
viii 

 

PERCEPTUAL QUALITY ASSESSMENT OF 

VIDEOS AFFECTED BY PACKET LOSSES 

by 

Tao Liu 

Advisor: Yao Wang 

 

Submitted in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy (Electrical Engineering) 

January 2010 

 
 

Due to rapid advance of various video applications and services, such as video 

telephony, mobile video broadcasting, and Internet Protocol television (IPTV), there is an 

increasing demand for accurate and effective quality assessment of underlying videos. 

Accurate video quality assessment is crucial to video codec development, network 

protocol planning, in-network quality monitoring, quality assurance of end users, etc.  

This thesis develops several objective quality metrics for videos impaired by 

packet losses. Because transmission error is one of the main causes of quality 

degradations of networked video, a deep investigation on impacts of different attributes 

of packet losses on perceptual video quality is performed. Based on the observed 

relationships between perceptual video quality and various attributes of packet losses, e.g. 

error length, the loss severity, loss location, the number of losses, and loss patterns, we 



incorporate a prior quality metric for coding artifacts and propose a novel video quality 

metric considering both coding and packet-loss artifacts. In the hope of improving the 

accuracy of quality metric for video sequences, we perform another study which focuses 

on quality assessment of single packet-loss-affected video frames. We evaluate the 

impacts of various properties of human visual system on quality of video frames, and 

develop quality metrics considering coding and packet-loss artifact, first separately and 

then jointly. In order to further improve the prediction performance of existing quality 

metrics, we exploit several methods of incorporating saliency into a video quality metric. 

The better performance of proposed saliency-aided quality metrics confirms the 

significant role of saliency in video quality assessment. Finally, we extend our study on 

saliency-aided video quality assessment to prediction of packet loss visibility. We update 

an existing loss visibility predictor with saliency-based features, and show that 

considering saliency can lead to improved prediction accuracy.    

To explore relationships between various video attributes and perceptual video 

quality, we carefully design and perform extensive subjective video quality tests. The 

obtained subjective results not only confirm our assumptions about such relationships, 

but also inspire us to pursue our research in several novel directions. These subjective 

data also show fairly high correlations with the proposed objective quality measures.
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Chapter 1     

Introduction 

 

Due to rapid advance of various video applications and services, such as video 

telephony, mobile video broadcasting, high definition television (HDTV), and Internet 

Protocol television (IPTV), there is an increasing demand for the accurate and effective 

quality assessment on underlying videos. An accurate video quality assessment is crucial 

to the video codec development, network protocol planning, in-network quality 

monitoring, quality assurance of end users, etc.  

Since human are the very end users, the perceived video quality can be assessed 

in two different ways, i.e., subjective quality evaluation and objective quality prediction, 

either of which has its own merits and shortcomings. Subjective evaluation is to assess 

video quality from subjective ratings from a group of users. The advantage of this quality 

assessment method is that the obtained video quality ratings from user samples can be 

very close to actual assessment from a large amount of population, if the subjective tests 

are well designed and performed. On the other hand, one of the disadvantages of this 

quality assessment approach is that it is such a time- and effort-consuming process that 
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planning and performing one such test for a few of video clips requires several hours to 

several weeks and dozens of subjects, and hence quality assessment of a large number of 

test sequences in a batch fashion is not even possible. And it is even not feasible in some 

circumstances, e.g. real-time quality assessment.  

Therefore, a more efficient quality assessment solution that requires no 

involvement of subjects once developed and is more applicable for more applications is 

badly needed. Objective quality prediction, as an alternative solution to subjective quality 

evaluation, has all these desirable features.  Because it can emulate the humans’ judgment 

on video quality based on mathematic models and can be easily applied to any test video 

sequence, it receives more and more attention in both industrial and academic 

communities. However, lack of thorough understanding about human visual perception 

system and large amount of possible video quality-affecting elements, both application-

dependent and content-dependent, make the design of such effective objective video 

quality metrics a very challenging task. 

 During years of continuous efforts of researchers, a significant progress of study on 

video quality assessment has been made. A few objective video quality metrics have been 

standardized by ITU (International Telecommunication Union). However, because so far 

there is no single universal quality metric that can achieve satisfactory performance to 

replace the subjective assessment, there are two parallel active research directions being 

carried out in this field. One is to continue the study of effective and accurate subjective 

quality assessment schemes for different video applications so that they can not only 

provide improved quality judgment for various target videos, but also provide solid 

“ground truth” for the development and validation of objective quality metrics. The other 
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is to improve the performance and applicability of objective quality metrics so that they 

can robustly cope with various emerging video applications.  

Due to the rapid development of network-oriented consumer multimedia 

electronics in recent years, the quality evaluation of videos transmitted over various 

networks becomes more and more pressing, and it hence becomes one active research 

field in the community of quality assessment. Among other artifacts, transmission loss is 

of the main causes of quality degradation of transmitted videos. Therefore, in this thesis, 

we attempt to investigate objective quality assessments of videos affected by packet 

losses from several different perspectives. Specifically, we first investigate the 

relationships between several attributes of packet losses and perceptual quality of the 

video sequence. Then we perform a study on quality evaluation of single frames of 

packet loss impaired videos. In addition, we also study how saliency, as one of the most 

important components of human visual system (HVS), affects subjective visibility of 

packet losses and perceptual video quality, and develop several saliency aided approaches 

to evaluate both the visibility of packet losses and the perceptual video quality.  

 In the remainder of this chapter, we will give reviews of both studies on subjective 

and objective quality assessments, respectively, where some standardized and some 

nonstandard methods are discussed.  

1.1 Subjective Video Quality Assessment: Review of 

Standard and Nonstandard Protocols 

When it comes to video quality evaluation, subjective quality assessment has been 

one essential research topic for a long time. Subjective quality evaluation usually requires 
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a subjective experiment where the quality of each tested video sequence is produced by 

the mean of opinion scores (MOS) of the video quality from subjects. As the most 

accurate and reliable way to evaluate the perceptual video quality, subjective quality 

assessment provides the “ground truth” for evaluation and validation of objective quality 

assessments. 

To ease the design of subjective quality evaluation tests, and promotes the inter-

usability of the results from different subjective test, based on the inputs of VQEG 

(Video Quality Expert Group), ITU suggested detailed protocols of conducting subjective 

experiments to measure perceptual video quality in its recommendations ITU-R Rec. 

BT.500 [1] for television system, and ITU-T Rec. P.910 [2] for multimedia application, 

in 2002 and 2008, respectively. These recommendations are similar and both suggested 

some most commonly used procedures for subjective quality assessment, such as viewing 

environment and procedures, criteria for the selection of viewers and test videos, and data 

analysis methods.  Most of research on subjective quality assessment followed these 

standards.  

According to the availability of reference video sequence presented in subjective 

tests, all the suggested test methods can be categorized as double-stimulus or single-

stimulus scheme. The following are brief descriptions to some most common test 

schemes as well as their attributes, and please refer to [1] [2] for more details.      

 

Double-stimulus Methods 

Double-Stimulus Continuous Quality Scale (DSCQS)  The viewers are presented with 

two videos, one of which is a source unimpaired sequence, and the other of is a test 
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(processed) version of that sequence. The sequence presentation orders are randomized. 

Viewers are asked to watch each video twice and evaluate the picture quality of both 

sequences using a grading scale (DSCQS, see Figure 1.1 and Figure 1.2) at the second 

presentation.  

 In previous VQEG studies that investigates contextual effects, it was shown that DSCQS 

was one of the most reliable methods. However, the shortcoming of DSCQS is its redundancy 

that limits the scale of test sequences. 

 

Double-Stimulus Impairment Scale (DSIS) Viewers are presented with two sequences, 

first of which is source unimpaired sequence, and the second of which is a test 

(processed) version of that sequence. Viewers are asked to rate the level of impairment 

introduced in the test sequence with the first one as reference. The grading scale is from 

imperceptible (5), perceptible, but not annoying (4), slightly annoying (3), annoying (2), 

to very annoying (1). 
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Figure 1.1 Presentation structure of test material for DSCQS (from ITU-T Rec. BT.500). 
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Simultaneous double stimulus for continuous evaluation (SDSCE) In the previous 

methods, the viewing time duration of video sequences under evaluation is generally 

limited to 10 s, but it is not representative of much longer videos happening in real 

service. So SDSCE method was designed for this purpose.  

In SDSCE, viewers are required to watch two sequences side-by-side in the same 

time (see Figure 1.3): one is reference distortion-free sequence, the other one is its test 

version. And they are requested to check the differences between the two sequences and 

to judge the fidelity of the test video with a slider. In order to make meaningful statistical 

analysis, duration of each test sequence should be at least 2 min. However, the drawback 

of this method is that viewers have to shift their attentions between two pictures from 

time to time.  

 

Single-stimulus Methods 

 

Figure 1.2 DSCQS grading scale (from ITU-T Rec. BT.500.) 
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Absolute Category Rating (ACR)  Since any of the double-stimulus methods cannot 

reproduce the real-world reference-free viewing conditions, ACR, as a single stimulus 

method, is designed to test the subjective quality scores given by viewers without explicit 

references. 

ACR is a very efficient method and a large number of sequences can be tested in a 

relatively short time. Due to the lack of reference, it is assumed that all the references are 

perfect distortion-free video sequences. However, in most practical situations, some 

artifacts are inevitably introduced in the video capture phase, and hence these artifacts 

cannot be distinguished from the ones which are generated for testing purpose with this 

method.  

To solve this issue, later on VQEG introduced ACR-Hidden Reference (ACR-HR) 

method [2], where the original unimpaired versions of test sequences are inserted 

randomly into the test dataset, and then also judged by viewers, but the viewers are 

 

Figure 1.3 Example of display format for SDSCE (from ITU-T Rec. BT.500). 
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unaware of the existence of these references.  Usually differential MOS (DMOS) 

between reference and test sequences is calculated to remove the reference effect, which 

is called reference removal.  

 

Single-Stimulus Continuous Quality Evaluation (SSCQE) SSCQE was designed for 

measuring continuous subjective quality of longer video sequence without reference. 

Viewers are presented with one about 30 min sequence, just once and without any 

reference, and asked to give quality ratings instantaneously with a sliding bar as the video 

is playing.  

However, this method is not used as frequently as double-stimulus method by 

other researchers. In order to produce a single quality score for test sequence, the 

continuous scores need to be calibrated first, rather than simply averaged over the time, 

because there has been shown that memory-based biases can prefer the sequence with 

noticeable impairments prior to last 10-15s of the sequence. Another issue associated 

with this method is the varying delay in different viewer response time which may 

influence the assessment results.  

The main difference between the two protocols of double-stimulus and single-

stimulus is that, with the former, the viewer can compare the reference and processed 

videos and hence be more precise in their judgments; whereas with the latter they see the 

video only once and have to judge its quality. Double-stimulus methods give a more 

precise quality rating in each vote but require a longer time to perform the tests than 

single stimulus methods. Single-stimulus methods enable the collection of more 

subjective judgments in a limited time and therefore permit more votes to be obtained to 
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increase the accuracy of the test. In the end, these two protocols have quite similar 

performances in terms of precision [1].    

All of the methods described above have strengths and limitations and they are 

intended for different applications, but they share the same precautions that must be taken 

when designing the test schemes: 

• Complex, which increases the difficulties for viewers to understand and perform 

the tests,  

•  Time consuming, which may cause viewers’ fatigue and decrease of vote 

accuracy,   

• Expensive, which is due to the need for dedicated test resources.  

After the standardization of these subjective quality test methods, a significant 

amount of research efforts were made on various aspects of study of subjective quality 

assessment.  

Some researchers have performed investigations on the relationships between 

subjective test results and subjective test protocols and proposed several approaches to 

improve the reliability and efficiency of the existing subjective quality assessment 

methods.  A study [3] performed by NTIA/ITS (National Telecommunications and 

Information Administration/The Institute for Telecommunication Sciences) compared 

several aforementioned methods and concluded that SSCQE under proper design can 

produce quality estimates comparable to DSCQS. In a recent project report [4] of VQEG, 

subjective results obtained with ACR-HR method in different labs achieved very high 

consistency, which shows the effectiveness of this test method. Because of different 

ranges of rating scales of these recommended methods, a study on the impact of rating 
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scale on the subjective quality scores is performed [5]. The impact of clipping effect 

caused by the two extreme ends of rating scale is observed, but the assumption that 

discrete rating scales can increase the standard deviation of MOS is not supported by 

practical subjective test results. With respect to the issue of reusability of subjective 

results from different experiments, the work in [6] [7] propose to use the subjective 

scores from the common set of test sequences from different tests to map all the 

subjective scores onto a single scale so that available subjective data is greatly increased 

and hence the inter-test comparisons are enabled. In [8], the impact of different types of 

monitors, i.e. cathode ray tube (CRT) and liquid crystal display (LCD), and their 

resolutions used in the subjective tests on the subjective results are investigated, and the 

conclusion is reached that professional CRT and consumer LCD monitors can achieve 

statistically equivalent subjective results. The authors of [9] proposed a novel subjective 

quality testing plan to improve the testing efficiency by reducing the required number of 

test sequences. Specifically, the proposed algorithm can quickly find the optimal video 

quality operating point, in the space of coding and transmission parameters, by 

identifying the gradient ascent direction first, and use golden section line search to locate 

the point in the direction that approximate the best quality.   

Another active research field of subjective quality assessment is to design specific 

subjective test plans for particular video applications or services. Using proper designs, 

some interesting relationships between various video attributes and perceptual quality are 

observed. It is found that humans tend to forget video contents displayed far enough from 

the current time instance due to the limitation of human memory capacity [10] [11]. Thus 

the quality ratings for that video segment are not determinative and the overall quality of 
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the entire clip is also affected. Therefore, the memory effect of human viewers is not only 

one of the concerns when designing and performing the subjective tests, but also a 

practical consideration when devising objective quality metrics, especially for quality 

assessment of longer video sequences. A study on the impact of memory on SSCQE 

results was performed [3], and the analyses indicated the last 9s to 15s of video content is 

critical for viewers to form their quality judgment on the entire clip. Another interesting 

subjective test example is the examination of impact of transmission conditions on the 

subjective video quality. The authors of [12] examined the subjective visibility of packet 

losses of encoded videos, where packet loss were deliberately inserted into video 

bitstreams and viewers were asked to indicate the occurrence of noticeable visual 

distortion by pressing the button on keyboard whenever they happen during the display. 

The design of this subjective test relives the burden of viewers to comprehend complex 

procedures to judge and record the quality of video sequences. In the work [13], the 

authors devised a program interface to compare the impacts of coding distortion and 

packet loss artifacts on subjective video quality. The viewers are presented with two 

video sequences side-by-side; one is the target sequence, usually distorted by coding (or 

packet loss) artifact, and the other one is the anchor sequence whose quality can be tuned 

by viewers with the slider controlling the amount of inserted packet loss (or coding) 

distortions. Viewers are asked to adjust the quality level of anchor sequence to match 

with that of target sequence. In [14], the author surveyed the opinions from a large 

amount of digital cable TV subscribers to investigate the impact of frequency of artifacts 

on subjective video quality. The consumers’ vocabulary of artifact types and descriptions 

were first collected, and then in a web based questionnaire, based on the verbal 
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descriptions of artifacts, users were asked to indicate their preferences by choosing from 

different service prices.  

1.2 Objective Video Quality Assessment 

Objective quality metrics are algorithms designed to characterize the perceived 

video quality and predict viewers’ opinion. In this section, classifications of existing 

objective video quality metrics will be addressed, and then their evolutions and state-of-

the-art will be discussed.  

1.2.1 Metric Classification 

Based on the amount of access to the reference videos, metrics can be classified 

into full-reference (FR), reduced-reference (RR), and no-reference (NR) metrics [15]. 

• Full-reference (FR) metrics measure the quality of test video with respect to its 

original reference video. They require full access to every pixel of the reference 

video, and usually the two videos should be well aligned and calibrated before 

any further processing to ensure the exact match between corresponding pixels.  

• No-reference (NR) metrics, also known as reference-free metrics or blind metrics, 

have access only to the test video. The complete lack of reference information 

makes the design of such metrics a very challenging task. Usually some 

assumptions about the attributes of both reference video content and possible 

distortion are necessary 
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• Reduced-reference (RR) metrics are compromise between FR and NR metrics in 

terms of access to reference information. To gain partial reference information, 

they first extract a number of features from the reference video, and then transmit 

them from sender to the receiver via reliable channel. The predicted quality of the 

test video is based on comparing the corresponding features from the both 

reference and test videos.  

 

Until recently there are some derivations of the above metrics classifications. For 

different application usages, two sub-classifications of NR metrics are introduced: NR 

pixel domain metrics (NR-P) and NR bitstream domain metrics (NR-B) [12]. NR-P 

metrics ONLY have access to all the pixel information of test video, whereas NR-B 

metrics can ONLY access the bitstream of encoded test videos. Since in RR metrics, a 

back-channel for transmitting extracted features of reference videos increases the 

difficulty in implementing such system in practical situation, Quasi-NR metrics are 

proposed to relieve this problem [16], because it just requires very little amount of side 

information up to single value for each frame or even group of frames.    

These three types of metrics have different operational uses. Due to the constraint 

of full access to the reference, FR metrics are suitable for offline video quality 

measurement for codec tuning or lab testing, NR and RR metrics are better suited for 

monitoring of in-service video at different points in the system, and NR can also be used 

to measure video quality of network end users.  

There is another classification [17], with illustration shown in Figure 1.4, which 

focuses on different video representations in typical transmission systems: 
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• Data metrics, which measure the fidelity between original and processed videos 

by treating them as pieces of data, without considering their visual contents. As 

benchmarks, Mean Square Error (MSE) or Peak Signal-to-Noise Ratio (PSNR), 

and bit error rate (BER) or packet loss rate (PLR) fall into this category. The main 

advantage of this kind of metrics is that they are simple to calculate, whereas the 

drawback is that the meaning and visual importance of the pixels or packets 

associated with video contents are overlooked. 

• Picture metrics, which treat the video data as the visual information that it 

contains. They take into account of the impacts distortions and content on 

perceived quality, either based on the properties of the human vision system, or 

based on the extraction and analysis of video features and artifacts. 

• Packet-based or bitstream-based metrics for compressed video delivery over 

packet networks, which look at the packet header information and the encoded 

bitstream directly without fully decoding the video. Comparing to the metrics 

operating on the fully decoded videos, these metrics has the advantage of much 

 

Figure 1.4 Classification of packet-based, bitstream-based, picture and hybrid 

metrics (from ITU-T). 
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lower amount of data to be analyzed and hence lower processing requirements, so 

that they measure the quality of many video streams or channels simultaneously.  

• Hybrid metrics, which use a combination of packet information, bitstream and/or 

decoded video pixels as inputs. 

1.2.2 State-of-the-art and Trends 

MSE and PSNR are two of the most popular video quality metrics. They measure 

the pixel-wise difference between two images. And the popularity of these two metrics is 

mostly thanks to their simplicity as well as many available mathematic tools to optimize 

them. Although people always consider them as the benchmark metrics of assessing 

video quality, they are not designed for image quality assessment; rather they are long-

standing general measurements of the difference between any two signals. Because they 

just treat every pixel in image as an independent piece of data, the relations among the 

image pixels are always overlooked. Besides, they do not take into account any property 

of the HVS, so they are not expected to correlate with perceptual quality judgment very 

well. However, due to the lack of thorough understanding about HVS, the progress of 

research in this area is rather slow. In recent years, perhaps driving by dramatic 

developments of various video technologies, video quality modeling receives an 

increasing amount of attention from both industrial and academic communities.  

 

A. VQEG Activities 

Among others, some international telecommunication standardization bodies, 

such as ITU, address a growing number of issues related to both subjective and objective 
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video quality measurement.  The validation and comparison of objective quality metrics 

is one of the study topics. For this reason, in 1997, a group of members from ITU-R and 

ITU-T study groups formed an expert team, called Video Quality Expert Group (VQEG), 

whose task is to perform validation testing of objective perceptual quality model, and 

provide inputs to standardization bodies for quality assessment standardization. Since its 

birth, VQEG has become the primary forum for algorithm developers and industry users 

to share ideas and collaborate. Currently, VQEG has performed several projects of 

validating objective quality algorithms for various video applications and services, and its 

work has resulted in ITU standardization of objective quality models designed for 

standard definition television and for multimedia applications. From these projects, we 

can gain a clear idea about the current status of research on objective quality assessment 

and some of its future trends.   

To date VQEG has finished four projects of validating objective quality models 

for TV and multimedia applications, and is now performing or planning another three. 

Here we give a brief description about these projects, and discuss some interesting 

observations.  

In 2000 and 2003, VQEG completed two tests on validating objective video 

quality metrics for television services. The first test, FR-TV Phase I, focused on out-of-

service quality testing, which requires the reference videos; thus full-reference metrics 

were evaluated. The tested videos could be distorted by various levels of several artifacts 

encountered during production and distribution phases of standard-definition TV 

(SDTV), including MPEG-2 coding distortion, analog-to-digital conversion distortion, 

and transmission errors. Together with PSNR, another 8 quality metrics from different 
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institutes worldwide were evaluated. The results indicated that the perceptual quality 

prediction performances of all the 9 evaluated metrics were statistically equivalent [18]. 

This inconclusive result may result from too diverse artifact types tested in this project 

for the quality metrics at that time.  

Although this test could not recommend any quality metric to be standardized, it 

brought up some potential issues when designing FR video quality metrics. For example, 

in some case, the video calibrations or normalizations before feeding videos into quality 

models are necessary. The calculation of PSNR was modified by allowing a pixel 

searching within a certain spatial and temporal ranges. In addition, standard evaluation 

metrics were first introduced. 

In the second round of testing, FT-TV Phase II, VQEG emphasizes on secondary 

distribution of digitally encoded TV services by constraining the distortion types to 

MPEG-2 coding distortion. The best metrics in the test achieved correlations as high as 

0.94 with MOS, thus significantly outperforming PSNR [19].  The top four (i.e. NASA, 

USA; Yonsei University, Korea; CPqD, Brazil; and NTIA, USA) out of six tested 

objective quality models were recommended in ITU-T Rec. J.144 [20] and ITU-R Rec. 

BT.1683 [21]. 

From the test results of both phases, we can find significant progress in 

development of FR metrics. However, only quality metrics focusing on MPEG-2 coding 

distortion achieved satisfactory performances.    

In 2008, VQEG completed an evaluation of metrics for multimedia applications 

(MM Phase I), which is targeted for broadband Internet and mobile video streaming, at 

bitrates below 4 Mbps, with smaller frame sizes (QCIF, CIF, VGA). A wider range of 
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codecs and transmission conditions were considered in the test [4]. The MM Phase I set 

of tests was used to validate full-reference, reduced-reference, and no-reference objective 

models. Based on this test, two new standards for multimedia quality assessment were 

published, namely ITU-T Rec. J.247 [22], which defines four FR models (OPTICOM, 

Psytechnics, Yonsei University, and NTT), and ITU-T Rec. J.246 [23], which defines 

three RR models, with correlation up to 0.93  (all from Yonsei University, with different 

side channel bitrates from 1kbps to 128 kbps). However, NR models did not achieve 

satisfactory performance in this test. 

In 2009, VQEG finished the reduced-reference and no-reference test for standard-

definition television (RRNR-TV), which is an extension to the tests on FRTV, Phase I 

and II. MPEG- 2 and H.264 codecs were used, together with IP transmission errors. The 

final report [24] describes the performance of seven RR models; some top contenders 

(NTIA, and Yonsei University) may become part of a new ITU recommendation.  

This test is originally designed to include both NR and RR quality metrics, 

however, all the five NR models were withdrawn from the record of the final report. 

Together with the MM Phase I test, no NR metrics were reported, which suggests that 

designing an accurate NR metric is still a very challenging problem and still open. 

From 2004, VQEG started a project for the evaluation of models for high-

definition television (HDTV) [25]. H.264 and MPEG-2 video codec are used, and 

distortion types include transmission error, pre- and post- video processing, and the 

bitrate is ranged from 1 Mbps to 30 Mbps. The test comprises full-reference, reduced-

reference, and no-reference objective models. Currently, the validation test is finished, 

and the final reports is being compiled and yet to be published.  
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Currently, VQEG are planning another two projects. One is to evaluate perceptual 

quality models suitable for digital video quality measurement in video and multimedia 

services delivered over an IP network by making use of hybrid information from 

perceptual (pixel) domain and coded bitstream domain [26]. The scope of the test covers 

a range of applications including IPTV, internet streaming and mobile video. It considers 

much broader video quality ranges than all previous tests, from 16kbps to 30Mbps, and 

H.264, MPEG-2, and MPEG-4 video codec will be used, the considered video resolutions 

include SD, HD, QCIF, and QVGA, and distortion types include transmission error, 

frame rates, post-processing effects, live network conditions, and interlacing. Besides the 

constraints of access to reference information associated with FR, NR, and RR objective 

quality metrics, the types of inputs to the objective quality are to be restricted to ensure 

their easy implementations for measuring quality of networked videos. The concept of 

nonintrusive parametric model for the assessment of multimedia streaming (P.NAMS) is 

introduced; it uses only packet and codec information as inputs, but not any payload 

information. A follow-up project called P.NBAMS (B for bitstream) has similar goals, 

and P.NBAMS metrics will be allowed to use payload information. The other project that 

VQEG is planning is a second phase of Multimedia test. To extend the tests in MM Phase 

I, in Phase II audio-visual quality of multimedia contents will be assessed.           

Furthermore, VQEG has also started to develop objective quality assessment 

metrics that combine multiple existing models. Hopefully this effort may lead to a 

reference objective metric and its implementation. 
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From results of all these VQEG projects, we can observe several attributes or 

trends of the development of objective video quality assessment in recent years as 

follows: 

• Currently objective quality measures cannot replace subjective quality 

measurement; 

• Quality assessment of transmission error and network conditions is an active 

research topic; 

• Significant progress on development of FR metrics has been made, whereas 

NR and RR metrics are still at their infancy;  

• Computational complexity of objective quality metrics starts to receive 

researchers’ attention; 

• Visual-audio quality assessment will be available in near future. 

 

The descriptions of these VQEG projects are summarized in Table 1.1. 
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Table 1.1 Summary of VQEG projects 

 

Project FRTV_I FRTV_II NRRRTV 

Focus FR TV videos 
Secondary distribution 

of digital encoded TV 
Standard definition TV 

Time 1997-2000 2000-2003 2000-2009 

Subjective 

Test 
DSCQS, 5 scale                     

DMOS 

DSCQS, 5 scale                      

DMOS 

5-scale ACR-HR              

DMOS 

HRCs 

Considered 

16  HRCs,                            

Majority of MPEG2 and 

a few of H.263 and a 

few of analog videos, 

625/50 and 525/60,                   

with transmission 

errors, bitrate 768kbps 

to 50 mbps 

10 HCR for 625/50 

14 HCR for 525/60, 

All MEPG2 (except 1 

H.263) videos, bitrate 

768 kbps to 5 

mbps 

   MPEG2 and H.264,           

with transmission 

error, bitrate 1 to 5.5 

mbps 

Model 

Types 
FR  FR NR (withdrawn) and RR 

Proponents 

   9 + PSNR                        

CPqDl      

Tektronix/Sarnoff        

NHK/Mitsubishi           

EPFL                       

TAPESTRIES                     

NASA                      

KPN/Swisscom          

NTIA                                     

6 + PSNR                  

NASA 

 British Telecom           

Yonsei University            

CPqD-IES                  

Chiba University        

 NTIA             

7 + PSNR                        

NEC                             

Yonsei University                  

NTIA             

Evaluation 

Metrics 

4 metrics                                    

(after polynomial or 

logistic mapping) 

7 metrics                              

(after logistic mapping) 

Pearson Correlation, 

RMSE, Outlier Ratio                              

(after polynomial 

mapping) 

Winner(s) 
8 of 9 perform 

equivalent to PSNR 

2 models for 525  

4 models for 625 
RR: NTIA and Yonsei 

Conclusion 
VQEG not recommend 

any model in ITU Rec. 

Some models good 

enough to be included 

in Recommendation;                                    

PSNR is worse than best 

models. 

Some models good 

enough to be included 

in Recommendation;                                    

PSNR is worse than 

best models. 

Comments 

No model  able to 

replace subjective 

testing;  

No model outperforms 

the others in all cases. 

ITU-T J.144, ITU-R BT.  

1683 standardized 
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Project MM_I HDTV HP/B 

Focus 
Mobile and broadband 

internet communication 
HDTV application 

Video and multimedia 

over IP network 

Time 2004 -2008 2004 -ongoing            2007 -ongoing                        

Subjective 

Test 
5-scale ACR-HR              

DMOS 

5-scale ACR-HR              

DMOS 

11-scale ACR-HR               

DMOS (MOS for NR) 

HRCs 

considered 

VGA/CIF/QCIF              

H.264/H.263/MPEG2/ 

MPEG4 , etc. 

compression artifacts, 

transmission error, pre- 

post-processing  effects, 

live network conditions, 

interlacing problems,         

bitrates 16kpbs to 4 

mbps,                                       

variable frame rates 

1080i/p,                        

MPEG2 and H.264,     

bitrate 1-30Mbps,            

compression artifacts, 

transmission error,   

pre- and post-

processing,                             

frame rate 25/30fps 

SD/HD/QVGA/QCIF              

H.264/MPEG2/MPEG4, 

compression artifacts, 

transmission error,  

post-processing  

effects, live network 

conditions, interlacing 

problems, bitrates 

16kpbs to 30 mbps,                                       

variable frame rates 

Model 

Types 
FR, RR, and NR FR, RR, and NR 

FR, RR, and NR             

P.NBAMS and P.NAMS 

Proponents 

25 + PSNR                               

NTT                                     

Opticom                            

Psytechnics                      

SwissQual                         

Yonsei Uni. 

? + PSNR ? + PSNR 

Evaluation 

Metrics 

Pearson Correlation, 

RMSE, Outlier Ratio                              

(after polynomial 

mapping) 

Pearson Correlation, 

RMSE                             

(after polynomial 

mapping) 

Pearson Correlation, 

RMSE, Outlier Ratio                              

(after polynomial 

mapping) 

Winner(s) 

FR: Psy., Opt., Yon., and 

NTT better than PSNR     

RR: Yon. better than 

PSNR                                         

NR: No model better 

than PSNR 

  

Conclusion 

Some FR and RR models 

good enough to be 

included in Rec.,                                    

NR model still to be 

improved. 

  

Comments 
Winner models 

recommended in ITU-T 

J.246, ITU-T J. 247  
 

P.NBAMS and P.NAMS 

are one topic of ITU 

Study Group 12 from 

2009-2012 
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B. Quality Assessment of Video with Network Impairment 

Besides VQEG and ITU, there are many groups looking into the problem of 

objective video quality assessment in different angles. 

As transmission errors greatly impair video quality, the impact of packet losses on 

perceptual quality of videos transmitted in IP based network is an active research topic.   

Because of the nature of predictive video coding, distortions caused by packet losses 

usually can propagate to the neighboring video pixels; thus distort the video both 

spatially and temporally. Therefore, the development of objective quality metrics 

addressing packet losses is achieved in two directions. Works in [27] [28] [29] [30], 

investigated the temporal effect of packet loss, whereas [31] [32] [33] focus on evaluating 

their perceptual spatial distortions. In [27] and [28], the statistics of packet losses and 

delay jitters in videos were investigated and used to predict quality degradation levels. 

Whereas the authors of [29], believed that “fluidity” of video content directly affects its 

quality and proposed a metric to evaluate quality based on frame dropping. Furthermore, 

the authors of [30] proposed a more comprehensive metric to assess video quality, where 

several features were taken into account, including the amount of frame loss, object 

motion, and local temporal quality contrast. In the other direction, works in [31] [32] [33] 

evaluated the spatial effects of packet loss. In [31] and [32], two no-reference (NR) 

metrics are proposed for measuring block edge impairment artifacts caused by packet 

losses in decoded video. Their metric used strong spatial discontinuities as hints of packet 

losses, and evaluated perceptual distortions based on these strong discontinuities. In [33], 

the authors found strong correlation between network conditions and perceptual video 

quality and proposed a NR video quality assessment method. 
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In addition, a few works investigated the joint effect of both coding artifacts and 

packet losses at the same time. In 2002, NTIA/ITS developed a video quality metric 

(VQM) [34] to provide an objective quality measurement for video for a variety of 

encoding and transmission systems. It measures the perceptual effects of broad range of 

video impairments including blurring, jerky/unnatural motion, global noise, block 

distortion, color distortion, and packet loss. Independent tests by the VQEG have shown 

that the General Model of VQM on MPEG-2 and H.263 video has a high correlation with 

subjective video quality ratings [19]. This model has been recommended by ANSI as well 

as ITU-T as an objective video quality metric for secondary distribution of digitally 

encoded TV quality video [35] [20]. 

 

C. Quality Metrics Considering Properties of Human Visual Systems 

Since humans are the very judge of video quality, the study of this research is 

inter- disciplinary topics for neuroscientist and physiologist, and understanding about the 

functions of human perceptual system is believed critically helpful in assess perceptual 

video quality. There has been physiological and psychological evidence that human 

beings do not pay equal attention to all exposed visual information, instead, they have 

excellent selectivity on what one sees in a scene [36] [37] [38] [39]. This high resolution 

vision due to fixation by the observer onto a region is called foveal vision, which is also 

known as focus of attention (FOA) or saliency region. In recent years, there has been a 

newly sparked interest in exploiting the visual attention model (VAM) or saliency 

detection mechanism for image and video quality assessment. 
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In [39] [40] [41] [42] the authors determine the regions of interests by a 

computational VAM, and use the resulting importance map to weight the visible 

distortion determined by a multi-channel early vision model. This method is used to 

assess the compression artifacts of coded images. The author in [43] extends the same 

concept to video quality assessment by constructing a perceptual quality significance map 

through extracting luminance, motion, and skin color features from video. But the 

consistency of these proposed models with visual attention is not sufficiently validated. 

The authors in [44] use eye-tracking experiments to determine the saliency map and 

propose a saliency-based quality metric. Surprisingly, results from their study show that 

considering the visual saliency does not lead to consistent improvement, at least for the 

JPEG and JPEG2000 compressed images they consider. In [45], the authors investigate 

two weighting strategies. One is to weight the SSIM quality index based on the visual 

importance, computed using a visual fixation predictor; the other assumes that pixels with 

large errors tend to attract visual attention and assigns more weight to pixels with lower 

SSIM scores. These strategies are tested on the images in LIVE database, which do not 

contain packet loss distortion. The results show that these strategies can significantly 

improve the correlations with subjective data.  The wok in [46] proposes an embedded 

reference-free video quality metric based on the salient region, which is extracted based 

on color contrast, object size, orientation and eccentricity. Test results on JPEG2000 

images show some improvement over PSNR in terms of correlation with subjective 

ratings, but the test results for video sequences are not clearly described and no 

comparison with other video quality 
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1.3 Dissertation Outline 

This thesis is organized as follows. In Chapter 2 and Chapter 3, we investigate the 

impact of packet losses on perceptual video quality, and present objective quality metrics 

of packet loss impaired videos. In Chapter 4 and Chapter 5, we address the objective 

video quality assessment with aid of video saliency. Finally, in Chapter 6, we draw our 

conclusions and indicate possible future work. Due to the nature of studies on perceptual 

video assessment, subjective and objective quality assessments are parallel studies which 

interact with each other. So there are two parts in each chapter addressing the 

corresponding work. 

In Chapter 2, we investigate the perceptual quality of video affected by packet 

losses. We first examine how several factors affect the video quality, and then by 

incorporating the existing quality metrics for coding distortion, we finally propose a full-

reference video quality metric measuring the degradation due to both packet losses and 

lossy compression. The proposed metric correlates very well with subjective ratings, for a 

large set of video clips. 

In Chapter 3, we perform an investigation on the impact of packet loss on the 

quality of individual video frames. In the study on quality assessment of packet loss 

impaired video described in Chapter 2, the quality of each individual video frame is 

measured simply by PSNR. In this chapter, in order to improve the accuracy of quality 

assessment of individual video frames, we incorporate human visual system components, 

i.e. masking effects, into the quality measurement and develop a more advanced quality 

metric of single video frames which considers both coding and packet loss artifacts.    
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In Chapter 4, we exploit the video quality assessment with aid of saliency 

information. We target the videos impaired by transmission loss, e.g. packet losses, in 

this work. By closely examining the relationships between attributes of visual saliency 

and packet loss and perceptual video quality, we propose three different schemes to 

incorporate saliency into quality assessment. To further improve prediction accuracy, we 

then use stepwise multiple linear regression analysis to combine multiple candidate 

metrics of all three types. The significant improvements of the final saliency-based 

quality metrics over their corresponding non-saliency metrics suggests the saliency 

information can be greatly helpful for assessing video quality. 

In Chapter 5, we investigate how to improve visibility prediction of packet loss by 

incorporating the saliency information. Based on earlier findings about how saliency 

affects the perceptual quality of video with packet losses, we propose several saliency-

based factors and incorporate them into a Generalized Linear Model (GLM) to predict 

loss visibility.  
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Chapter 2   

Quality Assessment of Packet Loss Impaired Videos 

 

This chapter discusses the perceptual quality of video affected by packet losses. 

We focus on low-resolution and low bit-rate video coded by the H.264/AVC encoder and 

the packet loss patterns likely in low bit-rate wireless networks. We examine the impact 

of several factors on the perceptual quality, including the error length (the error 

propagation duration after a loss), the loss severity (measured by the pixel difference 

between reference and distorted video in the area affected by a loss), loss location, the 

number of losses, and loss patterns. Based on our findings, we propose an objective 

metric for the quality degradation due to packet losses that considers all these factors. We 

also validate a prior metric relating the quality degradation due to compression artifacts 

and the peak-signal-to-noise ratio (PSNR). We finally propose a full-reference metric that 

measures the overall quality degradation due to both packet losses and lossy 

compression. The proposed metric correlates very well with subjective ratings for a large 

set of video clips with different loss patterns, coding artifacts, and scene contents. 
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2.1 Subjective Video Quality Tests 

A. Test Design  

Since perceptual video quality is affected by both packet loss and coding artifacts, 

spatially and temporally, we designed a series of tests to examine the impact of each 

factor, first separately and then jointly. By performing preliminary tests, we hypothesize 

that several factors may have significant impact on the perceptual quality: two (2) video 

codec related factors: coding artifacts (caused by lossy encoding, controlled by QP), and 

error concealment method; five (5) transmission loss related factors: the number of 

packet loss events, packet loss pattern (clustered or spread), duration of a loss-affected 

segment, severity of a loss, and loss position within a test video sequence. 

Our target application is video delivery over 3G wireless networks, where frame 

rate, resolution, and bitrate are low, and transmission losses appear in bursts; hence the 

test video sequences, video encoding parameters, and packet loss patterns are chosen 

based on this type of application. We carefully designed several subjective tests 

examining the impacts of each of the aforementioned factors. The detailed descriptions of 

our test set-up are presented in the following subsections. 

 

B. Test method 

 Two subjective rating methods are recommended by ITU-R BT.500 [1]: Double 

Stimulus Continuous Quality Scale (DSCQS) and Single Stimulus Continuous Quality 

Evaluation (SSCQE). Because we are interested in knowing the quality rating by a user 

when viewing a video sequence without seeing an error-free version, we choose to 

display a test video sequence without known reference. Although we are primarily 
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interested in the overall rating by a viewer for a sequence, we would like to investigate 

the immediate reaction of a viewer to a loss, and the impact of this reaction to the overall 

rating. Therefore, we choose to record both continuous rating and overall rating. 

Specifically, a viewer is asked to give both continuous-time quality rating while 

the sequence is being displayed and an overall quality rating at the end of the sequence. 

The viewer uses a mouse to drag a scaling bar to give scores from 0 to 100 (“100” means 

best quality) both for continuous-time rating and overall rating. In each test, each viewer 

rated all sequences in a random order, different from others’, and then repeated again in 

the same order, so that, for each video sequence, a viewer gave scores twice, which can 

be used to test viewers’ self-consistency, discussed in detail in a later subsection. (Each 

run contains a large number of clips, so it is unlikely that ratings by a viewer in the 

second run will be affected by what he/she watches in the first run.) The entire procedure 

is controlled by an interactive rating software that we developed, whose interface is 

shown in Figure 2.1, and each session lasts less than 30 minutes without a break.  

 
Figure 2.1 Subjective scoring software interface 
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C. Test materials 

Five videos with different scene contents are used to generate a large set of test 

sequences. The scene contents cover indoor people interactions, outdoor sports games, 

with low to high motion, and plain to rich textures. In addition, these videos include a 

variety of camera motions. All the sequences are in QVGA (320x240) resolution, with 

encoding frame rate 12 fps or 15 fps, and clip durations from 20 s to 40 s. Table 2.1 

provides a brief description of the sequence contents. All the testing sequences are 

encoded and decoded following the H.264 standard, using JM10.0 encoder/decoder 

(baseline profile, level 3, and IDRPP...P GOP structure) operating with a fixed QP. The 

QP ranges from 26 to 38, with corresponding bit rate from 40 kbps to 256kbps, and GOP 

lengths are 2 s.        

 

Each frame is coded into a slice, which is then wrapped in a RTP packet. To 

simulate the loss characteristics in a 3G-like wireless network, where the loss of a 

program data unit at the link layer often leads to the loss of two consecutive IP packets, 

we purposely drop two consecutive frames in each loss position. Note that the distortion 

caused by each such frame loss usually propagates to the end of the GOP in which loss 

happens. We choose the location of the loss carefully to create sequences with different 

Table 2.1 Content description of test videos 
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loss position within the entire sequence, loss severity (measured by the drop between 

PSNR values of video frames with and without loss), propagation duration (or “error 

length”), as well as loss number and loss pattern. 

In preliminary studies, we evaluated decoded videos using three error 

concealment methods: frame-copy (use the last correctly received frame to replace the 

lost frame), motion-copy (copy the last correctly received motion vectors for the lost 

frame, so that each block in the lost frame is copied from a displaced block in the last 

correctly received frame based on the copied motion vector), and frame-freeze (the last 

correctly received frame lasts to the end of GOP). With frame-copy and motion-copy 

error concealments, there are usually visible artifacts throughout the loss-affected 

segments of sequences, whereas, with frame-freeze method, packet losses can cause 

decoded videos to “pause” for a certain period of time [47]. It was concluded that frame-

copy concealment gives overall more consistent results across viewers and loss patterns, 

and it gives highest Mean Opinion Score (MOS). Therefore, in the formal tests reported 

here, we only used the frame-copy method. 

To explore the impacts of aforementioned quality-affecting factors, we produced 

totally 51 test sequences with different combinations of coding and packet loss 

configurations. We categorized them into four groups and we performed subjective tests 

on each of them separately with different purposes. Test 1 and Test 2 are designed to find 

out how is the perceptual quality affected by packet loss, whereas Test 3 concerns the 

impact of coding artifacts. The sequences used in the first three tests are all generated 

from the original video of “American Pie”, which are used for exploring and training our 

proposed objective metric. The sequences used in Test 4 are generated from all five video  
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sources and contain both coding and loss artifacts, and they are used for verifying the 

proposed metric. Table 2.2 provides a brief description of sequence sets for the four tests. 

Figure 2.2 illustrates the quality range of our test sequences. Here “quality” is 

defined in terms of differential MOS, or DMOS, which are the differences between the 

MOSs given to original (uncoded) sequences and those given to the corresponding 

processed sequences. We can see that our test sequences cover a wide spectrum of 

quality. Notice that the ratings presented here are obtained after performing necessary 

normalization processing, which will be discussed in Chapter 2.1.F. 

 
Figure 2.2 Histogram of DMOS of testing sequences (without 5 original sequences). 

 

Table 2.2 A brief description of sequence sets for the four tests 
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D. Viewing Condition 

The tests were administered in the Image Processing Lab of Polytechnic 

University, following the ITU recommendation [1]. The computer used for display is Dell 

Dimension 910 with Dell 17 ” TFT LCD Flat Panel monitor (Model No.:E173FPf). The 

video window size is 3 inch diagonally (with monitor resolution at 1280x800), which 

approximates the display size of a typical PDA. The viewers sat in front of the monitor 

with comfortable distance and were allowed to move their heads as they wished. 

 

E. Viewers 

The viewers participating in our tests are mostly engineering students in 

Polytechnic Institute of New York University. There were a total of 60 viewers taking the 

tests. Some of them participated in one of the 4 tests and some performed multiple tests. 

(At least 15 valid viewers were involved in each test). Before the actual subjective tests, 

they all passed the visual acuity test (Snellen) and color blindness test (Ishihara). Totally, 

we obtained more than 2000 valid subjective quality rating samples. 

 

F. Data Screening and Normalization 

A viewer may be inconsistent with the majority of the viewers in its rating for the 

same testing sequence, or he/she may be inconsistent at different times when rating 

similar sequences. A viewer screening is conducted to eliminate the ratings by these 

viewers from further data analysis. We conducted the inter-viewer consistency test 

following [1]. In addition, to test the self-consistency of each viewer, we calculated the 

Pearson Correlation Coefficient between the two sets of overall scores given by this 
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viewer for the same set of sequences during a viewing session, and the data from viewers 

with low self-consistency (Pearson Correlation Coefficient lower than 0.6, here) were 

ruled out. After these two screening procedures, the data from 3 out 60 viewers were 

discarded. 

Before performing data analysis on the overall scores by all viewers, the viewer 

scores are normalized. First, in each test, we set each viewer’s lowest score to “0” and 

his/her highest score to “100”, and linearly scale the rest of his/her scores. Then MOS is 

obtained by averaging scores over all the valid viewers. The reason for this normalization 

is that the viewers judged the qualities with their own criteria and the ranges of their 

ratings were different, not always from “0” to “100”. Therefore, in order to perform 

meaningful averaging calculation this normalization processing is necessary. 

Secondly, even though all the four tests were carried out in the same viewing 

conditions, with the same methodology, and in the same score range, the renormalization 

across the data in different tests is still necessary, because video quality ranges of 

different test are not equal [3]. Hence, by using some common sequences in all the tests, 

we linearly normalize the MOSs in different tests to a common scale.  

2.2 Objective Video Quality Metrics 

2.2.1 Quality Degradation due to Single Packet Loss 

This section investigates the relations between several attributes of a single loss 

on the perceived quality degradation, including error length, error severity, and error 

location. The analysis in this section is based on subjective ratings obtained from Test 1 
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and Test 2, summarized in Table 2.2. The perceived degradation is denoted by 

differential MOS due to packet loss, or DMOSL, which is the difference between the 

MOS given to a decoded sequence without any packet loss, and the MOS given to one 

with loss. Although all the test sequences in Test 1 and Test 2 have been subjected to 

some packet losses, the loss in one sequence has minimal impact on perceptual quality 

and was “invisible” by all viewers (as indicated from their continuous time ratings). So 

we used the MOS for that sequence as the reference when determining DMOSL. 

 

A. Error Length Effect 

The error length is defined as the number of frames starting from the first lost 

frame to the end of the GOP or to the scene change within the GOP. To examine the 

impact of error length on the perceptual quality, we created several sequences with a 

single loss (losing two consecutive frames) in the middle of a sequence. The loss position 

is chosen to lead to different error propagation length. We constructed 3 sequences with 

similar PSNR drops (about 10 dB) but different error lengths in Test 1. 

Figure 2.3 (a) shows the plots of PSNR vs. frame number for these three 

sequences, where a segment with reduced PSNR indicates the location and duration of 

the loss-affected segments. Figure 2.3 (b) shows the relation between the DMOSL and the 

error length. It is clear that the perceptual quality degrades as the error length increases. 

 

B. Loss Severity Effect 

In order to explore the impact of loss severity on perceptual quality, we tested 5 

sequences with similar error length (12 frames) but different PSNR drops in Test 2. To 

measure the severity of a loss, we first determine the PSNR drop for each affected frame, 
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which is the difference between the PSNR of the frame decoded in the absence of the 

loss, and the PSNR of this frame decoded with packet loss. We then find the biggest 

PSNR drop among all affected frames, which is simply referred as PSNR drop. 

Figure 2.4 (a) shows the plots of PSNR vs. frame number for these five sequences 

and Figure 2.4 (b) shows the relation between DMOSL and PSNR drop. We can see that 

perceptual quality decreases as the PSNR drop increases, but the relation is non-linear. 

The beginning flat portions in Figure 2.4 (b) suggests that viewers do not “see” the loss 

when PSNR drop is smaller than a certain threshold, and the end flat portion suggests that 

viewers think the qualities of sequences are equally “bad” once the PSNR drop exceeds a 

certain threshold. 

 

 

 

 

Figure 2.3 Error length effect on perceptual quality. (a) PSNR curves of three test 

sequences with different error lengths, and (b) relation between DMOSL and error length. 
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C. Error Visibility 

Figure 2.4 shows that when the PSNR drop associated with a loss is smaller than a 

certain threshold, a viewer tends not to notice the loss. This packet loss “invisibility” 

phenomenon in encoded video was discussed in the works [12] [48], however, the quality 

evaluation problem is not explicitly addressed. In order to further investigate the relation 

between error visibility and perceived quality in our case, we looked into the continuous 

score curves from viewers. We observed that, for some particular losses, most viewers 

did not lower their ratings after the loss (in their continuous-time rating), and those losses 

have either short error length or low PSNR drop. We measure the visibility of an error by 

the percentage of total number of times viewers who “saw” the error, as indicated by dips 

(with the magnitude over 15 units) in the continuous score curves. 

Figure 2. (a), (b) and (c) show the relations between the visibility and the error 

length, PSNR drop and PSNR drop sum, respectively. Here, the PSNR drop sum is 

defined as the summation of the PSNR drops of all erroneous frames. From Figure 2.5, 

 

Figure 2.4 Loss severity effect on perceptual quality (a) PSNR curves of 5 test 

sequences with different loss severity, and (b) relation between DMOSL and PSNR drop. 
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we observe that, for our test set-up, the minimal PSNR drop is around 5 dB. Note that 

when two consecutive frames are lost due to a transmission loss, with frame-copy error 

concealment, the first two frames in each error duration are both copied from the last 

frame before the loss, which do not incur many noticeable artifacts. Visible artifacts 

usually start to be seen right after the two concealed frames. 

Since both error length and PSNR drop affect the subjective ratings, it is natural 

to ask if there is some composite objective measure that can reflect the effect of both. We 

hypothesize PSNR drop sum may be used as one of the possible objective measures, and 

the relation between error visibility and PSNR drop sum is shown in Figure 2. (c). We 

can see from the figure, that generally speaking as the PSNR drop sum increases, error 

visibility increases too. And there is a jump at PSNRdrop_sum = 50 in this relationship. 

 

D. Forgiveness Effect 

Existing researches revealed that degradation in video materials can be “forgiven” 

or “forgotten” to some extent if the degradations are followed by good quality video [49] 

[10] [11] [49] [50] [51]. In other words, for similar perceptual distortion caused by frame 

 

 

Figure 2.5 Relations between error visibility and (a) error length, (b) PSNR drop, 

and (c) PSNR drop sum. 
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loss, the farther that loss locates away from the end of a sequence, the better will be the 

subjective rating. To verify the existence of such “forgiveness” effect and to investigate 

the specific relationship between the perceptual quality and the distance (in time) from 

the occurrence of the loss to the end of the sequence, we generated three 40 s long 

sequences, cut from original 60 s clip, each of which contains the same GOP with the 

same single loss (hence same PSNR drop and error length) in the middle. But the three 

cuts are shifted so that the GOP with loss is positioned in the beginning (15th s), middle 

(25th s), and end (35th s) of the three sequences, respectively. 

The PSNR curves of these three sequences are shown in Figure 2. (a). Figure 2. 

(b) shows the relation between DMOSL and loss position (distance to the end of 

sequence). From the figure, we find that the overall score for the sequence with loss 

happening at the end is significantly lower than the overall scores of the other two cases, 

which received similar ratings. 

Via paired-T significance test [52], we confirmed that the difference between the 

ratings for the sequence with end loss and the two sequences with beginning and middle 

losses are statistically significant (over 95%), whereas the difference between the ratings 

for the two sequences with beginning and middle losses are insignificant (less than 60%). 

This result substantiates the existence of the “forgiveness” effect, and shows that the 

increase of the overall score (or the “forgiveness factor”) is non-linearly related with the 

distance. In our test, the “forgiveness factor” stays the same after 15 seconds, which 

means that viewers’ memories do not differentiate well for losses happened 15 seconds 

before. This result correlates well with those of previous work on the memory effect of 

human visual systems [3]. 
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E. Proposed Video Quality Metric for Sequences with Single Loss 

Taking into consideration all the aforementioned factors, we propose to use 

“PSNR Drop Sum” or PDS, which is the sum over the PSNR drops of all erroneous 

frames, formally defined as                     

 ��� � � ���
��

�	
            (2.1) 

where PDn is the PSNR drop for frame n, with n = 1 denoting the first lost frame. EL is 

the length (in terms of frame) of loss-affected video segment (or error length). To take 

into account the clipping phenomenon shown in Figure 2.4, we further modify the PSNR 

drop of each frame by defining:                

 ����
 � � 0,�� � �����,����� � �����,   
�� � ���������� � �� � ������� � �����

�           (2.2) 

 

Figure 2.6 Forgiveness effect. (a) PSNR curves of sequences with different loss 

positions and (b) relation between DMOSL and loss position. 
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Considering the error length threshold of visibility, we only sum the PSNR drops 

for frames after a minimal error length, ELmin. The Modified PSNR Drop Sum (MPDS) is 

expressed as 

 ���� � � �����

��

�	�����
           (2.3) 

Then, we weight the contribution from a single loss based on its distance to the 

end of the sequence, to take into account of the “forgiveness effect”. Based on the non-

linear trend observed in Figure 2. (b), we use an exponential decay weighting factor 

���
 �  !" #, where D is the distance (in time by second) from last erroneous frame to 

the end of sequence, and r is a constant that we determine through least squares fitting of 

the subjective ratings to the model. This leads to the Weighted MPDS (WMPDS) 

measure:                         

 $���� �  !" # � �����

��

�	�����
           (2.4) 

Lastly, the perceptual distortion also should be normalized by the sequence length 

L (in frames), because the same amount of distortion appearing in video with different 

lengths may cause different visual quality degradations, yielding the Average WMPDS 

(AWMPDS) metric: 

 %$���� � $����&            (2.5) 

Figure 2.7 (a), (b), (c), and (d) show the relations between DMOSL and PDS, 

MPDS, WMPDS, and AWMPDS, respectively. Here we set PDmin = 6, PDmax = 13, 

ELmin = 2, and r = 0.01, by maximizing Pearson correlation coefficient. We can see that 

AWMPDS is more linearly related to the perceptual quality. To quantify how well a 
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model fits the measured perceptual ratings, we computed the linear correlation coefficient 

between the measured ratings and their corresponding PDS, MPDS, WMPDS, and 

AWMPDS values for all the testing sequences. The four measures have correlation 

coefficients of 0.8094, 0.9248, 0.9307, and 0.9555, respectively. When applying the 

paired-T test [52] to exam these four linear relationships in Figure 2.7, we find that the 

significance levels are over 99% in all cases. This indicates that the linear relations we 

observed between the DMOSL and PDS, MPDS, WMPDS, and AWMPDS respectively, 

are statistically significant. 

 

Figure 2.7 Relations between DMOSL and (a) PDS, (b) MPDS, (c) WMPDS, and 

(d) AWMPDS for single-loss data in Test 1 and Test 2 (Pearson correlations are 0.8094, 

0.9248, 0.9307, and 0.9555, respectively). 
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2.2.2 Metric Proposed for Sequences with Multiple Losses 

In the previous section, we investigated the effects of loss position, loss severity and error 

length, by examining sequences where only one loss (two consecutive frames) happens 

throughout the entire clip. The proposed metric correlates very well with subjective 

ratings. In this section, we focus on the situation where multiple losses exist in a 

sequence and explore the interactions among different individual losses and their group 

effect on the perceptual quality. Furthermore, we extend the proposed objective quality 

metric AWMPDS for single loss to multiple losses scenario, which happens more likely in 

real-world applications.  

 

A. Effect of the Number of Loss Events 

We first examine the effect of the number of loss events when each loss has 

similar error length and severity. Toward this goal, we constructed four test sequences 

containing 1, 2, 3, and 4 losses respectively and each loss has similar error length (12 

frames), and PSNR drop (10 dB) approximately. The sequences are all 40 second long, 

and the losses are evenly spread out through the approximate middle 27 seconds. The 

PSNR curves of these four sequences are shown in Figure 2. (a). Figure 2. (b) shows the 

relation between DMOSL and the number of losses in a sequence. From the figure, we 

find that the overall score has a roughly linear relationship with the loss number. Because 

all losses have similar error length and PSNR drop, this also indicates that the overall 

score is linearly related to the total error length or PSNR drop sum, consistent with our 

observation from the single-loss experiment. 
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Figure 2.8 Effect of loss number on perceptual quality. (a) PSNR curves of the four 

test sequences with different numbers of losses. (b) Relation between DMOSL and the 

number of losses 

 

 

B. Effect of Loss Patterns 

Result in Figure 2. was obtained with sequences where the losses are distributed 

throughout the sequences in a uniform pattern. It is natural to ask, if the losses are 

distributed non-uniformly, how does the loss pattern affect perceptual evaluation of video 

sequences. To answer this question, we first characterize the loss pattern by defining the 

cluster degree (CD) as 

 '� �  !( �)*++�1 �  !- .
           (2.6) 

where N is the number of losses, and Lloss is called “loss span”, which is defined as the 

distance (in time by second) between the first lost frame to the beginning of the last loss. 

For the single loss case, Lloss is set to 0. c, and k are constants to be determined. The 

definition of CD is motivated by the fact that, for the same “loss span”, as the number of 

losses increases, the losses appear more clustered; and for the same loss number, when 

the “loss span” increases, the loss become more spread. 
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We constructed three sequences with different loss patterns (or cluster degrees). In order 

to eliminate the effects by other factors, each sequence has similar total error length and 

with similar total PSNR drop sum (summation of PSNR drop sums for each loss). Figure 

2. (a) shows the PSNR curves of these three sequences (all 40s long), ordered according 

to the cluster degrees of their losses: Sequence 1 contains two 12-frame loss-affected 

segments (caused by two separate losses and their propagated errors) spread far apart 

(least clustered), Sequence 2 includes two 12-frame loss-affected segments (caused by 

two separate losses and their propagated errors) close to each other in the middle 

(moderately clustered), and Sequence 3 contains four 6-frame loss-affected segments 

(caused by four separate losses and their propagated errors) evenly spread (most 

clustered). 

The relation between PDMOSL and loss cluster degree is plotted in Figure 2. (b), 

where we have used c = 0.002, and k = 0.8, by maximizing Pearson correlation. From the 

 

 

Figure 2.9 Effect of loss pattern on perceptual quality (a) PSNR curves of the 

three sequences with different loss patterns and (b) Relation between the DMOSL and 

loss cluster degree. 
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figure, we can see that the perceptual degradation increases linearly with the cluster 

degree. This indicates that the human eye is more disturbed by closely grouped losses, 

than by far apart losses. This may be in part due to the forgiveness effect discussed 

earlier. 

 

C. Forgiveness Effect of Multiple Losses 

In the previous section, we defined the “forgiveness effect” of packet loss solely 

based on examining on single loss sequences. For multiple losses case, it is not clear 

whether each loss still affects the overall viewer rating with the same forgiveness factor, 

 

depending on the distance of the loss to the end of the sequence. Because there are 

multiple losses within the sequences, with different loss numbers and patterns, it is 

difficult to analyze the forgiveness effect of each loss individually. And the unknown 

“group effect” among different losses makes the task even harder. 

Figure 2.9 indicates that the subjective rating for Sequence 1 (least clustered) is 

better than Sequence 2 (moderately clustered) in Figure 2. (b). One plausible explanation 

is that the inter-distance between the two losses in Sequence 1 is too large, so that the 

viewers almost forgot about the first loss when seeing the second loss, and rate the 

quality of this sequence mostly based on the second loss. This prompts us to use the inter-

loss distance between losses to define the forgiveness factor. So in the definition of 

forgiveness effect for single loss sequences, the distance (in time by second) between a 

loss and the end of sequence is replaced by the distance between two consecutive losses 

or between the last loss and the end of sequence. The appropriateness of this modification 

in the definition of “forgiveness factor” will be proved in the later subsection. 
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D. Proposed Model for Quality Degradation Due to Multiple Losses 

Based on the effect of the loss number, loss pattern, and forgiveness on perceptual 

rating individually reported in prior subsections, we propose to extend the AWMPDS 

metric developed for single loss sequence, to PDMOSL, which is used to predict the 

overall quality degradation due to packet losses, which can contain single or multiple 

losses                   

 ���/�� � '� 1& � $���
�����
.

�	
            (2.7) 

where N is the number of losses, and L is the length (in terms of frame) of video clip. 

CD is defined in Eq.(2.6), and W (Di) is the exponential decay function that simulates 

the forgiveness effect of multiple losses, and is previously defined in Eq.(2.4). Noticing 

that the inter-distance Di is closely related to the loss pattern, our definition for the 

forgiveness factor thus some what accounts for the impact of the loss pattern. MPDSi is 

defined in Eq.(2.3). Via maximizing correlation, we find the following parameters yield 

the best fit between the model and the subjective data: PDmin = 4, PDmax = 13, ELmin 

= 3, r = 0.015, k = 0.8, and c = 0.002. Figure 2.10 shows the relation between DMOSL 

and PDMOSL in Test 1 and 2. The Pearson correlation coefficient is 0.9626, which is 

supported by t-test with a significance level above 99%. 

 

E. Verification of Proposed Quality Metric for Random Packet Losses 

In order to verify the accuracy of our proposed model in Eq.(2.7) with more realistic 

packet losses, we designed and performed another test, Test 4. This test consists of all 

five chosen sequences, with each sequence having five different degraded versions: 

original (uncoded) sequence, encoded without any packet loss (with QP set to 26, 31, and 
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Figure 2.10 Relations between DMOSL and PDMOSL for data in Test 1 and 2. 

(Pearson correlation=0.9626). (“solid” points represents single loss data set, and “hollow” 

points correspond to multiple losses data set) 

 

35), and three sequences with packet losses. We apply the Elliot-Gilbert (two-state 

Markov chain) [53] [54] to simulate the packet (or frame) loss characteristics of actual 

wireless network. Here we set transition probability from “Good” to “Bad” state to 0.02 

and transition probability from “Bad” to “Good” state to 0.8. (We assume that the video 

frames transmitted in “Good” state are correctly received, whereas frames in “Bad” state 

are lost.) 

The average packet loss rate for the sequence in Test 4 is up to 3% and average 

burst length is 2 frames. (We found that the severity caused by these packet loss 

parameters can yield enough artifacts to degrade the perceptual quality substantially but 

the resulting sequences are still acceptable for the viewers to give meaningful ratings.) 

The remaining testing conditions are kept same as previous tests. In this test, DMOSL for 

each sequence is the MOS difference from its no-loss encoded version. 
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Figure 2.11  Relation between DMOSL and PDMOSL for Test 1, 2 and 4 data. 

(Pearson correlation = 0.9082) (“star” represents data in Test 1 and 2, and “square” 

represents data in Test 4.) 

 

Figure 2. presents the relation between DMOSL and PDMOSL for the sequences 

with packet loss in Test 1, 2 and 4. The model computation is based on the same model 

parameters derived previously using data from Test 1 and Test 2 data, i.e. PDmin = 4, 

PDmax = 13, ELmin = 3, r = 0.015, k = 0.8, and c = 0.002. We can see that the 

calculated quality degradation has fairly high correlation with actual subjective data, with 

Pearson correlation 0.9082. 

 

2.2.3 Verification of Quality Metric for Coding Artifacts 

There are many proposed metrics evaluating the perceptual quality degradation 

due to coding artifacts. Here we adopt the PSNR-based model of VQM (VQMP) 

proposed in [1], which is defined as 
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 ���/�0 � ��/�0,���1 1   2�34.5!34.56
           (2.8) 

where PDMOSC is the predicted perceptual quality degradation caused by coding 

artifacts, s is the roll-off factor of sigmoid function, and PSNRT is the transition value of 

that PSNR curve. DMOSC, max is maximum possible perceptual quality degradation due to 

coding artifacts. 

In order to verify the performance of this model, we conducted Test 3, which 

consists of 7 loss-free test sequences, with the same 20s cut from “American Pie”. These 

sequences are obtained by encoding with 7 different QP values: 26, 28, 30, 32, 34, 36, 

and 38. The GOP length is 2 s (24 frames), and the bit rate ranges from about 40 kbps to 

256kbps. The other encoding/decoding configurations follow the same settings used in 

previous tests. 

Although in this test only encoded sequences are tested, we can use its original 

sequence in Test 4 as a reference to obtain DMOSC for each sequence. Figure 2. (a) 

shows the relation between DMOSC and the PSNR values of encoded videos in Test 3, 

and we can see the relation closely follows the sigmoidal function. By using least square 

error fitting, we found the following model parameters work well, s = 0.67 and PSNRT = 

33.4, and DMOSC;max = 30. Figure 2. (b) shows the scatter plot of DMOSC  vs. PDMOSC, 

which has a high correlation of 0.9991 with the significance level above 99%. 

2.2.4 Final Quality Metric Considering Both Packet Loss and 

Coding Artifact 

Based on the results in previous sections, and the assumption that the 

degradations due to coding artifacts and loss-induced artifacts are additive, we propose 
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Figure 2.12 Coding artifacts impact on perceptual quality (a) relation between 

DMOSC and PSNR, and (b) relation DMOSC and PDMOSC, for the data in Test 3. 
 

 

the following metric for predicting the overall quality degradation: 

 ���/�'& � ���/�0 1  7 ���/��           (2.9) 
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where PDMOSCL is the predicated total quality degradation, and PDMOSC is predicted 

quality degradation contributed from coding artifacts of loss-free portion of encoded 

sequences. For readers’ convenience, previously defined PDMOSL is given in Eq.(2.10), 

combining all previously defined relations in one expression. Note that Eq.(2.11) and 

Eq.(2.12) are the same as previous Eq.(2.8) and Eq.(2.2), respectively. The parameter f 
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serves to provide appropriate weighting between quality degradation caused by coding 

artifacts and that caused by loss artifacts. 

 

A. Verification of the Final Proposed Metric 

In order to verify the performance of our final proposed metric, the data set of 46 

test sequences (5 original sequences are not included) from test 1 through test 4, 

including various packet loss and coding artifacts, are tested. DMOS here is determined 

as the differential MOS due to both packet loss and coding artifact, obtained by 

subtracting the MOS of a given sequence from the MOS of its uncoded original version. 

For all parameters except the new parameter f, we use the same parameter values derived 

in previous sections, i.e. PDmin = 4; PDmax = 13; ELmin = 3; r = 0.015; k = 0.8; c = 

0.002; s = 0.67; and PSNRT = 33.4. In order to determine f, we trained the model by 

using least square error fitting on 6 clips of two very different sequences, i.e. “American 

Pie” and “F1 Car Race” (with packet losses) in Test 4, which yields f = 74. The 

remaining 14 sequences (not including original sequences) in Test 4 are used as 

validating sequences. Figure 2. (d) shows the scatter plot of the DMOS scores vs. the 

predicted quality values for all the 46 test sequences, with Pearson correlation 0.9135. 

 

B. Performance Comparison 

To evaluate the performance of our proposed metric, we compare it with the 

classic measure PSNR and two well-known state-of-the-art metrics, including VQM 

(General Model) [34] and SSIM [55]. Specifically, PSNR and SSIM are calculated for 

each video frame and averaged over the entire sequence. To obtain the SSIM and VQM 
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(General model) scores of our test sequences, we used the public domain software, with 

default settings, in [56] and [57], respectively. 

Figure 2. shows the relations between DMOS and the above four metrics, for all 

46 test sequences in Tests 1-4. The performance of each metric is characterized by four 

evaluation metrics, i.e. Pearson Correlation Coefficient (PCC), Spearman Rank 

Correlation Coefficient (SRCC) [18] [19], Root Mean Square Error (RMSE) [4], and 

Outlier Ratio (OR) [4]. In order to compute RMSE and OR between DMOS and the three 

metrics, i.e. PSNR, SSIM, and VQM (General model), we first applied the nonlinear 

mapping function, suggested in [4], on the outputs of the three metrics, and it is defined 

as:  

 ��/�3 � �
�>
?@ 1 >A?A 1 >@?
 1 �A         (2.13) 

where DMOSp is the mapped perceptual quality, x is the computed score by an objective 

quality metric, and α1,  α2, β1, β2, and β3 are constants to be determined. For each quality 

metric, we fit the function assuming α1= 1, and α2 = 0 by maximizing the Pearson 

correlation between DMOSp and DMOS, yielding the values of  β1, β2, and β3. Then the 

values of α1 and α2  are determined by least root mean square error fitting. More detailed 

information about mapping processes can been found in [4]. The performances of the 

four compared metrics are summarized in the Table 2.3, and we can see that our proposed 

metric significantly outperforms the other three. 

By looking at the data points corresponding to the clips with coding artifacts only 

in Figure 2., e.g. the data in Test 3, we see that the predicted quality by PSNR, SSIM and 

VQM has high correlation with subjective quality. While for clips with packet losses the 

predicted quality values do not follow a consistent trend with subjective ratings. This is 
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not surprising, as these measures were developed mainly to address coding artifacts. On 

the other hand, our proposed metric measures the coding and loss artifacts separately, and 

explicitly considers the effect of error length, error severity as well as “forgiveness” and 

group effects for loss artifacts, which contributes to the high correlation between our 

proposed metric and actual perceptual video quality. 

 

 

Figure 2.13 Relations between DMOS and different metrics for all test data: (a) 

PSNR, (b) VQM (General Model), (c) SSIM, and (d) our proposed metric 
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Table 2.3 Performance comparison of different metrics (for all tests) 

  

2.3 Summary 

In this chapter, we first examine the impact of error length, PSNR drop, and loss 

location on the perceptual quality of a decoded video subjected to a single transmission 

loss (which causes the loss of two consecutive frames). We find that an error is visible 

only if the error length or PSNR drop exceeds a certain threshold, and that the perceptual 

quality is approximately linearly related to the error length and PSNR drop, subject to 

some clipping in the beginning and end portion. Based on this finding, an objective 

measure, MPDS is proposed. Then to take into account the forgiveness effect as well as 

the clip length factor, we further propose AWMPDS by weighting the MPDS of each loss 

with a distance-dependent weighting factor, followed by a normalization process by 

sequence length. 

When a sequence contains multiple losses, the perceptual rating depends on the 

PSNR drop sums of individual losses, the number of losses, the loss pattern, and the 

inter-distances between losses (which is one attribute of loss pattern). By analyzing the 

effect of these factors on the subjective rating, we extend our AWMPDS metric to 

PDMOSL. Finally, by incorporating a prior model for quality degradation due to coding 
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artifacts given in [1], we proposed a combined metric PDMOSCL for predicting the 

overall quality degradation due to both compression and packet losses. This metric 

provides a high correlation (Pearson correlation = 0.9135) with subjective ratings for a 

large set of sequences with different video content, coding artifacts and loss patterns, 

significantly higher than some other widely accepted metrics. 
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Chapter 3   

Quality Assessment of Packet Loss Impaired Video Frames 

 

As the basis of quality assessment of video sequences, the accurate measurement 

of perceptual quality of individual video frames is of significant importance. However, 

there is a lack of effective quality metrics designed for single video frames affected by 

packet losses. And our proposed video quality metric in Chapter 2 is built on the fact that 

PSNR is used to measure the quality of individual frames. As a first attempt to improve 

the proposed metric, in this chapter, we address the problem of perceptual quality 

measurement on individual coded video frames with distortions caused by both lossy 

source coding and lossy transmission.  

We also focus on low bitrate H.264 coded video with error concealment and 

propagation due to packet losses. Identifying Human Visual System (HVS) masking 

effect as one of the most important factors affecting the perceptual quality, we investigate 

its impacts on the two aforementioned artifacts in individual video frames respectively, 

and then evaluate their corresponding Just-Noticeable-Difference (JND) based perceptual 
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distortions. Finally, we combine the two distortions together and propose a block-wise 

full-reference quality metric for a single distorted video frame. Our subjective test results 

show that the proposed metric correlates fairly well with actual subjective quality ratings. 

3.1 Subjective Quality Test of Individual Video Frames 

A. Test Design 

In order to focus on the assessment of spatial quality of videos impaired by packet 

loss, we choose to subjectively test the quality of single distorted video frame. The 

benefit of this design is multifold. First, this subjective spatial quality focused test 

constrains the number of considered quality-affecting features, and thus simplifies the 

complex problem. Second, we believe the assessment of the quality of video sequence is 

decided by the quality of individual frames pooled by some temporal attributes. With this 

subjective test, we can deeply diagnose the intrinsic cause of video quality degradation 

due to packet losses artifact.  

 

B. Testing Materials 

We select 29 video sequences from the standard video database, and they consist 

of various types of scenes, whose motion and activity levels range from low to high, so 

that the bias on any particular video scene or category is avoided. In order to eliminate 

the effect of scene change within individual video, every clip only contains one scene, 

which lasts about 8~ 10 second. 
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All the testing sequences are first encoded and decoded following H.264 standard, 

using JM10.0 encoder/decoder (baseline profile, level 3, and IPP...P GOP structure). The 

sequences are encoded at QVGA(320x240) resolution and 12 fps frame rate, with the 

GOP length of 2 sec long. The encoded sequences have various QPs ranging from 30 to 

38, so that the spectrum of tested sequences is wide enough. We are mainly interested in 

wireless video applications over the 

3G wireless networks, where payload packets are transported in program data 

units (PDU) of fixed length, without alignment with the payload packets, so that the loss 

of a PDU often leads to the loss of two payload packets. With H.264, each frame is coded 

into one packet. Therefore, to simulate typical losses in a 3G wireless channel, we 

randomly drop two consecutive P-frames within one selected GOP. We use frame-copy 

as error concealment method. 

Instead of simply evaluating the individual video frames as isolated still images, 

we would like them to be assessed in the context of video sequences, so that viewers can 

have certain reference information to judge the test frames before they appear, which 

better resembles the real-world situation. Therefore, we present each test video frame in 

following way. Firstly, we extract the last frame in the loss-affected GOP as the test 

frame, because it usually has severe quality degradation due to error propagation after 

packet loss occurs. Then, the test sequence is generated by truncating the original 

uncoded sequence up to the frame immediately before the test frame, and appending the 

test frame at the end. Totally we designed and tested 46 such processed clips. Half of 

them are used for training the model and the other half is used for testing the performance 

of this trained model. The illustration of this process is shown in Figure 3.1. 
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Original video frames (uncoded) 

··· 
Test video frames  

(coded and packet loss impaired) 

 

 

 

 

 

 

                              Figure 3.1 Illustration of generating a test sequence 

 

C. Testing Procedures 

The subjective test was carried out by following the Single Stimulus Continuous 

Quality Evaluation (SSCQE) standard in [1]. According to the result in [58], because of 

memorization effect, displaying duration does not affect viewers’ quality ratings on still 

images very much. Therefore, we performed our test as follows. The test sequence is 

played normally and the picture is frozen at the last (i.e. test) frame, then viewers are 

asked to rate the quality on that frame only. Totally 15 viewers participated in the test. 

The quality was rated by using a mouse to control a scaling bar to give scores from 0 to 

100 (“100” means best quality). 

3.2 Objective Quality Metrics of Single Video Frames 

3.2.1 Distortion Analysis and Classification 

Quality degradation from video coding is mainly due to quantization of motion 

compensated prediction errors between video frames. Because of the powerful 
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deblocking filter in H.264 decoder, the “blocking” artifact is not obvious, at least at not 

very low bitrate. So the dominant visual distortion is “blurring”, which can be perceived 

on the edges of objects or textured areas of an image. They impair the perceptual quality 

of frames globally. On the other hand, the main artifacts from error propagation (due to 

packet loss) are local spatial chaos caused by some small mispositioned image fractions, 

usually around the edges of objects with motions. In this work, we treat these two kinds 

of distortion separately, and then combine them into one final quality metric. 

In order to differentiate these two artifacts, the attributes of their incurred 

distortions are investigated. Base on our observation, generally speaking, packet losses 

cause the artifacts in the form of displacements of small image fragments, but within 

them the texture of most pixels are preserved, which can be seen from the sails of the 

boats in Figure 3.2 (b). One the other hand, the coding distortion just blurs the image 

details, and hence its texture is damaged, which is obvious in the regions of water waves 

in Figure 3.2 (b). Because of this difference between the two artifacts, the averaged 

absolute intensity differences between corresponding blocks in original and distorted 

frames caused by packet loss is usually larger than those due to coding artifacts. 

Therefore, all the blocks in a distorted video frame can be classified as either coding-

impaired or loss-impaired blocks, according to 

 �BCDEFDBEG HIJ � K LEMBGN OFDB7OLDC,JFEJONODBEG  FFEF,  �PQ-�R, S
 � J�PQ-�R, S
 T J�           (3.1) 

with                                                

 �PQ-�R, S
 � 1GA � U�V���?, I
U��,W
XPQ-Y,Z
           (3.2) 
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where Dpix(x, y) is the pixel intensity difference at position (x, y) within block (j, k) 

between original and distorted frames, and n x n is block size. We set n=8, and p=10 in 

our experiment. Note that we assume that the coding distortion within the blocks where 

packet losses occur can be ignored, since usually packet loss artifacts are the dominant 

distortion.     

  

Figure 3.2 Sample of (a) original video frame and (b) decoded video 

3.2.2 Perceptual Distortion of Error Propagation 

For individual frames, in order to evaluate the perceptual distortion due to packet 

loss and its error propagation, we take into account the spatial masking effects of the 

HVS [59]. There are two kinds of significant masking effects with respect to the visual 

perception of the distortions. The first is the luminance masking, or luminance 

adaptation. Usually, human eyes are more sensitive to errors in the mid-gray luminance 

areas, but less sensitive to errors in very bright or dark areas. A piece-wise linear 

approximation to the JND threshold is shown in Figure 3.3 [60]. The second is activity 

masking, or texture masking, which occurs in the areas with complex textures. Generally  
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Figure 3.3 Illustration of relation between the error visibility threshold and the 

background luminance 
 

speaking, distortions occurring in textual regions are less noticeable than those occurring 

in the smooth regions. 

Because the texture activity is presented in the form of edges, we propose to use 

the density of strong edges in an area as an indication of the texture richness or activity 

level. Extraction of edge information can be achieved by using any edge detection 

method, and herein, the popular Sobel filter is used and only strong edges (with 

magnitude above 15) are kept. Since isolated edge points can be considered as noise, they 

are deleted by morphological operations. The edge density in a region is calculated as the 

ratio of the number of edge pixels to the number of all pixels in the region. Because of 

the confined size of error propagation, the incurred quality degradation can be affected by 

both luminance and texture masking effects. In other words, a packet loss with its artifact 

in small regions can be masked out if it is below the visibility threshold of combined 

masking effects. Although this “Just Noticeable” attribute of some packet losses is 

contrary to our intuition, it can be applied in some particular circumstances, e.g. the 

regions with very dark intensity or bushes with rich texture. 

In order to calculate the combined visibility threshold, we extend the concept of 

pixel-wise JND to block-wise JND, where the visibility of the distortion in a center block 
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is dependent on the masking effect of its surrounding blocks. Following the concept in 

[59], for each 8x8 block, its visibility threshold is defined as:              

 [\�3�R, S
 � max �` 8 M G_ MN �R, S
, bcdO_De�R, S

           (3.3) 

where den_edge(j,k) is the maximum edge density across 8 neighboring blocks of the 

center block at (j,k) in the reference frame, and luma_th(j,k) is the visibility threshold due 

to luminance masking effect, which is illustrated in Figure 3.3, where the background 

luminance is the average of pixel values of the 8 neighboring blocks in the reference 

frame. b is a scaling parameter such that b*den_edge properly represents the visibility 

threshold due to texture making effect, and we set b = 200 in our experiment. 

From this JND profile, the distortion of a block can be normalized and converted 

into JND unit. The total perceptual distortion over a frame caused by error propagation is 

calculated in Minkowski fashion as follows: 

 �3 � f � �3,PQ-�R, S
g
�;,-
Xh i


/g
           (3.4) 

with 

 �3,PQ-�R, S
 � max k �PQ-�R, S
[\�3�R, S
 � 1, 0l           (3.5) 

where Dblk(j,k) is the block-wise intensity deviation previously defined in Eq.(3.2), 

Dp,blk(j,k) is the JND-scaled distortion due to packet losses, and α is the parameter to be 

determined. In addition, to avoid overweighting the extreme large values of Dp,blk(j,k) 

during the pooling process, it is clipped (to 2 here), so that the proposed metric is well 

correlated to our subjective data. 
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3.2.3 Perceptual Distortion of Coding Artifacts 

Although there are many existing pixel- and subband-based JND metrics for 

evaluating image/video coding distortion [59], most of them are not compatible with our 

proposed block-wise packet-loss-distortion metric. Therefore, we try to propose a 

specialized coding distortion measurement for this purpose. 

Based on our observations in our subjective experiments, the blurring effect is the 

dominating distortion caused by coding artifacts, and it usually spreads throughout the 

entire images. However, the quality degradations across the images are not even. The 

reason is twofold. First, smooth regions are usually relatively better coded so that the 

distortions in these regions are objectively small. Second, the regions with high contrast 

(or rich in strong edges) are less affected by coding artifacts than those with low contrast, 

although their objective distortions are similar. Taking Figure 3.4 as an example, it is one 

of the JPEP2000 images from LIVE image dataset [61]. We can clearly see that the 

highly contrasted regions around the eye of the bird are relatively less blurred, while the 

distortions, at similar level, on its feathers around the neck and on the wing badly blur 

those objects, where the local contrasts are relatively low. 

 

Figure 3.4 Sample (a) encoded image, and (b) absolute difference between 

original and distorted images (brighter areas indicate higher distortion). 



67 

 

Based on our observations and inspired by the work [62], we propose a simple 

full-reference block-wise JND-based quality metric for coding artifacts, based on the 

local contrast information. 

Firstly, we differentiate smooth regions from edgy regions by computing local 

contrast within 8x8 block. Within smooth regions, since distortions are usually 

unnoticeable, or the distortion visibility is very high, for simplicity we set JND threshold 

as infinity; within edgy regions, we set JND threshold proportional to the local contrast, 

which is defined as: 

 [\�0�R, S
 � �LEGDFOCD�R, S
m ,∞, � LEGDFOCD�R, S
 T DLEGDFOCD�R, S
 � D           (3.6) 

where contrast(j,k) is the contrast of block at (j,k), and for simplicity, it is defined as the 

difference between maximum intensity and minimum intensity values in that block in 

original frame. F is the proportional factor linking contrast and JND value. Based on the 

experimental results in [63], noticeable luminance difference is roughly proportional to 

the luminance edge height, despite of slight variation of their slopes (around 8) in 

different background luminance. Here we set F=8. t is a threshold to separate smooth 

from edgy regions. Via close subjective examination on the test images, we find that t=16 

is a good threshold. 

Secondly, we convert the pixel-wise distortion between original and coded images 

to JND scale as follows: 

 �0,V���?, I
 � max k �V���?, I
[\�0�R, S
 � 1, 0l           (3.7) 

where Dpix(x,y) is the pixel-wise distortion within the block (j,k), and DC,pix(x,y) is the 

corresponding converted JND scaled distortion. 
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Thirdly, based on the results in [67] that the highest distortion (in JND scale) 

among all pixels within a block can be used to indicate the distortion level of that block, 

we define the distortion of each 8x8 block as: 

 

 �0,PQ-�R, S
 � max�o,p
Xqrst,uk�0,V���?, I
l             (3.8) 

Lastly, we pool the distortions of all blocks as follows: 

 �0 � f � �0,PQ-�R, S
v
�;,-
Xh i

/v

            (3.9) 

where β is a parameter to be determined. 

Before we integrate the proposed distortion measurement for coding artifacts into 

final quality model, it is validated with 169 JPEG2000 coded images from LIVE image 

dataset, where blurring is the most annoying artifact. We also compare the performances 

of MSE and SSIM with our proposed metric. For our proposed metric we set β?=2, which 

produces its highest correlation with the tested LIVE subjective data; for SSIM, we use 

the default parameters in the Matlab program [56]. Figure 3.5 shows the scatter plot 

between Differentiate Mean Opinion Sores (DMOS) and the three comparing metrics. 

Table 3.1 lists the Root Mean Squared Errors (RMSE) between subjective data 

and their logistics fittings, along with the Pearson correlation coefficients (after logistics 

mapping according to their fittings). 

 

Table 3.1 Performance comparison of different metrics 
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Figure 3.5 Scatter plots of the relations between DMOS caused by coding 

distortion and (a) MSE, (b) 1-SSIM, (c) the proposed metric. (“Stars” represent data 

points of LIVE database, and curves represent logistics fittings.)  
 

From these results, we can see that our proposed simple metric effectively 

predicts the image quality degradation caused by coding artifacts, and for the tested 

dataset, it significantly outperforms MSE, and achieves slightly better performance than 

SSIM (with default parameters). 
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3.2.4 Proposed Quality Metric Considering both Coding and 

Packet Loss Artifacts 

The impacts of error propagation and coding artifacts on perceptual video quality 

are assumed additive, and the overall perceptual distortion is defined as       

 �30 � �3 1 � �0           (3.10) 

where DPC  is total distortion due to the two artifacts, and w is their weighting factor.  

The high-level flowchart of the entire process is shown in  

Figure 3.6 The flowchart of entire process of the proposed metric.  

 

Figure 3.6 The flowchart of entire process of the proposed metric 
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After post-screening the raw data in the way suggested by [1], Mean Opinion 

Score (MOS) was calculated. By maximizing the correlation between MOS and proposed 

metric, after cubic polynomial mappings, over the training dataset, we set α=?2, β?=1, w 

=?0.003, with the other parameters kept same as before. Testing dataset is used to validate 

this trained model. Figure 3.7  shows the relationships between MOS and our proposed 

metric, for both training and testing datasets. For comparison purpose, the scatter plots 

between MOS, and MSE and SSIM are also shown in Figure 3.7. The Pearson correlation 

coefficients between MOS and the three metrics (after cubic polynomial mappings), are 

listed in Table 3.2. Note that SSIM is calculated using the Matlab code in [56], with 

default parameters. 

We can see that our proposed perceptual quality degradation metric can 

accurately predict the actual subjective quality of decoded video frames distorted by 

joints artifacts of coding and packet loss, while the generic metrics MSE and SSIM do 

not perform well in this case. 

 

Figure 3.7 Relationship between MOS and proposed metric (a) Training dataset, 

and (b) Testing dataset, with RMSE of fittings 10.57 and 9.866, respectively. (Vertical 

bars around data points represent 95% confidence interval.) 
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Figure 3.8 Relations between MOS and (a) MSE, and (b) SSIM (“solid dots” 

represent the training data, and “empty squares” represent the testing data). 
 

 

Table 3.2 Pearson correlations of the compared metrics 

 

     

3.3 Summary 

In the work described in Chapter 2, we mainly focus on investigating the impact 

of loss patterns (length, position, pattern) on video perceptual quality, whereas we use 

PSNR drop in individual frames for simplicity to evaluate the severity of a loss. In the 

work presented in this chapter, we attempt to improve quality prediction accuracy for 

individual frames by incorporating the properties of the human visual system into 

measures of distortions in loss-affected frames.  

Towards this goal, we evaluate the perceptual quality of individual decoded video 

frames, which are distorted by both coding artifacts and error propagation due to packet 

loss. By taking into account of different masking effects of the HVS, we propose two 
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JND profiles for coding and packet loss artifacts. Furthermore, we propose a combined 

metric that evaluates the perceived quality degradation due to both artifacts. The 

predicted perceptual distortions by our proposed metric have fairly high correlation with 

subjective quality ratings. 

Ideally, the video quality metric described in Chapter 2 can be improved by 

replacing PSNR drop with the proposed metric in this chapter for measuring the quality 

of individual video frames. It is one of our future work. 
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Chapter 4   

Video Quality Assessment with Aid of Saliency 

 

As one of the most important components of human visual system, saliency is 

studied in many different image and video processing applications. In this chapter, we try 

to investigate whether and how saliency can be used to improve objective quality 

assessment. 

Traditional objective approaches to video quality assessment such PSNR and 

MSE, consider the error at all pixels equally and overlook the uneven distribution of 

visual importance, hence their predicted and perceived video qualities are usually not 

correlated very well with subjective ratings [4] [55] [64] [65]. This discrimination is even 

more obvious in the presence of packet losses, because packet losses can usually cause 

significantly different visual impacts in different video segments. Along with the rapid 

development of network technologies, packet loss is becoming one of the most annoying 

distortions in videos delivered over the network. However, the research work on quality 

evaluation for video impaired by packet loss is still at beginning phase. Therefore, in the 
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hope that saliency may significantly improve the performance of existing quality metrics, 

we perform our research work discussed in this chapter. 

In this chapter, we exploit the application of saliency information for perceptual 

quality assessment of packet-loss-impaired videos. We propose and validate three 

approaches of saliency-based objective metrics for video quality assessment, i.e., 

saliency-weighted error, saliency-fidelity, and saliency temporal variation metric. The 

saliency-weighted error metric uses a weighted average of pixel errors between original 

and distorted video, where the weight at a pixel depends on its visual saliency. The 

saliency-fidelity metric measures the change of saliency distributions between the 

original and distorted video as quality indicator. The saliency temporal variation metric 

considers the temporal variation of the saliency map of the distorted video and uses the 

product of this temporal variation with each metric in the first two categories. Validated 

by our subjective test data, each of the three saliency-based metrics can significantly 

improve quality prediction accuracy over conventional non-saliency based metrics. 

To further improve prediction accuracy, we combine multiple factors from the 

previous three categories using stepwise multiple linear regression analysis. The final 

metric for video that includes four factors provides additional significant gain over using 

the best single factor.  

4.1 Saliency Measurement 

Psychology evidence suggests that the most important function of human 

selective visual attention is to orientate rapidly towards salient objects in a cluttered 
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visual scene. Authors of [36] [37] [38] [39] who work on computational VAM, have 

agreed that a unique “saliency/importance map” that topographically encodes for 

stimulus conspicuity over the visual scene is an efficient and plausible bottom-up control 

strategy. In the models they developed, several early vision features are first extracted in 

the bottom-up manner, then either “center-surround” structure based on multi-scale 

feature maps (as in [36] [37] [38]) or contrast computation between important region and 

the background (as in [39]) is applied to obtain the local conspicuous regions that 

simulate the visual receptive fields of human. The resulting topographic feature maps are 

then combined across scales and channels to form a “saliency/importance map”. Human 

eye movements are recorded by the eye-tracking device to examine the correlation of the 

developed models with subjects. Among these VAMs, Itti’s bottom-up saliency based 

visual attention model (SVAM) [37] [38] has demonstrated high correlation with human 

eye movements over static images and been used in various applications successfully. 

This encourages us to integrate his SVAM into video quality evaluation. 

4.1.1 Saliency and FOA Detection Methods for Images 

Itti’s SVAM attempts to simulate which location in the image will automatically 

and unconsciously attracts our attention. With SVAM, an input image is decomposed into 

a set of multiscale “feature maps” of color, intensity and orientation, in a massively 

parallel manner, using linear filtering at eight spatial scales. Color perception is built on 

red-green (R-G) and blue-yellow (B-Y) opponent color space. Local orientation 

information is obtained using oriented Gabor pyramids in 4 directions (0°, 45°, 90°, and 

135°). Center-surround differences between a “center” fine scale and a “surround” 
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coarser scale yield the feature maps (color, intensity, orientation), which is the simulation 

of retina high and low contrast sensitivity. Each feature map is then endowed with non-

linear spatially competitive process and linearly combined with some pre-defined weights 

into a unique scalar “saliency map”. The saliency map is a gray scale image, with a high 

gray level at a pixel indicating that the pixel attracts more visual attention. The size of the 

saliency map is determined by a chosen pyramid level, with default level being 5, which 

is 1/16 size of the original image. Subsequently the interplay between the winner–take–all 

and inhibition–of–return is applied to the saliency map to draw the FOA towards the 

locations in the order of decreasing saliency, which generates the model’s output in the 

form of spatio–temporal attention scanpaths. Generally, this step can produce multiple 

binary FOA maps which are calculated based on the saliency map, indicating detected 

FOA areas, in the time order of humans’ gazes across the image. In this work, we used 

the SaliencyToolbox 1.0 [66] in MATLAB developed by Dirk B. Walther, which 

implements Itti’s SVAM. 

In the original SaliencyToolbox 1.0, the three basic feature maps are given equal 

weight when generating the overall saliency score at each pixel. In the video frames with 

packet loss artifacts, loss-affected regions often lead to discontinuity across block 

boundaries. In order to guide the saliency detection algorithm toward these regions, we 

experimented with different weights between color, intensity and orientation by closely 

looking into each feature map. We also explored the impact of the number of iterations 

used in the non-linear spatially competitive dynamics computation, which determines the 

size of detected saliency regions. We found that the following setting leads to the 

detected saliency regions that best match with our subjective examination. We set 



78 

 

weights to 0.5, 0.5, 1 for color, intensity and orientation respectively, and 2 for iteration 

number. Figure 4.1 shows the boundaries of the first 5 detected FOA regions of two 

sample packet-loss impaired frames as well as their reference versions. 

 

Figure 4.1 Reference frames from the sequence (a) “optis” and (b) “whale”; 

distorted frames from the sequence (c) “optis” (with MOS=2.53), and (d) “whale” (with 

MOS=2.73). The circles in each video frame shows the detected first 5 FOAs using the 

saliency model, the arrow gives the attention scanpaths. 

4.1.2 Incorporating Motion As Saliency Feature For Video 

Motion is one of the most important features that distinguish a natural video 

sequence from still images, and it is an important factor when evaluating perceptual video 

quality. However, the original SaliencyToolbox is developed for detecting saliency on a 

single image, and hence motion is not considered. Following the general idea of saliency 
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detection, the motion feature that draws visual attention should be distinct from their 

surroundings. It should signal a perceived change of the motion characteristics of a region 

in contrast with its surrounding. Hence, unlike traditional motion detectors for video, the 

detector in saliency computation needs to find where there is a significant change in 

motion characteristics, but not exactly how much the target moves. Following [67], we 

implement a biologically inspired elementary visual motion detection method, referred as 

“Hassenstein–Reichardt (HR) correlation-based motion detector” [68]. Since Hassenstein 

and Reichardt first described the visual system of the beetle Chlorophanus using 

correlation of signals between adjacent ommatidia with a time delay in 1956 (Figure 4.2), 

visual motion detectors based on this principle have been widely developed [69] [70] 

[71]. 

The aim of the model is to study the ways that change in motion attributes alter 

the way in which natural moving stimuli are likely to be perceived. Here we incorporate 

this model by making use of the existing multi-scale representation of video frames. For 

every pyramid level, we compute four opponency maps for motion in four directions: 

left, right, up and down, by one pixel each between two consecutive frames. Then we 

model the receptive fields for motion perception with the existing center surround 

mechanism in SVAM by inputting the four motion feature maps into the saliency map 

computation, as with the other features (color, intensity and orientation). Recall that a 

movement of 1 pixel at level σ in the pyramid corresponds to a movement of 2σat the 

original level 0 image. Thus the overall motion feature examines changes in motion in 

four directions over a magnitude range of 1 to 2
8
. 
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Figure 4.2 Schematic of Hassenstein - Reichardt Correlation-Based Motion 

Detector 

 

In order to better understand the role played by the motion feature, we compare 

the saliency maps with and without motion feature in Figure 4.3 (b) and (c), (e) and (f) in 

each subimage of three sample frames. We can see motion is a very useful cue for visual 

attention detection, not only for the case where there are multi-objects moving 

simultaneously, such as the dangling leaves in “leaf”, but also can increase saliency 

intensity when the salient objects have movement as in “aircraft” and “optis”. 

Furthermore, motion is very helpful in catching the artifacts-affected areas, such as in 

“aircraft”. These observations motivate us to include the motion feature into the SVAM 

and assign a higher weight to it when combining all the feature maps to derive the 

saliency map. Through trials-and-errors, we found that the weights of 0.3, 0.3, 0.7 and 1.0 

for color, intensity, orientation and motion respectively, and using one iteration, yielded 

saliency maps which best match with our subjective examination. 
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Figure 4.3 Demonstration of proposed methods taking the example of “aircraft” 

(MOS = 2.45, the 11th frame is shown), “optis” (MOS = 2.36, the 12th frame is shown) 

and “leaf” (MOS = 5, the 12th frame is shown). Included in each subimage are: (a) the 

reference video frame, (b) the reference saliency map without using motion feature, (c) 

the reference saliency map using motion feature, (d) the distorted video frame, (e) the 

distorted saliency map without motion, (f) the distorted saliency map with motion, (g) the 

absolute difference between reference and distorted video frame, (h) the saliency-

weighted absolute difference image using motion features, (i)  the absolute difference 

between the saliency maps obtained using motion features. 

4.2 Subjective Video Quality Tests  

In order to examine the role of saliency in the perceived overall quality of video 

impaired by packet losses, we perform the following subjective test.  
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In this test, the overall qualities of video sequences impaired by packet losses are 

subjectively evaluated. There are totally seventeen (17) sequences in this test, listed in  

 

            Table 4.1, (all the test sequences are available online [72]). We code each 

sequence with JM H.264 encoder (baseline profile) with IPPP GOP structure with GOP 

length of 2 second. The packet losses are deliberately inserted so that 3rd and 4th frames 

of a selected GOP are dropped. The remaining part of the GOP suffers from impairments 

due to error propagation. We cut out only the GOP with packet loss impairment for 

subjective viewing, thus each test clip is 2 second long.   

One may argue that 2 second is not long enough for the viewers to give confident 

quality ratings. However, when designing our preliminary test plan, we observe that the 

quality ratings from majority of the viewers are fairly consistent, and the feedbacks from 

viewers also suggest that viewers are comfortable with rating the 2 s clips. We believe 

this may be due to the fact that they are well instructed and have enough time to 

familiarize themselves with the test procedures. On the other hand, the error propagation 

during this period can cause a reasonable level of quality degradation, but not totally 

destroy the sequences.  

In this test we use ACR protocol recommended in [2].  The viewers are told that 

rating is on packet loss distorted sequences and are asked to rate the quality of each video 

in the range from 1 (bad) to 5 (excellent). Each viewer, who can freely adjust their 

viewing distance, is asked to give overall rating after one video is played completely. In 

each test session, a viewer is shown all 17 test sequences, with the first 5 used for 

training, and remaining 12 for testing (randomly ordered), as described in  
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            Table 4.1.  

 

            Table 4.1 Description of video clips used for subjective test 
 

  

 

During each viewing session, the test lasts about 2 minutes without break. All the 

tests are conducted in a well lit room using the same monitor and settings with test 

described in Chapter 2. Each set of video sequences is evaluated by 32 viewers (12 video 

experts, 20 non-experts). Other aspects of the test set-up closely follow the description of 

ITU-R BT500-11 recommendation [1] and the subjective test discussed in Chapter 2.1. 

The range of rating for video is shown in Figure 4.4 (training sequences are not 

included). 
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Figure 4.4 Histograms of video quality ratings 

4.3 Saliency-based Video Quality Modeling  

In this section, we first present two categories of saliency-based error factors for 

measuring the perceptual video distortion. 

4.3.1 Quality Assessment Using Saliency Weighted Pixel Errors  

Intuitively, errors at pixels that belong to saliency/FOA regions are more visually 

important than that in non-saliency/FOA area. Traditional error measurements treat the 

error of every pixel equally, and some of them from non-salient area are considered in the 

quality evaluation. We propose saliency weighted quality measurement which gives the 

errors at pixels that belong to saliency regions higher weighting. The proposed 

framework for saliency weighted objective quality assessment is illustrated in Figure 4.5. 
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Figure 4.5 Using saliency weight pixel-wise error for objective quality 

measurement 

 

First, Itti’s SVAM is applied to the distorted frame extracted from video sequence 

affected by packet loss. The gray-scale saliency maps, and the multiple binary FOA maps 

are alternatively considered as output. Simultaneously the Error Measurement block 

compares the distorted frames with the original frames, and computes a pixel-wise error 

map for each frame (measured by square, absolute or structure similarity difference). The 

Error Pooling block assigns weights to the errors in different pixels based on the saliency 

or FOA map, and averages the weighted error map spatially and temporally to obtain a 

final distortion score. Because generating FOA maps needs extra time for each frame, we 

only consider using saliency map for the weighting. 

Specifically, conventional error measurements MSE, MAD, and Structure 

Similarity Index (SSIM [56]) are calculated pixel-wise. Here, because SSIM measures 

similarity instead of difference, and its range is from 0 to 1, to be consistent with the 

MSE and MAD based measures, we use (1 − SSIM) (denoted by ��x�yyyyyyy) in the proposed 

saliency based SSIM measure.  

Let I1(x, y, t), and I2(x, y, t) denote the original frame pixel, and S1(x, y, t), and 

S2(x, y, t) denote the saliency values at position (x, y) and time t for the reference and 
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distorted video, respectively. The saliency weighted pixel error metrics for video 

sequences can be defined as:                      
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where E(x,y){·} is the 2-D mean operator averaging over all pixels in frame t, and Et{·} is 

the mean operator averaging over time in the whole sequence. 

Figure 4.6 (a) and (b) show the saliency maps of the two distorted images shown 

in Figure 4.6 (c) and (d), we can see the detected saliency areas correspond to most of the 

regions we would pay attention to. The absolute error images between original and 

distorted frames for the two frames are shown in Figure 4.6 (c) and (d), and the error 

maps weighted by the saliency maps are shown in Figure 4.6 (e) and (f). We can see that 

for “optis”, saliency weighted pixel error gives more weights to salient errors on the 

white sail, but for “whale”, it conceals most of the non-salient errors in the background.  

We have compared the saliency maps with and without motion in Chapter 4.1, 

taking example of the three sample frames (“aircraft”, “optis”, “leaf”) in Figure 4.1 (b), 

(c), (e) and (f) in each subimage, and found that motion is an important feature for 

saliency detection on packet-loss impaired videos. Hence, motion feature is included and 

assigned a higher weight (as described in Chapter 4.1) in saliency computation for the 

saliency-based error factors for video sequences. Original absolute difference images, 

with and without saliency weighting of the three frames, are shown in Figure 4.1 ((g) and 

(h)) for each example clip. We can see from the three examples, most of the visually 
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annoying errors are located in the detected saliency regions, especially, for sequence 

“aircraft”, motion feature helps to capture the noticeable artifacts in the background. 

 

Figure 4.6 Demonstration of proposed methods taking the example of “optis” and 

“whale”: (a)-(b) Saliency maps of the distorted frames. (c)-(d) Original absolute 

difference images. (e)-(f) Weighted absolute difference images using saliency maps.  

4.3.2 Quality Assessment Based on Saliency Variations 

So far, the presented saliency based quality assessment method follows the 

general idea of weighting the pixel error based on their perceptual importance. However, 
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besides the deviation in pixel-domain, we have observed that packet losses can bring 

significant changes to the distributions of saliency maps of distorted video frames, both 

spatially and temporally. We believe that this may be caused by the fact that human eyes 

tend to be attracted to packet loss artifacts that are not present in original videos. The 

more changes in these maps often signal the presence of more visible artifacts.  

 

A. Saliency Deviation from Reference Video 

In order to investigate the impact of saliency deviation on video quality, we select 

the videos with either very low or very high subjective quality ratings, and closely 

examine their saliency maps and FOA scanpaths from both reference and packet-loss-

impaired versions. We observe that the packet loss causes noticeable changes in their 

saliency maps for “bus”, “whale” and “optis” in Figure 4.7, whose quality ratings are 

relatively low. On the other hand, the saliency of “liberty” in Figure 4.7, is less affected 

by packet loss, and it receives a high rating. Similarly, the relationship between video 

quality and changes in video FOA follow the same trend (see Figure 4.8).  

Based on the above observations, we hypothesize that a method that measures the 

difference between the saliency or FOA maps of the original video and distorted video 

may be able to predict the perceived quality well. Hence instead of quantifying pixel 

errors in the distorted video frames, we can evaluate the changes in the saliency or FOA 

maps. In order to reduce computation, we only focus on exploiting the deviation of 

saliency map in this work. 
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Figure 4.7 The absolute difference map between the saliency maps of original 

frame and distorted frame for sample images: (a) “optis” (MOS = 2.53). (b) “whale” 

(MOS = 2.73). (c) “bus” (MOS = 2.8). (d) “liberty” (MOS = 3.93). 

 

Figure 4.9 shows the diagram of the proposed saliency-deviation-based quality 

error factor. First, saliency maps of reference and distorted frames are extracted 

separately through Saliency Detection processing. Then the differences between these 

two maps are calculated through the Error Measurement block, which measures the effect 

of packet loss on the visual attention change for individual frames. 

The saliency deviation based factor for video is defined by measuring the 

difference between saliency map of each original video frame and that of the 

corresponding distorted frame, then averaging over time. As before, three error 

measurements are used to measure the saliency difference — the absolute, squared and 

dissimilarity based on SSIM measure, yielding: 
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Figure 4.8 Reference frames from the sequence “aircraft” (a, the 11th frame is 

shown) and “leaf” (b, the 12th frame is shown); Distorted frames from the sequence 

“aircraft” (c, MOS=2.45), and “leaf” (d, MOS=5), the boundary in each shows the 

detected first 5 FOAs using the saliency model including motion feature, the arrow gives 

the attention scanpaths. 

 

         

Figure 4.9 Using saliency spatial variation for objective quality assessment   
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B. Saliency Temporal Variation of the Distorted Video  

In addition to deviation in individual saliency maps in each frame of the distorted 

video compared to the reference video, we also observe that distorted videos that are 

rated low quality tend to have rapid temporal changes in the saliency maps, this may be 

because packet losses and subsequent error propagation introduces randomly moving 

artifacts. As indicated in [73], temporal changes are stronger predictors of human saccade 

than static feature in video visual processing. Motivated by this finding, we explore the 

impact of the temporal variation of the saliency map on the perceived video quality. We 

first define Saliency Mean in frame t as: 

 ����D
 � EEEE��,W
kS��x, y, t
l            (4.7) 

where  i= 1 or 2 referring to the reference and distorted videos respectively. Figure 4.10 

(a,b,c) give SMi(t) for three sequences:“aircraft”, “leaf”, “optis”. We see that for 

“aircraft”, and “optis‘”, the two videos that are given low MOS, both SM1(t) and SM2(t) 

changed rapidly in time, but for “leaf”, which is given higher rating, its SM1(t) and SM2(t)  

are very smooth. This comparison encourages us to further explore whether temporal 

attention changes has certain relation with quality evaluation. To quantify this relation, 

we compute standard deviation of SMi for each test sequence to measure the saliency 

temporal variation (STV) 
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where STDt{·} is the standard deviation operator over time for the whole sequence, and i 

= 1 or 2 denotes the reference and distorted video respectively. 

We plot the relation between STV2 and MOS in Figure 4.10 (d). From the figure, 

we found that there is a rough linear relation between STV of distorted sequences and 

their MOS. However, although there is a high correlation between STV2 and MOS, we 

can not use the temporal variation of the saliency mean of a video to predict its quality. 

This is because the temporal variation of the saliency map of the reference video (i.e. 

STV1) is often as high as that of the distorted video (i.e. STV2), which can be seen from                     

Figure 4.11. Specifically, for the sequences that have higher quality ratings including 

“leaf”, “liberty” (MOS = 4.36), “ship”(MOS = 4), “bedroom” (MOS = 3.90), STV1 and 

STV2 are equally small; On the other hand, for sequences with very low quality ratings, 

including “aircraft”, “mobile” (MOS = 2.63), 

STV1 and STV2 are equally large. Therefore, if we just use STV of a sequence to 

rate its quality, we would rate the original version of the “aircraft” as bad as the distorted 

one. To summarize, STV can be interpreted as one of the characteristics of video, which 

measures its temporal activity, but it is not sensitive to spatial artifacts. Therefore, STV2 

alone is not sufficient for quality evaluation. 

 

C. Combinations of Spatial Metrics and Temporal Saliency Variation  

As discussed above, the saliency temporal variation of the distorted video alone 

cannot be used to predict the quality of a video. However, if both the STV of the distorted 

sequence and the spatial error between this sequence and the reference video are high,  
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Figure 4.10 SM1(t) (dash line) and SM2(t) (solid line) of (a) “optis”; (b) “aircraft”; 

(c) “leaf”; (d) STV2 vs. MOS. The vertical bar indicates the 95% confidence interval. 
 

 

                    Figure 4.11 STV1 (dash line) vs. STV2 (solid line) 
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this sequence typically has low quality rating. Motivated by this observation, we examine 

the effectiveness of the product of the STV (used to represent STV2) with each of the 

previously defined spatial errors as additional saliency-based factors. Specifically, the 

following factors are considered: MSE*STV, SWMSE*STV, SMSE*STV, MAD*STV, 

SWMAD*STV, SMAD*STV, SSIM*STV, SWSSIM*STV, and SSSIM*STV. 

4.3.3 Performance Comparison of Different Error Factors  

In order to gain a clear picture of the performance of the various saliency-based 

error factors, we draw the scatter plots of all the factors vs. MOS in Figure 4.12.  The 

three types of error measures (MSE, MAD, SSIM) are shown in three columns 

separately. The factors are all normalized to the range of [0,1], based on the actual 

minimum and maximum values of each feature among all test videos.  

Overall, these results indicate that both saliency weighted pixel errors and 

deviation in saliency maps are useful for quality evaluation of packet loss affected videos. 

Saliency weighted method may work better when packet loss does not cause visible 

errors in non-salient regions; whereas saliency deviation based factor is more effective 

when pronounced errors appearing in originally inconspicuous areas. Note that, in terms 

of complexity, saliency deviation based measurement needs to compute saliency maps for 

both the original and distorted images (1/16 size of the original image), hence saliency 

weighed method is more feasible in some special applications with computation or power 

limitation. 
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Figure 4.12 Scatter plots with the best mapping curve of proposed error factors for 

video sequences. Column (a): MSE based factors; Column (b): MAD related factors; 
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Column (c): SSIM related factors. In each plot, points are measured MOS, the curveis the 

predicted MOS using the best mapping function for that factor. The vertical bar indicates 

the 95% confidence interval. 

 

The products of the saliency temporal variation and all spatial metrics, including 

conventional non-saliency factors, bring forth the benefits of both measures. This 

improvement can be seen obviously by comparing the last three rows with the previous 

three in Figure 4.12. Especially, the combination of Saliency-Deviation error with STV 

correlates with MOS pretty well. Therefore, we can conclude that with the same spatial 

saliency map difference, a high STV is typically associated with a poor perceptual 

quality; while with the similar STV, a larger change in the saliency map tends to indicate 

a lower quality. 

To quantify the performance of each quality predictor, we apply nonlinear 

mapping on all of them so that the mapped factors can have as much linear relationship 

with the MOS.  After examining, the exponential and power functions are used as 

candidate mapping functions for each factor, and the best mapping form of each single 

factor is then analyzed separately. To reduce the number of parameters, for the power 

form, we use b2 = MOSMAX - MOSMIN = 2.806, and c2 = MOSMIN = 2.194 for video 

dataset; while for exponential form, all the three coefficients are determined using the 

least square fitting. Finally, for each factor, the mapping form that gives the minimum 

Prediction Error (in terms of MSE) (PE) in the “leave-one-out” cross validation process is 

determined as the best mapping form. 

The best mapping curve for each factor is shown in its scatter plot in Figure 4.12, 

and the actual mapping forms of all factors are indicated in Figure 4.13. The bar plot of 

PE of all the factors mapped with the best form, in the ascending order, is shown in 
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Figure 4.13 (the black bar using the left axis). Also shown on this figure is the PC of all 

mapped factors using the gray bar and right axis. We can see clearly that the mapped 

factors with lower PE typically also have higher PC. Importantly, both saliency-weighted 

and saliency-variation based factors perform better than conventional non-saliency 

factors. In particular, the combinations of the saliency spatial errors and the saliency 

temporal variations are quite useful, with most of them getting much smaller PE than 

other factors.  

 

 

Figure 4.13 Prediction performance of different factors (mapped with the best 

form) for video sequences, in the ascending order of Prediction Error (MSE), in the black 

bar with the left axis. Note that 2.194 = MOSMIN, 2.806 = MOSMAX-MOSMIN. The 

gray bar using the right axis of Pearson correlation  

4.3.4 Proposed Metric Combining Multiple Factors  

In order to further improve the prediction accuracy, we try to linearly combine 

multiple mapped factors in the final proposed metric for video quality assessment. Here, 

the critical problem is how to determine which factors to include. Because some of the 
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factors are correlated, to select factors into the final metric, the stepwise multiple linear 

regression approach is applied. The linear model (LM) using M factors for predicting y is 

described by                             

 � � � 1  � ��>�
�

�	
            (4.9) 

where Y denotes the N-dimensional vector containing the MOS values for N test videos, 

Xm represents the N-dimensional vector containing the values of factor m computed for 

the N test video, γ andβm and are the model parameters. The factors to be included 

and the model parameters are determined using the following two steps: 

Step 1: In this step, we try to add one factor at a time, starting from a null set (i.e. 

M = 0). Suppose we already have M′ factors, we try to add each of the remaining factors, 

evaluating the prediction error with leave-one-out cross-validation. The factor that leads 

to the maximum reduction in the PE is then chosen. This process is repeated until we can 

no longer reduce the prediction error by adding a single factor, then the model is 

preliminarily established. 

Step 2: We check if there are any interactions (products) between any two factors 

chosen in Step 1 that can further reduce the prediction error. If there are multiple 

candidate pairs, the decisions of their inclusion are made in the similar fashion as step 1. 

Following this procedure, we find that when choosing from all 18 factors, four 

factors are included in the final linear model, including the mapped forms of SSSIM8 

STV, SMSE 8 STV, SSIM8 STV, MAD. 

We call this final metric the Saliency-Based Video Quality Metric (SVQM). 

Using the same procedure, we also derive a metric that only chooses among 3 non-
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saliency-based factors, i.e. mapped forms of MSE, MAD, and SSIM. The final model is 

called Non-Saliency-Based Video Quality Metric (NSVQM), and includes only the 

factors MSE and SSIM. 

To compare the prediction performance of NSVQM and SVQM, We draw the bar 

plots of the selected factors vs. model prediction error during the stepwise regression 

procedure, in the order of their inclusions, in Figure 4.14.  

 

Figure 4.14 The factor inclusion order (from left to right) and the corresponding 

average PE. (a) NSVQM; (b) SVQM. Note that 2.194 = MOSMIN, 2.806 = MOSMAX-

MOSMIN. 

 

Table 4.2 summarizes the final best metrics found for NSVQM and SVQM and 

compares their prediction accuracy. 

 

Table 4.2 Comparison of video quality metrics with and without using saliency  
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We can see that NSVQM uses two non-saliency-based factors and the prediction 

error is 0.2331, while SVQM uses three saliency based factors and one non-saliency 

based factor and has a much reduced prediction error of 0.0123. Also in terms of 

correlation performance, SVQM obtains a very high PC (0.9947), which is significantly 

better than NSVQM (0.8411). Figure 4.15 shows the scatter plots of NSVQM and SVQM 

vs. MOS respectively. We can see clearly that SVQM correlates with MOS very well, 

while NSVQM has many outliers. The large improvement offered by SVQM proved that 

considering visual saliency can provide substantial gain in assessing the perceptual 

quality of video with packet-loss impairments. 

 

Figure 4.15 Scatter plots of (a) NSVQM vs. MOS; (b) SVQM vs. MOS; The 

vertical bar indicates the 95% confidence interval. 

4.4 Summary 

In this chapter, we investigate the role of saliency in video quality assessment. We 

first calculate visual saliency by extending a widely accepted image saliency detection 

algorithm with motion information. Then present three saliency-aided objective video 

quality assessment methods. Based on the assumption that human eyes are more sensitive 
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to the errors occurring in saliency/FOA regions, we propose the first scheme by giving 

the errors at pixels in saliency/FOA regions more weights when pooling a distortion 

score. We observe that humans’ saliency can be significantly changed by packet losses, 

and this change is closely related to the perceptual quality of underlying video, so we 

develop our second and third saliency-based quality assessment schemes by calculating 

the fidelity between the saliency maps of original and packet loss affected videos and 

temporal variation of the saliency of packet loss affected video, respectively.  

We show that all the saliency-based metrics can achieve greatly better quality 

prediction accuracy than conventional non-saliency metrics, and the improvement can be 

further increased by combining different saliency-based metrics 

We should point out that although the performance improvement of saliency-

aided over non-saliency metrics is very significant for our test data which only contains 

12 test sequences, the performance gain may not be as significant for larger subjective 

dataset containing more variety of packet loss induced distortion patterns.  

One way to improve the proposed quality metric described in Chapter 2 may be 

by replacing the PSNR drop sum of packet loss affected video segment with the proposed 

saliency-aided metrics in this chapter. This is one of our future research directions. 
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Chapter 5  

Saliency Inspired Modeling of Visibility of Packet Loss 

 

There is an interesting phenomenon that different packet losses may not cause 

equal video quality degradation, and in fact some may not be visible to human viewers. 

For example, a packet loss within a fast moving scene, e.g. a scene with large global 

motion caused by camera panning, is very obvious, whereas a packet loss occurring in a 

scene with little motion, e.g. a person is talking on the phone, is almost not visible to 

average viewers. In fact, the visibility of packet loss of decoded video is investigated by 

some prior work [12] [48], and it depends on various factors and their complicated 

interactions, such as loss severity and duration, characteristics of background signal, and 

its distance to scene change. However, the role of visual attention or saliency in 

predicting the visibility of packet loss is not studied in the existing literature. In this 

chapter, we investigate how to improve visibility prediction by incorporating the saliency 

information. Based on the findings in Chapter 4 about how saliency affects the perceptual 

quality of video with packet losses, we propose several saliency-based factors and 
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incorporate them into a Generalized Linear Model (GLM) to predict loss visibility. Test 

results with 1080 MPEG-2 packet losses indicate that saliency information can help 

improve the prediction accuracy about 12% over nonsaliency based model, and that 

saliency-weighted mean-square error and variation of saliency information are promising 

metrics. 

5.1 Subjective Test on Visibility of Packet Loss 

The subjective data used in this work was from the work presented in [12]; to be 

self-contained, we describe it briefly here. This subjective test was designed not to assess 

the quality of video at a given packet loss rate, but instead to learn about what affects the 

visibility of impairments caused by individual packet losses. The test videos shown were 

compressed with MPEG-2 at 720x480 resolution and 30 fps frame rate, with various 

scene contents and different camera motions, using 13-frame GOPs with 2 B-frames 

before every P-frame at a bitrate of around 4Mbps.  

One isolated packet loss was randomly inserted into the video in every 4-second 

window. The 1080 packet losses affect either one slice, two slices, or an entire frame. 

The decoder applied Zero-motion error concealment (copying macroblocks from the 

closest reference frame) when losses occurred.  

Each test video clip is 6-minutes long and watched by 12 viewers, whose task 

were to indicate each time they saw an artifact by hitting the space bar on the computer. 

The “ground truth” of “visibility” of each packet loss was defined as the percentage of 
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viewers who indicated they saw the loss. For the detailed information about this 

subjective test, please refer to [12]. 

5.2 Objective Assessment on Visibility of Packet Loss 

In this section, we investigate how to improve visibility prediction by 

incorporating the saliency information. Based on earlier proposed several saliency-based 

factors, we incorporate them with other prior non-saliency factors into a Generalized 

Linear Model (GLM) to predict loss visibility.  

5.2.1 Non-saliency factors affecting visibility  

In [12] [48], there were totally 20 non-saliency factors (and their variations) 

proposed, which covers the characteristics of both videos contents and packet loss 

impairments. Furthermore, the interaction between them on a scene-level was considered 

as well. Here we only briefly discuss them in each category, and please refer to [12] [48] 

for more detailed descriptions. 

 

A. Error characteristics 

Mean Squared Error (MSE) and Structural Similarity Index Metric (SSIM) are 

two widely accepted quality metrics. In the loss-visibility scenario, for the sake of easy 

calculation, two simplified variations of each metric are used to predict the visibility of 

packet loss: those measurements in the initial frame in the loss-affected segment, IMSE 
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and ISSIM; and the extreme values of IMSE and ISSIM at macroblock level in the initial 

frame, MaxIMSEmb and MinISSIMmb.  

When there is a single slice loss (as opposed to the loss of an entire frame), the 

impact of discontinuities caused by lost slices on video quality can be measured by the 

Slice-Boundary Mismatch (SBM), first proposed in [33] and modified in minor details in 

[48]. Only SBM on the initial frame of loss-affected segment, ISBM, is considered. 

    Additionally, some important content-independent measures, such as spatial 

extent, or SXTNT (the number of slices lost in one frame), HGT (the average height of 

the lost slices), Duration (duration of the loss-affected segment), are also considered.   

 

B. Video characteristics  

Motion is one of the most important characteristics of videos. Therefore, the mean 

and variance of the magnitudes of the motion vectors across all macroblocks initially 

affected by a loss, MotMean and MotVar can also be used to predict the visibility of a 

loss. 

     SigMean, and SigVar, the mean and variance of intensity values of the initial 

frame of loss-affected segment, and ResidEng (residual energy after motion 

compensation) of that frame are also effective. 

 

C. Scene-level characteristics 

In addition to the factors in two first categories, some high-level characteristics 

are also considered. The authors of [48] show that the relative position between scene 

change and packet loss impairment has great influence on its visibility. Therefore, D2R 
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(the distance between the current frame (with packet loss) and the reference frame used 

for concealment), DistFromCut (the distance in time between the first frame affected by 

the packet loss and the nearest scene cut, either before or after) and its threshold versions, 

AtScene, beforeScene, and afterScene, are considered in this work. 

    Since these non-saliency factors were proved capable to predict the loss 

visibility, we use them as candidate factors to design a GLM.  

5.2.2 Saliency Inspired Modeling of Packet Loss Visibility 

A. Saliency-based Factors  

Based on the findings in the study discussed above, we propose to supplement the 

IMSE factor by saliency-weighted IMSE, denoted by IMSE_Sal. We also consider the 

saliency weighted MSE computed over all loss-affected frames, yielding MSE_Sal. We 

also use SMSE, which measures the changes (in terms of MSE) between saliency maps 

of original and loss-impaired frames (only in the position where loss happens); STV, 

which measures temporal variation of the saliency map of loss-impaired frames, 

respectively.  

Table 5.1 summarizes all the proposed saliency-based factors, as well as non-

saliency-based factors, which are used to build the final GLM quality model. 

Note that, for saliency computation, we tested two methods, one using color, 

orientation, and intensity information only, as in the original Itti’s model [38] (which 

results in the saliency-based factor in Table 5.1 denoted as “no motion”); another one 

further using motion information with the motion features computed following [67]. 

From our previous study, the second method produces saliency maps that are more 
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consistent with our visual inspections, although it requires extra computation over the 

former one in saliency detection. Therefore, we focus on the latter one in this work. 

 

Table 5.1 List of all the non-saliency and saliency-based factors 
 

 

 

B. Generalized Linear Model Fittings 

 As [12] [48], we model the probability of visibility using a GLM [74], which is a 

development of linear models to accommodate both non-normal response distributions 

and transformations to linearity in a straightforward way. It is defined as follows 

 log � �1 � �� � � 1  � ��>�
�

�	
            (5.1) 

where P denotes the N-dimensional vector containing the visibility for N test packet 

losses, Xm represents the N-dimensional vector containing the values of factor m 

computed for the N test packet losses, γ andβm and are the model parameters. logit() 

as the link function.  

With the help of statistical software [75], the model is fit with an iteratively re-

weighted least-square method to generate a maximum-likelihood estimate. The GLM 



109 

 

fitting is performed in a similar fashion as what we discussed in previous section with 

subjective data described in Chap. 4. We perform 10-fold cross-validation in the process 

of building up the model. Specifically, we divide the entire data set of 1080 losses into 10 

groups of equal size and choose the data from 9 out of the 10 sets as a training set. The 

remaining data set is used for testing. We repeat this process 10 times, each time 

choosing a different set for training. The average prediction error is used as the 

performance measure. 

In order to test the impact of saliency information on modeling the loss visibility, 

we fit the same subjective data with two different models, one containing only non-

saliency-based factors (Model 1); the other one containing all the aforementioned factors 

(Model 2). We note that our model differs from that in [48] because it uses just one 

subjective dataset. 

The factors and the coefficients of both models are summarized in Table 5.2. To 

test the significance of each factor in the model, including the interaction terms added in 

the third step, we re-fit the models stepwise.  The new order provides a ranking of the 

significance of each factor and interaction term. This allows the two models to be 

compared if we limit each to having the same number of predictive factors. We draw the 

bar plots of factors and model prediction errors of this stepwise procedure, in the order of 

their inclusions, in Figure 5.1 (a) and (b). 

 

C. Model Comparison 

To compare the prediction performances of Model 1 and Model 2, we show the 

relationship between the number of factors used in the model and prediction error 
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reduction ratio (Model 2 to Model 1) in Figure 5.1. We can see that the overall prediction 

error of Model 2 (0.027449) is about 12% less than that of Model 1(0.03196)! When both 

       

  

Figure 5.1 Factor inclusions of (a) Model 1; and (b) Model 2. 
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Table 5.2 Coefficients of Model 1 and Model 2 

 

models are limited to use 15 factors, Model 2 still outperforms Model 1 by about 9%. In 

addition, we can see that, no matter how many factors are used to fit the models, our 

model with saliency-based factors always outperform those without, except for the case 

of only one factor, since that factor (MinSSIMmb) is the same for both models. 

Therefore, we conclude that saliency information significantly boosts the visibility 

prediction performance.       

To gain a clearer picture of the contribution of each individual saliency-based 

factor, we examine the inclusion orders (or significance rank) of saliency-based factors in 
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Model 2 in Figure 5.1 (b). There are 4 saliency factors in the first half of the 23 factors in 

the model: FarConceal*(IMSE_Sal)
0.25

, log(ResidEng)*S_MSE
0.25

, 

StillCamera*(S_MSE)
0.25

, and S_MSE
0.25

. If we expand our focus to the first 15 factors, 

FarConceal*(IMSE_Sal)
0.25

*SigVar is also present. Therefore, saliency-weighted pixel-

wise error and the difference of saliency maps of original and distorted video caused by 

packet loss are two significantly helpful factors in modeling of packet loss visibility. 

 

Figure 5.2 Performance comparison between Model 1 and Model 2. 

5.3 Summary 

In this chapter, based on the saliency-based approaches proposed in Chapter 4, we 

present a practical solution to improve the prediction of the visibility of packet losses. 

Together with a variety of non-saliency based factors, we fit the GLMs with and without 

our proposed factors using existing subjective data, and the results show that saliency-

based factors significantly improve the performance in loss-visibility modeling. 

Our work described in Chapter 4 about perceptual quality prediction and the 

current work on modeling visibility of packet loss have shown that saliency information 

is helpful for both scenarios.   
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Chapter 6   

Conclusions and Possible Future Work 

 

This thesis has conducted various research related to objective quality 

assessments of transmitted videos. In this chapter, we first summarize our contributions, 

and then suggest some possible future works.  

6.1 Summary of Major Contributions 

While perceptual video quality assessment has flourished in recent years, 

objective quality assessment on packet loss impaired videos is in its early phase. The 

research discussed and models proposed in this thesis are important supplements to the 

existing research work in literature. The major contributions of this thesis are listed 

below. 

1.  We examine the impact of several attributes (duration, severity, location, 

pattern, etc.) of packet losses on perceptual video quality, and then propose quality 
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metrics for videos affected by single loss and multiples loss respectively. Finally, by 

incorporating a prior model for quality degradation due to coding artifacts, we proposed a 

combined metric for predicting the overall quality degradation due to both compression 

and packet losses. This metric provides a high correlation with subjective ratings for a 

large set of sequences with different video content, coding artifacts and loss patterns, 

significantly higher than some other widely accepted metrics. 

2. We investigate the perceptual quality of individual video frames affected by 

packet losses and coding artifacts.  We first classify the two kinds of artifacts occurring at 

one video frame simultaneously, and then, by taking into account of different masking 

effects of the HVS, we propose two block-wise JND profiles for coding and packet loss 

artifacts, respectively, and then combine them into one metric that can evaluate the 

perceived quality degradation due to both artifacts. The predicted perceptual distortions 

by our proposed metric have fairly high correlation with subjective quality ratings. 

3. We study the role of saliency in video quality assessment. Based on our 

observations that human eyes are more sensitive to the errors occurring in saliency/FOA 

regions, and packet losses may significantly change the distribution of saliency over both 

space and time, we propose three saliency-aided quality assessment schemes, i.e. 

saliency-weighted error, saliency-fidelity, and saliency temporal variation schemes. We 

show that all the saliency-based metrics can achieve greatly better quality prediction accuracy 

than conventional non-saliency metrics, and the improvement can be further increased by 

combining different saliency-based metrics 

4. Based on the saliency-based approaches proposed for video quality assessment, 

we present a metric which can predict the visibility of packet losses by updating various 

non-saliency based factors and combining them with GLM. As a result, saliency-based 
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factors greatly improve the performance in loss-visibility modeling, which confirms that 

saliency is helpful to predict visibility of packet losses. 

5. For the purpose of objective quality modeling, we design and perform several 

subjective quality tests for specific video applications. The available subjective data and 

well-designed test plans, which are already uploaded to the public domain, as well as the 

software quality grading interface we developed, can be valuable for future studies. 

6.2 Possible Future Works 

There are a number of possible extensions and applications for the work presented 

in this thesis. Some suggestions are as follows. 

First, we propose a video quality metric, PDMOSCL, which considers both 

coding and packet loss artifacts in Chapter 2. It can be improved by incorporating the 

results of the studies described in other chapters. Specifically, the current quality 

measurement of individual video frames in the metric PDMOSCL is based on PSNR drop 

which can be replaced by the more advanced quality metric proposed in Chapter 3. And 

the saliency-aided video quality assessment schemes proposed in Chapter 4 can be 

applied to PDMOSCL to improve its performance by converting PSNR drop to saliency 

weighted PSNR drop, or saliency variation based metrics. In addition, PDMOSCL can 

benefit from the general idea of combining multiple quality factors in Chapter 4 and 5 so 

that it can be upgraded to a hybrid quality metric with superior performance.  

Second, the study on objective quality evaluations on packet loss impaired videos 

is performed on the condition that both frame rate and resolution are fixed. In order to 
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better assess the video quality in multimedia applications in practical situation where 

those quality-affecting factors may also vary, we may need to find a solution that can 

balance the visual annoyances of the two types of distortions and combine them into one 

single quality metric.   

Third, for the study of saliency aided video quality assessment, an accurate and 

efficient saliency detection algorithm is always desirable. However, the performances in 

both detection accuracy and computation complexity of current widely accepted saliency 

detection systems are still far away from acceptable in practical situations.  Due to these 

reasons, we alternatively use the output of a face detection algorithm as the saliency 

information. And we have performed a preliminary study of incorporating detected 

human face into PDMOSCL by using the saliency-weighted PSNR drop. However, this 

specialized saliency cannot bring significant improvement to the modified quality metric 

for our test data. This may be due to the inaccuracy of face detection itself or the fact that 

human faces cannot be used to represent the entire saliency. One of our ongoing works is 

to exploiting a better saliency detection and estimation model.   

Finally, in this thesis, we have mainly focused on investigating the impact of loss 

patterns (length, position, and pattern) and saliency on video perceptual quality, while we 

mostly used PSNR based metrics to assess the deviation of the distorted video from the 

original video. Since PSNR is a full reference metric, and it is not an accurate enough 

metric for quality evaluations, in the future, we may need to devise more efficient and 

accurate metrics that operate in a RR or NR fashion. 
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