3.1.1 SVC Coding Scheme

Scalable video coding schemes have been advocated for video adaptation to network

and terminal capabilities due to its low complexity and flexibility [11]. This approach

eliminates computationally demanding transcoding processes at video servers or interme-

diate proxies by simply extracting appropriate bitstreams according to network or terminal

constraint. It is shown that the latest SVC standard [10] can achieve comparable coding

efficiency as the state-of-the-art H.264/AVC non-scalable coding [46].

In SVC, the motion-compensated transform coding architecture is extended to achieve

a wide range of spatio-temporal and amplitude scalabilities. Fig. 3.1 illustrates the typi-

cal structure of a group of pictures (GOP) that implements only temporal and amplitude

scalabilities. Each frame in the video sequence is encoded into multiple amplitude layers
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Figure 3.1: Structure of a group of pictures (GOP) in an H.264/SVC stream encoded

with the coarse granularity scalablity (CGS) approach. The GOP length is 8 frames in this

example. The stream supports 3 amplitude layers and 4 temporal layers.

(labeled as A0, A1 and A2) with decreasing QS q. Inter-frame prediction among the pic-

tures in each amplitude layer follows a dyadic pattern, leading to several temporal layers

(labeled as T0, T1, etc.) with increasing FR f . This approach, also known as coarse gran-

ularity scalability (CGS), allows the stream to be flexibly decoded at various combinations

of amplitude and temporal levels without introducing any mismatch error in the decoding

process. In the example of Fig. 3.1, for instance, the stream supports 3 amplitude layers and

4 temporal layers, thereby allowing 12 rate-quality tradeoff points. If at certain point, the

server or proxy decides to send (A2, T2), then all chunks with label (Ai ≤ A2, Ti ≤ T2)

will be extracted for sending, e.g. those shaded chunks in the GOP. In the bitstream, each

chunk represents a network abstract layer (NAL) unit, containing bits at that layer from a

single video frame.

With CGS, video adaptation is allowed at GOP boundaries. In the same example,

suppose the highest framerate is 30 frames per second (fps), then the video rate can be

switched every 8/30 seconds. There is a tradeoff between granularity of the adaptation

interval and coding efficiency since smaller GOP size leads to lower compression ratio.

The typical choice of GOP size ranges between 8 to 32 for video streaming.



47

3.1.2 SVC Rate Model and Quality Model

There have been quite extensive research exploring the impact of frame rate and quan-

tization step size, individually and jointly, on the perceptual quality [13, 44, 47–52]. How-

ever, there is not a widely adopted quality model that considers explicitly the effect of both

FR and QS.

In [13, 44], the authors studied the impact of FR and QS on the subjective quality and

bitrate of scalable video. Based on the mean opinion score (MOS) obtained from subjective

quality tests, it is observed that the impact of FR and that of QS on the MOS is separable.

Therefore, the subjective quality of SVC encoded video can be modeled as the product of

two functions of the QS q and FR f , respectively. The overall subjective quality model is:

Q(q, f) = Qmax e
−c q

qmin

e−c
1− e−d

f
fmax

1− e−d
, (3.1)

where c, d are content-dependent model parameters; qmin denotes the minimum QS; fmax

denotes the maximum FR. HereQmax denotes the subjective quality achievable at (qmin, fmax).

For the same set of encoded sequences, their bitrates are recorded and the influence of

q and f on the bitrate is analyzed. It is found that the bitrate can also be modeled as the

product of two functions of q and f , respectively. The overall rate model is:

R(q, f) = Rmax(
q

qmin
)−a(

f

fmax
)b , (3.2)

where a, b are content-dependent model parameters and Rmax corresponds to the bitrate at

(qmin, fmax). The parameter values for seven test sequences are given in Table 3.1. How

to estimate the values of a, b, c, d, Rmax based on the video characteristics can be found

in [53]. We note that for most applications, SVC streams should have similar subjective

quality scores at the highest rate, and thus the Qmax values. Therefore, it is the normalized

quality Q̃ := Q(q, f)/Qmax that is of interest. In the sequel, we focus on how to model the

relation between the normalized quality and the rate, and how to maximize the normalized

quality.
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3.2 Rate-Quality Modeling

3.2.1 Deriving the Rate-Quality Model

As decreasing FR or increasing QS will lead to decreasing bitrate and vice versa, there

might be multiple combinations of FR and QS that satisfy a given bitrate constraint R. But

the associated quality is different. It is then desirable to find the combination that gives

the best quality while satisfying R. By finding the optimal (q, f) and the corresponding

maximum achievable normalized quality Q̃ for each possibleR, we arrive at the rate-quality

model, to be denoted as Q̃(R).

First, we define some notations that will be used later: normalized bitrate R̃ = R/Rmax,

normalized FR f̃ = f/fmax and relative QS q̃ = q/qmin. Given a rate constraint R ≤

Rmax, it can be derived from (3.2) that R̃ = q̃−af̃ b, which is equivalent to q̃ = R̃−
1
a f̃

b
a .

Then, we can rewrite (3.1) in terms of (f̃ , R̃) as

Q̃(f̃ , R̃) =
e−cR̃

− 1
a f̃

b
a (1− e−df̃ )

e−c(1− e−d)
(3.3)

To find the optimal FR f̃ ∗ which maximizes Q̃(f̃ , R̃) for a given R̃, we solve for

∂Q̃(f̃ , R̃)/∂f̃ = 0. Together with (3.2), we have the following relation between the optimal

(q̃∗, f̃ ∗) and the rate contraint R̃,

R̃ =

(
bc

ad

)a
f̃ ∗

b

(
edf̃

∗ − 1

f̃ ∗

)a

(3.4)

R̃ = q̃∗
−a
f̃ ∗

b
(3.5)

Note here, as q̃ >= 1 and f̃ ∈ (0, 1], if the resulting q̃∗ is less than 1, the qmin constraint is

active and then q̃∗ is clipped to 1; a new f̃ ∗ is calculated using (3.5). The above equations

give a criteria for choosing the FR and QS under any rate constraint. It is easy to verify

that ∂f̃ ∗/∂R̃ > 0 and ∂q̃∗/∂R̃ < 0 so that (q∗, f ∗) is unique and f ∗ is monotonically

increasing while q∗ is monotonically decreasing as R̃ increases. Then, the best normalized

quality Q̃∗ can be derived from (q∗, f ∗) by using (3.1). Although it is hard to derive closed-

form relations between the rate constraint R̃ and the optimal q∗(R̃), f ∗(R̃), and Q̃∗(R̃),
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(b) FOOTBALL

Figure 3.2: Optimal FR f and QS q (left axis) and the corresponding optimal normalized

quality Q (right axis) versus bitrate. These results assume that both FR and QS can take on

any value in their respective ranges, i.e., f ∈ (0, 30] and q ∈ [16, 160].

we can numerically compute f ∗, q∗, and Q̃∗ for any given R̃. For notational simplicity, in

the sequel, we will ignore the superscript ∗ in Q̃∗(R̃), and use Q̃(R̃) to denote the optimal

rate-quality tradeoff. Fig. 3.2 shows the (q∗, f ∗) and the corresponding Q̃∗ versus bitrate

for two sequences, FOREMAN and FOOTBALL.

Fig. 3.3 shows the numerically computed optimal rate-quality tradeoff curves in terms

of normalized rate for seven sequences with various video characteristics. We found that

these curves can be closely approximated with the following exponential function

Q̃(R̃) = e−αR̃
−β+α (3.6)

where α, β are model parameters. The model parameters for each sequence can be found by

least squares fitting into the numerically calculated (R̃, Q̃) data for that sequence. Table 3.1

summarizes the model parameters for each sequence and the model accuracy in terms of the

root-mean-square error (RMSE). The fitting curve for individual sequence matches with its

data very accurately and hence are not shown separately in Fig. 3.3.
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Figure 3.3: Normalized optimal Rate-Quality tradeoff curves for seven sequences:

AKIYO, CITY, CREW, FOOTBALL, FOREMAN, ICE and WATERFALL. The solid line

gives a unified rate-quality model.

Because the optimal Q̃(R̃) curves for different sequences in Fig. 3.3 are very close

to each other, we further propose to use a unified model with the same parameter set for

all sequences. Using least squares fitting to the (R̃, Q̃) data from all sequences, we found

α = 0.16 and β = 0.66. This unified model is also shown in Fig. 3.3 and summarized in

Table 3.1. Note that although we propose to use the same model for the normalized rate-

quality relations for different sequences, the maximum rate Rmax is still video-sequence

dependent. We can rewrite the Q̃(R̃) as a function of the absolute rate as

Q̃(R) = e−α(
R

Rmax
)
−β

+α (3.7)

3.2.2 Model Discussions

The proposed model (3.7) can be easily incorporated to solve network utility maxi-

mization problem of the form
∑

i∈I Ui(Ri) subjects to system constraints, where I denotes
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Table 3.1: Parameters for Rate Model, Quality model, and Rate-Quality Model and the

RMSE for Rate-Quality Model

Seq. Name a b c d α β Rmax (kbps) RMSE
AKIYO 1.213 0.470 0.114 7.696 0.12 0.69 163.2 0.003
CITY 1.194 0.484 0.130 7.512 0.14 0.69 658.3 0.003

CREW 1.243 0.671 0.184 6.902 0.20 0.59 1381.4 0.003
FOREMAN 1.149 0.570 0.149 8.236 0.15 0.68 805.5 0.003
FOOTBALL 1.128 0.739 0.088 5.197 0.13 0.63 2154.1 0.005

ICE 1.039 0.670 0.150 6.674 0.17 0.67 693.0 0.004
WATERFALL 1.294 0.430 0.145 7.060 0.14 0.68 462.9 0.006

UNIFIED N/A N/A N/A N/A 0.16 0.66 N/A 0.042

receiver set. In the following, we consider two special cases with different objectives.

Case I

if the objective is to provide proportional fairness [35] while maintaining sufficient

high system utilization, the utility function is defined as

Ui(Ri) = lgQ̃i(Ri) = −α(
Ri

Ri
max

)
−β

+ α (3.8)

It can be easily verified that (3.8) is a concave function, therefore, the NUM problem can

be solved efficiently. In addition, there also exists distributed algorithms to solve this prob-

lem [54].

Case II

if the objective is to maximize system utilization, then the utility function can be de-

fined as

Ui(Ri) = Q̃i(Ri) = e
−α( Ri

Rimax
)
−β

+α
(3.9)

(3.8) is not concave over the region (0, Ri
max]. However, we claim that in practical video

rate regions, (3.8) is a concave.
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Claim 1. In practical video rate regions, (3.8) is a concave.

To justify this claim, we show the concave region for Q̃(R), or equivalently, Q̃(R̃).

Q̃
′′
(R̃) = (e−αR̃

−β+α)
′′

= αβe(−αR̃
−β+α)R̃−β−2

(
αβ

R̃β
− β − 1

)
As αβe(−αR̃−β+α)R̃−β−2 > 0, then αβ

R̃β
− β − 1 < 0 gives the concave region of Q̃(R̃).

And the concave region is R̃ > ( αβ
β+1

)1/β . At the lower boundary R̃l = ( αβ
β+1

)1/β , the corre-

sponding normalized quality Q̃l(R̃l) = e−1−
1
β
+α. With the parameters shown in Table 3.1,

we have the normalized quality alway less than 0.1 and R̃l ≈ 0.015. As a normalized qual-

ity of 0.1 (e.g., 1 on a 10 rating scale) is considered very annoying and unacceptable, the

video stream should never be extracted at a normalized rate lower than this bound. With a

SVC video, the lowest rate is the base layer rate. In out test videos, the base layers all have

normalized rate above 0.016 with normalized quality above 0.13, as indicated in Table 3.2.

Therefore, we claim that for the practically meaningful range of rate, Q̃(R̃) or equivalently

Q̃(R), is concave. We can also observe the concavity from Fig. 3.3. So efficient and dis-

tributed algorithm also applies.

3.3 Quality Optimized Layer Ordering

To efficiently stream a pre-coded scalable video where the target bit rate is changing

dynamically, it is desirable to pre-order the SVC layers in a rate-quality optimized manner,

so that each additional layer yields the maximum possible quality improvement. With

such a pre-ordered SVC stream, the proxy can simply keep sending additional layers, until

the rate target is reached. Noting that each SVC layer (together with its previous layers)

corresponds to a feasible (q, f) pair, the problem is equivalent to ordering the feasible (q, f)

pairs, subject to decoding dependency constraint. In this section, we discuss how to employ

the rate and quality models given in Sec. 3.2 to optimize the ordering of (q, f) pairs.
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3.3.1 Ordering Strategy

We have shown that (3.4) and (3.5) can be employed to determine the optimal (q∗, f ∗)

which gives the best quality under a rate constraint. However, the resulting (q∗, f ∗) might

not always be feasible. For example, if a SVC stream is encoded with a dyadic temporal

prediction structure, the feasible FR is doubled every time from the lowest to the highest

FR. Similarly, there are only a small number of amplitude layers in a typical SVC stream,

corresponding to a few discrete levels of QS q. In the following, we discuss how to take

into account such practical limitations.

Suppose there are M temporal layers and N amplitude layers, the corresponding fea-

sible choices of FR and QS are {f1, f2, ..., fM} and {q1, q2, ..., qN}, respectively. We can

construct a table which gives all possible combinations, each indicated by a quadruplet

(Ri, fi, qi, Q̃i). If some combination in this table has higher R but lower Q̃ than at least

one other combination, then it is clearly not rate-quality optimal. We can eliminate these

points and order the remaining points in increasing rates with two steps. The first step is to

sort all points in terms of their rates from low to high. Then starting from the point with the

second lowest rate to the end (the first point corresponds to the base layer), we compare the

quality of the current point to that of the previous kept point; we remove the current point

if the quality is less or equal, otherwise keep the current point. We denote the table that

contains the remaining entries as Tinit, which is applicable to real-time encoding decision.

The complexity of generating this table is O(MN).

The points in Tinit has the property that as the rate increases, the quality also increases.

Some of the points in Tinit may not be optimal in the sense that they do not provide the max-

imum possible quality improvement for the incurred rate increment. Furthermore, some

points in Tinit may not satisfy the SVC decoding dependency. For example, a current point

may have a FR that is lower than the previous point, or a QS that is higher than the previ-

ous point. There are multiple ways to remove the non-feasible points in Tinit based on the

rationale that the next feasible point can be either increasing in FR or decreasing in QS or

both. We use the following Algorithm 1 to remove the non-optimal and non-feasible points

in Tinit, and create the table Topt. The associated complexity is also O(MN).
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3.3.2 Performance Evaluation

We apply the proposed layer ordering strategy to various sequences. Figure 3.4 shows

the rate-quality relations of points contained in table Tinit and Topt and the corresponding

(q, f) for each Topt point obtained using Algorithm 1 for sequence FOOTBALL. Clearly,

many feasible points are not optimal and are removed to get Tinit. A few points in Tinit are

still not optimal or do not satisfy the decoding dependency, which are removed to get Topt.

Note that the removed points in Tinit tend to have a much smaller quality improvement

compared to a neighbor point with slightly larger rate. As the target rate increases, the FR

monotonically increases while the QS monotonically decreases, thereby satisfying depen-

dency across the layers. The points in Topt follow the concave shape of the rate-quality

curves in Fig. 3.3 very closely, indicating that ordering SVC layers based on these points

yields near-optimal rate-quality tradeoff. This is also true for other sequences as shown in

Fig. 3.5. Table 3.2 summarizes the entries in Topt for all seven sequences.
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Table 3.2: Entries of Topt for seven sequences. Each entry is a quadruplet of (R, f, q, Q̃).

Index 1 2 3
AKIYO (4.8, 1.875, 88, 0.21) (6.6, 3.75, 88, 0.34) (9.1, 7.5, 88, 0.47)
CITY (19.1, 1.875, 88, 0.19) (26.7, 3.75, 88, 0.31) (37.3, 7.5, 88, 0.43)

CREW (21.9, 1.875, 88, 0.13) (34.8, 3.75, 88, 0.22) (55.4, 7.5, 88, 0.31)
FOOTBALL (34.7, 1.875, 88, 0.18) (58.0, 3.75, 88, 0.30) (96.7, 7.5, 88, 0.46)
FOREMAN (19.9, 1.875, 88, 0.18) (29.5, 3.75, 88, 0.29) (43.9, 7.5, 88, 0.40)

ICE (16.0, 1.875, 88, 0.15) (25.4, 3.75, 88, 0.26) (40.4, 7.5, 88, 0.37)
WATERFALL (13.0, 1.875, 88, 0.17) (17.5, 3.75, 88, 0.27) (23.5, 7.5, 88, 0.39)

4 5 6
AKIYO (15.8, 7.5, 56, 0.61) (21.9, 15, 56, 0.70) (37.4, 15, 36, 0.82)
CITY (64.0, 7.5, 56, 0.57) (89.5, 15, 56, 0.66) (151.6, 15, 36, 0.80)

CREW (97.2, 7.5, 56, 0.47) (168.4, 7.5, 36, 0.73) (268.1, 15, 36, 0.73)
FOOTBALL (161.4, 15, 88, 0.59) (268.8, 15, 56, 0.72) (442.5, 15, 36, 0.81)
FOREMAN (73.7, 7.5, 56, 0.56) (122.5, 7.5, 36, 0.69) (181.8, 15, 36, 0.78)

ICE (64.6, 7.5, 56, 0.52) (102.3, 7.5, 36, 0.64) (162.8, 15, 36, 0.76)
WATERFALL (42.2, 7.5, 56, 0.54) (56.9, 15, 56, 0.63) (100.8, 15, 36, 0.77)

7 8 9
AKIYO (68.0, 15, 22, 0.92) (117.7, 15, 14, 0.98) (163.2, 30, 14, 1.0)
CITY (273.0, 15, 22, 0.91) (468.3, 15, 14, 0.97) (658.3, 30, 14, 1.0)

CREW (494.5, 15, 22, 0.87) (867.4, 15, 14, 0.97) (1381.4, 30, 14, 1.0)
FOOTBALL (771.2, 15, 22, 0.87) (1287.1, 30, 22, 0.95) (2154.1, 30, 14, 1.0)
FOREMAN (320.2, 15, 22, 0.90) (538.2, 15, 14, 0.98) (805.5, 30, 14, 1.0)

ICE (271.5, 15, 22, 0.89) (434.3, 15, 14, 0.96) (693.0, 30, 14, 1.0)
WATERFALL (190.7, 15, 22, 0.89) (342.2, 15, 14, 0.97) (462.9, 30, 14, 1.0)
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Figure 3.4: Quality optimized table for the sequence FOOTBALL. (a) rate-quality tradeoff

of points in Tinit and Topt; (b) corresponding (q, f) values for points in Topt.

3.4 Summary

In this chapter, we propose a rate-quality model for SVC coding considering temporal

scalability and amplitude scalability. The model has a simple form such that it can be easily

used to optimize video system with network utility maximization framework. We also pro-

pose a quality optimized SVC layer ordering strategy so that each additional layer provides

best possible quality gain given the bitrate increment. The layer decoding dependency is

also satisfied for all ordered rate points.
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Figure 3.5: Quality optimized table for all sequences.
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Chapter 4

Proxy-based Multi-Stream Adaptation over Wireless

Despite growing maturity in broadband mobile networks, wireless video streaming

remains a challenging task, especially in highly dynamic environments. Rapidly changing

wireless link qualities, highly variable round trip delays, and unpredictable traffic con-

tention patterns often hamper the performance of conventional end-to-end rate adaptation

techniques. This chapter presents how to improve wireless video streaming service using

proxy and SVC quality optimized rate adaptation.

4.1 Background

4.1.1 Previous Work

It has been long agreed that the video streaming rate needs some form of adaptation to

match the time-varying wireless channel capacity [55], to provide a better user experience.

At the encoder end, techniques such as adaptive encoder rate control [56, 57], transcod-

ing [58], and bitstream switching [59] are proposed to dynamically adjust video rate. A

viable alternative to this is scalable video coding, whereby a stream only needs to be en-

coded once yet can be flexibly decoded at several different target rates [11]. Such a design

greatly facilitates on-the-fly adaptation of the spatial resolution, temporal rate, and frame

quality (controlled by QS) of the transmitted video stream. The recently standardized SVC

extension in H.264, in particular, has succeeded in achieving comparable coding efficiency
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as the non-scalable encoding in H.264/AVC [60]. Hence it is especially appealing for video

streaming in a mobile environment [61]. However, given a target rate, there are many pos-

sible combinations of SVC spatial, temporal and amplitude layers that can lead to different

perceptual quality. Therefore, adaptation of SVC streams subject to a rate constraint is not

a trivial problem. Using the rate and quality models in [13], we can pre-order the temporal

and amplitude layers in a SVC stream to reach rate-quality optimality, greatly simplifying

the SVC adaptation problem.

In terms of underlying rate control protocol/algorithm, many conventional schemes

rely on equation-based TCP-friendly rate control (TFRC) [14] for regulating the rate of

each stream [62, 63]. However, these end-to-end schemes often suffer from slow conver-

gence when the bottleneck link bandwidth changes rapidly, and lead to allocation results

oblivious of video content characteristics. [64] proposed a TCP-friendly video transport

protocol targeting for wireless enviorment, but it is still content-agnostic. [65–68] rely on

using a video rate-distortion model to solve network resource allocation while providing

video content-awareness. The model is however only applicable for videos at a fixed frame

rate. Our work stands apart from existing approaches by combining the rate and quality

adaptation capability of H.264/SVC with a rate-quality tradeoff model that considers effect

of both frame rate and quantization stepsize on the rate and quality. In addition, link band-

width heterogeneity is considered in the rate allocation. The proposed algorithm enables a

fast converging, quality optimized rate allocation at the proxy node. The proposed system

is capable of both closely following dynamics in the wireless link bandwidth and tailoring

the rate allocation for each stream based on its own rate-quality tradeoff and the effec-

tive link bandwidth, and choosing the optimal combination of frame rate and quantization

stepsize that maximizes the quality for a given rate.

4.1.2 Proposed System: Overview

In a wireless video streaming system, the video server maintains the original video

bistreams. Upon requests for certain video contents, the server will send the (sub)stream

through IP network to the wireless access node via which the (sub)stream is served to end-
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Figure 4.1: Architecture overview of the adaptive video streaming system. A proxy node at

the edge of the network performs video adaptation before relaying video streams to mobile

clients.

users. The wireless access node is usually the bottleneck where the congestion is likely to

occur as it is shared by many users and has relatively low bandwidth capacity compared

to the IP network. In order to track the wireless link status, an end-to-end feedback mech-

anism would be expected to inform the video adapter if it is at the server. However, the

end-to-end delay is typically large in a wireless environment.

To agilely trace the link status, we envision a proxy node colocated with the access

node. It is in charge of tracking the time-varying status of the wireless access link, while

dynamically adapting the traversing scalable video streams. Fig. 4.1 provides an architec-

tural overview of the proxy-based video streaming system. The benefit of such a design

is multifold. First, it requires no additional modifications at either the video servers or the

mobile clients; video adaptation is performed at the proxy and is agnostic to both ends.

Second, since the proxy node is located right at the bottleneck wireless node, it can react

much more agilely than end-to-end adaptation schemes in face of abrupt changes over the

wireless hop. Furthermore, the proxy node has knowledge and control of all traffic travers-
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ing the bottleneck wireless link, therefore is well-positioned to optimize the allocated rate

across the competing streams in a more holistic manner.

The main drawback of this architecture is the potentially large wasted bandwidth on

the IP network. By the time adaptation happens at the proxy, the required video (sub)streams

are expected to be arrived. Therefore, the server needs to send the whole bitstream to the

proxy or send over-provisioned (sub)streams based on some prediction algorithms. Con-

sidering that the bandwidth is abundant in the core network and the prevalent deployment

of caching servers in the network, this is acceptable.

4.2 System Model and Algorithms For Rate Allocation

In this section, we develop a subjective quality maximization framework for rate al-

location among multiple wireless receivers under the same wireless access node. The

framework is based on the rate-quality model in Chapter 3 and can be easily adapted to

accommodate other models.

4.2.1 Problem Formulation

Consider a set of video receivers sharing a common access node. For each receiver

i ∈ {1, 2, ..., I} experiencing a wireless link throughput of Ci, the interested video can be

adapted to have an equivalent coding parameter setting indicated by (qi, fi), which results

in subjective quality of Qi(qi, fi) and video bitrate of Ri(qi, fi). In addition, suppose there

are a set of background flows, each generates rate Rj, j ∈ {1, 2, ..., J}. From system-

wide of view, the optimal network utilization is achieved by solving the following utility
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maximization problem.

max
~q, ~f

I∑
i=1

wiQ̃i(qi, fi) (4.1)

s.t.
J∑
j=1

Rj

Cj
+

I∑
i=1

Ri(qi, fi)

Ci
≤ 1 (4.2)

qi ∈ Ωi, fi ∈ Γi ∀i = 1, . . . , I (4.3)

Here Ωi and Γi denote the possible choice of QS and FR for the video requested by receiver

i, respectively. The objective function (4.1) is the weighted sum of subjective quality over

all video receivers where important receivers will be assigned with a larger weight. The

constraint (4.2) ensures that the aggregated channel utilization time is below the maximal

system utilization ratio (which we assume to be 1 here, but can in general be less than 1).

(4.3) specifies the coding parameter constraints.

The computational complexity involved in solving the optimization problem increases

with the dimension of the coding parameter set and the number of video streams. Besides,

these coding parameters are usually integers. Thus, the problem becomes combinatorial

hence computationally expensive. Suppose there are N possible choices of q, M possible

choices of f and I video streams, the number of possible combinations would be (MN)I .

We, instead, propose to solve a relaxed form of this problem by allowing continuous

choices of video rates, and by leveraging the optimal rate-quality tradeoff developed in

Chapter 3. After obtaining candidate sending rates from the first step, we can then simply

pump pre-ordered video packets into the network as described in Chapter 3.

To solve for the candidate sending rate for each video receiver, we reformulate the

problem as follows.

max
~R

I∑
i=1

wiQ̃i(Ri) (4.4)

s.t.
J∑
j=1

Rj

Cj
+

I∑
i=1

Ri

Ci
≤ 1 (4.5)

Rmin
i ≤ Ri ≤ Rmax

i ∀i = 1, . . . , I (4.6)
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where Rmin
i denotes the base layer bitrate for video i.

4.2.2 Iterative Solution

Lemma 1. In practical video rate regions, the problem (4.4)-(4.6) is a concave maximiza-

tion problem.

Proof. Notice the Claim 1 in Chapter 3 and summation preserves the concavity.

Concavity of the objective function (4.4) ensures that the local maximum is also the

global maximum. We propose to use an iterative algorithm to approach the optimal point.

The reason behind this is trifold: 1) if the bottleneck link is highly dynamic with time-

varying bandwidth and delay, the results by directly solving problem (4.4)-(4.6) given past

observation (or estimation) of Rj , Cj and Ci could be highly skewed; 2) directly solv-

ing problem (4.4)-(4.6) incurs much larger complexity and overhead; 3) directly solving

problem (4.4)-(4.6) requires an accurate observation (or estimation) of Rj , Cj and Ci, oth-

erwise, the results can be invalid even if computed at a high frequency. Iterative solutions,

on the other hand, are generally more robust against variations of the network conditions

and measurement errors [69].

Denote x :=
∑J

j=1Rj +
∑I

i=1Ri and y :=
∑J

j=1Rj/Cj +
∑I

i=1Ri/Ci the instanta-

neous incoming rate and the required serving time at the access point, respectively. Then

C̃ := x/y is the instantaneous effective link outgoing rate. Following the same idea of

the primal-dual algorithm in network rate control [35, 54], we propose the following two

iterative steps:

Ṙi = θRi

(
wiQ̃

′

i(Ri)−
p

Ci

)
(4.7)

ṗ = φ (y − 1)
x

y
= φ(x− C̃) (4.8)

Here θ, φ are two scaling factors; Q̃′i(Ri) is the first derivative of Q̃i(Ri) w.r.t Ri. p denotes

the price of using the link and C̃ = x/y.
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Intuitively, the value of p increases when the network is temporarily over-congested,

leading to a negative or slower increment ofRi, whereas temporarily underutilization of the

network results in decreased p and consequently higher Ri from all contributing streams.

Theorem 1. The iterative algorithm of (4.7)-(4.8) will converge to an equilibrium point

which solve the probem (4.4)-(4.6) in a time-sharing wireless network under static channel

conditions.

Proof. The constrained optimization problem of (4.4)-(4.6) can be converted to maximiz-

ing the following objective function

L =
I∑
i=1

wiQ̃i(Ri)− q(y − 1)

−
I∑
i=1

hi(R
min
i −Ri)−

I∑
i=1

ki(Ri −Rmax
i )

where q,~h,~k are Lagrange multipliers. The Karush-Kuhn-Tucker (KKT) conditions are as

follows:

∂L

∂Ri

= wiQ̃
′

i(Ri)−
q

Ci
+ hi − ki = 0 ∀i (4.9)

q(y − 1) = 0 (4.10)

hi(R
min
i −Ri) = 0 ∀i (4.11)

ki(Ri −Rmax
i ) = 0 ∀i (4.12)

Note that the algorithm of (4.7)-(4.8) is essentially gradient descending algorithm,

which stabilizes at certain point (~R∗, p∗), i.e. when Ṙ = 0 and ṗ = 0. Next, we show that

the equilibrium point (~R∗, p∗) achieved by the algorithm of (4.7)-(4.8) solves the problem

(4.4)-(4.6) by examining the satisfaction of its KKT conditions.

Case 1: if p∗ 6= 0 and ~Rmin < ~R∗ < ~Rmax, the point (~R∗, p∗) satisfies

wiQ̃
′

i(R
∗
i ) =

p∗

Ci
∀i

J∑
j=1

Rj +
I∑
i=1

R∗i = C̃∗ =

∑J
j=1Rj +

∑I
i=1R

∗
i∑J

j=1
Rj
Cj

+
∑I

i=1
R∗i
Ci
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Then, we have the corresponding ~h = 0, ~k = 0, q = p∗ for the KKT condition.

Case 2: if p∗ 6= 0 and R∗i = Rmin
i for some i, we have hj = 0 ∀j 6= i,~k = 0, q = p∗

and hi = −wiQ̃
′
i(R

min
i ) + p∗

Ci
for the KKT condition.

Case 3: if p∗ 6= 0 and R∗i = Rmax
i for some i, we have ~h = 0, kj = 0 ∀j 6= i, q = p∗

and ki = wiQ̃
′
i(R

max
i )− p∗

Ci
for the KKT condition.

Case 4: if p∗ = 0, then R∗i = Rmax
i according to (4.7). So, we have ~h = 0, q = 0 and

ki = wiQ̃
′
i(R

max
i ) ∀i for the KKT condition.

4.3 Practical System Design

Previously, we have developed the mathematical framework for solving the system-

wide quality maximization problem. In this section, we focus on how to implement the

proposed iterative solution in a practical wireless video streaming system.

4.3.1 Implementing the Algorithm at the Proxy

The iterative algorithm consists of two processes. The first process, which follows

(4.7), updates the streaming rate given the observation of p and ~C, which is the vector

containing the observed link throughputs of all video receivers. The second process, with

(4.8), determines a new link price given the observation of the sending rates in the last

update interval from all users ~R and the effective serving rate C̃. Note here, C̃ depends on

both ~C and ~R. Suppose the proxy adapts video stream every τ seconds, we write (4.8) in a

discretized form,

p(n+ 1) = max
(
p(n) + φ

(
x(n)− C̃(n)

)
τ, 0
)

(4.13)

The middle term in (4.13), i.e. x(n) − C̃(n) is in fact the evolution of queue length at the

access node. At time index n+ 1, the new stream rate for video i is calculated as

Ri(n+ 1) = min

(
Rmax
i ,max

(
Rmin
i , Ri(n) + θRi(n)

(
wiQ̃

′

i(Ri(n))− p(n)

Ci(n)

)
τ

))
(4.14)
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Figure 4.2: Main components in proxy-based adaptation architecture.

and according to the rate-quality model in (3.7), Q̃′i(Ri) is given by

Q̃
′

i(Ri) = αβ

(
Ri

Rmax
i

)−β
R−1i e

−α
(

Ri
Rmax
i

)−β
+α

We implement (4.13) and (4.14) in two separate modules: link buffer monitor and

video adapter both at the proxy. Fig. 4.2 shows the diagram of the two modules and the

signaling in between. The link buffer monitor checks the bottleneck queue length once ev-

ery τ seconds. It is also responsible for estimating the link throughput Ci for each receiver

i. In our system, the packets’ inter-departure time at the interface queue is inspected and it

is used to derive the instantaneous throughput of the link that transports the packet under

consideration (via dividing the packet length by the inter-departure time for that packet).

Then, the link throughput Ci can be estimated by averaging over a number of packets.

The optimal rate allocation module will calculate the new stream rate based on the

feedback from the link buffer monitor and the video rate-quality parameters embedded

in the SVC stream. Then, the SVC stream is adapted to the new rate by simply sending

video packets up to the target rate assuming stream is pre-ordered in the quality-optimized

manner. Note that the pre-ordering should ideally be done at video encoder so that the

video streams arriving at the proxy are already in optimal orders. However, it is possible to

have the proxy to order the SVC layers if the video servers do not have pre-ordered streams

and are agnostic of the rate-quality model adopted by the proposed proxy-based adaptation
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system.

4.3.2 Discussions

Feedback Interval

For CGS video streams, the rate adaptation can only be carried out at the boundary

of GOPs. For example, with a CGS encoded video stream with GOP size of 16, the rate

switching can only be done every 16/30 = 0.533 seconds assuming 30 frames per second.

On the other hand, for the proxy to accurately track the link status, it should run the iterative

algorithm of (4.13)-(4.14) at a much faster update frequency. To coop with this situation,

we run the iterative algorithm with a short update interval, but only adapt the video rate at

the beginning of each new GOP. A filter may be applied to obtain a smoother sending rate.

In our simulation, the smoothed sending rate at the begining of each GOP is calculated as a

weighted sum of the current sending rate determined from (4.14) and the smoothed sending

rate for the previous GOP with coefficients 0.8 and 0.2 respectively. Then, the video rate is

adapted according to the most recent smoothed sending rate.

Iterative Algorithm vs. Exhaustive Search

We carried out some numerical case studies and found that the iterative algorithm

incurs at most 5% efficiency loss ( in terms of the total utility at the same rate) compared

with the brute-force exhaustive search approach as shown in Fig. 4.3. The loss is largely

due to the discrete nature of the feasible rate points. An allocated rate (which is determined

assuming any rate is achievable) is not always fully utilized. The complexity for exhaustive

search is on the order of O(253), while the iterative algorithm isO(1) at each iteration. The

corresponding running time for the MATLAB scripts is 500ms and 0.17ms, respectively.

Through our extensive simulations, we found that the discrete nature of the feasible rate

points does not impact the algorithm convergence speed much.
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Figure 4.3: Performance comparison of the iterative algorithm with the exhaustive search.

Three sequences (AKIYO, FOREMAN and FOOTBALL) are requested by three receivers

and all the receivers have the same link throughput, ranging from 300kbps to 3Mbps.

Five amplitude layers and five temporal layers are generated, thereby allowing 25 dis-

crete quality-rate points. But only one of those points given in Table 3.2 is chosen for each

allocated rate for a sequence.

Limitation of the Effective Link Bandwidth Estimation Method

As we assume there is no cross-layer information, i.e., the information from MAC

layer and below, exposed to the proxy, the proxy is agnostic to the packet loss below the

link layer. This limitation will result in inaccurate bandwidth estimation, especially when

there are severe packet losses. For example, in WiFi system, a packet may undergo several

retransmissions and finally be dropped at the MAC layer, therefore the instantaneous link

throughput is 0. However, the proxy had only observed the packet sojourn time at the

MAC layer, and calculated the instantaneous link throughput as the packet size divided

by the sojourn time (which is equivalent to the packet inter-departure time at the interface

queue if other processing overheads are negligible). Thus, the resulting estimation does not

consider potential packet loss after the maximum retransmission limit is reached.
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Equalizing Receivers’ Subjective Qualities

In the formulation (4.4)-(4.6), the objective is to maximize the aggregated weighted

system utility. When all the weights are equal, the quality at all receivers are generally not

equal. By appropriately choosing the weights, we can equalize the quality of all receivers,

or making some receivers enjoying higher quality. Without detailed derivations, we can

show that setting wi ∝ Rmax
i /Ci for each receiver i leads to equalized subjective qualities

at the receivers.

4.4 Performance Evaluation

In this section, we evaluate our system design with extensive simulations based on the

ns-2 [70] simulator. We implemented video adaptation agents and a video player emu-

lator which generates video playback trace. We conducted two sets of simulations. The

first set, targeting for evaluating the effectiveness of the proxy-based design in adapting the

sending rate based on the time-varying channel condition, is driven by a real-world wire-

less measurement trace. The impact on background traffic (e.g. TCP) is also evaluated.

The second set of simulations investigate the effectiveness of the proposed approach in rate

allocation among multiple receivers based on both channel conditions and video character-

istics. We assume the channel conditions of all receivers are static so as to isolate the effect

of channel dynamics.

4.4.1 Common Simulation Settings

We use real video packets traces to drive the simulations. Two typical video sequences

are used in the simulations: FOREMAN and FOOTBALL, representing a slow-to-medium

motion clip and a highly intense motion clip, respectively. Both sequences have a spatial

resolution of 352×288 pixels (CIF) and temporal rate of 30 fps. We encode the sequences

with JSVM version 9.12 [43] to generate SVC streams with 5 CGS layers and 5 tem-

poral layers, and then pre-order the packets in a quality-optimized manner. The feasible
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rate points are as shown previously in Table 3.2. Note that the maximum rates needed to

achieve the highest quality are very different for the two videos, 0.8Mbps and 2.1Mbps,

respectively. This means that to achieve similar qulity, FOOTBALL should be allocated

much higher rate.

We choose TFRC as a comparison rate control mechanism, as it is considered suitable

for media streaming. We applied the Datagram Congestion Control Protocol (DCCP) patch

for ns-21 which contains a TFRC implementation. DCCP does not require reliable in-

order delivery of packets and the stream rate will be determined by the TFRC solely.

In our simulations, we choose θ = 1, φ = 5I(1/Mbps) where I denotes total number

of receivers, and wi = 1 for every receiver i unless otherwise stated. The proxy senses

the interface queue every 50ms and estimates the effective bandwidth for each link by

averaging over 16 most recent packets. The original candidate sending rate for each video

is updated using (4.14). A smoothed candidate sending rate is calculated as discussed in

Sec. 4.3.2 and the actual video rate is only changed at the beginning of each GOP. The rate

point among those in Table 3.2 that is closest to the smoothed candidate rate from below is

chosen. The packet size is set to 500 bytes and if a video NAL unit size is larger than that,

it will be segmented into several packets. The access point queue size is set to 75 packets

as suggested in [71].

We set the video playback delay to be 2 seconds which means the player will start

2 seconds later after receiving the first video packet. If any packet belonging to a NAL

unit is lost during transmission, the entire NAL unit is discarded as well as all other NAL

units that depend on it. Remaining NAL units that meet the playback deadline are used to

determine the highest decodable temporal layer and amplitude layer, which correspond to a

certain FR f and QS q. This (q, f) pair is used to derive the normalized quality using (3.1).

4.4.2 One Receiver with a Dynamic Wireless Environment

In this set of simulation, we are interested in the responsiveness of our system de-

sign to the dynamic behavior of the wireless link. The most important aspect is how fast
1http://eugen.dedu.free.fr/ns2/dccp-ns2.34.patch
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Figure 4.4: Simulation topology setup. (a) topology for the first set of simulations; (b)

topology for the second set of simulations.

the proposed design can tract and react to the wireless link quality changes. Besides, it

is also important to study how video traffic interacts with background TCP flows. Only

FOOTBALL sequence is used in this part.

Setup

Figure 4.4(a) illustrates the simulation topology setup, where the video server is at-

tached to node N1 and the proxy is located at the AP. A video client agent and a video

player agent are attached to node M0. There is also a background TCP traffic generated by

a FTP session from node N2 to node M0, traversing the same AP. The wired link between

node N0 and AP is of 100Mbps and 2ms delay; the wired link between N1 and N0 has

10Mbps and 18ms delay while the wired link between N2 and N0 has 10Mbps and 10ms

delay; the wireless link between AP and M0 is driven by a real-world measurement trace

obtained when driving around Mountainview, CA. The average speed of the vehicle was

around 20mph. Fig. 4.5 shows the signal to noise ratio (SNR) (in dB) and PHY rate (in

Mbps) over time. These two traces are used to generate PER rate and calculate transmission

time. Note here, the effective link rate is always less than the PHY rate due to retransmis-

sion at the PHY layer up to a present retransmission limit. The video server starts streaming

at time 0 while FTP session starts at time 80. Both flows end at time 200.
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Figure 4.5: Wireless SNR and PHY rate traces from a real-world measurement. The trace

was collected while driving around Mountainview, CA and the average speed of the vehicle

was around 20mph.

Proxy Adaptation vs TFRC

Figure 4.6 shows the performance comparison for proxy based adaptation and TFRC

scheme. From Fig. 4.6(a), it can be seen that when the channel condition is good and

stable, e.g., around time 50, 90 and 150, TFRC achieves good performance. However,

when the channel quality changes dynamically, TFRC can not react agilely experiencing

a slow convergence speed, for example during time 75-85 and 125 to 140. On the other

hand, proxy-based adaptation can adapt the sending rate quickly, and the resulting video

playback quality is significantly improved over the TFRC scheme. When the channel con-

dition changes, the proxy-based adaptation can agilely follow up and stabilize at a high

streaming rate. In terms of playback quality, the proxy-based adaptation provides higher

quality than TFRC in most time, and the average quality over the entire duration is much

higher, as shown in Fig. 4.6(c). It is worth noting here that since the proxy does not have

information from the MAC layer, it does not know whether a packet is dropped or not and

the link throughput estimation may not be accurate at severe packet loss. This can lead

the proxy-based adaptation react improperly when continuous packet losses happen. For

example, around time 110-120, the proxy is still sending out video packets which are all

dropped (which can be inferred from the zero quality during that time period in Fig. 4.6(c)).
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Figure 4.6: Performance comparison of proxy-based adaptation and TFRC. The average

sending rates for proxy-based adaptation and TFRC are 1601kbps and 1072kbps respec-

tively. The average playback rates over time for proxy-based adaptation and TFRC are

1333kbps and 919kbps respectively (not shown here). The average normalized qualities

over time for proxy-based adaptation and TFRC are 0.66 and 0.47 respectively.

When there are other flows destined to good wireless channels, the system will unneces-

sarily lower the rate assigned to those flows. To alleviate this problem, either cross-layer

information exchange or user feedback can be considered so that the proxy can estimate the

link throughput more accurately. We defer this to our future study. Figure 4.7 shows the

throughput of the background TCP traffic over time. TCP throughputs are very similar un-

der both types of competing video streams. This indicates that the proxy-based adaptation

is also TCP-friendly.

4.4.3 Multiple Receivers with Static Behavior

In this second part, we isolate the randomness of the wireless network and use fixed

wireless links to drive the simulator. The topology setup is given in Fig. 4.4(b) where two

or more servers stream videos via individual wireless links to the receivers depends on the

specific scenario. In each scenario, we set different link conditions for different receivers.

In this set of simulations, there is no background traffic injected.
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Figure 4.7: TCP throughput over time when competing with TFRC video stream and proxy-

based adaptive video stream, respectively.
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Figure 4.8: Comparison of video playback rate achieved by TFRC, and the proposed proxy-

based scheme. In this simulation, the FOREMAN sequence and the FOOTBAL sequence

share a base station with PHY rate of 1Mbps and 11Mbps respectively. FOREMAN lasts

between 0-200 sec, FOOTBALL between 20-250 sec. Same weights are used for both

receivers.
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Content-Aware Rate Allocation among Two Users

We consider two nodes M1 and M2 share the same AP node. The link between AP

and M1 has a PHY rate of 1Mbps while the link between AP and M2 has a PHY rate

of 11Mbps. M1 streams the FOREMAN sequence starting from time 0 and lasts for 200

seconds, whereas M2 starts to stream FOOTBALL at time 20 seconds and finishes at time

250 seconds. Figure 4.8 shows the sending rate for the two competing video streams. As

can be seen in Fig. 4.8 (a), with the proxy-adapt approach (with equal weights for the two

videos) the rate allocation of two streams converges in a short time period with FOOTBALL

being allocated more rate. After session 1 ends, session 2 quickly jumps to the full video

rate. On the other hand, TFRC converges to a equilibrium point which gives similar rates to

both sessions. Some rate variations are observed for the second stream (FOOTBALL) due

to the limited rate choices. TFRC also requires more time to converge, e.g. when the first

stream ends, TFRC takes 3 more seconds to converge to the full video rate for the second

stream.

Performance with Varying Number of Users

In this scenario, an AP is shared by multiple users, each receives one video stream.

The number of concurrent users ranges from 4 to 36 with half of them receving FOREMAN

and the others receiving FOOTBALL. In both groups of receivers, half of them have a good

link condition of 54Mbps PHY rate and the others have a fair link condition of 6Mbps PHY

rate. Equal weights are used for all receivers and they all start at time 0. The total simulation

time is 100 seconds. Results are averaged over a duration of 60 seconds after the system

has reached convergence.

Figure 4.9 shows the average video rate and the resulting normalized quality for each

category of receivers. Comparing Fig. 4.9(a) and Fig. 4.9(b), we can easily notice the

effectiveness the content-aware and link throughput-aware rate adaptation of the proxy-

based approach. Fig. 4.9(a) shows that, with TFRC, all users are receiving similar video

rate regardless of their video characteristics and link status. This also leads to the head-
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of-line blocking especially when the system is overloaded with large number of receivers.

As can be seen in Fig. 4.9(a), the video rate for all receivers are similar to the receiver

with 6Mbps PHY rate. Figure 4.9(b) confirms that with proxy-based scheme, FOOTBALL

users will receive higher rate than FOREMAN users if their channel conditions are the

same, whereas users with poor channel quality will receive lower rates than those with good

channel quality. The resulting average normalized qualities for both scenarios are shown

in Fig. 4.9(c) and Fig. 4.9(d). With TFRC, more complex video (FOOTBALL) is delivered

with a lower quality. Also, same video content receivers have similar quality even though

their link throughputs are different. On the other hand, with proxy-based scheme, received

quality not only depends on the video content but also depends on the link throughput. It is

also clear that proxy-based scheme gives larger aggregated quality than TFRC.

Differential Services

Previous results for the proxy-based approach are all obtained with equal weights for

all users. Although the sending rates are content-aware, with higher rates allocated to more

complex video, the received qualities are not equalized. By assigning different weights to

different users, the proxy-based scheme provides the capability of differential services or

equalizing receivers’ qualities. We consider an AP being shared by 9 users divided into

three groups. The first group, denoted as G1, receives FOREMAN; the second group,

G2, receives FOOTBALL and the third group G3, also receives FOOTBALL. Two sets

of weightings are investigated as shown in Table 4.1. The first one (denoted as Proxy-1),

targeting for equal subjective quality, has weights 1 and 2.6 and 2.6 respectively for the

three groups. These weights are chosen as discussed in Sec. 4.3.2. The second set (denoted

as Proxy-2) has weights 1, 2.6 and 10 respectively for the three groups, so that G1 and G2

receive similar quality and G3 receives a higher quality. In practice, the second set may

represent the case where one group of users paid premium price for better video services.

All users have link PHY rate 12Mbps. As shown in Fig. 4.10, with proxy-based scheme

and the first set of weights (Proxy-1), all FOOTBALL receivers obtain higher rates than

FOREMAN receivers and all receivers receive very similar quality. With the second set of
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Figure 4.9: Normalized quality and video rate seen by users. The number of users ranges

from 4 to 36 where half of them receive FOREMAN and the others receive FOOTBALL.

In addition, half of the members within each group have 6Mbps PHY rate and the others

have 54Mbps PHY rate.

Table 4.1: Weight settings for differential services

GROUP Sequence Proxy-1 Proxy-2
G1 FOREMAN 1 1
G2 FOOTBALL 2.6 2.6
G3 FOOTBALL 2.6 10
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Figure 4.10: Users’ receiving rate and quality under the Proxy-based and TFRC schemes

with heterogeneous weight assignment.

weights (Proxy-2), the premium users are able to receive a much higher quality than the

other users. TFRC can not provide either equal or differentiated quality as it attempts to

allocate same rates to all users. As a result, while FOREMAN users enjoy a higher quality,

all FOOTBALL users experience much lower quality.
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Chapter 5

Adaptive HTTP Video Streaming

Despite the increasing popularity gained in the industry, the research on HTTP adap-

tive streaming is still very preliminary. Typically, HTTP adaptive streaming hinges on

client requesting video chunks sequentially therefore the client requesting strategy directly

affects the video viewing quality. We start this chapter with an overview of adaptive HTTP

video streaming system and current state-of-the-art. Then we propose a cost function for

each chunk by jointly considering its contribution to the average playback level, the varia-

tion of playback level and the playback buffer level, to facilitate the chunk request strategy

design. We show that the problem of finding the optimal chunk request strategy is de facto a

Dynamic Programming problem. Due to the difficulty of directly solving the DP problem,

we propose a heuristic algorithm to solve it. Finally, we demonstrate the potentials of em-

ploying scalable video coding by comparing the performance of adaptive HTTP streaming

of single-layer video vs TCP-based SVC adaptive streaming.

5.1 Background

5.1.1 HTTP Progressive Download

The methods for delivering video are traditionally broken down into two categories:

streaming and download. For streaming, Real Time Streaming Protocol (RTSP) and Real
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Time Messaging Protocol (RTMP) are two most popular protocols, while download is typ-

ically associated with the hyper-text transfer protocol (HTTP). A recent trend in industry

is to divide a whole video into small video segments or video chunks and rely on HTTP

protocol to transport those chunks to client. While client is downloading new video chunks,

he/she may start playback previously downloaded video chunks. By decoupling the video

download and the video playback, client can more or less continue to play downloaded

video smoothly until the end. This scheme, a.k.a., progressive download, has a few ad-

vantages. (1) Reuse the network infrastructure which is optimized for HTTP traffic. (2)

Easy and effortless streaming services by traversing NAT and firewall. (3) Cheaper to

move HTTP data to the edge of the network using standard HTTP servers and caches. (4)

Video can be encoded with VBR data rate control to improve coding efficiency and save

bandwidth.

Although progressive download has become an increasingly popular alternative to

multimedia streaming, (e.g., YouTube, ESPN and CNN solely base on progressive down-

load to deliver the videos), it still suffers from several drawbacks. (1) It is not bitrate

adaptive. The user will have to buffer a long time before the playback starts or experience

frequent freezes and rebuffering in case of insufficient access bandwidth. (2) Potentially,

the bandwidth can be wasted in case of user churn. The buffered data is useless if the user

had switched to another program. (3) It can hardly support live streaming as the content

needs to be preloaded and it is not possible to combat the bandwidth mismatch between

content and network.

5.1.2 Adaptive HTTP Video Streaming Architecture

To overcome the disadvantages in progressive download, adaptive HTTP video stream-

ing is proposed recently. Adaptive HTTP streaming is a hybrid of progressive download

and streaming. Like the progressive download approach, it relies on clients sending pull

signals to the HTTP web server to request the media segments, thus relieving the server

load. Unlike the progressive download approach, clients are allowed to switch between

different versions of the content encoded with different bitrate with sophisticated segments
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generation design. The client player strives to always retrieve the next best segment after

examining a variety of parameters related to available network resources, such as available

bandwidth and the state of the TCP connections; device capabilities, such as display reso-

lution and available CPU; and current streaming conditions, such as playback buffer size.

The goal is to provide the best quality of experience by displaying the highest achievable

quality, starting up faster, and reducing skips, freezes, and stutters. Seamless switching is

achieved by time-aligning the different versions of the content. This approach addresses

the weaknesses of traditional streaming approaches and progressive download, and thus

is advocated by several companies and organizations, e.g. Microsoft [72], Apple [73],

Adobe [74], MPEG [75], etc.

Figure. 5.1 shows a typical adaptive HTTP streaming architecture. The media con-

tents are processed through video adaptor and/or video segmenter and then fed into orig-

inal HTTP server. CDNs and/or HTTP caches assist the content dissemination to end-

users. There will be multiple versions of the same video encoded with different bitrate
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– all are available for clients to request. Usually, there are two separate groups: wire-

less and wireline. Wireline devices are relatively stable and with continuous connections.

Wireless devices, on the other hand, experience variable network conditions and somehow

ephemeral. Because of the inherent discrepant nature of these two groups, we might treat

them separately. In other words, we need to design adaptive client request algorithm with

fast convergence speed to guarantee video viewing quality.

5.1.3 Previous Work

Many efforts have been devoted to identify issues and evaluate system performance

of adaptive HTTP streaming. [76] investigates the HTTP adaptive streaming performance

under vehicular mobility. The authors conducted several experiments with a proprietary

implementation of HTTP adaptive streaming system driven by HSDPA wireless network

bandwidth mobility trace. The authors concluded that HTTP adaptive streaming is effec-

tive in responding to the widespread fluctuations that are inherent in vehicular mobility

and ultimately achieving an improved viewer experience. [77] considers establishing mul-

tiple HTTP-based request-response streams for video streaming. Request-response streams

are able to scale with the available bandwidth by increasing the chunk size or the number

of concurrent streams. It is shown that by establishing multiple HTTP connections the

streaming quality does not deteriorate rapidly as would do single connection. [78] presents

an in-depth experimental evaluation of rate adaptation algorithms of two commercial HTTP

streaming player (Smooth Streaming, Netflix) and one open source player (OSMF). It is

found that Smooth Streaming operates conservatively in presence of bandwidth variations

and avoids large transitions in the requested bitrate. It is inefficient in handling large band-

width spikes. Like the Smooth Streaming, Netflix also maintains two states. However,

larger video buffer occupancy at startup and larger variation of fragment request interval

are observed. Adobe OSMF player has small playback buffer, therefore, it usually oscillates

between the lowest and highest bitrates in presence of bandwidth variations. [79] presents

some interesting results of how Akamai Adaptive Video Service performs with changing

bandwidth and competes with TCP flow. The video adaptation controller is inefficient in
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that it takes about 150 seconds to settle down at correct quality level when increase of

bandwidth occurs. Besides, when a sudden drop in the available bandwidth occurs, short

interruptions of the video playback can occur due to the a large actuation delay. [80] tries

to address the inefficiency issue of the default Akamai rate control algorithm. The authors

propose to shift the controller from client to the server and utilize sending queue buffer

length to adjust sending rate. This design also inspired us to consider scalable video cod-

ing and server-side control. [81] proposes a heuristic algorithm to control video switch-up

and switch-down for HTTP adaptive streaming. The decision is made based on the ratio

of HTTP segment duration and its fetch time. If the ratio is larger than a threshold deter-

mined by representations bitrate, the video will be ramped up; if the ratio is less than a

fixed threshold, the video will be ramped down.

5.2 Client Chunk Request Strategy Design

5.2.1 Problem Description

First, we introduce some notations used in the following discussion. Denote Li the

quality level of video chunk i. Ti is the download finish time of chunk i. So Ti − Ti−1 is

the downloading time of chunk i, to be denoted as ∆Ti. Ri is network throughput when

downloading chunk i. δ denotes target playback buffer level, measured in second. Pi is the

playback deadline of chunk i. Di = Pi − δ is the deadline of fetching chunk i so that the

target playback buffer level is maintained. The notations are summarized in Table 5.1.

When streaming starts, the client sends HTTP request (GET signal) of certain chunk

to the server. The server, upon receiving the HTTP request, deliver the requested chunk to

the client. Fig. 5.2 shows a sequence of requests from client. Note that, the downloading

time for different chunk is varying due to the network dynamics and various chunk size

at different quality level. Then, the problem is given the sequence of chunk requests and

the finish time of each chunk up to chunk k, at which quality level should chunk k + 1 be

requested? If the quality level for chunk k + 1 is too high, the network can not deliver the
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Table 5.1: Notations

Notation Description
Li quality level of video chunk i
Ti download finish time of chunk i
∆Ti downloading time of chunk i
Ri network throughput when downloading chunk i
Di deadline of fetching chunk i
Pi playback deadline of fetching chunk i
δ target playback buffer level

i i+1 k 

Ti Ti+1 Tk 

. . . 
time 

Video  
chunks 

Li Li+1 Lk 

k+1 

Lk+1 

Tk+1 

ΔTi+1 

Figure 5.2: Client’s Chunk Requesting Process.

chunk on time so that the video may freeze. On the other hand, if the quality level is too low,

then the available bandwidth is not fully utilized. Jumping between different quality levels

also introduces quality deterioration and thus the level switch should be additionally taken

into account at decision making for next chunk. Additionally, the playback buffer should

be maintained at a certain fullness level in order to combat the temporally unpredictable

network QoS degradation to keep the video playback continuous.

5.2.2 Problem Formulation

For simplicity, we assume each chunk has unit duration. Since the objective of the

chunk request strategy is to maximize the overall quality of the delivered video and to min-

imize the number of quality fluctuations while maintaining certain playback buffer fullness,
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we define a cost function Gi for chunk i as follows.

Gi = −αLi + β(Li − Li−1)2 + γITi>Pi−δ (5.1)

Here, α, β, γ are three non-negative weighting coefficients determining the importance of

the three factors (quality, quality fluctuation and playback buffer level) at decision making.

δ is the preset target playback buffer level. ITi>Pi−δ is an indicator function taking value

of either 0 or 1. If Ti > Pi − δ is true, i.e., downloading chunk i takes too long so that

the target playback buffer level is not maintained, ITi>Pi−δ = 1. Otherwise, ITi>Pi−δ = 0.

Intuitively, γITi>Pi−δ is the penalty of not maintaining target playback buffer level. Ti is a

random variable depending on the dynamic underlying network throughput.

Given an initial state, i.e., the first chunk L0, and an admissible chunk requesting

sequence ~L, the overall objective function can be defined as

J~L(L0) = E~T (
N−1∑
i=0

Gi +GN) (5.2)

if we assume the cost for all chunks are additive. The set of decisions that can be taken by

the client corresponds to the set of quality levels available at the server. An optimal chunk

requesting sequence ~L∗ is one that minimizes this cost; that is

J~L∗(L0) = minJ~L(L0) (5.3)

This problem is a dynamic programming problem [82] that satisfies two principal

features: (1) a cost function that is additive over time; and (2) an underlying dynamic

system (the network throughput).

5.2.3 Heuristic Algorithm

If the underlying network throughput can be perfectly measured or predicted, then

standard algorithm can be applied to find the optimal chunk request sequence ~L∗. In reality,

however, it is hard to obtain the perfect network information and the complexity to find

the optimal request strategy for all chunks is formidable. Therefore, we resort to design
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Dk+1 = k+1-δ Observed: Tk-1 

Figure 5.3: Quality Level Decision for Chunk k + 1.

a heuristic algorithm which determines the quality level for next chunk on-the-fly. Our

heuristic algorithm is based on the “principle of optimality” [82] and consists of two stages:

the first one is estimation of sustainable quality level and the second one is decision on

quality level for next chunk.

For simplicity of presentation, we assume uniform rate distribution of each quality

level, i.e., quality level l produces bitrate lR. We also assume γ is much larger than α and

β, so that the penalty of playback buffer running low is not affordable. Suppose chunk k

has been downloaded, and the decision is going to be made for chunk k + 1, as shown in

Fig. 5.3. We have observed Tk−1, Tk and Rk: the finish time for chunk k − 1 and chunk k

and the network throughput during downloading chunk k. The deadline for downloading

chunk k+1 is k+1−δ without causing penalty. We predict the network throughput during

downloading chunk k + 1 will be the same as during downloading chunk k. Therefore, we

can estimate the sustainable quality level during time Tk−1 to Dk+1 as

Lεk =
(Dk+1 − Tk−1)Rk

2 ∗R
(5.4)

The numerator in (5.4) represents the maximum bits can be delivered within this duration.

The denominator converts the bits into quality level over the two chunks.

After estimating the sustainable quality level, we are now ready to determine the level

for chunk k + 1 using the rule:

Lk+1 =

Lk + (N − k) α
2β

if Lk < Lεk − (N − k) α
2β
,

2Lεk − Lk otherwise
(5.5)
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Figure 5.4: Diagram for the Testbed.

The intuition behind this is that if the quality level for chunk k is too low, then try rate

probing by increasing quality level for chunk k + 1; otherwise, keep rate smoothing by

setting the quality level for chunk k + 1 to sustainable level. We consider every 6 chunks

as a decision unit so that N = 6, and k is reset to 0 every 6 chunks.

5.3 Performance Evaluation

5.3.1 Testbed Implementation

To evaluate the proposed strategy, we implement a testbed based on Apache HTTP

server [83] and VLC [84] video player. We implemented a HTTP request module and use

the proposed strategy to determine quality level for each chunk. A greedy algorithm which

matches requested quality level to estimated network throughput is also implemented for

comparison (Method 1). We use DummyNet [85] to generate network dynamics so that the

bandwidth varies on the link connecting server and client. Fig. 5.4 shows the diagram for

the testbed.

A 10-min video content is generated using ffmpeg [86] and an open-source video

segmenter [87]. There are 5 quality levels being 200kbps, 400kbps, 600kbps, 800kbps and

1Mbps. Each segment contains 5-second video. δ is set to be 3 which is equivalent to

15-second video. We evaluated two parameter settings: α = 1, β = 6, which represent

switching sensitive video (Method 2) and α = 6, β = 1, representing switching non-
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(a) Gradual Bandwidth Changes

(b) Hi-Lo Bandwidth Changes

Figure 5.5: Bandwidth Variation Trace for Experiment.

sensitive video (Method 3). Two bandwidth dynamics scenarios are considered as shown

in Fig. 5.5. We consider the average playback quality level and playback quality level

variation as the performance metrics.

5.3.2 Experimental Results

Fig. 5.6 shows the performance comparison of the three methods under gradual band-

width change as in Fig. 5.5(a). The playback quality level over time for Method 1 follows

the bandwidth changes, but the resulting quality level variation is relatively high. Method 2,

as the parameter setting suggests switching sensitive, has a very low quality level variation.

No quality level jumping larger than two is observed. In the mean time, it also provides

a higher average quality level than Method 1. Method 3 has the highest average quality

level among the three, but it also incurs highest quality level variation due to the aggressive

parameter setting emphasizing on average playback quality.

For the Hi-Lo bandwidth change in Fig. 5.5(b), we only show the results for Method

1 and Method 2. Again, Method 2 not only provides a higher average quality level but also

a much smaller quality level variation.
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Figure 5.6: Playback quality level over time for the three methods under gradual bandwidth

changes.

Figure 5.7: Playback quality level over time for Method 1 and Method 2 under Hi-Lo

bandwidth changes.
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Figure 5.8: System Diagram for SVC Based Streaming.

5.4 SVC as Enhancement

In [80] the authors propose to shift the controller from client to the server and utilize

sending queue buffer length to adjust sending rate for Akamai video streaming service.

This design also inspired us to consider scalable video coding with preordering and server-

assisted control.

5.4.1 System Designs

Fig. 5.8 shows the system diagram for the proposed design. This system does not

rely on client to send sequential HTTP requests for video chunks. Instead, the client sends

request for the interested video at the beginning only. Once the playback starts, the server

will control how to adapt the rate for each video chunk.

The scalable coded video is divided into Group of Pictures (GOP). One or more GOPs

can be grouped into one video chunk. Every video chunk will pass through the ordering

module which generates pre-ordered packets based on the quality optimized layer ordering

strategy (c.f., Chapter 3). The controller will inform the ordering module the video param-

eters so that the ordering is done properly. After the ordering, all video packets within the

chunk will be fed into the sending buffer.

Packets queued in the sending buffer are intended be sent using TCP protocol. How-

ever, not all packets within the video chunk can always be sent. Depending on the network

condition, the TCP throughput may vary over time, therefore, the controller sets up a send-

ing deadline for each video chunk in order to guarantee continuous playback at the client
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side. After sending the video chunk up to its sending deadline, the residual packets will be

cleared out and the sending buffer is reloaded with next video chunk. If the TCP through-

put is higher than the full video rate, all video packets are sent within the deadline. In this

case, the controller immediately starts the next video chunk upon finishing previous video

chunk.

We use a simple algorithm to determine the sending deadline for each video chunk.

The controller can easily estimate the playback buffer level Tp if the client reports the target

playback delay Td. Suppose the already-sent video length is Ts, the consumed video length

is Tc (which is estimated as current time minus streaming start time), then the estimated

playback buffer level is Tp = Ts − Tc + Td. We set the sending deadline for each video

chunk as σTp, where σ is a control parameter.

5.4.2 Performance Comparison

We evaluate the proposed design on the ns-2 [70] simulator. We implemented a

TCP-based SVC adaptive streaming system and a HTTP adaptive streaming system for

comparison. We use the algorithm proposed in [81] for HTTP adaptive streaming.

Comparison System

The client monitors the ratio of chunk duration and its downloading time, denoted as

µ. ε is defined as the maximum of rl+1−rl
rl

∀l ∈ [1, 2, ..., L]. If µ > 1 + ε and the playback

buffer at lease contains 10-second content, then increase the quality level of next chunk. If

µ < 0.67, then ramp down the quality level to the highest possible satisfying the observed

downloading bandwidth.

Simulation Settings

We encoded a SVC video with GOP size 32, frame rate 30Hz. To compare fairly with

the HTTP adaptive streaming, only temporal scalability is enabled so that there is no coding

efficiency loss compared with single layered coding. We obtained 6 rate points in total, i.e.,
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158.6kbps, 268.8kbps, 471.9kbps, 753.1kbps, 1096.7kbps and 1537.5kbps. The generated

video packet trace is used to drive the simulator. In HTTP adaptive streaming case, each

video chunk contains 5-second video while for TCP-based SVC adaptive streaming, each

chunk has 4 GOPs. σ is set to 0.7.

We use a dumbbell topology to simulate the network where a single bottleneck link is

shared by various flows. We simulate two scenarios. The first scenario (TCP background

traffic) has 20 background FTP flows each starts every 8 seconds. All FTP flows stop at

200. The bottleneck link has 20Mbps capacity and the round-trip delay is 20ms. The second

scenario (UDP background traffic) has 2 background UDP flows with 800kbps each. One

flow starts at 50; the other starts at 130; both end at 250. The bottleneck link has 2Mbps

and round-trip delay is 20ms. In each scenario, we consider two cases: the first case is

Video-on-Demand (VoD) service where all video chunks are available to client at any time;

the second case is Live streaming service (Live) where video chunks are made available to

client in a moving window fashion. We set the window to be 20 second ahead of streaming

start time, (e.g. at time 0, client can get at most 20 second, and so forth). In both scenarios,

the playback delay is 10 second, and streaming starts at 10 (so the player starts playback

at 20). For clarity of presentation, we shift all results (playback bitrate over time) along

x-axle to the left by 20.

TCP background traffic

Fig. 5.9 shows the playback rate comparison of TCP-based SVC streaming (noted

as TCPsvc) and HTTP adaptive streaming (noted as HTTP) with TCP background traffic

under VoD case. We can see that TCPsvc adapts to available bandwidth much quicker than

HTTP. When the traffic load from background FTP flows increases, as can be seen around

75, TCPsvc adapts the rate to a lower level and maintains a relatively stable playback rate

thereafter. On the other hand, playback of HTTP stays at high rate point even if the network

is overloaded. This is due to its pre-buffered high quality chunks. Starts from 100, it backs

off to lower level. We can see that occasionally the backoff is too conservative for HTTP

causing a very low playback quality. On average, TCPsvc achieves 1152kbps which is
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better than HTTP’s 972kbps.
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TCPsvc ave 1152.87 kbps

HTTP ave 972.13 kbps

Figure 5.9: Playback Rate Comparison of SVC streaming and HTTP adaptive streaming

with TCP background traffic: VOD case.

In case of Live streaming (shown in Fig. 5.10), the performance for HTTP adaptive

streaming is severely degraded, resulting average playback rate 748kbps. Interestingly, the

playback rate starts to drop around 40. The reason is that as the link is not over loaded,

HTTP downloads the video chunk faster than its duration. As the video content at the

server is only 20-second ahead, HTTP client stops requesting due to the lack of content at

the server until it sees new content available. Steaming stalls but playback continues for

HTTP client. During this “waiting” period, other FTP flows see no video traffic and the

TCP rate control increases FTP sending rate. This causes HTTP back off to lower level at

next available chunk as the throughput for next chunk is dropping. It takes about 30 second

for HTTP to recover the full transmission rate (the time different between the two spikes).

After that, HTTP backs off again as more FTP flows join the system. On the other hand,

the performance of TCPsvc is slightly affected, achieving average playback rate 1024kbps.

This result indicates that TCP-based SVC adaptive streaming is a good candidate for live

video streaming.
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TCPsvc ave 1024.07 kbps

HTTP ave 748.44 kbps

Figure 5.10: Playback Rate Comparison of SVC streaming and HTTP adaptive streaming

with TCP background traffic: Live case.

UDP background traffic

Fig. 5.11 and Fig. 5.12 show the playback rate for the two schemes under VoD case

and Live case respectively. We can see that TCPsvc performs the same under both cases

indicating that the available bandwidth is efficiently utilized. On the other hand, as HTTP

adaptive streaming tries to ramp up the quality level gradually, the available bandwidth is

higher than the request video rate, so the video playback buffer is built up. This allows

HTTP to maintain at a high playback rate even though the available bandwidth is dropping.

The difference between VoD and Live case is the buffered video length. The average play-

back rate for VoD and Live cases are 785kbps and 733kbps respectively. TCPsvc achieves

1002kbps under both cases which is much higher than HTTP scheme.

5.5 Summary

In this chapter, we deal with adaptive HTTP video streaming, say the client chunk

request strategy design. A good playback quality results from high average playback qual-

ity level, low quality switching and no playback freeze. To this end, we propose a cost
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TCPsvc ave 1002.55 kbps

HTTP ave 784.93 kbps

Figure 5.11: Playback Rate Comparison of SVC streaming and HTTP adaptive streaming

with UDP background traffic: VOD case.

function associate with each video chunk capturing the impacts from three factors: its qual-

ity level, its contribution to quality variation and its contribution to playback buffer level.

Assuming the cost function is additive, we can convert the client chunk request strategy

into a Dynamic Programming problem. Due to the difficulty of estimating the underly-

ing network dynamics and high-complexity of directly solving the problem, we design a

heuristic algorithm to solve it. We evaluate the algorithm with a testbed developed. To

further improve the streaming performance, we consider scalable video coding combined

with server-assisted TCP transmission. A simple controller for the server is proposed by

setting up the sending deadline for each per-ordered video chunk. The simulation results

demonstrate advantages of such design comparing with existing HTTP adaptive streaming

design.
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Figure 5.12: Playback Rate Comparison of SVC streaming and HTTP adaptive streaming

with UDP background traffic: Live case.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Major Contributions

In this thesis, we consider application layer system designs for video streaming. Specif-

ically, we apply advanced video coding scheme, i.e., scalable video coding, to provide

low-complexity in-network rate adaptation. Three particular video streaming architectures

are investigated: P2P-based video streaming, proxy-assisted wireless video streaming and

HTTP based adaptive streaming. Within each architecture, we propose novel utility func-

tions and algorithms for maximizing the utility to help the system design and improve the

performance.

First, we model the mesh-based layered P2P streaming system into a optimization

problem with the objective being maximizing the aggregate video quality of all peers con-

strained by the network capacity. To incorporate contribution-awareness, we propose taxa-

tion as a peer-incentive mechanism and augment the utility optimization problem to make

the solution incentive-compatible. The tax rate controls the tradeoff between the system

efficiency, fairness and incentives. The proposed taxation-based scheme guarantees the

streaming rate of a node is at least proportional to its uploading contribution. The left-over

uploading bandwidth (taxed portion) from each node is used to help “slow” peers, there-

fore improves the social welfare due to the concavity of utility function (video quality).

Using the taxation-based utility optimization problem, we solve for the streaming rate for
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each node with various network settings. From the results, we obtain several guidelines

for taxation-based P2P layered streaming design including which topology is preferred and

how to use the uplink bandwidth efficiently. Then, we propose practical system designs in-

cluding layer subscription, chunk scheduling, and mesh topology adaptation. For layer sub-

scription, Additive Increase Additive Decrease (AIAD) and exponential backoff are used to

help peers probing the network resources. In the meantime, peers run a parallel subscrip-

tion decrease process to ensure all subscribed layers can be received. Chunk scheduling

consists of two parts: requesting and serving. The chunks are requested in the order of

their importance. The probability of choosing a specific peer to serve the missing chunk

is proportional to its serving rate to that peer. Peers use a replacement index (weighted

sum of chunks) to determine which neighbor to be replaced by other peer. Extensive trace-

driven simulations demonstrate that the proposed designs can effectively drive layered P2P

streaming systems to the desired operating point given a tax ratio. The taxation-based P2P

streaming designs allows us to freely adjust the balance between the social welfare and

individual peer welfare.

Second, to better incorporate SVC into streaming system design, we study its rate and

subjective quality tradeoff. By leveraging the parametric models from prior work [13],

we give a criteria for choosing the optimal frame rate and quantization stepsize under a

rate constraint, which is used to obtain the optimal subjective quality. We further model

the optimal rate-quality tradeoff with a exponential function where the model parameter

is content dependent. The model is highly accurate for all test sequences. We also show

the concavity of this model so that it can be easily incorporated into network utility max-

imization framework. To facilitate SVC rate adaptation, we propose a quality optimized

layer ordering strategy. The resulting ordered stream has the property that each additional

layer offers maximum quality improvement for the rate increment. At the same time, layer

decoding dependency is satisfied. The layer ordering can be easily implemented in the net-

work (at proxy/CDN node) or at the original server. With such a ordered SVC stream, the

proxy/server can simply keep sending additional layers, until the rate target is reached.

Third, with the rate-quality model and layer ordering strategy developed, we optimize
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streaming of multiple scalable video streams through a common wireless access node. To

combat the highly dynamic wireless link condition, we envision a proxy node co-located

with the access node. Such a design requires no additional modifications at either the video

servers or the mobile clients as video adaptation is performed at the proxy and is agnostic

to both ends. The proxy is in charge of tracking the time-varying status of the wireless

access links connecting to the access node, while dynamically adapting the traversing scal-

able video streams. It iteratively allocates rates of different video streams to maximize a

weighted sum of video qualities associated with different streams, based on the periodi-

cally observed link throughputs and the sending buffer status at the access node. After

determining the sending rate for each stream, the proxy sends preordered video packets in

each stream sequentially until the rate budget is used up. Simulation studies show that our

scheme consistently outperforms TFRC in terms of agility to track link qualities and over-

all subjective quality of all streams. In addition, the proposed scheme supports differential

services for different streams, and competes fairly with TCP flows.

Forth, as the adaptive HTTP streaming gains increasing interest as a video delivery

solution, we develop novel client chunk request strategy to improve its video viewing qual-

ity. Each chunk request will impact the average playback quality, the variation of playback

quality and the playback buffer level. We propose a cost function for each chunk by jointly

considering the three factors. By assuming the additive property of cost function over all

chunks, we convert the problem of finding the optimal chunk request sequence minimizing

the total cost, into a dynamic programming problem. Due to the difficulty of predicting the

underlying network dynamics and high complexity involved in solving the problem exactly,

we propose a heuristic algorithm to solve it. The algorithm will either enter rate probing

state or rate smoothing state depending on the estimated sustainable throughput for the next

chunk. To evaluate the performance of the proposed algorithm, we develop a testbed with

Apache HTTP server [83], DummyNet [85] and VLC [84] video player. We implement a

HTTP request scheduler module for VLC based on the proposed algorithm. The experi-

mental results show that the proposed chunk requesting algorithm has a smoother playback

quality than greedy algorithm. To further improve the performance, we propose a TCP-
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based SVC adaptive streaming scheme. The server transmits as many video packets as

possible within each chunk in their order of importance in the allowed time for this chunk;

the allowed time is set to be a fraction of the buffered video length at the client side (the

server can easily estimate it), so that the buffer underflow can be avoided. As this scheme

allows partial transmission of the video chunk, it is more flexible than current HTTP adap-

tive streaming which offers no such freedom. Simulation results show that TCP-based SVC

adaptive streaming offers a higher average playback rate and faster convergence speed than

adaptive HTTP streaming.

6.2 Future Work

6.2.1 Extension of Proposed Rate-Quality by Considering the Spatial

Scalability

Our proposed rate-quality model has considered the joint impact of temporal and am-

plitude scalability provided by the SVC. The additional dimension provided by spatial

scalability is not addressed. Practically, it is desirable to investigate the quality and rate

variation introduced by spatial scalability, and to incorporate the spatial resolution impact

into current metrics in addition to the temporal and amplitude resolutions. The quality op-

timized layer ordering needs to be revised also. Our preliminary results show that there

exists a simple backward search algorithm (from highest layer to lowest layer) that has

acceptable results [88].

6.2.2 Implementation of Server-Assisted Adaptive Streaming

The simulation results in Chapter 5 confirm the advantages of server-assisted adaptive

streaming of layered video over the client-based adaptive streaming of single layer video.

The next step would be implementing the real system. There are many open-source plat-

forms for video streaming development, e.g., Darwin Streaming Server [89], OSMF [74].

By reusing the code base from these platforms, the developing process can be simplified.
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It is also desirable to have real-time scalable video encoder/decoder. Fortunately, we can

also start with public domain solutions, e.g., opensvc [90].

6.2.3 Multi-Party Video Conference

Another active research area in application layer video optimization is multi-party

video conference. In our preliminary studies, we measured the two most popular multi-

party video conference solutions: Skype [91] and Google+ [92]. From the measurement

results, we understand the system architecture of both systems and we have identified sev-

eral issues therein.

As both systems rely on dedicated servers to assist video transmission, the operation

cost is inevitably high. To relieve this problem, we will consider P2P architecture as a

candidate solution. Based on the rate-quality model developed, we can formulate the sys-

tem in a utility maximization framework to determine the receiving video rate for each

participant. Then, we will design sophisticated data delivery route to fulfill the video rate.

Scalable video coding can guarantee graceful degradation in face of network condition

changes.

We will further investigate the data transmission strategy to improve the overall video

throughput. From our preliminary simulation results, we noticed that UDP with prioritized

retransmission is superior to TCP or UDP with FEC schemes. This inspires us to consider

UDP with prioritized retransmission as a candidate for multi-party video conference. We

will evaluate the true performance of this scheme with real network experiments.
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