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In networked video applications where the sustainable bandwidths vary greatly among

the receivers and in time, one must be able to code a video or adapt a precoded-bitstream

to a wide range of bit rates. It is critical to choose appropriate frame size (FS), frame

rate (FR) and quantization stepsize (QS) to optimize the perceptual quality for a target bit

rate. Furthermore, it is important to understand the variation effect of these parameters, so

that appropriate constraints can be imposed when adapting these parameters in response

to bandwidth changes. However, well-established models that relate the perceptual quality

with the spatial, temporal, and amplitude resolutions (STAR) and the variation of STAR do

not exist today.

In this dissertation, we conducted three main subjective quality experiments. First one

examines the impact of FR and QS on perceptual quality of a video for laptop devices. We

propose to use the product of a spatial quality factor that assesses the quality of decoded

frames without considering the frame rate effect and a temporal correction factor, which

reduces the quality assigned by the first factor according to the actual frame rate. We find

that the temporal correction factor follows closely an inverted falling exponential function



viii

of FR, whereas the quantization effect on the coded frames can be captured accurately by

a sigmoid function of the PSNR or by an exponential function of QS. The complete model

correlates well with the subjective ratings with a Pearson Correlation Coefficient (PCC) of

0.98 when parameters are obtained by least square fitting with the subjective ratings and a

PCC of 0.97 when model parameters are predicted from the content features.

The second experiment investigates the impact of STAR on the perceptual quality of

a compressed video. Subjective quality tests were carried out on the TI Zoom2 mobile

development platform (MDP). Subjective data reveals that the impact of SR, TR and QS

can each be captured by a function with a single content-dependent parameter. The joint

impact of SR, TR and QS can be modeled by the product of these three functions with only

three parameters. The complete model correlates very well with the subjective ratings with

a PCC of 0.99 when parameters are obtained by least square fitting and a PCC of 0.98 when

model parameters are predicted from the content features. We further validate our model

on several datasets reported from other works and the accuracy of our model (in part or in

whole) on these datasets is still promising.

The third experiment explores the impact of periodic frame rate and QS variation on

perceptual video quality. Among many dimensions of FR/QS variation, as a first step we

focus on videos in which two FR’s, or QS’s, alternate over fixed intervals. According to the

observation and data analysis of the test results, we propose models that characterize the

quality degradation with respect to FR, QS and bit rate variation. These quality models can

help to make appropriate decisions for encoder adaptation when transmitting video over

networks with fluctuating bandwidth.
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Chapter 1

Introduction

Multimedia applications and services are becoming more and more prevalent, such

as video telephony, mobile video broadcasting, high definition television (HDTV), and

Internet Protocol television (IPTV). Proper provisioning of the networked video applica-

tions, both in terms of video codec design and transport level control, depends on a reliable

method that can predict the video quality automatically and accurately to assure a certain

quality of service (QoS) or quality of experience (QoE).

There are basically two different ways to assess the perceptual video quality, i.e., sub-

jective quality evaluation and objective quality prediction, each having its own merits and

shortcomings. Subjective evaluation essentially mimics processing of human perception

because it can accurately reflect the video quality ratings through standard experiments and

measurements from a large amount of population, if it is well designed and performed.

However, this kind of quality assessment is time- and effort-consuming due to the require-

ment of enormous hours or weeks planning and performing on plenty of subjects and it

not even possible to conduct subjective assessment of a large number of test sequences

by many subjects in a batch fashion, hence this quality assessment of a large number of

test sequences in a batch fashion is not even possible. And it is even not feasible for some

applications, e.g. real-time quality assessment during networked video applications. There-

fore, a more efficient quality assessment solution that requires no involvement of subjects

once developed is more practical. Objective quality prediction, as an alternative solution

to subjective quality evaluation, has all these desirable features. Because it can emulate
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the humans judgment on video quality based on mathematic models and can be easily ap-

plied to any test video sequence, it receives more and more attention in both industrial and

academic communities. However, lack of thorough understanding about human visual per-

ception system, both psychologically and physiologically, and a large amount of possible

video quality-affecting factors, both application dependent and content-dependent, make

the design of effective video quality metrics a very intriguing task. In the past few years, a

big effort in the scientific community has been devoted to the development of better video

quality metrics that correlate well with the human perception of quality [9–15]. Although

many metrics have been proposed, most of them are very complex and require the original

video for estimating the quality. This makes their use in real-time transmission applications

very difficult. Therefore, a robust and efficient objective metric that blindly estimates the

quality of a video is still in need.

1.1 Reviews of Subjective Quality Evaluation Methodol-

ogy

Prior to developing accurate objective quality metrics, subjective assessment is neces-

sary to be conducted as the preliminary gauge of perceived visual quality. Subjective qual-

ity assessment usually requires a subjective experiment where the quality index of each

tested video sequence is produced by the mean of opinion scores (MOS) of the quality

ratings from subjects. There are several testing methodologies are defined in Recommen-

dation ITU-R BT.500-11 [16] and ITU-T Rec. P.910 [17], by International Telecommu-

nication Union (ITU) and Video Quality Expert Group (VQEG). They explicitly provides

specifications of how to perform different types of subjective video quality assessments,

which include single stimulus, e.g., single stimulus continuous quality evaluation (SS-

CQE), Absolute Category Rating (ACR), and Double Stimulus (DS), e.g., double stimulus

continuous quality scale (DSCQS) and Double-Stimulus Impairment Scale (DSIS). In DS,

viewers are presented with two videos, one of which is a unimpaired source sequence, and
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the other is a processed version of that sequence. The sequence presentation orders are

randomized. Viewers are asked to watch each video twice and evaluate the picture quality

of both sequences using a grading scale in the second presentation. In SS, ACR is designed

to test the subjective quality scores given by viewers without explicit references, since any

of the DS methods cannot reproduce the real-world reference-free viewing conditions as

a single stimulus method. In addition, ACR is a very efficient method and a large num-

ber of sequences can be tested in a relatively short time. Due to the lack of reference, it

is assumed that all the references are perfect distortion-free video sequences. However,

in most practical situations, some artifacts are inevitably introduced in the video capture

phase, and hence these artifacts cannot be distinguished from the ones which are generated

for testing purpose with this method. To solve this issue, later on VQEG introduced ACR

with Hidden Reference (ACR-HR) method [17], where the original unimpaired versions of

test sequences are inserted randomly into the test dataset, and then also judged by viewers,

but the viewers are unaware of the existence of these references. Usually differential MOS

(DMOS) between reference and test sequences is calculated to remove the reference effect,

which is called reference removal. Some researchers have performed investigations on the

relationships between subjective test results and subjective test protocols and proposed sev-

eral approaches to improve the reliability and efficiency of the existing subjective quality

assessment methods. A study [18] performed by National Telecommunications and In-

formation Administration/The Institute for Telecommunication Sciences (NTIA/ITS) com-

pared several aforementioned methods and concluded that SSCQE under proper design

can produce quality estimates comparable to DSCQS. In a recent project report [19] of

VQEG, subjective results obtained with ACR-HR method in different labs achieved very

high consistency, which shows the effectiveness of this test method. It is found that hu-

mans tend to forget video contents displayed far enough from the current time instance

due to the limitation of human memory capacity [20, 21]. A study on the impact of mem-

ory on SSCQE results [18] indicates the last 9-15 seconds of video content is critical for

viewers to form their quality judgment on the entire clip. Properly designed SSCQE test-

ing (with short 9-15 second sequences) maybe an effective substitute for more complicated
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DSCQS testing. Therefore, the memory effect of human viewers is not only one of the

concerns when designing and performing the subjective tests, but also a practical consider-

ation when devising objective quality metrics, especially for quality assessment of longer

video sequences. With respect to the issue of reusability of subjective results from different

experiments, the work in [22] propose to use the subjective scores from the common set of

test sequences from different tests to map all the subjective scores onto a single scale so

that available subjective data is greatly increased and hence the inter-test comparisons are

enabled.

1.2 Reviews of Objective Quality Assessment Methodol-

ogy

Depending on the purpose for employing the quality metric, such as the quality mon-

itoring, comparison of video processing systems, or optimization of the existing parameter

settings and algorithms for a video system, it can be divided into three different categories

according to accessibility of source (reference) video signal:

Full Reference (FR) metric - Both original and distorted videos are available. It require

full access to all pixels of reference video signal. Both distorted and reference videos

must be well calibrated before applying the quality metric.

Reduced Reference (RR) metric - Only partial information of original videos are avail-

able. Usually they first extract several features from both reference and distorted

videos before applying the quality metric. It predicts the video quality based on the

corresponding features of reference and distorted video signals.

No-reference (NR) metric - The original video is not available. It is also known as blind

metrics, which can only access the distorted video signal. It is a very challenging

task due to the lack of source information.
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According to different approaches people use to estimate the impairment of a video,

FR metrics are better utilized for offline video quality measurement, such as codec eval-

uation or laboratory simulation. This kind of metrics predict the quality of a video by

comparing the differences between reference and distorted video signal in either pixel do-

main or some feature domain, requiring fully accessing the reference video. Most common

and widely used FR metrics are mean square error (MSE) and peak signal-to-noise ratio

(PSNR), i.e.,

MSE =
1

MN

M∑
i=1

N∑
j=1

(
Pr(i, j)− Pd(i, j)

)2 (1.1)

PSNR = 10 log10

(MAX2

MSE

)
. (1.2)

where M, N are the width and height of the image in pixel, MAX is the maximum possible

pixel value of the image depending on its representing precision (it is 255 for 8 bits per

sample) and i, j are ith and jth pixel in x, y coordinate. Pr, Pd are pixel values of reference

and distorted video, respectively. This is a very simple and intuitive way to measure the

video quality, but they do not always correlate well with subjective quality ratings [23–

25]. There are many proposed FR metrics. One is the video quality metrics (VQM) [26]

developed by NTIA/ITS, which provides an objective quality measurement for videos with

variant encoding and transmission systems. It measures the perceptual effects of broad

range of video impairments including blurring, jerky/unnatural motion, global noise, block

distortion, color distortion, temporal distortion. Independent tests by VQEG have shown

that the General Model of VQM on MPEG-2 and H.263 video has a high correlation with

subjective video quality ratings [27]. This model has been recommended by ANSI as

well as ITU-T as an objective video quality metric for secondary distribution of digitally

encoded TV quality video [28, 29]. In the more recent works proposed by Z. Wang et.

al [25], authors proposed the structure similarity (SSIM) quality index to predict the video

quality. SSIM has been tested on the videos in LIVE database [30], which contains wide

range of distortions, such as compression, wireless, and Gaussian noise. The results show

that the quality metric can significantly improve the correlations with subjective data over



6

PSNR. Following their works of SSIM metric, Bovik’s group further proposed the visual

information fidelity (VIF) [31], and Motion-based Video Integrity Evaluation [32] also

show the significant improvement over SSIM on LIVE database as well as the VQEG

FRTV phase I pool [33].

Regarding the reduced reference metrics, it requires only partial information about the

reference video. In general, certain features or physical measures are extracted from the

reference and transmitted to the receiver as a side information to help evaluate the quality

of the test video. One of the earliest reduced reference metrics was proposed by Webster et

al. [34]. Their metric is a feature extraction metric that estimates the amount of impairment

in a video by extracting localized spatial and temporal activity features using especially

designed fliters. Other works include the work by Bretillon et al. [35] and the work by

Carnec et al. [36]. Metrics in this class may be less accurate than the full reference metrics,

but they are also less complex, and make real-time implementations more feasible. Never-

theless, synchronization between the original and impaired data is still necessary. Another

merging hot topic recently is visual attention, and the related works [37–40] are proposed

based on computational visual attention model (VAM). These works agreed that a unique

saliency/importance map that topographically encodes for stimulus conspicuity over the

visual scene is an efficient and plausible bottom-up control strategy. Among these VAMs,

Ittis bottom-up saliency based visual attention model (SVAM) [37, 38] has demonstrated

high correlation with human eye movements over static images and been used in vari-

ous applications successfully and open an enlightening research direction for video quality

evaluation [41, 42]. Note that NR metics is not presented in the dissertation because it is

out of our scope.

1.3 Problem Statement

In wireless video streaming, due to the limited sustainable bandwidth of a receiver, a

video often has to be coded (or transcoded or extracted from a scalable stream) at a reduced

frame rate and/or frame size, so that each coded frame has adequate quality. A challeng-
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ing problem is how to choose the appropriate spatial, temporal and amplitude resolutions

(STAR), so as to achieve the best trade-off between picture quality and motion fluidity

in the delivered video. Note that the amplitude resolution is controlled by the quantiza-

tion stepsize (QS) or equivalently quantization parameter (QP). To solve this problem, one

needs accurate models for both rate and quality, in terms of STAR. Another challenging

problem is that the sustainable bandwidth of a wireless link often fluctuates in time, call-

ing for adaptation of frame rate, frame size and QP. One naive approach would be to find

the STAR that optimizes the perceptual quality over each short time duration based on the

available instantaneous bandwidth. This will however create a video with rapidly fluctuat-

ing STAR, which may be annoying to the viewer. For example, variation in frame rate can

cause visually annoying jitter artifacts. It is important to understand how does the variation

of the STAR, individually and collectively, affect the perceived quality. Such understanding

would enable us to impose proper constraints on the variation of the STAR, when adapting

the STAR based on the time-varying bandwidth.

Prior work in video quality assessment is mainly concerned with applications where

the frame rate and frame size of the video is fixed. The objective quality metric compares

each pair of corresponding frames in deriving a similarity score or distortion between two

videos with the same frame rate. The users in an application are very heterogeneous in

their access link bandwidth, processing and display capabilities. The primary parameters

of a video bitstream, which control the bandwidth requirement, include QS (controlling

amplitude resolution), frame rate (controlling temporal resolution or TR) and frame size

(controlling spatial resolution or SR). Given the bandwidth limitation and display resolution

of a receiver, the encoder (as shown in Fig. 1.1, or a network transcoder or adaptor (as

shown in Fig. 1.2) has to decide at which STAR to code, transcode or adapt a video, to

achieve the best perceptual quality. Therefore, it is important to understand the impact of

the STAR on the perceptual quality. On the other hand, studying the joint impact of all

three dimensions on the perceptual quality is a complex and challenging task.
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Figure 1.1: The multicast scenario using precode video bitstream.

Figure 1.2: The multicast scenario using scalable video bitstream.

1.4 Reviews of Related Works

There have been several works studying the impact of frame rate artifacts on percep-

tual video quality. In a recent review of frame rate effect on human perception of video [43],

it is found that frame rate around 15 Hz seems to be a threshold of humans’ satisfaction

level, but the exact acceptable frame rate varies depending on video content, underlying

application, and the viewers. In addition, the authors of [44] proposed that the preferred

frame rate decreases as video bandwidth decreases, and two switching bandwidths cor-

responding to the preferred frame rates were derived. The work in [45] investigated the

preferred frame rate for different types of video. In [46], a particular high-motion type of
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coded video sequences (sports game) was explored. It was found that high spatial quality

is more preferable than high frame rate for small screens. However, no specific quality

metric, which can predict the perceived video quality, were derived in these works [43–46].

The works in [1, 2, 47] proposed quality metrics that consider the effect of frame rate.

The work in [1] used logarithmic function of the frame rate to model the negative impact

of frame rate dropping on perceptual video quality in the absence of compression artifacts.

The model was shown to correlate well with subjective ratings for both CIF and QCIF

videos. However, this model requires two content-dependent parameters, which may limit

its applicability in practice. The metric proposed in [47] explores the impact of regular

and irregular frame drop. The quality of each video scene is determined by weighting and

normalizing a logarithm function of temporal fluctuation and the frame dropping severity.

Finally, the overall quality of the entire video is the average of the quality indices over

all video scene segments. The work in [2] also considers the impact of both regular and

irregular frame drops and examines the jerkiness and jitter effects caused by different levels

of strength, duration and distribution of the temporal impairment. However, [47] did not

provide a single equation, which can predict the perceptual quality of regular frame drops,

and even though [2] did, the proposed quality model has four parameters, and the authors

did not consider how to derive these parameters from the underlying video.

Besides the study of frame rate impact on perceptual quality, Feghali et al. proposed a

video quality metric [3] considering both frame rate and quantization effects. Their metric

uses a weighted sum of two terms, one is the PSNR of the interpolated sequences from

the original low frame-rate video, another is the frame-rate reduction. The weight depends

on the motion of the sequences. The work in [48] extended that of [3] by employing a

different motion feature in the weight. Besides Feghali’s works, several works e.g., [4–

6, 49, 50, 50, 51], have explored the impact of SR, TR and quantization artifacts (not QS

directly) fully or partially on perceived video quality. Although the quality assessment

in [4] and [6] include 3 and 6 different spatial resolutions, respectively, these works only

involve an SR range from QCIF to CIF. The works in [5, 49] only include two SR’s, QCIF

and CIF. Hauske et. al [50] proposed the video quality metrics as a function of PSNR and
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FR. Authors in [6,49] also proposed quality metrics considering STAR. The quality model

in [49] is a function of the bitrate and a so called truncated bitrate ratio of SNR-scalability,

while the quality model in [6], similar to the work in [50], is a function of PSNR, TR and

SR. However, none of the tests reported in [4–6, 49] were carried out on mobile devices.

But even though the work [50] is for mobile devices, they claimed that model parameters

are independent of video content, while on the contrary, authors in [51] believe that the

model parameters depend on video contents. Nevertheless, the proposed [51] does not

automatically estimate the model parameters. The work in [52] proposed a quality metric

considering block-fidelity, content richness fidelity, spatial-textural, color, and temporal

masking. They combined all these components into a quality index to predict the perceptual

quality. This model involves sophisticated processing to extract content components from

video sequences. Hence, it may not be applicable for practical application.

In our previous works [53,54], we investigated the impact of TR and QS on perceptual

video quality, which was evaluated on larger screen size of laptop monitor, and proposed the

video quality model considering the effect of TR and QS under a fixed SR (CIF). However,

we believe that the form factor and the display screen may affect the viewing experiences.

It is important to use a display environment similar to the actual mobile device during

the subjective test. Therefore, in this work, we conduct the test on a mobile platform

(Zoom2 from TI) with a screen size of 4.1-inch at a resolution of WVGA (854x480). In

a preliminary study [55], we conduct a subjective test to explore the impact of SR and QS

for mobile devices. By extending this study we further investigate the quality assessment

considering the interaction of SR, TR, and QS, and propose a complete quality model in

terms of SR, TR, and QS. Preliminary results of this study were reported in [56]. At the

end, together with a rate model, which is also a function of STAR, the proposed quality

model can help to determine the optimal STAR at which to encode a video or adapt a

scalable video, given a target rate

However, in wireless video streaming, due to the limited sustainable bandwidth of a

receiver, a video often has to be coded (or transcoded or extracted from a scalable stream)

at a reduced frame rate and/or frame size, so that each coded frame has adequate quality. A
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critical issue is how to choose the appropriate spatial, temporal and amplitude resolutions

(STAR), so as to achieve the best trade-off between picture quality and motion fluidity in

the delivered video There have been several studies regarding the influence of temporal

and amplitude resolutions, individually or jointly, on the perceptual quality [2,3,47,57,58].

Some of these works (e.g. [3, 57]) consider the case where the FR and QS are fixed in the

entire video, whereas others (e.g. [2, 47]) consider the impact of FR variation, due to non-

uniform and bursty packet losses, while authors in [58] proposed the variable frame rate

control scheme based on the jerkiness of the video to adapt the frame rate simultaneously

under fluctuate bandwidth environment. Nevertheless, they don’t explore the quality impact

while varying the frame rate.

1.5 Organization of the Dissertation

This dissertation is organized as follows:

In Chapter 2, we investigate the impact of frame rate and quantization on perceptual

quality of a video for laptop devices. We first describe subjective tests conducted to evaluate

the quality degradation due to temporal and quantization artifacts. We then describe the

proposed quality model. The model uses the product of a spatial quality factor that assesses

the quality of decoded frames without considering the frame rate effect and a temporal

correction factor, which reduces the quality assigned by the first factor according to the

actual frame rate. The complete model correlates well with the subjective ratings.

In Chapter 3, we conduct the subjective quality test and address the objective quality

model considering the impact of SR, TR and QS on the TI Zoom2 mobile development

platform (MDP). Subjective data reveal that the impact of SR, TR and QS can each be

captured by a function with a single content-dependent parameter. The complete model

correlates very well with the subjective ratings. Alternatively, we also investigate the rela-

tion between quantization-induced quality impact with respect to bit rate and PSNR as QS

is unavailable.

In Chapter 4, we explore the impact of periodic frame rate or quantization variation
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on perceptual video quality. According the observation and data analysis of the test results,

we propose to use different analytical models to characterize model the quality degradation

due to variations in FR, QS and bit rate.

In Chapter 5, we discuss how to predict the parameters for the models derived in

Chapters 2 and 3. First, we introduce several content features extracted from source video

signals and utilized the GLM and CVE criteria to build up the optimum weighted linear

combination of features to estimate the model parameters.

In Chapter 6, we summarize major contributions of this dissertation and discuss pos-

sible future work.



13

Chapter 2

Perceptual Quality of Video Considering both Frame Rate

and Quantization Artifacts for Laptop Devices

In this chapter we explore the impact of frame rate and quantization on perceptual

quality of a video. We propose to use the product of a spatial quality factor that assesses

the quality of decoded frames without considering the frame rate effect and a temporal

correction factor, which reduces the quality assigned by the first factor according to the

actual frame rate. We find that the temporal correction factor follows closely an inverted

falling exponential function, whereas the quantization effect on the coded frames can be

captured accurately by a sigmoid function of the PSNR or by an exponential function of

quantization stepsize (QS). The proposed model is analytically simple, with each function

requiring only a single content-dependent parameter. The proposed overall metric has been

validated using both our subjective test scores as well as those reported by others. For all

seven data sets examined, our model yields high Pearson correlation (higher than 0.9) with

measured MOS.

This chapter is organized as follows. We first address the subjective test configura-

tions and the test results in Sec. 4.1. Section 2.2 presents the proposed objective metric,

and validates its accuracy with our subjective test data. Section 2.3 compares our metric

with those proposed in [1–3] on several datasets reported by others. Finally Section 2.4

concludes the chapter.
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Figure 2.1: Subjective quality test setup.

Figure 2.2: The multicast scenario using scalable video bitstream.

2.1 Subjective Quality Assessment

2.1.1 Test Sequence Pool

Seven video sequences, Akiyo, City , Crew, Football, Foreman, Ice, Waterfall, all in

CIF (352× 288) resolution at original frame rate 30 fps, are chosen from JVT (Joint Video

Team) test sequence pool [59]. All these sequences are coded using scalable video model

(JSVM912) [60], which is the reference software for the scalable extension of H.264/AVC

(SVC) developed by JVT. For each sequence, one scalable bitstream is generated with four

temporal layers corresponding to frame rates of 30, 15, 7.5, 3.75Hz, and each temporal
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layer in turn has four CGS quality layers created with QP equal to 28, 36, 40, and 441,

respectively, using the coarse grain scalability (CGS). A processed video sequence (PVS)

is created by decoding a scalable bitstream up to a certain temporal layer and a quality

layer.

The subjective rating test for the seven sequences were done in two separate experi-

ments. In the first experiment, 64 PVSs from four sequences (“Akiyo”, “City”, “Crew”, and

“Football”) were rated, varying among four frame rates (30, 15, 7.5 and 3.75Hz) and four

QP levels (28, 36, 40, and 44). In the second experiment, 60 PVSs from five sequences

(“Akiyo”, “Football”, “Foreman”, “Ice” and “Waterfall”) are rated. In this case, we still

test among four frame rates but only among 3 QP levels (28, 35, 40). This is because the

results from the first session show that it is very hard for the viewers to tell the difference

between QP=40 and 44. We included the two common sequences (“Akiyo”, “Football”) in

both experiments, so that we can determine an appropriate mapping between the subjective

ratings from two experiments, following the algorithm described in [22].

2.1.2 Test Configuration

The subjective quality assessment, illustrated in Figure 2.1, is carried out by using a

protocol similar to ACR (Absolute Category Rating) described in [17]. In the test, a subject

is shown one PVS at a time, and is asked to provide an overall rating at the end of the clip.

The rating scale ranges from 0 (worst) to 100 (best) with text annotations shown next to the

rating numbers as shown in Fig. 2.1 and the user interface is shown in Fig. 2.2. Most of the

viewers for both of the subjective test are engineering students from Polytechnic Institute

of New York University, with age 23 to 35. Other details regarding each experiment are

given below.

1. The first experiment:

In order to shorten the duration of the test, the experiment is divided into two sub-

groups. Each of them contains 38 processed video sequences and lasts about 14
1Different from JSVM default configuration utilizing different QPs for different temporal layers, the same

QP is chosen among all temporal layers at CGS layer.
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minutes. Each subgroup test consists of two sessions, a training session and a test

session. The training session (about 2 minutes) is used for the subject to accus-

tom him/herself to the rating procedure and ask questions if any. The training clips

including PVSs from ’Soccer’ and ’Waterfall’ are chosen to expose viewers to the

types and quality range of the testing clips. The PVSs in the test session (about 12

minutes) are ordered randomly so that each subject sees the video clips in a different

order. Thirty one non-expert viewers who had normal or corrected-to-normal vision

acuity participated in one or two subgroup tests. There are on average 20 ratings for

each PVS.

2. The second experiment:

Each subgroup contains 24 PVSs. The training clips (6 PVSs) are picked from the en-

tire PVS pool except the sequences included in the testing session and the selections

of testing points are uniformly distributed among the entire range. The sequences

in the test session are also ordered randomly. Thirty three non-expert viewers who

had normal or corrected-to-normal vision acuity participated in one or two subgroup

tests. There are on average 16 ratings for each PVS.
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Figure 2.3: Measured MOS against frame rate at different QP. 95% confident interval of

the first four training sequences is 20.29, and 21.38 is for the last three new sequences.
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Figure 2.4: Normalized MOS against frame rate at different QP.

2.1.3 Data Post-Processing

Given the rating range from 0 to 100, different viewers’ scores tend to fall in quite

different subranges. The raw score data should be normalized before analysis. We first find

the minimum and maximum scores given by each viewer for a specific source sequence,

then normalize all viewers’ score for this sequence by the average of minimum scores and

the average of maximum scores among all subjects. We then average normalized viewer

ratings for the same processed video sequence to determine its mean opinion score (MOS).

Let uvς denote the score of viewer v for each processed video sequence ς and V is the

total number of viewers. As is often the case with subjective testing, some users’ ratings

are inconsistent either with other viewers’ ratings for the same PVS, or with ratings for

the other PVS’s by the same viewer. We adopted, with some modification, the screening

method recommended by BT.500-11 [16] designed for Single Stimulus Continuous Qual-

ity Evaluation (SSCQE) to screen our collected data. Our modification makes use of the

fact that our test contains sequences that are different in frame rates under the same QP. If

a viewer is consistent, then his/her rating for a lower frame-rate video should not be better

than that for a higher frame-rate video. For each original sequence, we try to identify view-

ers who give lower ratings for higher frame-rate videos and do not consider the ratings by

these viewers. Specifically, following [16] , we first determine the mean, standard devia-
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tion, and Kurtosis coefficients for each PVS using uς , σς , and β2ς , respectively. Then we use

the following procedure to identify viewers who give scores that are far from the average

score by all viewers, as well as those viewers who give lower scores to higher frame-rate

videos. Here, the mean and standard deviation for each PVS is defined as uς = 1
V

V∑
v=1

uvς ,

and σς =

(
V∑
v=1

(uvς−uς)2
V−1

)1/2

. The Kurtosis coefficient is obtained via β2 test [16] for PVS

ς , i.e., β2ς = m4ς

(m2ς)2
, where mnς = 1

V

V∑
v=1

(uvς − uς)n.

Recall that for each original video sequence α (e.g., α ∈ {Akiyo, City, Crew, Football}),

there are 4 frame rates and 4 QP’s tested, with a total of 16 PVS. For each viewer v and

original sequence α, we determine Pvα, Qvα and Rvα by the following procedure:

1. Starting with Pvα = 0, and Qvα = 0, for each PVS ς of the same original sequence

α;

if 2 < β2ς < 4, then

if uvς ≥ uς + 2σς , then Pvα = Pvα + 1;

if uvς ≤ uς − 2σς , then Qvα = Qvα + 1;

else,

if uvς ≥ uς +
√

20σς , then Pvα = Pvα + 1;

if uvς ≤ uς −
√

20σς , then Qvα = Qvα + 1.

2. For the same original video α and for all PVS at the same QP, we compare the ratings

obtained for different frame rates by viewer v, and count the numbers of times the

viewer’s rating for a lower frame rate PVS is higher than for a higher frame rate PVS.

Specifically, let uvς(f,QP ) indicate the rating given by viewer v, for a sequence ς with

frame rate f and quantization parameter QP . Starting with Rvα = 0, for each PVS ς

belongs to the same original sequence α:

For all f and QP ,

if uvς(f/2,QP )/uvς(f,QP ) ≥ T, then Rvα = Rvα + 1;

else if uvς(f/2,QP ) > uvς(f,QP )


f=30, 15 and 7.5

,
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then Rvα = Rvα + 1.

T is set to 1.2 based on our observation.

3. We reject ratings for sequence α by viewer v,

if Rvα > 2, Pvα > 1 or Qvα > 1 [16]

Above process allows us to discard, for each original sequence, all the ratings from a

viewer when his/her ratings are significantly distant from the average scores for at least 2

PVSs. In addition, it also excludes all ratings by a viewer for each original sequence, when

his/her ratings for a lower frame rate video is better than for a higher frame rate video at

least 3 times, among all PVSs for this sequence.

After screening there are on average 15 and 14 user ratings for each PVS in first and

second experiments, respectively. Figure 2.3 presents the subjective test results. We see that

no matter what QP level is, MOS reduces consistently as the frame rate decreases. In order

to examine whether the reduction trend of the MOS against the frame rate is independent of

the quantization parameter, we plot in Figure 2.4, the normalized MOS, which is the ratio

of the MOS with the MOS at the highest frame rate (30Hz in our case), at the same QP. We

see that these normalized curves corresponding to different QPs almost overlap with each

other, indicating that the reduction of the MOS with frame rate is quite independent of the

QP.

2.2 Proposed Quality Metric

As described earlier, results in Figures 2.3 and 2.4 suggest that the impact of frame rate

and that of quantization is separable. Based on this observation, we propose the following

metric consisting of the product of two functions:

VQMTQ(PSNR, f) = SQF(PSNR, fmax)TCF(f ; q) (2.1)

where f represents the frame rate and PSNR is the average of PSNRs of decoded frames.

As described earlier, the first term SQF(PSNR) measures the quality of encoded frames
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without considering the frame rate effect. The second term models how the MOS reduces

as the frame rate decreases. The specific forms of the function TCF(f) and SQF(PSNR)

are described in Sec. 2.2.1 and 2.2.2, respectively.
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Figure 2.5: The measured normalized MOS and temporal correction factor (TCF) against

frame rate. PCC=0.95
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Figure 2.6: Predicted vs. measured MOS for DataSet#1 against normalized FR by the

metric proposed in (2.5). PCC = 0.968, RMES = 0.034.
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2.2.1 Temporal Correction Factor

In a prior work [61], we have investigated the impact of the frame rate on the percep-

tual quality of uncompressed video, and found that the normalized quality can be modeled

very accurately by an inverted exponential falling function. Here we adopt the same func-

tion:

TCF(f) =
1− e−b

f
fmax

1− e−b
. (2.2)

As can be seen in Figure 2.5, this function can predict the normalized MOS very well. For

uncompressed video, normalized MOS is defined as,

NMOS(f) =
MOS(f)

MOS(fmax)
, (2.3)

and for compressed video at the same QP, it is defined as

NMOS(QP, f) =
MOS(QP, f)

MOS(QP, fmax)
. (2.4)

We can see that the fitting is quite accurate for all sequences. Note that the parameter b

characterizes how fast the quality drops as the frame rate reduces, with a smaller b indicat-

ing a faster drop rate. The b values for different sequences are provided in Figure 2.5. As

expected, sequences with higher motion have faster drop rates (smaller b). To demonstrate

the influence of the video content on the parameter, Figure 2.7 shows the TCF curves for

different videos. We can clearly see that b is larger for slower motion sequences.

Since the development of the model in (2.2), as part of the research presented in Chap-

ter 3, we have found that the TCF can also be modeled accurately using a generalized

inverse exponential function of the form:

MNQT(f) =
1− e−αt(

f
fmax

)βt

1− e−αt
. (2.5)

where fmax is the maximum TR (here, fmax = 30Hz). where βt = 0.63 is a constant. Fig-

ure 2.11 compares the predicted and measured TCF data with high PCC = 0.968, RMSE =

0.034.

The model in (2.2, 2.5) are chosen by comparing several one-parameter functions,

including the exponential falling function in Eq. (2.2), the power function ( f
fmax

)b, and
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the logarithmic function
log(1+b f

fmax
)

log(1+b)
. During the model regression, we choose Root Mean

Square Error (RMSE) and Pearson Correlation (PCC) to validate the goodness of predic-

tion. Given a K data pairs (Xk, Yk), the Pearson Correlation is defined as

ρX,Y =

∑K
k=1(Xk − X̄)(Yk − Ȳ )√∑K

k=1(Xk − X̄)2

√∑K
k=1(Yk − Ȳ )2

, (2.6)

where Xk and Yk are the paired data and they are usually referred to the subjective ratings

and the predicted quality index, respectively, and X̄ and Ȳ are the means of the respective

data sets. We will use this metric as the gauge to measure the fitting performance of the

model in the current and following Chapters. Table 2.1 summarizes the PCC and RMSE

obtained with different fitting functions on five data sets (DataSet#1-#5 will be de-

scribed in Section 2.3). It is shown that the inverted exponential function in Eq. (2.2) is the

best.
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Figure 2.7: Temporal correction factor for different test sequences.

2.2.2 Spatial Quality Factor Using PSNR of Decoded Frames

In this subsection, we present the proposed model for the spatial quality, which is the

perceptual quality of encoded frames without considering the frame rate effect. Signal-to-

Noise Ratio (PSNR) is a commonly adopted metric for measuring quality of video with
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Table 2.1: Goodness of Fitting by three functional forms of TCF
Quality Metrics DataSet#1 #2 #3 #4 #5

Inverted exponential function in (2.5)
RMSE 3.4% 2.0% 2.5% 7.2% 6.7%
PCC 0.968 0.978 0.982 0.965 0.950

Inverted exponential function in (2.2)
RMSE 5.5% 2.3% 2.1% 3.8% 4.8%
PCC 0.95 0.98 0.98 0.99 0.97

Power function
RMSE 4.2% 4.7% 4.4% 8.5% 7.8%
PCC 0.96 0.94 0.93 0.95 0.92

Logarithm function
RMSE 4.7% 5.2% 3.6% 10.2% 9.5%
PCC 0.95 0.93 0.94 0.92 0.87

encoding distortion. From the test results shown in Figure 2.8 , we see that, in an interme-

diate range of PSNR, the perceived quality correlates quite linearly with PSNR. However,

the human eyes tend to think video with very low PSNR as equally bad and those with

very high PSNR as equally good. Taking into account of this saturation effect of the human

vision, we propose to use a sigmoid function, following the model in [62],

SQF(PSNR) = Q̂max(1− 1

1 + ep(PSNR−s) ), (2.7)

where Q̂max is the quality rating given for highest quality video (for uncompressed video

with PSNR = ∞), and p, s are model parameters. Note that although the rating scale

is [0, 100] in our subjective test, viewers do not give a score of 100 even for videos with

very high quality, as is commonly observed in subjective test. Because our subjective test

does not include uncompressed video, we derive Q̂max for a video sequence from Qo, the

measured MOS for the same video sequence decoded at the lowest QP and highest frame

rate. We have found that Q̂max = 1.04·Qo yields a good result for all the sequences. Further

we found for all sequences, p = 0.34 gives good result. Therefore we only vary s when

fitting the model to the measured MOS data. Figure 2.8 compares the MOS obtained for

sequences at 30Hz with those obtained using the model in (2.7). We can see that the model,

with a single parameter s, is very accurate with a PCC of 0.996. In addition to PSNR, we

examine the effectiveness of SSIM Index [63] to predict the measured MOS at the highest
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Figure 2.9: Measured and predicted MOS against SSIM index for sequences coded at high-

est frame rate (30Hz). PCC=0.99

frame rate, which has been shown to be more correlated than PSNR to perceptual spatial

quality in other works. We compute SSIM for each decoded video frame and average SSIM

over all frames. Figure 2.9 shows that MOS is quite linearly related to SSIM, i.e.,

Q(SSIM) = c1 · SSIM + c2. (2.8)

Although SSIM predict MOS with a high Pearson Correlation coefficient of 0.99, it re-

quires two parameters, which vary significantly among sequences, while the SQF in (2.7)

only needs one content-dependent parameter and also has a high PCC. Therefore, for our

proposed model, we use the PSNR based function in (2.7) for predicting the spatial quality.
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2.2.3 Spatial Quality Factor Using QS

The PSNR model (2.7) introduced above is a full reference method as described in

Chapter 1. It requires both original and distorted video sequences in order to derive the

PSNR value. Although the prediction accuracy is promising, this quality model will not

be flexible and applicable if the retrievable information of the original video signals are

limited, especially for those application more involving the real-time video transmission.

Instead of using the PSNR of decoded frames, we also explored the relation between the

normalized spatial quality factor (defined as MOS(q, fmax)/MOS(qmin, fmax)) and the QS.

Based on the data shown in Fig. 2.10, we directly model the relation with quantization

stepsize q (QS) using an exponential function, i.e.,

Qq(q) = ece
−c q

qmin , (2.9)

where c is the model parameter, qmin = 16 as QP = 28 (QS is defined as q = 2
QP−4

6 in

H.264/AVC standard). Figure 2.10 shows that the model captures the quantization-induced

quality variation very well at fmax.

In our later study described in Chapter 3, we found that the NQQ can also be modeled

by an inverse exponential function of the inverse QS, i.e.,

1− e−αq(
qmin
q

)βq

1− e−αq
, (2.10)

where αq is the model parameter and βq=1 is a constant. Figure 2.11 shows the predicted

curves with measured data and fitting is very accurate with PCC=0.995, RMSE=0.014.

2.2.4 Video Quality Metric Considering Temporal Resolution and Quan-

tization(VQMTQ)

Combining Eqs. (2.1, 2.2, 2.7), we obtain the proposed video quality metric consider-

ing both temporal and quantization effect , when using PSNR to model the spatial quality
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Figure 2.10: Normalized quality versus the quantization stepsize (NQQ) for different frame rates

f . Points are measured data and curves are predicted quality for t = 30 Hz, using Eq. (3.6). PCC =

0.99

factor:

VQMTQ1(PSNR, f) =

Q̂max

(
1− 1

1 + ep(PSNR−s)

)
1− e−b

f
fmax

1− e−b
. (2.11)

We plot predicted quality using this model together with measured MOS in Fig-

ure 2.12. We can see that predicted curves fit the measured MOS very well for most cases.

When using the QS to capture the spatial quality factor, the overall quality model can

be written as

VQMTQ2(q, f) = QmaxQq(q; fmax)TCF(f ; q), (2.12)

whereQmax = Q(qmin, fmax) is the MOS for the video coded at qmin and tmax;Qq(q; fmax) =

Q(q, fmax)/Q(qmin, fmax) is the normalized quality versus quantization stepsize (NQQ) un-

der the maximum frame rate fmax

Combining Eqs. (2.2, 2.9 and 2.12), the overall video quality model can be expressed

as

VQMTQ2(q, f) = Qmax
e
−c q

qmin

e−c
1− e−d

f
fmax

1− e−d
. (2.13)
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Figure 2.11: Predicted vs. measured MOS for DataSet#1 against QS by the metric

proposed in (2.10). PCC = 0.995, RMES = 0.014.

Recall that Qmax is the MOS given for the video at qmin and fmax, which is set to 90

according to our subjective test data. The accuracy of this model is shown Fig. 2.13.

Combining eqs. (2.10, 2.5), we also yield an alternative model:

VQMTQ3(q, f) = Qmax
1− e−αq(

qmin
q

)βq

1− e−αq
1− e−αt(

f
fmax

)βt

1− e−αt
. (2.14)

We plot the predicted quality with measured data in Fig. 2.14 using ( 2.14) with PCC =

0.974, RMSE = 0.038. Table 2.2 summarizes the parameters, PCC and RMSE for all

VQMTQ1, VQMTQ2, and VQMTQ3. Note that d is obtained by fitting the measured data

from 3 QP’s (28, 36, 40), while parameter b is obtained by fitting the measured data from 4

QP’s (28, 36, 40, 44) for only Akiyo, City, Crew and Football.

2.3 Performance Comparison

In this section, we compare our proposed models in (2.2,2.5) with three metrics pro-

posed in [1], [2] and [3]. We apply these models to a total of 7 data sets and compare

their performance. Table 2.3 summarizes these data sets. DataSet#2-#5 contain un-

compressed video at different frame rates, and DataSet#1, #6, #7 are compressed video

obtained with different frame rates and QPs.
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Figure 2.12: Predicted (in curve) (see Eq. 2.11) and measured (in points) MOS for videos

coded at different QP and frame rate (DataSet#1). PCC=0.98.

The models in [1] and [2] only consider the effect of frame rate. The model in [1],

called negative impact of frame-dropping on visual quality is given by,

NIFVQ(f) = a1 · [log(30)− log(f)]a2 , (2.15)

with model parameters a1 and a2. In particular, they defined NIFVQ = 5−MOS as the

degraded quality. It is noted that they assume the quality of all reference or highest frame-

rate videos is 5, and the quality at lower frame rates are decreased according to (2.15).

The metric in [2] models the jerkiness of the video and is given by:

jerkiness(f) = k1 +
k2

1 + ek3·f+k4
. (2.16)

In order to compare these two models and our proposed model, we apply all three models

to the first five data sets in Table 2.3. To compare our model with the metrics in [1] and [2],

which do not consider the quantization effect, we only evaluate the TCF portion of our

model, and apply these three metrics to normalized MOS. For each data set, we normalized

the MOS given for a test sequence at a particular frame rate (and quantization level) by

the MOS for the same sequence at the highest frame rate (and at the same quantization

level for DataSet#1). We apply all three models to the normalized MOS and determine

the model parameters by least squares fitting. Figures 2.15 - 2.19 compare the predicted
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Figure 2.13: Quality vs. quantization stepsize and frame rate. Points are measured MOS

data; curves are predicted quality using Eq. (2.13)

quality indices by these three models and the actual normalized MOS for the five data

sets. Table 2.4 summarizes the Pearson correlation coefficients, and it is demonstrated

that all three models can predict the normalized MOS very well with high correlation.

Although the other two models have slightly higher correlation values for some datasets,

our proposed model only uses one parameter to model the normalized MOS, instead of

2 and 4 parameters in the models proposed by [1] and [2], respectively. Note that the

subjective ratings of DataSet#5 in [2] show different trends for different sequences at the

very low end of the frame rates. The model proposed in [2] was able to follow the subjective

ratings accurately because it has four parameters. However, it is not clear whether these

inconsistent trends are due to viewer inconsistencies at very low frame rates. We should

note that the work in [2] actually applied the model (2.16) to the average subjective ratings

over all test sequences. The average quality actually decreased with the frame rate in the

same trend indicated by the model given in (2.2) and (2.15).

The model in [3] considers both frame rate and quantization effect and is given by,

QM(PSNR, f) = β1 · PSNR +Mβ2
n · (30− f), (2.17)

where β1 and β2 are model parameters. Here Mn represents normalized motion vector

magnitude, which is defined as the average of the motion vector magnitudes at the top 25%
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Figure 2.14: Predicted (in curve) (see Eq. 2.11) and measured (in points) MOS for videos

coded at different QP and frame rate (DataSet#1). PCC=0.98.
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Figure 2.15: Predicted v.s measured normalized MOS for DataSet#1 by three metrics

of all MV magnitudes normalized by the width of the display frame. Note that in [3], a low

frame-rate video is interpolated to the full frame-rate by using frame repetition. The PSNR

in (2.17) is the average PSNR of all frames, including interpolated frames. This PSNR

depends on the frame rate, and is significantly lower than the average PSNR computed from

non-interpolated frames. To compare this model with our VQMTQ model, we apply them

to our dataset (DataSet#1), as well as DataSet#6 and #7, all containing compressed

video with different frame rates and quantization levels. Figure 2.20 shows predicted MOS

vs. measured MOS for DataSet#1 by the QM model. We see that the fit is not very

good, significantly worse than the fit using the VQMTQ model given in Figure 2.12 earlier.
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Table 2.2: Optimal parameters and model accuracy for VQMTQ
akiyo city crew football foreman ice waterfall Ave

obtained by least square fitting using VQMTQ1(PSNR, f)
s 30.57 26.3 29.68 25.9 29.09 31.24 26.67 -
b 8.55 7.41 7.23 5.25 8.24 6.67 7.06 -

RMSE 2.47% 5.39% 2.23% 3.90% 4.0% 4.87% 7.12% 4.29%
PCC 0.99 0.97 0.99 0.98 0.98 0.97 0.95 0.98

obtained by least square fitting using VQMTQ2(q, f)
c 0.12 0.13 0.18 0.09 0.12 0.12 0.15
d 7.70 7.51 6.90 5.20 8.24 6.67 7.06

RMSE 3.06% 6.41% 2.50% 4.54% 5.49% 5.38% 3.65% 4.40%
PCC 0.98 0.94 0.99 0.98 0.94 0.95 0.98 0.96

obtained by least square fitting using VQMTQ3(q, f)
αq 4.79 4.34 3.27 5.62 3.86 3.83 4.00
αt 4.18 3.66 3.64 3.46 4.04 3.24 3.49

RMSE 2.09% 3.83% 1.79% 5.66% 4.25% 5.31% 1.81% 3.80%
PCC 0.99 0.97 0.99 0.98 0.97 0.96 0.99 0.97

We further show the scatter plots of predicted MOS vs. measured MOS by the two methods

in Figure 2.21. It can be seen that the VQMTQ model is more linearly correlated with the

measured MOS.

We next compare these two models using DataSet#6. Because we do not have

access to the actual video clips used in DataSet#6, we are not able to compute the PSNR

of decoded frames and hence are not able to apply our VQMTQ model to the entire dataset.

Instead we only apply the TCF model to the normalized MOS for a subset of clips that

are coded with the same QP (QP=6) at different frame rates, using the MOS for the clip

coded at the highest frame rate as the normalizing factor. Figure 2.22 shows the predicted

MOS values by the TCF and QM models vs. the measured MOS values for this dataset

(DataSet#6). Note that in the plot the predicted curve by TCF is obtained after we

multiply the predicted NMOS value (by TCF) using the MOS given for the highest frame

rate clip.

Finally we compare the QM and VQMTQ model using the dataset reported in [5]

(DataSet#7). Figure 2.24(a,b) show the scatter plots of predicted MOS vs. measured

MOS using QM and VQMTQ models. In the results shown for all other data sets, the
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Table 2.3: Data Set Description
Data Sets Source Definition
DataSet#1 7 CIF sequences used in this chap-

ter each with 4 frame rates (30, 15,
7.5, 3.75 Hz) and four quantiza-
tion levels. Normalized MOS is ob-
tained by Eq. 2.4

DataSet#2 6 uncompressed CIF sequences
used in [61], each with 5 frame rates
(30, 15, 10, 7.5, 6 Hz). Normalized
MOS is obtained by Eq. 2.3

DataSet#3 6 uncompressed QCIF sequences
used in [61], each with 5 frame rates
(30, 15, 10, 7.5, 6 Hz). Normalized
MOS is obtained by Eq. 2.3

DataSet#4 4 uncompressed CIF sequences
used in [1], each with 7 frame rates
(30, 15, 10, 7.5, 6, 5, 3Hz). Normal-
ized MOS is obtained by Eq. 2.3.

DataSet#5 7 uncompressed CIF sequences
used in [2], each with 6 frame rates
(25, 12.5, 8.33, 6.25, 5, 2.5Hz).
Normalized MOS is obtained by
Eq. 2.3.

DataSet#6 The subset of 5 CIF sequences used
in [3], obtained with 3 frame rates
(30, 15, 7.5 Hz) at the same QP
(QP=6)

DataSet#7 5 CIF sequences used in [5], each
with 3 frame rates (30, 15, 7.5 Hz)
and 4 bit rate levels

parameter p in our VQMTQ model in Eq. (2.11) was fixed at 0.34. But for this data set, we

found that p was sequences dependent. Therefore, we determine all three parameters p, s,

and b through least square fitting. As can be seen, the VQMTQ model correlates with the

measured MOS much better than the QM model. We note however that the VQMTQ model

in this case uses 3 parameters, whereas the QM model uses 2 parameters. Figure 2.23 shows

the measured and predicted MOS by VQMTQ vs. the bit rate. It is encouraging to see that
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Figure 2.16: Predicted v.s measured normalized MOS for DataSet#2 by three metrics
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Figure 2.17: Predicted v.s measured normalized MOS for DataSet#3 by three metrics

for the entire bit rate range, the VQMTQ method was able to correctly predict the frame

rate that leads to the highest perceptual quality at a given bit rate, even though the actual

predicted MOS do not fit the measured MOS perfectly.

We further apply the QSTAR model introduced in Chapter 3 on DataSet#1. Ta-

ble 2.4 summarizes the PCC and RMSE and shows that the fitting it quite well. This

indicated that the proposed models in Chapter 3 are improved and this function form (e.g.,

inverse exponential) can be utilized for predicting the quality degradation on both laptop

(larger screen size) and mobile (smaller screen size) devices. However, the function form

does not show much improvement on other datasets.
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Figure 2.18: Predicted v.s measured normalized MOS for DataSet#4 [1] by three metrics
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Figure 2.19: Predicted v.s measured normalized MOS for DataSet#5 [2] by three metrics

2.4 Summary

This work is concerned with the impact of quantization and frame rate on the per-

ceptual quality of a video. We demonstrate that the degradation of the perceptual quality

due to quantization and frame-rate reduction can be accurately captured by two functions

separately (a sigmoid function of the average PSNR of decoded frames and an inverted

falling exponential function of the frame rate). Besides the PSNR model, we further pro-

pose to use an exponential function or inverse exponential function of the inverse QS to

model the quality with quantization stepsize. Each function has a single parameter that is

video-content dependent. all the proposed models are shown to be highly accurate, com-

pared to the subjective ratings from our own subjective tests as well as test results reported

in several other papers. Even though the overall VQMTQ model is validated for CIF video

only, we expect the model to be applicable to videos at other resolutions as well. In fact,
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Figure 2.20: Predicted (in curves) vs. measured (in points) MOS for DataSet#1 by the

metric QM
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Figure 2.21: Predicted against measured MOS for DataSet#1 using (a) QM proposed

in [3], (b) VQMTQ.

the TCF part of our model has been shown to be accurate for both CIF and QCIF video

(DataSet#3). Regarding the spatial quality model using PSNR or QS, the overall quality

model can predict better quality when using PSNR than using QS. However, the model

accuracy for VQMTQ3 are still promising with PCC = 0.97 comparing with VQMTQ2.
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Figure 2.22: Predicted (in curves) vs. measured (in points) MOS for DataSet#6 against

frame rate at QP = 6 by the metric QM and TCF

Table 2.4: Pearson Correlation Coefficients of different models
Quality Metrics DataSet#1 #2 #3 #4 #5 #6 #7

Modeling of the normalized MOS
Jerkiness [2] 0.97 1 1 0.99 0.99 – –
NIFVQ [1] 0.97 0.99 0.99 0.99 0.97 – –

TCF 0.95 0.98 0.98 0.99 0.97 – –
MNQT 0.97 0.98 0.98 0.97 0.95 – –

Modeling of MOS, compressed video
VQMTQ1 0.98 – – – – 0.92 0.96
VQMTQ2 0.96 – – – – – –
VQMTQ3 0.97 – – – – – –

QM [3] 0.75 – – – – 0.92 0.65



37

0 50 100 150
20

30

40

50

60

70
Coastguard

Bit Rate(kbps)

M
ea

su
re

d 
M

O
S

 

 

30Hz
15Hz
7.5Hz
p=1, s=28, b=20

0 50 100 150
50

60

70

80

90
Container

Bit Rate(kbps)

M
ea

su
re

d 
M

O
S

 

 

30Hz
15Hz
7.5Hz
p=6.2, s=28.1, b=3.5

0 50 100 150
0

20

40

60

80

100
Foreman

Bit Rate(kbps)

M
ea

su
re

d 
M

O
S

 

 

30Hz
15Hz
7.5Hz
p=1.5, s=29, b=4

0 50 100 150
20

40

60

80

100
News

Bit Rate(kbps)

M
ea

su
re

d 
M

O
S

 

 

30Hz
15Hz
7.5Hz
p=2.8, s=28.8, b=5

0 50 100 150
20

30

40

50

60

70
Tempete

Bit Rate(kbps)
M

ea
su

re
d 

M
O

S

 

 

30Hz
15Hz
7.5Hz
p=0.7, s=27.7, b=11

Figure 2.23: Predicted vs. measured MOS for DataSet#7 against bit rate by the metric

VQMTQ (using parameter s, p, and b). The points are measured MOS at different frame

rates and the curves are the corresponding predicted MOS
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Figure 2.24: Predicted against measured MOS for DataSet#7 using (a) QM, and (b)

VQMTQ.
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Chapter 3

Perceptual Quality Modeling for Mobile Platforms

Considering Impact of Spatial, Temporal, and Amplitude

Resolutions

In this chapter, we investigate the impact of spatial, temporal and amplitude resolution

(STAR) on the perceptual quality of a compressed video. Subjective quality tests were car-

ried out on the TI Zoom2 mobile development platform (MDP). Seven source sequences

are included in the tests and for each source sequence we have 32 test configurations gen-

erated by JSVM encoder (4 QP levels, 5 spatial resolutions, and 3 temporal resolutions),

resulting a total of 224 processed video sequences (PVSs). Videos coded at different spa-

tial resolutions are displayed at the full screen size of the mobile platform. Subjective data

reveal that the impact of spatial resolution (SR), temporal resolution (TR) and quantization

stepsize (QS) can each be captured by a function with a single content-dependent param-

eter. The joint impact of SR, TR and QS can be modeled by the product of these three

functions with only three parameters. The complete model correlates well with the subjec-

tive ratings with a Pearson Correlation Coefficient (PCC) of 0.992. We further found that

the TR affects the quality independently of SR and QS, but there is significant interaction

between SR and QS. We also investigate the relation between quantization-induced quality

impact with respect to bit rate and PSNR. Each of these two quality metrics only requires

one content-dependent parameters as well.
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The remainder of this chapter is organized as follows: Section 3.1 introduces the qual-

ity assessment environment, test methodology and data post-processing. Section 3.2 ana-

lyzes the results of subjective tests and present our proposed model. Section 3.3 presents

quality modeling of NQQ using PSNR and bit rate. We apply our proposed model on

several datasets reported by others in Sec. 3.4 and conclude our work in Sec. 3.5.

3.1 Testing Platform and Methodology

3.1.1 Testing Platform

Targeting for wireless mobile applications, we choose TI’s Zoom2 mobile develop-

ment platform (MDP) [64] as our test platform. This MDP runs on powerful TI OMAP34x

processor with a 4.1-inch WVGA (854×480) resolution capacitive multi-touch screen.

Google’s Android [65] mobile operating system (OS) version 2.1 (Eclair) is used for our

test interface development. Our approach for constructing the interface is using Java and

XML code to control the high-level program flow, with the help of Android’s SDK library

to operate low-level video decoding process.

Figure 3.1: Screenshots of the subjective rating interface on TI Zoom2 MDP.

Figure 3.1 illustrates subjective rating interface on our Zoom2 MDP. A welcome

screen is shown to each viewer at the beginning of each test to record his/her basic in-

formation (name, age and gender) and then this is followed by a playback screen on which

a random 8-second processed video sequence (PVS) is played. Each viewer will be asked

to give a score on a rating screen after a PVS is played completely. In all tests we allow

each subject to replay the current PVS if he/she doesn’t feel confident to give a proper

judgement, so as to assure more reliable subjective ratings. We adopted a 10-level rating
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Figure 3.2: Test video pool for subjective tests.

scale as shown in Fig. 3.1 (c). We did not put a level below the scale “1”, which would

correspond to a “totally useless video”, since a viewer can still understand the video scene

content even from the video at the lowest STAR in our test video pool. So it is reasonable to

interpret the effective rating scale as being 11 levels, as recommended by ITU P.910 [17].

3.1.2 Test Video Pool

Seven different videos, i.e., City, Crew, Harbour, Ice, Soccer, FlowerGarden and

Foreman, five at 4CIF (704×576) and two at VGA (640×480) resolution, are included in

our subjective tests. Three additional sequences, i.e., InToTree, Shields and Football, are

used as training sequences. The first two are cropped from original 720p high-definition

(HD) source to match our Zoom2 MDP display screen size and Football is in VGA. These

videos are selected from the standard video pool to include various content activities. All

the test and training sequences are shown in Fig. 3.2. We plot the spatial information (SI)

and temporal information (TI) indices [17] of all source sequences in Fig. 3.3. It demon-

strates that the test sequence pool covers a wide range of video contents in terms of motion

and spatial details. For the testing consistency through all the PVSs, those VGA videos
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are cropped and interpolated to 4CIF. According to our pretest [55] performed on the same

test platform, it suggests that VGA derived 4CIF versions and original 4CIF versions of

the same videos acquire very similar viewer ratings. Low-resolution (i.e., CIF, QCIF)

source videos are obtained by downsampling using the Sine-waved Sinc function [66]

recommended in the SVC reference software JSVM [60]. Each source video is encoded

by JSVM918 [60] using combined spatial and temporal scalabilities, with 3 spatial layers

(4CIF, CIF, QCIF) and 3 temporal layers (30, 15, 7.5Hz). Videos corresponding to different

QS’s are obtained by coding at different QP’s. A PVS at a particular STAR is obtained by

decoding the spatio-temporal scalable bitstream coded using the desired QP, at the desired

SR and TR. Each PVS is about 8 seconds.

For display, each PVS under 4CIF resolution is interpolated to 4CIF using the AVC

6-tap half-pel with bilinear quarter-pel interpolation filter [67]. The test interface will then

automatically resize these 4CIF sequences to a spatial resolution with 480 rows. Each PVS

is played back in its native frame rate without temporal interpolation. Note that although

the screen size of Zoom2 MDP is WVGA, we set our maximum SR to 4CIF, which is the

most resolution size over all source sequences.

3.1.3 Test Protocol

Three separate experiments were carried out. Test 1 focuses on the perceptual impact

of SR; Test 2 focuses on joint impact of SR and QP; Test 3 focuses on joint effects of STAR.

In order to combine subjective scores from these three tests, we include several common

sequences between three tests. Common sequences are selected such that they represent

a broad quality range in order to facilitate a valid and robust mapping between the tests

when combining the datasets. Table 3.1 lists the testing configurations for the three tests.

Table 3.2 lists all the common sequences.

Single Stimulus, as recommended by [17] is used for all tests. Before the testing

session, a training session, which allows viewers to get familiar with the test, is employed.

In Test 2 and 3, we design several subsessions with overlapping sequences, to reduce the

viewing time of each subject. Each viewer can participate in one or more subsessions. On
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Table 3.1: STAR parameters used in tests
SR QP TR

Test 1
176x144 (QCIF), 256x208,

22 30352x288 (CIF), 528x432,
704x576 (4CIF)

Test 2 QCIF, CIF, 4CIF
22, 28,

30
36, 44

Test 3 QCIF, CIF, 4CIF
22, 28,

30, 15, 7.5
36, 44

Table 3.2: Common Sequences

Test 1&2

City@QP22/4CIF/30Hz, City@QP22/QCIF/30Hz,
Crew@QP22/CIF/30Hz, Harbour@QP22/QCIF/30Hz,

Ice@QP22/CIF/30Hz, Soccer@QP22/4CIF/30Hz,
Fg@QP22/QCIF/30Hz, Foreman@QP22/CIF/30Hz.

Test 2&3
For all video contents, QP22/4CIF, QP28/4CIF&QCIF,

QP36/CIF, QP44/4CIF&QCIF, all at 30Hz.
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average, each viewer spends about 18-20 minutes in one viewing session.

3.1.4 Data Processing

Data Collection

We have around 60 evenly distributed male and female viewers participating the tests.

Each PVS is rated by 18-20 different viewers. All viewers have normal visual (or after

correction) and color perception. About 80% of viewers are non-expert with no related

background in video processing. The raw ratings are converted to Z-scores [68] based on

the mean and standard deviation of all the scores of each viewer, given by

Zmij =
Xmij −MEAN(Xi)

STD(Xi)
. (3.1)

Here, Xmij and Zmij denote the raw rating and Z-score of mth sequence at jth STAR com-

bination, from ith viewer, respectively. Xi denotes all ratings from ith viewer. MEAN(·)

and STD(·) represent the operator for taking the mean and the standard deviation of a given

set, respectively.

Post Screening

Two post screening methods are used in concatenation. We first perform BT.500-11

post screening method [16] in Z-score domain to remove all ratings by certain viewers

because their ratings are outside the range of the majority of the viewers. On average, one

viewer is eliminated for each PVS. We then conduct the second step to the remaining ratings

in the raw score domain, a ratio/averaging method is adopted. We make use of the fact that

a video coded at a lower SR or TR but higher QP would not have a rating higher than a

video coded at a higher SR or TR but lower QP, if the viewer’s judgement is consistent.

Therefore, we calculate the ratio of ratings by the same viewer for each pair of PVS’s with

adjacent SR, QP or TR, respectively. For each source video and each viewer, we count the

number of times that the ratio is greater than a threshold (= 1.1) for all possible pairs in

each dimension, and then we remove all the ratings by a viewer for the same source video
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if the outlier counter in any dimension is larger than 2. For the remaining pairs of ratings

by each viewer, if the ratio is larger than 1, we replace both ratings by their average. After

this step, approximately 16-18 ratings remain for each PVS.

Datasets Combining

After the post-processing, we map all the Z-scores from Test 1 and Test 3 to Test 2

using the method recommended in [22]. We map all other tests to Test 2 based on the

consideration that only Test 2 has a sufficient number of common sequences with both Test

1 and Test 3.

To map Test 1 data to Test 2, we use a single linear mapping function for all test

sequences, because we only have one common PVS for each source sequence. To map

Test 3 data to Test 2, since we have many common PVS’s for each source video, we form

a different linear mapping function for each video.

After combining, we scale the mapped Z-scores back to [0 10] scale, using:

Xmij,scl = (MEDIAN(XI
max)−MEDIAN(XI

min))

× Zmij − Zi,min

Zi,max − Zi,min

+ MEDIAN(XI
min)), (3.2)

where MEDIAN(·) represents the median operator. XI
max and XI

min are the set of all view-

ers’ maximum and minimum ratings, respectively. Zi,max and Zi,min denote the maximum

and minimum Z-scores of viewer i. With this scaling, the ratings from all viewers have

a common range of MEDIAN(XI
min) to MEDIAN(XI

max). In our subjective test data,

MEDIAN(XI
min) =1, and MEDIAN(XI

max) =10.

Finally, we average the scaled Z-scores from all viewers for each PVS to obtain its

mean opinion score (MOS). The MOS for a sequence with a particular STAR combination,

denoted by s, t, q, is indicated by MOS(s, t, q).
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Figure 3.4: Measured NQS under different QS’s and TR’s. Note that lines with the same

color correspond to NQS data at different TR’s but the same QP.
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Figure 3.5: Normalized quality v.s. normalized SR. Points are measured data under differ-

ent QS’s and TR’s. Curves are derived from the model given in (3.4) with βs=0.74. The

parameter αs for each sequence and QS is determined by least square fitting of data points

at all TR’s. PCC=0.992, RMSE=0.03.
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3.2 Subjective Test Results and Proposed Quality Model

In order to analyze the test results and derive a quality model reflecting the quality im-

pact of SR, TR, and QS, we first explore how SR, TR or QS individually affects the quality

ratings. In each of the following three subsections, we show how MOS varies with one

variable (e.g., SR), while holding the other two variables fixed (e.g. TR and QS). Based on

the trend observed from the data, we propose a mathematical model that characterizes the

degradation of the quality with this variable (e.g. SR). We further examine the interactions

of different variables through the two-way Analysis of Variance (ANOVA) [69]. Finally in

the last subsection, we propose an overall quality model by taking the product of the three

model functions of individual variables, and validate its accuracy.

3.2.1 Modeling Normalized Quality v.s. Spatial Resolution

In this subsection, we examine how SR affects the perceived quality, when TR and

QS are fixed. Towards this goal, we plot the normalized quality (NQS) v.s. Normalized SR

s/smax (here, smax = 4CIF) at the same TR and QS in Fig. 3.4 for each source sequence.

The NQS function is defined as

NQS(s; t, q) =
MOS(s, t, q)

MOS(smax, t, q)
. (3.3)

From Fig. 3.4, we can observe that the dropping curves of different TR’s but same QS tend

to cluster together. To examine the dependency of the NQS on TR and QS, respectively, we

conduct the three-way ANOVA test for STAR on MOS data. As shown in Tab. 3.3, there

are significant differences for each variable of STAR as well as their two way interaction,

but no statistical significance for three way interaction. This test only examines the quality

differences on MOS data but does not reflect the interaction between the quality dropping

trend (e.g., NQS) and the other variable (e.g., TR or QS). Therefore, we further conduct the

three-way ANOVA test for the NQS data. By performing the two way interaction between

SR and TR/QS, we compute the probability (p-value, which is derived from the cumulative

distribution function of F based on the F-value) of the null hypothesis that the differences
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in NQS as TR (or QS) changing is due to chance. If this probability is low (i.e. p-value <

0.05), we consider TR (or QS) as having statistically significant influence on NQS. If the

p-value is much larger, then we say that TR (or QS) has statistically insignificant influence

on NQS. The analysis for NQT, NQQ follow the same procedure. As shown in Tab. 3.8,

the interaction of SR and TR has a p-value of 0.73 (> 0.05) and a p-value of 0 (< 0.05) for

the interaction of SR and QS. This implies that NQS depends on QS but not TR. Therefore,

we can approximate the NQS data at the same QS but different TR’s with the same model

function. By examining the general trend of how NQS changes with normalized SR, we

propose the following model for NQS data, called MNQS, i.e.,

MNQS(s; q) =
1− e−αs(q)(

s
smax

)βs

1− e−αs(q)
. (3.4)

where αs(q) is the model parameter, which depends on q but not t. This parameter charac-

terizes the quality decay rate as s decreases, with a smaller value corresponding to a faster

dropping rate. We further found that for all 7 source sequences a constant value 0.74 can

be used for βs, so that only a single parameter αs is content-dependent and QS-dependent.

Figure 3.5 shows that this model fits the NQS data at different QP very well. To quantify

the accuracy of the fitting, we measure the Pearson Correlation Coefficient (PCC) and root

mean square error (RMSE) between the measured and predicted data. For the data pre-

sented in Fig. 3.5, PCC= 0.992, RMSE=0.03. The parameter αs for each QP is obtained by

least squares fitting to NQS data at this QP but all different TR’s. In addition to ANOVA

test, we further examine the model performance when we allow αs to vary with TR. Ta-

ble 3.10 shows that this does not lead to significant improvement in PCC and RMSE. This

further confirms that by assuming αs to be independent of TR, we can reduce the model

complexity without sacrificing the model accuracy.

In Fig. 3.4 each subplot contains the MNQS curves corresponding to different QS’s,

for the same video content. We can see that the quality drops faster at larger QS. This is

because that larger QS introduces more blurring artifacts compared with smaller QS given

the same SR. Note that for most sequences, measured NQS (points) and the MNQS curves

at QP=22 and those at QP=28 are indistinguishable, implying that the quantization artifact
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Figure 3.6: The Predicted (in curves) and fitted (in points) αs v.s. QP for each sequence.
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Figure 3.7: Measured NQQ under different SR’s and TR’s. Note that lines with the same

color correspond to NQQ data at different TR’s but the same SR.
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Table 3.3: Three way ANOVA for STAR.
Factors F-value p-value

QS 362.62 0
SR 698.21 0
TR 84.49 0

QS ·SR 5.5 0.0004
QS ·TR 3.68 0.0068
SR ·TR 3.77 0.0059

QS·TR·SR 0.4 0.921

Table 3.4: ANOVA test for statistical significance of the interactions among SR, TR, QS.
Factors F-value p-value

NQS
SR·TR 0.5 0.73
SR·QS 21.17 0

NQT
TR·SR 1.34 0.25
TR·QS 1.08 0.37

NQQ
QS·SR 0.21 0
QS·TR 0.34 0.85

induced by the H.264 encoder becomes almost invisible at QP=28, and smaller QP does

not lead to noticeable improvement. With other encoders, the saturation point may differ.

To further simplify the model, we investigate the relationship between αs and q. Fig-

ure 3.6 shows that αs has an approximately linear relationship with QP, for QP >=28, and

the αs for QP=22 is very close to that for QP=28. Therefore, we propose to model the

dependency of αs on q (and equivalently on QP) by

αs(q) = α̂sL(QP(q)),

with L(QP) =

 υ1QP + υ2, if QP >= 28

28υ1 + υ2, if QP < 28,
(3.5)

where QP is related to q with QP(q) = 4+6 log2 q, as defined by the H.264/SVC codec [70].

We derive the constants υ1, υ2, and βs (which are sequence independent) together with the

model parameter α̂s (sequence dependent) by minimizing the mean squares error between

the measured NQS data at all STAR combinations and the predicted NQS using (3.4) and

(3.5). The best fitting constants are υ1 = −0.037, υ2 = 2.25, and βs = 0.74. Figure 3.6

shows that the αs determined using (3.5) are quite close to the original αs, except for a
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few cases (e.g. Flowergarden and Soccer). Even in those cases, the differences in αs val-

ues do not have a significant impact on the resulting MNQS curves. The MNQS curves

obtained using (3.4) and (3.5) with only a single content-dependent parameter α̂s are very

similar to those shown previously in Fig. 3.5, and hence are not included to save the space.

The predicted NQS has PCC=0.989, RMSE=0.0352, only slightly worse than those using

(3.4) with independently determined parameter αs for each QP. Therefore, we propose to

use (3.5) together with (3.4) to model NQS, which needs only one parameter α̂s across

different QP levels.
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Figure 3.8: Normalized quality v.s. normalized QS. Points are measured data under differ-

ent SR’s and TR’s. Curves are derived from the model in (3.7) for all t at a given s. The

parameter αq for each sequences and SR is determined by least squares fitting of data at all

TR’s. PCC=0.982, RMSE=0.041.
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Figure 3.9: Measured NQT under different QS’s and SR’s. Note that lines with the same

color correspond to NQT data for test sequences at different SR’s (4CIF, CIF, QCIF), but

the same QP.
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3.2.2 Modeling Normalized Quality v.s. Quantizations

In this subsection, we explore how QS affects the perceived quality when SR and

TR are fixed. Towards this goal, we plot the normalized quality v.s. inverse normalized

QS qmin/q (NQQ) at same SR and TR in Fig. 3.7. Note that qmin/q can be considered

normalized amplitude resolution. The NQQ is defined as

NQQ(q; s, t) =
MOS(s, t, q)

MOS(s, t, qmin)
, (3.6)

where qmin is the minimum QS (qmin = 16 in our study). In Fig. 3.7, we can observe that

the dropping trends of NQQ for different TR’s but the same SR tend to cluster together.

We performed two-way ANOVA to examine the statistical significance of the interaction

between QS and SR and that between QS and TR. As shown in Tab. 3.8, the interaction of

QS and TR has a p-value of 0.85 (> 0.05) and the interaction of QS and SR has a p-value of

0 (< 0.05). This reveals that the NQQ depends on SR but not TR. By examining the general

trend of how NQQ changes with normalized QS at the same SR, we propose a model for

NQQ data, called MNQQ, with a function form of,

MNQQ(q; s) =
1− e−αq(s)(

qmin
q

)βq

1− e−αq(s)
, (3.7)

where αq is the model parameter. This parameter characterizes the quality decay rate as

q increases, with a smaller value corresponding to a slower dropping rate. Based on the

previous analysis, we assume αq depends on s but not t. We derive αq for each SR for a

test sequence by least squares fitting using measured NQQ data for that SR, at all TR’s.

Similar to βs in Eq. 3.4, we found that for all 7 source sequences a constant value 1 can

be used for βq, so that only a single parameter αq is content-dependent and QS-dependent.

Figure 3.8 shows that the MNQQ model is very accurate. To further validate the assumption

that NQQ is independent of TR, we also evaluate the model accuracy when the parameter

αq is allowed to vary with TR. Table 3.10 shows that allowing αq to vary with TR does

not improve the model accuracy significantly. Both this comparison and ANOVA study

suggest that we can use the same model parameter for different TR’s in MNQQ to reduce

model complexity.
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Figure 3.10: Normalized quality v.s. normalized TR. Points are measured data under dif-

ferent QS’s and SR’s. Curves are derived from the model given in (3.9) with βt=0.63. The

model parameter αt is determined by least squares fitting of data at all SR’s and QS’s.

PCC=0.891, RMSE=0.052.

Table 3.5: Model accuracy under different assumptions.
Model Assumptions PCC RMSE

MNQS
αs depends on TR 0.995 0.025

αs independent of TR 0.992 0.030

MNQT
αt depends on SR and QS 0.972 0.026

αt independent of SR and QS 0.891 0.052

MNQQ
αq depends on TR 0.995 0.020

αq independent of TR 0.982 0.041
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3.2.3 Modeling Normalized Quality v.s. Temporal Resolution

In this subsection, we explore how TR affects perceived quality when SR and QS are

fixed. Towards this goal, we plot the normalized quality v.s. normalized TR t/tmax (NQT)

at same SR and QS in Fig. 3.9. The NQT is defined as

NQT(t; s, q) =
MOS(s, t, q)

MOS(s, tmax, q)
, (3.8)

where tmax is the maximum TR (here, tmax = 30Hz). From Fig. 3.9, we can observe that the

dropping trends of NQT for different SR’s and QS’s tend to cluster together. To quantify

the statistical significance of the dependency of NQT with SR and QS, we perform two-

way ANOVA between TR and SR, and between TR and QS. As shown in Tab. 3.8, the

interaction of TR and SR has p-value of 0.25 (> 0.05) and the interaction of TR and QS

has p-value of 0.37 (> 0.05). This shows that the NQT neither depends on SR nor QS.

By examining the general trend of how NQT changes with normalized TR, we propose a

model for NQT data, called MNQT, with a function form of,

MNQT(t) =
1− e−αt(

t
tmax

)βt

1− e−αt
. (3.9)

The parameter αt controls how fast the NQT drops as t decreases, with a smaller value

corresponding to a faster dropping rate. Based on the previous analysis, we assume αt

is independent of both SR and QS, and derive its value for each test sequence by least

squares fitting using measured NQT data at all SR’s and QS’s. Similar to βs in (3.4), βt

is a constant of 0.63 for all seven sequences, which is found by least square fitting for all

NQT data. Figure 3.10 shows that the model curves can capture the data trends well with

PCC=0.891, RMSE=0.052. We also compute the PCC and RMSE of the model when using

a best fitting αt for each different pair of SR and QS. Table 3.10 (middle two rows) shows

that this brings slight improvement in terms of PCC and RMSE. However, considering that

we already achieve high PCC and low RMSE with a parameter that is independent of both

SR and QS, we choose to use this option to reduce the model complexity.
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3.2.4 The Overall Q-STAR Model

To derive the overall quality model as a function of s, t, q, we recognize that the

normalized MOS can be decomposed in any of the following ways:

MOS(s, t, q)

MOS(smax, tmax, qmin)

= NQS(s; tmax, qmin)NQT(t; s, qmin)NQQ(q; s, t) (3.10a)

= NQS(s; tmax, qmin)NQQ(q; s, tmax)NQT(t; s, q) (3.10b)

= NQT(t; smax, qmin)NQS(s; t, qmin)NQQ(q; s, t) (3.10c)

= NQT(t; smax, qmin)NQQ(q; smax, t)NQS(s; t, q) (3.10d)

= NQQ(q; smax, tmax)NQS(s; tmax, q)NQT(t; s, q) (3.10e)

= NQQ(q; smax, tmax)NQT(t; smax, q)NQS(s; t, q). (3.10f)

Among these decomposition orders, we choose the one that will require the least num-

ber of model parameters while maintaining high accuracy. Because NQT term is indepen-

dent of both SR and QS, and the NQS and NQQ terms are both independent of TR, we

could put NQT at any place, and it will only require a single parameter αt, and it will not

affect the number of parameters needed for NQS and NQQ. Between NQS and NQQ, if

we choose to put NQQ term after the NQS term, we would need to estimate αq for each

s. This is because the NQQ parameter αq depends on s, and we don’t have a good model

that relates αq with s. On the other hand, if we put the NQS term after the NQQ term, we

only need to estimate αq for s=smax, and because of (3.5), we only need to estimate α̂s to

obtain αs for all q. Based on these considerations, we could use (3.10d), (3.10e) or (3.10f)

to reduce the model parameters while maintain high model performance.

By replacing NQS, NQQ, NQT in (3.10e) with their models described in (3.4), (3.7)

and (3.9), respectively, the proposed overall quality model as a function of s, t, q, to be
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Figure 3.11: Predicted normalized quality (in curves) and measured normalized MOS (in

points) v.s. t/tmax under different SR’s and QS’s. The model parameters αq, α̂s and αt, are

obtained by least square fitting, given in Table 5.5.
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called QSTAR, can be written as,

QSTAR(s, t, q) = MNQQ(q; smax)MNQS(s; q)MNQT(t)

=
1− e−αq(

qmin
q

)

1− e−αq
1− e−α̂sL((QP(q))( s

smax
)βs

1− e−α̂sL(QP(q))

1− e−αt(
t

tmax
)βt

1− e−αt
, (3.11)

where βs = 0.74, βt = 0.63 and L((QP(q)) is defined in (3.5), with υ1=−0.037, υ2=2.25.

The model has three content-dependent parameters αq, α̂s and αt. We compare the pre-

dicted quality using this model with measured MOS in Fig. 3.11, where the model parame-

ters are obtained by least squares fitting into the data of NQQ, NQS, and NQT, respectively.

As can be seen that the model matches very well with measured MOS points for most cases.

Table 5.5 (upper portion) summarizes the model parameters, RMSE and PCC of the pro-

posed QSTAR model. In this table we also list the average 95% confidence interval (CI)

of user ratings (normalized by maximum possible rating of each source sequence) for each

source sequence. We see that the RMSE of the prediction error is much lower than the

CI for all sequences. The correlation scatter plot between predicted and measured quality

is presented in Fig. 3.24 (left part). Note that we also investigated using other functional

forms, such as power law in the form of ( s
smax

)α and logarithm functions with a form of

(
log(1+α( s

smax
))

log(1+α)
), to model NQS and NQT data. We have found that our proposed models

in (3.4) and (3.9) can more accurately capture the impact of SR and TR on the perceived

quality, at least for our dataset.

3.2.5 Comparison of Subjective Test Results obtained using Laptop

and Mobil Platforms

We also applied the NQQ model in (3.7) and the NQT mode in (3.9) to the subjec-

tive test results for laptop screens presented in Chapter 2. We used the same βq and βt

derived here and summarize the dropping rate of NQQ and NQT data for both laptop and

mobile devices in Tab. 3.6. We would like to observe whether there is any quality impact of

display screen size. Table 3.6 demonstrates the parameter values on four common source

sequences tested on both experiments. We can see that in most cases, they are similar, al-
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though somehow αq is slightly smaller (i.e. a faster dropping rate) for smaller screen size.

This is intuitively reasonable; because viewers are more sensitive to blur effects caused by

quantization artifacts when display screen size of the devices is smaller. Or because when

both are in CIF resolution, it blows up to 4CIF resolution for mobile devices and viewers

are more sensitive to blur effect of interpolation filter as QS increases. On the other hand,

the differences in αt are inconsistent, indicating no consistent trend as to which derives

make the viewer more sensitive to temporal resolution.

Table 3.6: The parameters comparison between datasets

dataset city crew foreman ice

DataSet#9 (laptop)
αq (CIF) 5.09 3.23 4.32 5.04

αt 3.67 3.65 4.05 3.25

DataSet#1 (mobile)
αq (4CIF) 7.25 4.51 4.57 5.62
αq (CIF) 4.21 2.79 3.25 3.38

αt 4.1 3.09 3.8 3
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Figure 3.12: Predicted quality using QSTAR model against measured MOS, where the

model parameters obtained by least square fitting

3.3 Alternative QSTAR Model using PSNR and Bit Rate

As proposed from our previous Sec. 3.2, we derive a quality model reflecting the

quality impact of SR, TR and QS. We first individually explore how SR, TR, or QS with
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Table 3.7: The parameters and performance of QSTAR model.

city crew harbour ice soccer fg foreman Avg.
Parameters obtained by least square fitting with MOS data

αq 7.25 4.51 9.65 5.61 6.31 10.68 4.57
α̂s 3.52 4.07 4.58 3.68 4.55 4.83 5.94
αt 4.10 3.09 2.83 3.00 2.23 2.80 3.80

RMSE 0.018 0.025 0.038 0.033 0.032 0.058 0.038 0.035
PCC 0.998 0.996 0.992 0.993 0.992 0.979 0.991 0.991

avg. CI 0.048 0.049 0.050 0.050 0.050 0.051 0.049 0.050

Table 3.8: ANOVA test for statistical significance of the interactions among SR, TR, QS.
Factors F-value p-value

NQS
SR·TR 0.5 0.73
SR·QS 21.17 0

NQT
TR·SR 1.34 0.25
TR·QS 1.08 0.37

NQQ
QS·SR 0.21 0
QS·TR 0.34 0.85

the quality ratings. Then, the overall quality model is presented as a function of SR, TR and

QS, which is the product of three one-parameter models, and each of which characterizes

the degradation of quality with these variables (e.g., SR). However, this quality model will

not be flexible and applicable if the retrievable information of the target video sequences

are limited. For example, without acknowledgement of the QS (or QP), we only can access

the PSNR or the bit rate of each PVS, our QSTAR model in Sec. 3.2 cannot be applied

properly. Therefore, it would be more robust to replace the MNQQ model with QS to the

one with PSNR or bit rate, if one of them is accessible. In the following subsection, we

will introduce the variant of the MNQQ model form as a function of PSNR and bit rate and

investigate the performance of individual model as well as the joint form in QSTAR.

3.3.1 Modeling Normalized Quality v.s. PSNR

In this subsection, we explore how PSNR affects the perceived quality when SR and

TR are fixed. Towards this goal, we plot the normalized quality v.s. normalized PSNR



61

25 30 35
0

0.2

0.4

0.6

0.8

1

City

PSNR

N
Q

P

 

 

NQP(PSNR ; t , 4CIF)
NQP(PSNR ; t ,CIF )
NQP(PSNR ; t ,QCIF)

25 30 35
0

0.2

0.4

0.6

0.8

1

Crew

PSNR

N
Q

P

 

 

NQP(PSNR ; t , 4CIF)
NQP(PSNR ; t ,CIF )
NQP(PSNR ; t ,QCIF)

26 28 30 32 34 36
0

0.2

0.4

0.6

0.8

1

Harbour

PSNR

N
Q

P

 

 

NQP(PSNR ; t , 4CIF)
NQP(PSNR ; t ,CIF )
NQP(PSNR ; t ,QCIF)

25 30 35 40
0

0.2

0.4

0.6

0.8

1

Ice

PSNR

N
Q

P

 

 

NQP(PSNR ; t , 4CIF)
NQP(PSNR ; t ,CIF )
NQP(PSNR ; t ,QCIF)

25 30 35
0

0.2

0.4

0.6

0.8

1

Soccer

PSNR

N
Q

P

 

 

NQP(PSNR ; t , 4CIF)
NQP(PSNR ; t ,CIF )
NQP(PSNR ; t ,QCIF)

25 30 35
0

0.2

0.4

0.6

0.8

1

Flowergarden

PSNR

N
Q

P

 

 

NQP(PSNR ; t , 4CIF)
NQP(PSNR ; t ,CIF )
NQP(PSNR ; t ,QCIF)

25 30 35 40
0

0.2

0.4

0.6

0.8

1

Foreman

PSNR

N
Q

P

 

 

NQP(PSNR ; t , 4CIF)
NQP(PSNR ; t ,CIF )
NQP(PSNR ; t ,QCIF)

 

 

30Hz/4CIF
30Hz/CIF
30Hz/QCIF
15Hz/4CIF
15Hz/CIF
15Hz/QCIF
7.5Hz/4CIF
7.5Hz/CIF
7.5Hz/QCIF

Figure 3.13: Measured NQP under different SR’s and TR’s. Note that lines with the same

color correspond to NQP data at different TR’s but the same SR.
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Figure 3.14: Normalized quality v.s. PSNR. Points are measured data under different SR’s

and TR’s. Curves are derived from the model in (2.7) for all TR’s at a given SR. The

parameter αq for each sequences and SR is determined by least squares fitting of data at all

TR’s. PCC=0.985, RMSE=0.037.
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Figure 3.15: Measured NQP v.s. normalized PSNR under different SR’s and TR’s. Note

that lines with the same color correspond to NQP data at different TR’s but the same SR.
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Figure 3.16: Normalized quality v.s. NPSNR. Points are measured data under different

SR’s and TR’s. Curves are derived from the model in (3.13) for all t at a given s. The

βp : (1, 14.6) parameter αq for each sequences and SR is determined by least squares

fitting of data at all TR’s. PCC=0.964, RMSE=0.058.
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Figure 3.17: Normalized quality v.s. normalized PSNR. Points are measured data under

different SR’s and TR’s. Curves are derived from the model in (3.14) for all t at a given s.

The parameter αp and βp = 5.8 for each sequences and SR is determined by least squares

fitting of data at all TR’s. PCC=0.970, RMSE=0.053.
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Figure 3.18: Normalized quality v.s. NPSNR. Points are measured data in CIF at 30Hz

(CSVT data). Curves are derived from the model in (3.14) for all t at CIF. The parameter

αp for each sequences and SR is determined by least squares fitting of data at all TR’s.

PCC=0.995, RMSE=0.014.
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Figure 3.19: Normalized quality v.s. NPSNR. Points are measured data (CSVT data).

Curves are derived from the model in (3.14) for all t at CIF. The parameter αp for each

sequences and SR is determined by least squares fitting of data at all TR’s. PCC=0.973,

RMSE=0.031.
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PSNR/PSNRmax (NQP) at same SR and TR in Fig. 3.15. The NQP is defined as

NQP(PSNR; s, t) =
MOS(s, t,PSNR)

MOS(s, t,PSNRmax)
, (3.12)

Let PSNR = PSNR/PSNRmax denote the normalized PSNR and PSNRmax is the max-

imum PSNR of each source sequence. It is noted that the PSNR is the average PSNR of

frames included in the decoded video (not including interpolated frames). In Fig. 3.15, we

can observe that the dropping trends of NQP for different TR’s but the same SR tend to

cluster together. This reveals that the NQP depends on SR but not TR. By examining the

general trend of how NQP changes with PSNR at the same SR, we propose a model for

NQP data, called MNQP, with a function form of,

MNQP1(PSNR; s) = βp1 −
βp1

1 + eβp2 (PSNR−αp)
, or (3.13)

Where αp is the model parameter. Based on the previous analysis, we assume αp depends

on s but not t. We derive αp for each SR for a test sequence by least squares fitting using

measured NQP data for that SR, at all TR’s. We further found that for all seven source

sequences, βp1 and βp2 are two constants of 1.05 and 0.33, respectively. Figure 3.14 shows

that the MNQP model is very accurate with PCC=0.986, RMSE=0.026. The similar trend

of quality degradation with PSNR is also observed in [53], in which we conducted the

subjective quality assessment with quantization and frame rate artifacts at fixed CIF reso-

lution on laptop monitor. It shows that predicted quality with PSNR in both tests can be

approximated using this sigmoid function accurately. To further validate the assumption

that NQP is independent of TR, we also evaluate the model accuracy when the parameter

αp is allowed to vary with TR. Table 3.10 shows that allowing αp to vary with TR does not

improve the model accuracy significantly. This suggests that we can use the same model

parameter for different TR’s in MNQP to reduce model complexity.

We further propose a new function to model the quality degradation with PSNR using

inverted exponential function, i.e.,

MNQP2(PSNR; s) =
1− e−αp·(PSNR)βp

1− e−αp
, (3.14)
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where αp is the model parameter and βp is a constant value of 5.8. Figure 3.17 illustrates

the fitting curves with measured data very well with PCC = 0.985.

Table 3.9: The model performance of NQP
Function Assumption PCC RMSE

βp1 −
βp1

1+eβp2(pp−αp)

pp = PSNR 0.985 0.037
pp = PSNR 0.964 0.058

1−e−αp·(PSNR)βp

1−e−αp 0.970 0.053

Table 3.10: Model accuracy under different assumptions.
Model Assumptions PCC RMSE

MNQP (3.14)
αp depends on TR 0.988 0.33

αp independent of TR 0.970 0.053

MNQR
αr depends on TR 0.986 0.036

αr independent of TR 0.985 0.039

3.3.2 Modeling Normalized Quality v.s. Normalized Bit Rate

In this subsection, we explore how bit rate affects perceived quality when TR and

SR are fixed. Towards this goal, let rmax denote the maximum bit rate for each source

sequences at each SR and TR combination, we plot the normalized quality v.s. normalized

bit rate r̃ = r/rmax (NQR) at same TR and SR in Fig. 3.20. The NQR is defined as

NQR(r̃; s, t) =
MOS(s, t, r)

MOS(s, t, rmax)
, (3.15)

As shown in Fig. 3.20, we can observe that the dropping trends of NQR for different SR’s

and TR’s tend to cluster together. This shows that NQR depends on SR but not TR. By

examining the general trend of how NQR changes with r̃, we propose a model for NQR

data, called MNQR, with a function form of,

MNQR(r̃; s) =
1− e−αr·(r̃)βr

1− e−αr
. (3.16)

The parameter αr controls how fast the NQR drops as r̃ decreases, with a smaller value

corresponding to a faster dropping rate. Based on the previous analysis, we assume αr is
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Figure 3.20: Measured NQR under different SR’s and TR’s. Note that lines with the same

color correspond to NQR data at different TR’s but the same SR.
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Figure 3.21: Normalized quality v.s. normalized bit rate. Points are measured data under

different TR’s and SR’s. Curves are derived from the model given in (3.16) with βr=0.86.

The model parameter αr is determined by least squares fitting of data at all SR’s and TR’s.

PCC=0.985, RMSE=0.039.
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independent of both SR and TR, and derive its value for each test sequence by least squares

fitting using measured NQR data at all SR’s and TR’s. We also found that βr is a constant

of 0.86 for all seven sequences, which is derived by least square fitting for all NQR data.

Figure 3.21 shows that the model curves can capture the data trends well with PCC=0.985,

RMSE= 0.039. We also compute the PCC and RMSE of the model when using a best

fitting αr for each different pair of SR and TR. Table 3.10 shows that this brings slight

improvement in terms of PCC and RMSE. However, considering that we already achieve

high PCC and low RMSE with a parameter that is independent of both SR and TR, we

choose to use this option to reduce the model complexity.

3.3.3 The Overall Q-STAR Model

Let s̃ = s/smax, t̃ = t/tmax, q̃ = q/qmin denote the normalized SR, TR and QS,

respectively. Recall that the overall QSTAR model in [56], which is a function of s̃, t̃, q̃,

can be recognized as

QSTAR(s̃, t̃, q̃) = MNQQ(q̃; smax)MNQS(s̃; q̃)MNQT(t̃)

= eαq
(

1−q̃
)

1− e−α̂sL((QP(q))(s̃)βs

1− e−α̂sL(QP(q))

1− e−αt·(t̃)βt

1− e−αt
. (3.17)

By replacing MNQQ(q̃; smax) to MNQP(PSNR; smax) in (3.13), the new QSTART model

can be re-written, i.e.,

QSTAR(s̃, t̃,PSNR) =(
βp1 −

βp1

1 + eβp2 (PSNR−αp)

)1− e−α̂sL((QP(q))(s̃)βs

1− e−α̂sL(QP(q))

1− e−αt·(t̃)βt

1− e−αt
, (3.18)

is a function of s̃, t̃,PSNR. We plot the predicted quality v.s. PSNR in Fig. 3.22 with

PCC = 0.991 , RMSE = 0.031. The fitting is still quite good comparing with the model in

(3.17) with PCC = 0.992, RMSE = 0.029. Note that PSNR, here, is the average PSNR of

decoded video frames. We first predict the quality of videos at different PSNRs for tmax

and smax and then apply the MNQS and MNQT to correct the quality of videos at lower s̃
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Figure 3.22: Predicted normalized quality (in curves) and measured normalized MOS (in

points) v.s. t/tmax under different SR’s and TR’s using (3.18). The model parameters αp,

α̂s and αt, are obtained by least square fitting.
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Figure 3.23: Predicted normalized quality (in curves) and measured normalized MOS (in

points) v.s. t/tmax under different SR’s and TR’s using (3.19). The model parameters αr,

α̂s and αt, are obtained by least square fitting.
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and t̃. This is based on the observations that the PSNR of lower s or t is similar to those at

tmax or smax.

By replacing MNQQ(q̃; s, t) in (3.17) to MNQP(r̃; smax) in (3.16), QSTAR can be

addressed to

QSTAR(s̃, t̃, r̃) =

1− e−αr·(r̃)βr

1− e−αr
1− e−α̂sL((QP(q))(s̃)βs

1− e−α̂sL(QP(q))

1− e−αt·(t̃)βt

1− e−αt
, (3.19)

where βr=0.86. As shown in Fig. 3.23, the predicted quality fits the measured MOS very

accurate, with PCC = 0.989, RMSE = 0.035. As can be seen in Fig. 3.20, the PVS with

lower s or t has similar r̃ with that at smax or tmax. We first, apply MNQP model in (3.13)

to predict the quality with different bit rate levels at smax and tmax, following by the MNQS

and MNQT to correct the video quality at lower s and t. Note that in both models (3.18) and

(3.19), we still keep those constants remain the same value, i.e., βs = 0.74, βt = 0.63 and

υ1=−0.037, υ2=2.25 in L((QP(q)) in these two new proposed models while both of them

also remain three content-dependent parameters αp/αr, α̂s and αt. Table 5.5 summarizes

the model parameters, RMSE and PCC of the proposed QSTAR model in (3.18) and (3.19).

In this table we also list the average 95% confidence interval (CI) of user ratings (normal-

ized by maximum possible rating of each source sequence) for each source sequence. We

see that the RMSE of the prediction error is much lower than the CI for all sequences. The

correlation scatter plots between predicted and measured quality using (3.18) and (3.19)

are presented in Fig. 3.24.
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Figure 3.24: Predicted quality using QSTAR model against measured MOS. Left: Predicted

quality by (3.18); Right: Predicted quality by (3.19).
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Table 3.11: The parameters and performance of QSTAR model.
city crew harbour ice soccer fg foreman Avg.

Parameters obtained by least square fitting with MOS data using (3.17)
αq 7.25 4.51 9.65 5.61 6.31 10.68 4.57
α̂s 3.52 4.07 4.58 3.68 4.55 4.83 5.94
αt 4.10 3.09 2.83 3.00 2.23 2.80 3.80

RMSE 0.018 0.025 0.038 0.033 0.032 0.058 0.038 0.035
PCC 0.998 0.996 0.992 0.993 0.992 0.979 0.991 0.991
Parameters obtained by least square fitting with MOS data using (3.18)
αp 26.67 30.39 24.17 32.41 27.98 23.92 32.59

RMSE 0.017 0.030 0.034 0.026 0.0304 0.043 0.035 0.029
PCC 0.998 0.996 0.990 0.994 0.991 0.987 0.989 0.991
Parameters obtained by least square fitting with MOS data using (3.19)
αr 7.17 4.23 12.40 3.91 6.00 10.04 3.40

RMSE 0.024 0.033 0.036 0.029 0.037 0.050 0.0341 0.035
PCC 0.995 0.991 0.989 0.993 0.989 0.978 0.9898 0989

avg. CI 0.048 0.049 0.050 0.050 0.050 0.051 0.049 0.050

3.4 Model Verification

In order to verify the model accuracy on other datasets, we apply QSTAR model

partially or fully on eight different datasets. The brief description of these datasets are

listed in Tab. 3.12. First, we apply the bit rate model MNQR (3.16) and MNQQ (3.7) on

DataSet#2− 3 in Figs. 3.25-3.30. We also evaluate MNQP on DataSet#4 in Fig. 3.31

and 3.32. Table 3.13 summarize the PCC and RMSE for all seven datasets with individual

models (e.g., MNQQ, MNQP) and joint model (e.g., QSTAR(s̃, q̃;30Hz) and QSTAR(s̃,t̃, q̃).

These datasets includes different codecs and different experiment settings or configurations.

Note that for validation of individual model, sometimes we only include partial data, which

meet the requirement of quality metric. For example, MNQT can only be apply for fixed

SR, QS or same frame-quality videos.
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Table 3.12: Data Set Description
DataSet#1 The 7 source sequences used in this paper, obtained

with 3 frame rates (30, 15, 7.5 Hz), 3 spatial resolu-
tions (4CIF, CIF, QCIF), and 3 QP levels (28, 36, 44).
A total of 189 PVSs.

DataSet#2 The 5 source sequences used in [4], obtained with
3 frame rates (30, 15, 7.5 Hz), five different bit rate
levels (each frame rate has its corresponding 5 QPs)
coded by H.263 for CIF resolutions. A total of 75
PVSs.

DataSet#3 The 5 source sequences used in [4], obtained with CIF
, 3/4 CIF and QCIF resolutions, five different bit rate
levels (each SR has its corresponding 5 QPs) coded
by H.263 for 30Hz . A total of 75 PVSs.

DataSet#4 5 QCIF sequences used in [5], each with 3 frame rates
(30, 15, 7.5 Hz) and 4 bit rate levels coded by H.264.
A total of 54 PVSs.

DataSet#5 5 QCIF sequences used in [5], each with 3 frame rates
(30, 15, 7.5 Hz) and 4 bit rate levels coded by H.263.
A total of 54 PVSs.

DataSet#6 3 source sequences used in [6], each with 3 frame
rates (30, 15, 7.5 Hz), 6 spatial resolutions (in be-
tween QCIF and CIF), and 3 bit rate levels coded by
H.264/SVC. A total of 54 PVSs.

DataSet#7 Selected 5 source sequences used in [7], each with
1080i spatial resolution, and 3 or 4 QP levels (or
bit rates) coded by H.264 and MPEG-2, respectively.
Only lossless sequences included. A total of 35 PVSs.

DataSet#8 3 source sequences used in [8], each with 3 spatial
resolutions, 4 frame rates (50, 25, 12.5, 6.25) and sev-
eral bit rate levels coded by H.264/SVC. A total of 26
PVSs.

DataSet#9 7 CIF sequences used in chapter 2, each with 4 frame
rates (30, 15, 7.5, 3.75 Hz) and 3 QP levels (28, 36,
40). A total of 100 PVSs.
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Figure 3.25: Normalized quality v.s. normalized bit rate. Points are measured data under

different TR’s and SR’s from DataSet#2 [4]. Curves are derived from the model given in

(3.16) with βr=0.86. The model parameter αr is determined by least squares fitting of data

at all SR’s but same TR. PCC=0.895, RMSE=0.089.
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Figure 3.26: Normalized quality v.s. normalized bit rate. Points are measured data under

different TR’s from DataSet#2 [4]. Curves are derived from the model given in (3.16) with

βr=0.86. The each model parameter αr is determined by least squares fitting of data at each

TR. PCC=0.95, RMSE=0.066. The p-value for TR*BR is 0.01 on NQR data.
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Figure 3.27: Normalized quality v.s. normalized FR. Points are measured data under dif-

ferent TR’s from DataSet#2 [4]. Curves are derived from the MNQQ model in (3.17). The

model parameter αq is determined by least squares fitting of data at QS=12 and CIF reso-

lution. PCC=0.964, RMSE=0.031.
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Figure 3.28: Normalized quality v.s. normalized QS. Points are measured data under dif-

ferent TR’s from DataSet#2 [4]. Curves are derived from the MNQQ model in (3.7). The

model parameter αq is determined by least squares fitting of data at all TR’s. PCC=0.86,

RMSE=0.10.
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Figure 3.29: Normalized quality v.s. normalized bit rate. Points are measured data under

different SR’s from DataSet#3 [4]. Curves are derived from the model given in (3.16) with

βr=0.86. The model parameter αr is determined by least squares fitting of data for each

SR. PCC=0.947, RMSE=0.069.
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Figure 3.30: Normalized quality v.s. normalized bit rate. Points are measured data under

different TR’s from DataSet#4 [5] (coded by H.264). Curves are derived from the model

given in (3.16) with βr=0.86. The model parameter αr is determined by least squares fitting

of data at all TR’s. PCC=0.934, RMSE=0.061. The p-value for TR*BR is 0.051 on NQR

data.

3.5 Summary

In this work, we propose a perceptual quality model considering the impact of SR, TR

and QS on mobile display platforms. In this model, we use a one-parameter function to

capture the quality decay v.s. SR, TR and QS individually. The parameter in each function

is sequence dependent. Interestingly, we found that the dropping rate of the quality with

TR, characterized by αt, is independent of SR and QS, and the dropping rate of quality

with both SR and QS, indicated by αs and αq, respectively, are both independent of TR.

Although the dropping rate αs with SR is dependent on QP, we found that they are related

linearly. The overall model only requires three content-dependent parameters. The model

was validated by subjective ratings for compressed video sequences under a large range of

SR, TR, and QS, for seven source videos with large variations in their motion and texture
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Figure 3.31: Normalized quality v.s. normalized PNSR. Points are measured data under

different TR’s from DataSet#4 [5]. Curves are derived from the model given in (3.14).

The model parameter αp and βp are determined by least squares fitting of data at all TR’s.

PCC=0.930, RMSE=0.063.

characteristics. The model with the content-derived features has a high PCC (=0.988) with

subjective ratings.

As a conclusion, it is worth noting the implication of the proposed model form in

(3.11). It suggests that the quality of a video is the product of a spatial quality factor

(jointly determined by SR and QS) and a temporal quality factor (determined by TR). The

spatial term is in turn the product of two factors, MNQQ and MNQS. MNQQ describes how

does QS affects the quality when the video is at the maximum SR; and MNQS accounts

for the quality degradation due to lower SR. The rate of degradation depends on QP, as

indicated by the dependency of the parameter αs on QP. We would like to note that, in the

work presented in chapter 2 we also found that the quality is the product of a spatial factor

and a temporal factor, and the parameters of the two factors are independent. In addition to

MNQQ model relating NQQ with QS, we further propose MNQP and MNQR when QS is

not available. They hold the same merit of MNQQ that the falling trend is independent of

TR but SR. Both MNQP and MNQR are derived using inverted exponential function, which
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Figure 3.32: Normalized quality v.s. normalized bit rate. Points are measured data under

different TR’s from DataSet#4 [5]. Curves are derived from the model given in (3.13) with

βp1=10. The model parameter αp and βp2 are determined by least squares fitting of data at

all TR’s. PCC=0.931, RMSE=0.063.

approximate the measured data very well with PCC=0.98. The proposed NQP or NQR is

shown to be highly accurate, compared to the subjective ratings from our own subjective

tests as well as test results reported from other datasets.

Although the proposed model is developed for videos generated by the H.264/SVC

codec, we expect that the same function form is applicable to scalable videos coded using

other codecs and to non-scalable videos coded at different (s,t,q) combinations. However,

the model parameters for the same video content may differ, depending on the encoder

configurations. This hypothesis needs to be validated in future studies.

The proposed quality models, together with the rate model, also as a function of STAR

in [71], can be used to determine the optimal STAR that maximizes the quality given a rate

constraint, both for video encoding/transcoding and for scalable video adaptation. Our

prior work [54, 72] has investigated a subset of this problem, where SR is fixed, and only

TR and QS are adapted, based on quality and rate models as functions of TR and QS only.

Extension of this work to include the SR dimension, using the newly developed quality and
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Figure 3.33: Normalized quality v.s. normalized bit rate. Points are measured data under

different TR’s from DataSet#5 [5] (coded by H.263). Curves are derived from the model

given in (3.16) with βr=0.86. The model parameter αr is determined by least squares fitting

of data at all TR’s. PCC=0.913, RMSE=0.074. The p-value for TR*BR is 0.0001 on NQR

data.

rate models, both as functions of SR, TR, and QS, is another interesting direction for future

research.
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Figure 3.34: Normalized quality v.s. normalized bit rate. Points are measured data under

different TR’s from DataSet#5 [5] (coded by H.263). Curves are derived from the model

given in (3.16) with βr=0.86. The model parameter αr is determined by least squares fitting

of data at all TR’s. PCC=0.976, RMSE=0.039.
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Figure 3.35: Measured NQQ under different SR’s and TR’s from DataSet#6. Note that

lines with the different markers correspond to NQQ data at different TR’s but each marker

includes five SR’s.
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Figure 3.36: Normalized quality v.s. normalized QS. Points are measured data under dif-

ferent TR’s and QS’s from DataSet#6. Curves are derived from the MNQQ model given in

(3.19) with PCC=0.98, RMSE=0.022. QP = 32, 37, 42 for 30Hz; QP = 23, 29, 35 for 15

and 7.5HZ
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Figure 3.37: Measured NQT under different SR’s but same QS from DataSet#6 [6]. Note

that lines with the different markers correspond to NQT data at different SR’s but the same

QS.



88

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized FR(Hz)

N
Q

T

Football

 

 

352
256
224
208
176
144

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized FR(Hz)

N
Q

T

Foreman

 

 

352
256
224
208
176
144

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized FR(Hz)

N
Q

T

Paris

 

 

352
256
224
208
176
144

Figure 3.38: Normalized quality v.s. normalized FR. Points are measured data under dif-

ferent QS’s but same QP=35 (37 for 30Hz) from DataSet#6. Curves are derived from the

MNQT model given in (3.9) with PCC=0.99, RMSE=0.003.
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Figure 3.39: Normalized quality v.s. normalized FR. Points are measured data under dif-

ferent SR’s but same QP=35 (37 for 30Hz) from DataSet#6. Curves are derived from the

MNQT model given in (3.17) usign the same model parameter αt for all different SR’s with

PCC=0.96, RMSE=0.023.
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Figure 3.40: Measured NQS under different TR’s from DataSet#6 [6]. Note that lines with

the different markers are corresponding to different TR’s.
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Figure 3.41: Normalized quality v.s. normalized QS. Points are measured data under dif-

ferent codecs (H.264 and MPEG-2) DataSet#7 [7]. Curves are derived from the MNQQ

model given in (3.17) with PCC=0.993, RMSE=0.029. Note that lines with the different

lines correspond to different codecs.

Table 3.13: The parameters and performance of QSTAR model.

Model Metrics DataSet#1 #2 #3 #4 #5 #6 #7 #8 #9

QSTAR(s, t, q)
RMSE 0.035 - - - - 0.039 - 0.08 -
PCC 0.991 - - - - 0.959 - 0.856 -

QSTAR(t, q;CIF)
RMSE - 0.120 - - - 0.023 - - 0.044
PCC - 0.854 - - - 0.975 - - 0.973

QSTAR(s, q;30Hz)
RMSE - - 0.112 - - - - - -
PCC - - 0.927 - - - - - -

MNQQ(q) (3.7)
RMSE 0.041 0.052 - - - 0.022 0.029 0.079 0.046
PCC 0.982 0.961 - - - 0.98 0.993 0.819 0.963

MNQT(t)
RMSE 0.052 0.030 - - - 0.023 - 0.032 0.034
PCC 0.891 0.964 - - - 0.960 - 0.987 0.968

MNQS(s)
RMSE 0.030 - - - - - - - -
PCC 0.992 - - - - - - - -

MNQR(r)
RMSE 0.039 0.066 0.069 0.061 0.039 - - - -
PCC 0.986 0.950 0.941 0.934 0.976 - - - -

MNQP(PSNR) (3.14)
RMSE 0.037 - - 0.063 - - - - 0.031
PCC 0.985 - - 0.930 - - - - 0.973



90

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
Intotree

Frame Rate

N
Q

T

 

 

720p ,α t: 0 . 67 , β t: 0 . 63

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
Duckstakeoff

Frame Rate

N
Q

T

 

 

720p ,α t: 1 . 50 , β t: 0 . 63

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
ParkJoy

Frame Rate

N
Q

T

 

 

640x360 ,α t: 0 . 66 , β t: 0 . 63

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2
Duckstakeoff

q
min

/q

N
Q

Q

 

 

320x180 ,α q: 4 . 49 , β q: 1 . 00

Figure 3.42: Top part: Normalized quality v.s. normalized FR. Points are measured

data from DataSet#8 [8]. Curves are derived from the MNQT model given in (3.9) with

PCC=0.98, RMSE=0.032. Bottom part: Normalized quality v.s. normalized QS from

DataSet#8. Points are measured data and the curve is derived from (3.7) with PCC=0.010,

RMSE=0.991.
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ent TR’s, QS’s and SR’s from DataSet#8 [8]. The scatter plot is based on (3.17). The model

parameters are determined by least squares fitting of all data. PCC=0.856, RMSE=0.08.



92

Chapter 4

Perceptual Quality Modeling of Video with Frame Rate

and Quantization Variation

This work investigates the impact of temporal variation of frame rate (FR) or quan-

tization stepsize (QS) on perceptual video quality. Among many dimensions of FR/QS

variation, as a first step we focus on videos in which two FR’s, or QP’s, alternate over fixed

intervals. We present subjective test results, and analyze the influence of several factors

(including the delta FR/QP, the changing frequencies, and the video content). According

the observation and data analysis, we propose to several models to characterize the quality

degradation of viewers perception with respect to the variation in FR, QS, or correspond-

ingly in the bit rate. Such quality assessment and modeling are essential in making video

adaptation decisions when delivering video over dynamically changing wireless links.

Take for example a hypothetical case where the available bandwidth alternates be-

tween Rl and Rh, and the frame rates (FR), denote as t, that can lead to the best perceived

quality for constant rate video at Rl and Rh are tl and th, respectively. In this situation, is

it better to code the video with alternating FR’s of tl and th, or would it better to stay at tl?

More generally, one may want to vary not only the FR, but also the frame size and QS to

meet the instantaneous rate constraints. In this work, we focus on the QS or FR variation

while keeping the other resolutions fixed. The following description is for the investigation

regarding FR variation. A similar study is carried out for QS variation. Among the many

dimensions of variations, we consider the simple case where the FR alternates between tl
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and th, with each FR staying over a constant time duration Fz. We conduct subjective tests

where viewers are asked to rate the quality of video with varying tl and th and Fz. We study

the effect of th, tl, their difference ∆t = th− th and ratio tl/th on the perceived quality. We

include a variety of videos, to further assess the influence of the video content. This study

directly addresses the questions we raised for the hypothetical example given earlier. But it

also shed lights for more complicated cases where the FR may vary among more than two

levels and the variation may not follow a periodic pattern.

This chapter is organized as follows. Section 4.1 describes the subjective test con-

figurations. Section 4.2 and 4.3 presents the subjective test results, the observations, and

also proposes a model that relates to the perceived quality with the FR/QS variation. Sec-

tion 4.4 investigates the statistical significance of impact of FR/QS variation, video content

and frequency on perceptual quality using the ANOVA statistical test. Finally Section 4.5

concludes the paper.

4.1 Subjective Test Setup

4.1.1 Testing Material

Our experiment is conducted using five video source sequences, Akiyo, Foreman,

Football, Ice, Waterfall, all in CIF (352 × 288) resolution and at frame rate 30 fps with

originally 10 seconds long, which are chosen from JVT (Joint Video Team) test sequence

pool [59]. All these sequences are coded using JVT scalable video model (JSVM912) [60].

For each sequence, one bitstream is generated with five temporal layers, with corresponding

FR of 1.875, 3.75, 7.5, 15, and 30Hz , and each temporal layer in turn has five quality layers

created with QS equal to 28, 32, 36, 40 and 44 (with corresponding to QS = 16, 25, 40, 64,

102), respectively, using the coarse grain scalability (CGS) without QS cascading. For the

study reported here, the test videos are obtained by decoding all temporal layers (i.e. FR=

30 Hz) but different number of quality layers, corresponding to the desired QS variation.

Two different experiments, quality impact of FR and QS variation, were implemented.
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Table 4.1: Testing configuration for frame rate variation
QS Fz th(Hz) tl(Hz)

16 1/2/3 sec

30 30/15/7.5
15 15/7.5
7.5 7.5

Table 4.2: Testing configuration for QS variation
FR Fz QSb QSv

30
1/2/3 sec

16 16/25/40/64/102
40 25/40/64/102

3 sec 102 25/64/102

For temporal variation, we first make two frame rates switch back and forth periodically

through the entire video with changing interval (Fz) of 1, 2, and 3 seconds. Let th and tl

denote the higher and lower FR of the video. Table 4.1 details all the test configurations,

which leads to a total of 90 processed (encoded and decoded) video sequences (PVS). For

QS variation, we fix FR to 30Hz but allow QS to switch back and forth periodically through

the entire video with Fz of 1, 2, and 3 seconds. In Tab. 4.2, QSb indicates the beginning QS

while QSv denotes the deviated QS, which could be either higher or lower than QSb. There

are a total of 130 PVS’s

4.1.2 Experiment Configuration

The subjective quality assessment is carried out by using a protocol similar to ACR

(Absolute Category Rating) described in [17]. Basically, each viewer is presented a series

of video in a random order, and the viewer is asked to give overall rating of each video

in the range of 0 to 100. Each test for one subject consists of two sessions, a training

session and a test session. The training session (about 2 minutes) is used for the subject to

accustom him/herself to the rating procedure and ask questions if any. The PVS’s in the test

session (about 12 minutes) are ordered randomly so that each subject sees the video clips in

a different order. Most of the viewers are engineering students from Polytechnic Institute

of New York University, with age 21 to 33. Other details regarding each experiment are

given below.
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Fz intervalFz interval

8 or 12 seconds

QPl or fh

QPh or fl
Fz interval Fz interval

Figure 4.1: The Variations of QS or FR for a video. The sequence is 8 sec long for Fz=1,2,

and 12 sec long for Fz=3.

1. The first experiment-QS variation:

There are two tests included in this experiment. First one has two base QS (16 and 40)

with Fz of 1 and 2 seconds. The second one has three base QS (16, 40, and 102) with

Fz of 3 seconds. Note that these two tests will be later combined together to explore

the quality impact of all Fz’s with QS variation as shown in Tab. 4.2. Four common

sequences are selected for each source sequence and the selections of testing points

are uniformly distributed among the entire range. In order to shorten the duration

of the test, each test is divided into two subgroups. Each of them contains around

36 processed video sequences and lasts about 14 minutes. Thirty one non-expert

viewers who had normal or corrected-to-normal vision acuity participated in one or

two subgroup tests. There are on average 22 ratings for each PVS and a total of 90

and 60 PVS’s for the first and second test, respectively.

2. The second experiment-FR variation:

There are also two tests included in this experiment. First one has all the frame rate

variation (30, 15 and 7.5Hz) with Fz of 1 and 3 seconds, defined as Fz. The second

one has Fz of 2 and 3 seconds and the rest are the same as first test. These two test are

later combined together for studying the quality impact of all Fz’s with FR variation

as shown in Tab. 4.1. Three common sequences for datasets combination are selected

for each source sequence. Similar to first experiment, each test are divided into

several subgroups, and each of which contains 36 PVS’s. The sequences in the test

session are also ordered randomly. Forty two non-expert viewers who had normal or
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corrected-to-normal vision acuity participated in one or two subgroup tests. There

are on average 20 ratings for each PVS and a total of 45 PVS’s for each test.

Note that we synthesize the 12 second video with repeating content since the original se-

quence is only 10 second long. In order to eliminate the annoying effect of scene change

while looping back from the start point of video, all 12 second long PVSs start from the

rest 6 seconds of the original sequences, and then the first 6 seconds for PVS with Fz of

3 sec. By doing this, the scene change occurs at the same time as the QP/FR switches.

For 8 seconds long videos, which is designed for Fz=1 and 2, it is the first 8 second of the

original video.

4.1.3 Data Post Processing

The raw ratings are converted to Z-scores [68] based on the mean and standard devia-

tion of all the scores of each viewer, given by

Zmij =
Xmij −MEAN(Xi)

STD(Xi)
. (4.1)

Here, Xmij and Zmij denote the raw rating and Z-score of mth sequence at jth STAR com-

bination, from ith viewer, respectively. Xi denotes all ratings from ith viewer. MEAN(·)

and STD(·) represent the operator for taking the mean and the standard deviation of a given

set, respectively.

Post Screening

In order to remove “noisy” ratings or outliers, we adopted, with some modification,

two post screening methods in concatenation. We first perform BT.500-11 post screen-

ing method [16] in Z-score domain to remove all ratings by certain viewers because their

ratings are outside the range of the majority of the viewers. On average, one viewer is

eliminated for each PVS. We then conduct the second step to the remaining ratings in the

raw score domain using a ratio/averaging method. This step is only applied to sequences

without TR or QS variations. We make use of the fact that a video coded at a lower FR (or
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Figure 4.2: The mapping plot from test 1 MOS to test 2 MOS (in Z-domain). Left: For

experiment 1, where we used a single mapping for all source sequences. Right: For exper-

iment 2, where lines are the linear mapping function of each sequence.

higher QP) would not have a rating higher than a video coded at a higher FR (or lower QP),

if the viewer’s judgement is consistent. Therefore, we calculate the ratio of ratings by the

same viewer for each pair of PVS’s with adjacent QS or TR, respectively. For each source

video and each viewer, we count the number of times that the ratio is greater than a thresh-

old (= 1.1) for all possible pairs in each dimension, and then we remove all the ratings by

a viewer for the same source video (including those PVSs with TR or QS variation) if the

outlier counter in any dimension is larger than 2. For the remaining pairs of ratings by each

viewer, if the ratio is larger than 1, we replace both ratings by their average. After this step,

on average, 17 ratings remain for each PVS.

After the post-processing, we map all the Z-scores between two tests of each experi-

ment using the method recommended in [22]. In experiment 1, we map from test 2 to test

1 as illustrated in Fig. 4.2 (left part). It shows that all the sequences can be fitted using the

same linear function, while in experiment 2, each source sequence need their own mapping

function as shown in Fig. 4.2 (right part). Finally, we scale the mapped Z-scores back to [0

10] scale.
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Figure 4.3: MOS vs. normalized FR (t/tmax). Points are the measured MOS and curve are

obtained using Eq. (4.2) with PCC=0.995, RMSE=0.013
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Figure 4.4: Q(th, tl) vs. average FR. Points are the measured data of FR variations with

different markers and colors corresponding to different tl and th. Curves are predicted

quality for sequences with constant FR by (4.2).

4.2 The Test Results of Frame Rate Variation

4.2.1 Impact of Constant Frame Rate

First we investigate the influence of the frame rate on the perceptual quality of a video

with a constant frame rate, i.e. th=tl = t. Let Q(th, tl) = MOS(th, tl)/MOS(tmax, tmax)),
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data. Curves with different markers and colors are corresponding to different tl and Fz
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Figure 4.6: Q(th, tl)/Q(th, th) vs. delta FR. Points are the measured data. Curves with

different markers and colors are corresponding to different th and Fz
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which is usually from 0 to 1. Figure 4.3 shows Q(tl, th) vs. normalized FR, t̃ = t
tmax

(here

tmax=30), of all the testing sequences. For sequences with constant FR, as expected, the

MOS reduces as the frame rate decreases. Based on the NQT model presented in Chapter

3 [56], we model the impact of constant frame rate (i.e., t = th=tl) using

MNQTc(t) =
1− e−αt·(

t
tmax

)βt

1− e−αt
. (4.2)

Here it is found that βt = 1 for all five source sequences gives the best fitting. As can

be seen from Fig. 4.3, this model fits with measured data quite well with PCC=0.995,

RMSE=0.013. Note that the parameter αt characterizes how fast the quality drops as the

frame rate reduces with smaller value corresponding to faster dropping rate. We further

apply the model 4.2 using βt = 0.63 (as introduced in chapter 3), the fitting is also very well

with PCC=0.987, RMSE=0.025. In the following section, we will compare the quality of

constant FR and FR variation and we will also investigate how to model the overall quality

of a video considering both effects as due to these two different temporal artifacts.
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Figure 4.7: Q(th, tl)/Q(th, th) vs. FR ratio (tl/th). Points are the measured data. Curves

with different markers and colors are corresponding to different th and Fz
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Figure 4.8: Q(th, tl)/Q(th, th) vs. FR ratio (tl/th) by a power law model given in Eq. (4.3)

with PCC = 0.980, RMSE = 0.025. Different model parameters are used for different th

and Fz.
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Figure 4.9: Q(th, tl)/Q(th, th) vs. FR ratio (tl/th) by a power law model given in Eq. (4.3)

with PCC = 0.958, RMSE = 0.036. Different model parameters are used for different th

and Fz.
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Figure 4.10: Q(th, tl)/Q(th, th) vs. FR ratio (tl/th) by an exponential model given in

Eq. (4.4) with PCC = 0.991, RMSE = 0.016. Points are measured MOS and curves with

same marker are the same th.
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Figure 4.11: Q(th, tl)/Q(th, th) vs. FR ratio (tl/th) by an exponential model given in

Eq. (4.4) with PCC = 0.971, RMSE = 0.029. Each model parameter is used for same

th but all different Fz’s.
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4.2.2 Impact of Frame Rate Variation using FR

We now consider sequences in which the frame rate alternates between th and tl. We

first discuss, under the same average frame rate, tavg = (th+tl)/2, how does frame rate varia-

tion affects the perceived quality. Figure 4.4 shows that, when the tavg is the same, the MOS

for a video with a constant frame rate is higher than that with frame rate variation. Note that

the cyan solid lines in Fig. 4.4 are predicted quality of constant-frame-rate videos based on

Eq. (4.2). The degradation due to frame rate change is more severe when ∆t is higher (e.g.,

MOS difference between (30,7.5) and constant frame rate of (30+7.5)/2=18.75 is greater

than MOS difference between (30,15) and constant frame rate of (30+15)/2=22.5.). This

result is as expected, as large frame rate variation induces noticeable jitter. It is interesting

to note that points corresponding to tl=th/2 are quite close to the operational quality-frame

rate curves achievable by using constant frame rates, for most of the sequences. But those

with tl lower than th/2 are much below the curve.

We next look at when tl is fixed due to the lowest available bandwidth, whether al-

ternating between tl and th leads to better quality than staying at tl, when the available

bandwidth fluctuates between the lowest bandwidth and a high bandwidth. This is the

question we raised in the introduction as a motivation for this study. Let Q(th, tl)/Q(tl, tl)

denote as NQTv, we plot NQTv against FR ratio (th/tl) in Fig. 4.5, where it shows that

alternating between tl and th is generally better than staying at tl when th/tl ≤ 2. The

slope of improvement reduces as tl increases, and the degree of improvement is inconsis-

tent (e.g., Football and Waterfall have higher slope in some Fz cases). When th is more

than double of tl, the quality improvement is also inconsistent. However, the quality im-

provement become saturated as th/tl > 2. This suggests that when the lowest bandwidth

limits the lowest frame rate to tl, even when available bandwidth at a later time allows a

frame rate beyond 2tl, it may be better to limit the highest frame rate to th = 2tl. Note that

there is no significant effect of Fz’s from the observation of the results.

Now, if we fix th, how the quality changes with different tl. Figure 4.6 demonstrates

the Q(th, tl)/Q(th, th) against ∆t to study the impact of the strength of frame rate variation.

We observe that higher th has slower dropping trend than lower th along the ∆t trajectory.
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This again implies that when th is already low, further inducing frame rate variation leads

to more visual distortion, than when th is higher.
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Figure 4.12: Q(th, tl) vs. tavg/tmax using Eq. (4.3) asQv in (4.5), with PCC = 0.960, RMSE

= 0.035. Points are measured MOS and curves with same marker are the same th.
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Figure 4.13: Q(th, tl) vs. tavg/tmax using Eq. (4.4) asQv in (4.5), with PCC = 0.978, RMSE

= 0.027. Each model parameter is used for the same th but different Fz’s.
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Figure 4.14: Q(th, tl) vs. tl/tmax. Points are the measured MOS. Curves with different

markers and colors corresponding to different th and Fz.
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Figure 4.15: Q(th, tl) vs. normalized FR (tl/tmax) using an exponential model given in

Eq. (4.7) with PCC = 0.980, RMSE = 0.026. Points are measured MOS and three model

curves are used for all fh and Fz.

Instead of measuring the frame rate variation strength by the difference in frame rate,

∆t, Fig. 4.7 uses the frame rate ratio, tl/th. Figure 4.7 shows how does the normalized
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Figure 4.16: Q(th, tl) vs. tl/tmax using an exponential model given in Eq. (4.7) with PCC

= 0.966, RMSE = 0.033. One model curve is used for all fh and Fz.
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Figure 4.17: Q(th, tl) vs. tavg/tmax using Eq. (4.7) with PCC = 0.966, RMSE = 0.033.

Points are measured data.

MOS decrease with tl/th. It is interesting that the dropping trends under different th are

similar. This implies that the impact of frame rate variation can be well captured by the

frame rate ratio, independent of th. We found that the variation of quality with the frame
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rate ratio can be modeled using a power law function, i.e.,

MNQTv(th, tl) = (tl/th)
−αtv(Fz,th) (4.3)

where αtv is the model parameter. Fig. 4.8 shows both the measured quality (with points)

as well as the predicted one (with curves) using this simple model when αtv depends on

both Fz and th (with a total of 6 parameters for each sequence to account for different tl,

th, and Fz combinations). Besides the power law function, we also examine the accuracy

of the inverse exponential function, i.e.,

MNQTv(th, tl) =
1− e−αtv(Fz,th)·(tl/th)βtv

1− e−αtv(Fz,th)
. (4.4)

Where the parameter αtv depends on both Fz and th. In order to further analyze the rela-

tionship between model parameters and model performance, we first conduct the statistical

test on normalized MOS Q(th, tl) using two-way repetition ANOVA test. Particularly, we

only emphasize the statistical significance for each pair of Fz with the interaction to ∆t. As

shown in Tab. 4.5 there is no significant difference for all the cases, and the dropping trend

of Fz=1,2 and 3 are mostly indistinguishable (p-value > 0.05) for a given th. It is note that

within each th, the dropping trends are prone to cluster together but separable between one

th to another th. For better understanding and quantifying the performance of two models

in (4.3,4.4), we compare with all the models and parameter dependency in Tab. 4.3. We see

that the model in Eq. (4.4) is slightly more accurate than the mode in (4.3) under the same

number of parameters, and the model in (4.4) with αtv depending on th only gives a good

trade off between accuracy and model complexity.

In order to predict the overall quality for a known pair of th and tl, we propose to use

the product of two models, MNQTc(th) and MNQTv(tl, th), i.e.,

QTV(th, tl) = MNQTc(th)MNQTv(tl, th). (4.5)

Based on this function form and specific order in Eq. (4.5), the first term is designed to

predict the quality at constant FR (referred to th), and the second term estimates the degra-

dation of the quality as FR fluctuates between th and tl. Substitute Eq. (4.2) and (4.4) into
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(4.5), i.e.,

QTV1(th, tl) =
1− e−αt·(

t
tmax

)βt

1− e−αt
1− e−αtv(th)·( tl

th
)βtv

1− e−αtv
, (4.6)

where αtv only depends on th and independent of Fz, βtv = βt = 1. Figure. 4.13 il-

lustrates that the predicted Q(th, tl) v.s. tavg/tmax fits the measured MOS quite well with

PCC=0.978, RMSE= 0.027. Here, the model in (4.6) only needs three parameters, since

βtv and βt both are constants.

Besides studying the quality impact directly from FR variation strength of th and tl,

we plot the measured Q(th, tl) against tl/tmax in Fig. 4.14. Note that we normalize the MOS

by the MOS at tmax instead of the quality at th so that the quality effect is independent of th.

It is interesting to observe that the dropping trends under different th and Fz’s are clustered

together. This implies that the human eyes are mostly dominated by the effect of tl in

FR variation and the overall quality can be well approximated with an inverse exponential

function of tl/tmin without knowing the effect of th, i.e.,

QTV2(tl, th) =
1− e−αtv ·(

tl
tmax

)βtv

1− e−αtv
, (4.7)

where βtv is a constant value of 0.8 and αtv is a model parameter, characterizing the drop-

ping trend of the curve with smaller value corresponding to higher dropping trend. As

shown in Fig. 4.16, we use one curve to fit all the measured MOS with PCC=0.970. Al-

though the PCC is not as high as the model in (4.6), the advantage of this simple model

(4.7) is that it requires only one content-dependent parameter, whereas the model in (4.6)

requires three.

Table 4.3: The model performance of MNQTv(th, tl)
Model Function Assumption # par PCC RMSE

1−e
−αtv ·(

tl
th

)βtv

1−e−αtv

αtv�th, Fz; βtv�th 8 0.991 0.010
αtv�th, Fz 6 0.981 0.016
αtv�th 2 0.971 0.029(

tl
th

)−αtv αtv�th, Fz 6 0.980 0.025
αtv�th 2 0.958 0.036

�:Depends on
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Table 4.4: The model performance of Qrv(rth, rtl)
Function Assumption # par PCC RMSE

1−e
−αrv ·(

rtl
rth

)βrv

1−e−αrv

αrv�rth, Fz ; βrv�rth 8 0.990 0.002
αrv�th, Fz 6 0.990 0.017
αrv�th 2 0.968 0.032

� :Depends on

Table 4.5: The ANOVA test for changing interval:FR variation
Target pair Factors F -value p-value

when th = 30Hz
Fz = 1 and 2 ∆t*Fz 1.76 0.19
Fz = 1 and 3 ∆t*Fz 1.44 0.25
Fz = 2 and 3 ∆t*Fz 0.49 0.61
Fz =1, 2, 3 ∆t*Fz 1.28 0.29

when th = 15Hz
Fz = 1 and 2 ∆t*Fz 3.43 0.08
Fz = 1 and 3 ∆t*Fz 3.41 0.08
Fz = 2 and 3 ∆t*Fz 0.001 0.96
Fz =1, 2, 3 ∆t*Fz 2.44 0.10

4.2.3 Impact of Bit Rate Variation Due to Frame Rate Variation

We also compare quality of the videos with different frame rate variations under the

same average BR in Fig. 4.8. It is clear that, a constant frame rate video has a better quality

than a video with frame rate variation (especially when the frame rate variation is large),

under the same average bit rate. It is a very useful observation when we try to optimized

the perceptual quality of the video bitstream under fluctuate rate constraint.

Although the Eq. 4.6 can predict the impact of quality on FR variations for a given

pair of tl and th, it may not be applicable if the FR information is not available. It would

be useful to predict the perceptual quality against BR variation if the BR information is

accessible. Let rtl and rth denote the BR at tl and th, respectively. We first plot the measure

data, defined as Q(rth, rtl) = (MOS(rth, rtl)/MOS(rmax, rmax)), with measured data at fixed

FR in terms of BR (When the bit rate is constant, i.e., rtl = rth) in Fig. 4.18. We found that

the quality degradation can be approximated well using the exponential function for given
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Figure 4.18: Q(rth, rtl) vs. ravg/rmax. Points are the measured data and curves with differ-

ent markers and colors corresponding to different th and Fz. The fitting curves are predicted

quality obtained from (4.8) with PCC = 0.992, RMSE = 0.035.
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Figure 4.19: Q(rth, rtl)/Q(rth, rth) vs. rtl/rth. Points are the measured data. Curves with

different markers and colors corresponding to different th and Fz.

spatial resolution s and QS q, i.e.,

MNQTcr(r; s, q) =
1− e−αr(

r
rmax

)βr

1− e−αr
, (4.8)



111

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
tl
/r

th

N
or

m
al

iz
ed

 M
O

S

akiyo

 

 

30 1 : α rv: 4 . 93
30 2 : α rv: 4 . 81
30 3 : α rv: 5 . 34
15 1 : α rv: 2 . 55
15 2 : α rv: 3 . 46
15 3 : α rv: 3 . 49

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
tl
/r

th

N
or

m
al

iz
ed

 M
O

S

foreman

 

 

30 1 : α rv: 2 . 02
30 2 : α rv: 3 . 08
30 3 : α rv: 3 . 54
15 1 : α rv: 0 . 71
15 2 : α rv: 1 . 34
15 3 : α rv: 2 . 09

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
tl
/r

th

N
or

m
al

iz
ed

 M
O

S

football

 

 

30 1 : α rv: 2 . 86
30 2 : α rv: 3 . 12
30 3 : α rv: 3 . 06
15 1 : α rv: 1 . 52
15 2 : α rv: 2 . 74
15 3 : α rv: 1 . 76

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
tl
/r

th

N
or

m
al

iz
ed

 M
O

S

ice

 

 

30 1 : α rv: 2 . 10
30 2 : α rv: 1 . 49
30 3 : α rv: 2 . 54
15 1 : α rv: 1 . 29
15 2 : α rv: 1 . 63
15 3 : α rv: 2 . 17

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
tl
/r

th

N
or

m
al

iz
ed

 M
O

S

waterfall

 

 

30 1 : α rv: 2 . 62
30 2 : α rv: 2 . 45
30 3 : α rv: 2 . 04
15 1 : α rv: 1 . 54
15 2 : α rv: 1 . 54
15 3 : α rv: 1 . 28

Figure 4.20: Q(rth, rtl)/Q(rth, rth) vs. rtl/rth using an exponential model given in Eq. (4.9)

with PCC = 0.990, RMSE = 0.017. Points are measured MOS and curves with same marker

are the same th.
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Figure 4.21: Q(rth, rtl)/Q(rth, rth) vs. BR ratio (rtl/rth) by an exponential model given

in Eq. (4.9) with PCC = 0.968, RMSE = 0.032. Points are measured data. Each model

parameter is used for the same th but different Fz’s.
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Figure 4.22: Q(rth, rtl)/Q(rth, rth) vs. normalized BR (ravg/rmax) for high FR base using

Eq. (4.11) with PCC = 0.985, RMSE = 0.021. Points are measured MOS and curves with

same marker are the same th.
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Figure 4.23: Q(rth, rtl) vs. normalized BR (ravg/rmax) by using Eq. (4.11) with PCC =

0.965, RMSE = 0.032. Points are measured data.

where r represents the BR, and rmax is the bit rate at tmax = 30. The model parameter

αr control the falling rate of the curve and we found that βr is a constant value of 1.6 for
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Figure 4.24: Q(rth, rtl) vs. rtl/rmax. Curves with different markers and colors are corre-

sponding to different th and Fz.
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Figure 4.25: Q(rth, rtl) vs. rtl/rmax by an exponential model given in Eq. (4.22) with PCC

= 0.966, RMSE = 0.032. Points are measured MOS and curves with same marker are the

same th.

all the source sequences. Figure 4.18 shows the predicted curves fit measured MOS quite

accurate with PCC=0.992.
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Figure 4.26: Q(rth, rtl) vs. ravg/rmax for high FR base using Eq. (4.22) with PCC = 0.966,

RMSE = 0.032. Points are measured data.

Besides the quality impact of constant BR, we next move to the BR variation due to

the FR changing. We plot Q(rth, rtl)/Q(rth, rth) against rtl/rth in Fig. 4.19. Similar to (4.4),

we also propose to model the Q(rth, rtl)/Q(rth, rth) in Fig. 4.19 by

MNQTrv(rtl, rth) =
1− e−αrv ·(

rtl
rth

)βrv

1− e−αrv
, (4.9)

where αrv is model parameter that may depend on rth, Fz, and βrv is a constant value of 1.3

for all five source sequences. Figure 4.21 demonstrates the fitting curves with measure data

using (4.9), where we plot 2 fitting curves for each source sequence with high PCC = 0.97.

Note that in Fig. 4.20 we also fit the measure data using 6 different curves corresponding

to different th and Fz with PCC = 0.99, but it requires too many model parameters. Due

to this manner, the tradeoff between number of parameters and model accuracy is a crucial

issue to be investigated. Therefore, we conduct a comparison of the model performance in

Tab. 4.4 regarding the dependency of parameter αrv with Fz and rth. After considering the

number of parameter and accuracy, we conclude that the model in (4.9) with two parameters

only can (varying with th, and independent of Fz) predict measured data very well with

PCC=0.968, RMSE=0.032.
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Finally, for a given pair of rth and rtl, we can estimate the overall quality by the

product of constant BR and BR variation model, i.e.,

QTVBR(rtl, rth) = MNQTcr(r; s, q)MNQTrv(rtl, rth), (4.10)

Substituting MNQTcr(r; s, q) and MNQTrv(rtl, rth) by (Eqs. (4.8) and (4.9), respectively,

and the new form of (4.10) can be written as

QTVBR1(rtl, rth) =
1− e−αr(

r
rmax

)βr

1− e−αr
1− e−αrv ·(

rtl
rth

)βrv

1− e−αrv
. (4.11)

We plot Q(rth, rtl) v.s. ravg/rmax (ravg=(rtl + rth)/2) in Fig. 4.23 and the predicted quality

captures the measured quality well with PCC = 0.965, RMSE = 0.032.

Moreover, we plot Q(rth, rtl) against rtl/rmax in Fig. 4.24. Note that we normalize the

measure MOS by the MOS at rmax instead of the quality at rth so that the falling trends is

independent of rth. It is interesting to observe that the dropping trends under different rtl

and Fz’s are clustered together. This implies that the QS variation can be well approximated

by the rtl without knowing rth. We found that the variation of quality with rtl/rmax can be

modeled quite well using an inverted exponential function, i.e.,

QTVBR2(rtl) =
1− e−αrv(

rtl
rmax

)βrv

1− e−αrv
, (4.12)

where only one model parameter αrv and a constant value of βrv = 1.2 are needed to

capture the quality variation with normalized QS and both these two parameters are inde-

pendent of Fz and tl but video content. Figure 4.25 shows the fitting curves are accurate

with PCC=0.966, RMSE=0.032.

4.3 The Test Results of Quantization Variation

4.3.1 Impact of constant QS

First we investigate the influence of the QS on the perceptual quality of a video with a

constant QS, i.e. q = qh = ql. Let Q(qh, ql) = MOS (MOS(qh, ql)/MOS(qmin, qmin)) denote



116

as the NQQ, which is usually from 0 to 1. Figure 4.27 shows Q(ql, qh) vs. normalized QS,

qmin/q of all the testing sequences. As expected, the quality reduces as the QS increases.

According to the MNQQ model presented in chapter 3, we model the impact of constant

QS (i.e., q = qh = ql) by

MNQQc(q) =
1− e−αq(

qmin
q

)βq

1− e−αq
, (4.13)

where q represents the QS, qmin is the minimum QS (qmin = 16). We also found that βq

is constant for all five sequences with a value of 1 (same as the MNQQ in chapter 3). As

can be seen from Fig. 4.27, this model fits with measured data quite well. Note that the

parameter αq characterizes how fast the quality drops as the QS increases.
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Figure 4.27: Q(qh, ql) vs. qmin/q . Points are the measured data and curve are obtained

using Eq. (4.13) with PCC=0.991, RMSE=0.037. The βq = 1.

4.3.2 Impact of QS Variation

We now consider sequences in which the QS alternates between qh and ql. We first

discuss, under the same average QS, qavg = (qh+ql)/2, how does QS variation affects the

perceived quality. Figure 4.28 shows that, when the qavg is the same, the quality for a
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Figure 4.28: Q(ql, qh) vs. qmin/qavg. Each line connects points with the same ql and Fz.

For example, 163 indicates ql=16, Fz=3. Note that lines for ql=40 mostly overlap with the

quality curve for the constant QS case.

video with a constant QS, MOS(qavg, qavg), is higher than that with QS variation, MOS(qh,

ql). Note that the solid curve in Fig. 4.28 are predicted quality of constant-QS videos

based on (4.13). Interestingly for ql=16, the degradation due to QS change is more se-

vere when ∆q=qh-ql is in the middle range, i.e., Q(16,40) and (16, 64) deviate from their

constant-QS counterparts more than Q(16,102) and Q(16,25), and that between Q(16, 25)

and MNQQc(16), is larger than the difference between Q(16, 40) and Q(16, 102). In ad-

dition, the mean quality of MOS(ql) and MOS(qh) is higher than Q(ql, qh) as shown in

Fig. 4.34.

We next examine when when qh is fixed due to the lowest available bandwidth, whether

alternating between ql and qh leads to better quality than staying at qh, when the available

bandwidth fluctuates between the lowest bandwidth and a high bandwidth. This is the ques-

tion we raised in the introduction as a motivation for this study. We plot Q(ql, qh)/Q(qh, qh)

against the ratio qh/ql in Fig. 4.29. For qh=102, alternating between ql and qh, is consis-

tently better than staying at qh=102, and the degree of improvement depends on Fz and the

texture details of the video (e.g., Waterfall and Foreman have higher improvement ratio,
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Figure 4.29: Q(qh, ql)/Q(qh, qh) vs. ql/qh when qh is fixed. Points are measured data. Each

line connects points with the same qh and Fz. For example, 1023 indicates qh=102, Fz=3.

e.g., up to 2 ). It can be observed that shorter Fz leads to less improvement. This is as ex-

pected as shorter Fz corresponds to more rapid QS switching, which can be more annoying

to the human viewer. Interestingly, the slope of improvement saturates and become incon-

sistent as ql further decreases starting when qh/ql becomes higher than 2.5. This suggests

that when the lowest bandwidth limits the highest QS to qh, even when available bandwidth

at a later time allows a QS below 0.4qh, it may be better to limit the ql to 0.4qh. When qh is

already low (e.g. qh=40), switching to ql provides inconsistent gain. Our ANOVA analysis

(described in Sec. 4.4) shows that the quality variation observed for both ql=25 and ql=16

is statistically insignificant (see entries for P2 and P3 in Tab. 4.10).

Based on the observation above, it would be essential to understand the joint effect of

constant and variation effect of QS on perceptual quality and quantify the quality level by

deriving the function forms. The intuitive way to understand the quality degradation is to

investigate Q(ql, qh) v.s. qmin/qavg as shown in Fig. 4.30. By applying the model in (4.13),

the predicted quality with measured MOS are illustrated in Fig. 4.31 with PCC=0.942,

RMSE=0.067. This is not an accurate way since we learn that the quality impact is quite

dependent on both qh and ql, not just the average of qh and ql.



119

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

Akiyo

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

Foreman

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

Football

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

Ice

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

Waterfall

 

 

16
1

16
2

16
3

40
1

40
2

40
3

cost. q

Figure 4.30: Q(qh, ql) vs. normalized average QS (qmin/qavg). Points are measured data

and curves different markers and colors are corresponding to different ql and Fz.
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Figure 4.31: Q(qh, ql) vs. qmin/qavg using an exponential model given in Eq. (4.13) with

PCC = 0.942, RMSE = 0.067. Points are measured data and one curve is used to fit all

different qh and Fz. The model uses the same βqv = 0.89 for all source sequences.
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Figure 4.32: Q(qh, ql)/Q(ql, ql) vs. ∆q (ql − qh) for low QS base.
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Figure 4.33: Q(qh, ql)/Q(ql, ql) vs. QS ratio (ql/qh) when ql is fixed. Points are measured

data and urves with different markers and colors are corresponding to different ql and Fz
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Figure 4.34: Q(ql, ql) vs. inverse normalized QS (qmin/q). The dark blue curve is for

constant QS. The cyan curve is determined by (MNQQc(ql=16)+MNQQc(qh))/2, while the

orange curve is the (Q(ql=40)+Q(qh))/2.
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Figure 4.35: NQQv vs. QS ratio (ql/qh) when ql is fixed. Points are measured MOS and

curves are obtained using Eq. (4.14) with PCC = 0.986, RMSE = 0.030. The parameter αqv

depends on Fz and ql, and βqv is 0.92.
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Figure 4.36: NQQv vs. QS ratio (ql/qh) when . Points are measured data and the curves

are obtained using (4.14) with PCC = 0.983, RMSE = 0.035. Parameter αqv depends on ql

and Fz but is the same at Fz=1,2 and βqv is 0.92, respectively.
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Figure 4.37: NQQv vs. QS ratio (ql/qh) using an exponential model given in (4.14) with

PCC = 0.982, RMSE = 0.028. Points are measured data. Each model parameter is used for

the same ql but different Fz’s.

Table 4.6: The model performance of Qv(qh, ql)
Function Assumption # par PCC RMSE

1−e−αqv ·(qr)
βqv

1−e−αqv

αqv�ql, Fz; βqv�ql 8 0.991 0.022
αrv�ql, Fz but Fz=1,2 4 0.983 0.035

αqv�ql 2 0.967 0.047

eαqv(Fz,ql)·(1−q̄r) αqv�ql, Fz 6 0.981 0.034
αqv�ql 2 0.965 0.049

�:Depends on

Table 4.7: The model performance of Qv(rqh, rql)
Function Assumption # par PCC RMSE

1−e
−αrv ·(

rqh
rql

)βrv

1−e−αrv

αrv�rql, Fz ; βrv�rql 8 0.984 0.033
αrv�ql, Fz 6 0.983 0.034

αrv�ql, Fz but Fz=1,2 4 0.980 0.038
αrv�ql 2 0.965 0.034

αrv not �ql, Fz 1 0.955 0.056
� :Depends on
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Table 4.8: The ANOVA test for changing interval:QS variation
Target pair Factors F -value p-value

when ql = 16
Fz = 1 and 2 ∆q*Fz 0.56 0.69
Fz = 1 and 3 ∆q*Fz 2.37 0.06
Fz = 2 and 3 ∆q*Fz 1.38 0.25

when ql = 40
Fz = 1 and 2 ∆q*Fz 0.19 0.82
Fz = 1 and 3 ∆q*Fz 3.85 0.03
Fz = 2 and 3 ∆q*Fz 1.54 0.23

In stead of the quality variation in terms of Q(ql, qh)/Q(qh, qh) , we further investigates

the normalized quality Q(ql, qh)/Q(ql, ql) v.s. ql/qh when ql = 16 and 40 with 3 different

Fz’s in Fig. 4.33. It is interesting to observe that the falling trend of the the normalized

MOS with Fz of 1 and 2 are similar except for those with Fz of 3. We found that the

quality variation with QS ratio, qr = ql
qh

can be modeled quite accurately by the inverted

exponential function, i.e.,

Qv(qh, ql) =
1− e−L·(qr)βqv

1− e−L
.

with L =

 αqv(1, ql), if Fz = 1, 2,

αqv(Fz, ql), if Fz = 3,
(4.14)

where αqv is a model parameter and βqv is constant value of 0.92. In Fig. 4.36 it shows

that the fitting is very well with PCC= 0.983 and RMSE = 0.035. In order to further

analyze the relationship between model parameters and model performance, we investigate

the dependency of αqv with Fz’s and ql with respect to their model performance in Tab. 4.6

as well as the ANOVA test in Tab. 4.8. In ANOVA test, we conduct two-way repetition

ANOVA test on normalized MOS Q(qh, ql). Particularly, we only emphasize the statistical

significance for each pair of Fz with the interaction to ∆q. As shown in Tab. 4.8 that there

is no significant difference between Fz 1 and 2 (p-value > 0.05), while the dropping trend

of Fz=1 and 3 are mostly distinguishable (p-value < 0.05). It is also noted that the quality

impact of Fz=2 and 3 is somewhat separable due to its p-value is closer to 0.05 than Fz=1

and 3. Note that instead of modeling the quality variation with QS ratio, we also want to
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learn, assuming ql is fixed, how the quality changes with different ∆q. Nevertheless, its

sigmoid-like trend is not easy to model and it takes more number of parameters than other

models.

Instead of modeling the quality variation with QS ratio, we would like to learn, as-

suming ql is fixed, how the quality changes with different ∆q. Figure 4.41 demonstrates

Q(ql, qh)/Q(ql, ql), against ∆q, to study the impact of the strength of frame rate variation.

We observe that higher ql has slower dropping trend than smaller ql along the ∆q trajectory.

This again implies that when ql is high, further inducing QS variation leads to more visual

improvement, than when ql is lower. However, it is note that if we look at the normalized

MOS v.s. QS ratio in Fig. 4.33, the higher ql has faster dropping trend than smaller ql

along the QS ratio trajectory. It could be because QS is the power law version of QP, the

arithmetic distance between ql and qh becomes smaller when ql is larger as qh is fixed. We

further to model the normalized MOS (MOS(qh, ql)/MOS(ql, ql)) against ∆q by utilizing

the sigmoid function, i.e.,

MNQQv(qh, ql) =
1.1

1 + βqveαqv(qh−ql)
, (4.15)

where αqv is model parameter and βqv is a constant value of 0.11. As shown in Fig. 4.42

the model curves does not fit with measured quality very well, with PCC=0.945, RMSE =

0.072.

We summarize the performance of different models and its corresponding parameters

with respect to different Fz’s or ql in Tab. 4.6. According to the number of model parameter

and the accuracy, all these columns are very similar and we should choose one with fewest

model parameters. Therefore, we conclude that Eq. (4.14) gives the promising results with

less model parameters.

In order to predict the overall quality with the impact of both constant QS and QS

variation, we propose to use the product of two models, Qc(q) and Qv(qh, ql), i.e.,

QQV(qh, ql) = MNQQc(ql, ql)MNQQv(ql, qh), (4.16)

where MNQQc can be replaced by the model in Eq. (4.13), while models in Eqs. (4.14) for

MNQQv. After comparing with all the models and parameter dependency in Tab. 4.6, it
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suggests that we replace MNQQv(ql, qh) with the model in Eq. (4.14), i.e.,

QQV1(qh, ql) =
1− e−αq(

qmin
q

)βq

1− e−αq
1− e−L·(qr)βqv

1− e−L
, (4.17)

where, Fig. 4.39 illustrates that the predicted quality v.s. qavg fits the measured data quite

well with PCC=0.981, RMSE= 0.038. Here, αqv depends on ql and Fz’s but is the same for

both Fz=1,2, while βqv is a constant value of 0.91. Base on this function form and specific

order in Eq. (4.17), the first term is responsible for predicting the quality at lower constant

QS, from which the second term deduces the quality of QS variations.
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Figure 4.38: Q(qh, ql) vs. qmin/qavg using Eq. (4.17) with PCC = 0.971, RMSE = 0.044.

Points are measured data and predicted curves are from least square fitting. The parameter

αqv only depends on ql and βqv = 0.9 is a constant.

Moreover, we plot Q(qh, ql)/Q(qmin, qmin) against qmin/qh in Fig. 4.43. Note that we

normalize the MOS by the MOS at qmin instead of the quality at ql so that the falling trends

is independent of ql but qmin. It is interesting to observe that the dropping trends under

different ql and Fz’s are clustered together. This implies that the QS variation can be well

approximated by the qmin/qh without knowing the effect of ql. We found that the variation

of quality with qmin/qh can be modeled quite well using an inverted exponential function,
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Figure 4.39: Q(qh, ql) vs. qmin/qavg using Eq. (4.17) with PCC = 0.983, RMSE = 0.034.

Points are measured data and predicted curves are from least square fitting. The parameter

αqv depends on Fz but is the same at Fz=1,2 and βqv = 0.91 is a constant.
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Figure 4.40: The relationship between αqv and frequency using Eq. (4.17) for base QS 16

and 40, while using βqv = 0.91 for both base QP16 and 40.

i.e.,

QQV2(qh) =
1− e−αqv(

qmin
qh

)βqv

1− e−αqv
, (4.18)

where only one model parameter αqv and a constant value of βqv = 0.96 are needed to

capture the quality variation with normalized QS and both these two parameters are inde-

pendent of Fz and ql but video content. Figure 4.44 shows the fitting curves are accurate

with PCC=0.965, RMSE=0.049. By comparing with the result of normalized MOS against

qmin/qavg, (4.18) more accurately reflects quality degradation than the model in (4.13),
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Figure 4.41: Q(qh, ql)/Q(ql, ql) v.s. ∆q.

which considers qmin/qavg as variable. However, we observe that human eyes are still sen-

sitive to the variation of QS for both qh and ql so that we assume the we can only apply this

model in (4.18) on certain range of ql. Note that we could also develop the quality model of

QS variation when qh is fixed, nevertheless, the insufficiency of dataset (qh=102 includes

only one Fz, and qh=40 just includes one measured point in each source sequence.) cannot

validate and derive a robust model.

4.3.3 Impact of Bit Rate Variation Due to QS Variaiton

We also compare quality of the videos with different QS variations under the same

average bit rate (ravg/rmax) in Fig. 4.47, where rmax is the maximum average BR at qmin =

16. It is clear that, a constant QS video has a better quality than a video with QS (especially

when the QS variation is large), under the same average bit rate.

Although we already explored several models to predict the impact of quality on QS

variations for a given pair of ql and qh, it may not be applicable if the QS information is not

available. Let rql and rqh denote the BR at ql and qh, respectively. Besides the Eq. 4.13 in

terms of QS, we model the normalized quality, Q(rqh, rql)=MOS(rqh, rql)/MOS(rmax, rmax),
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Figure 4.42: Q(qh, ql)/Q(ql, ql) vs. DeltaQS using a sigmoid function given in Eq. (4.15)

with PCC = 0.945, RMSE = 0.072. Points are measured MOS and curves with same marker

are the same ql.

v.s. normalized BR (r/rmax) for constant BR, i.e., rqh = rql, using the exponential function

for a given spatial resolution s and FR t by

MNQQcr(r; s, t) =
1− e−αr(

r
rmax

)βr

1− e−αr
, (4.19)

,where βr is constant for all five sequences with a value of 0.82. We plot the predicted
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Figure 4.43: Q(qh, ql) vs. qmin/qh.
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Figure 4.44: Q(qh, ql) vs. qmin/qh using Eq. (4.18) with PCC = 0.965, RMSE = 0.049.

Points are measured data and only one model curve is obtained to fit all the measured data.

quality with measured data in Fig. 4.47 and the fitting is very good with PCC=0.992,

RMSE=0.035.

Regarding the quality impact of QS variation when only BR info is available, let rql

and rqh denote the BR at ql and qh, respectively. Figure 4.48 illustrates the measured



131

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

no
rm

al
iz

ed
 M

O
S

Akiyo

 

 

MNQQ:α q: 4 . 85

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

no
rm

al
iz

ed
 M

O
S

Foreman

 

 

MNQQ:α q: 4 . 32

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

no
rm

al
iz

ed
 M

O
S

Football

 

 

MNQQ:α q: 7 . 08

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

no
rm

al
iz

ed
 M

O
S

Ice

 

 

MNQQ:α q: 5 . 46

0 0.5 1
0

0.2

0.4

0.6

0.8

1

q
min

/q
avg

no
rm

al
iz

ed
 M

O
S

Waterfall

 

 

MNQQ:α q: 4 . 85

 

 

28
1

28
2

28
3

36
1

36
2

36
3

const. q

Figure 4.45: Q(qh, ql) vs. qmin/qavg using Eq. (4.18) with PCC = 0.965, RMSE = 0.049.

The parameter αqv is independent of Fz and βqv = 0.93 for both base QP16 and 40. Points

are measured MOS and curves with same marker are the same ql.
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Figure 4.46: Q(qh, ql) vs. ravg/rql for low QS base.

Q(rqh, rql)/Q(rq, rql) (in points) v.s. normalized BR (rqh/rql). It is found that the quality
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Figure 4.47: Q(rqh, rql) vs. r/rmax using an exponential model given in Eq. (4.19) with

PCC = 0.992, RMSE = 0.035. Points are measured data and predicted curves are from least

square fitting.
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Figure 4.48: Q(rqh, rql)/Q(rql, rql) vs. rqh/rql when rql is fixed. Curves with different

markers and colors are corresponding to different ql and Fz.

degradation along with rqh/rql can be well captured by exponential function,

Qrv(rql, rqh) =
1− e−K·(

rqh
rql

)βrv

1− e−K
.

with K =

 αrv(1, rql), if Fz = 1, 2,

αrv(Fz, rql), if Fz = 3,
(4.20)
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Where αrv(Fz, rql) is model parameter and βrv is a constant value of 0.54 for all five source

sequences. Figure 4.51 demonstrates the fitting curves with measure MOS using (4.20)

with high PCC = 0.98. This model requires only 4 parameters for each source sequence.

In addition, we compare the model performance in Tab. 4.7 regarding the dependency of

parameter αrv with Fz and rql. When considering the number of parameter and accuracy,

we conclude that the model in (4.20) can predict quality very well with lower model com-

plexity.
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Figure 4.49: Q(rqh, rql)/Q(rql, rql) vs. rqh/rql using an exponential model given in

Eq. (4.20) with PCC = 0.983, RMSE = 0.034, when αrv depends on both Fz and rql. Points

are measured MOS and curves with same marker are the same ql. The model uses a total

of 6 model parameters for each sequence. The same βqv = 0.54 is for all Fz’s and ql.

According to Eq. (4.17), the overall quality can also be derived as the product of

Eqs (4.19) and (4.20), i.e.,

QQVBR1(rql, rqh) =
1− e−αr(

r
rmax

)βr

1− e−αr
1− e−K·(

rqh
rql

)βrv

1− e−K
. (4.21)

We plot the predicted quality v.s. average BR in Fig. 4.54 with PCC=0.976, RMSE = 0.041.

Moreover, we plot the Q(rqh, rql) against rqh/rmax in Fig. 4.55. Note that we normalize

the MOS by the MOS at rmax instead of the quality at rql so that the falling trends is
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Figure 4.50: Q(rqh, rql)/Q(rql, rql) vs. rqh/rql using Eq. (4.20) with PCC = 0.965, RMSE

= 0.034, when αrv only depends on rql. Points are measured MOS and curves with same

marker are the same ql. They model uses a total of 2 model parameters for each sequence.

The same βqv = 0.5 is for all Fz’s and ql.

independent of rql. It is interesting to observe that the dropping trends under different rqh

and Fz’s are clustered together. This implies that the QS variation can be well approximated

by the qmin/qh without knowing the effect of ql. We found that the variation of quality with

qmin/qh can be modeled quite well using an inverted exponential function, i.e.,

QVVBR2(rqh) =
1− e−αrv(

rqh
rmax

)βrv

1− e−αrv
, (4.22)

where only one model parameter αrv and a constant value of βrv = 0.47 are needed to

capture the quality variation with normalized QS and both these two parameters are inde-

pendent of Fz and rqh but video content. Figure 4.56 shows the fitting curves are accurate

with PCC=0.961, RMSE=0.052.

It is also interesting to observe that the falling trend of MNQTcr(r; s, t) is more ex-

ponential law, but the falling trend of MNQQcr(r; s, q) is more like power law or sigmoid

function.
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Figure 4.51: Q(rqh, rql)/Q(rql, rql) vs. rqh/rql using Eq. (4.20) with PCC=0.980, RMSE =

0.038. Points are measured data and model curves are obtained by least square fitting. The

model uses a total of 4 model parameters for each sequence and βqv is a constant value of

0.54 for all five source sequences.

4.4 Statistic Analysis

The results presented in Sec. 4.2 and 4.3 show that FR/QS variation and video content

both affect the perceptual quality very well. To evaluate whether the changes in quality

ratings due to these factors are statistically significant, we perform the three-way Analysis

of Variance (ANOVA) [69]. With ANOVA, we compute the probability (p-value, which is

derived from the cumulative distribution function of F based on the F -value) of the event

that the difference in MOS when a particular variable is changed is due to chance. If

this probability is low (p-value < 0.05), we consider this variable as having statistically

significant difference on raw MOS.

Instead of performing ANOVA on all possible FR/QS variation cases, we focus on a

few interesting pairs of FR/QS variation, listed in Table 4.9 and 4.10. For each considered

case, we evaluate the p-value due to ∆q/∆t Fz (frequency), video content (i.e. across five

video sources), and their interactions, respectively.
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Figure 4.52: Q(rqh, rql)/Q(rql, rql) vs. rqh/rql using Eq. (4.20) with PCC = 0.953, RMSE

= 0.056, when αrv only depends on rql. Points are measured data and predicted curves are

obtained from least square fitting. They model uses a total of 2 model parameters for each

sequence. βqv is a constant value of 0.43 for all five source sequences.

4.4.1 Statistical Significance for Frame Rate Variation

As shown in Tab. 4.10, the impact of FR variation is significant in all the cases except

P1. It explains that viewers are not sensitive to the quality impact on FR variation between

30 and 15Hz, so that when th is high, switch back and forth to slightly lower the FR

regularly doesnt affect the subjective rating. But it is interesting to observe that the effect

of Fz does not happen in P4. This indicates that when the constant FR is relatively low, the

changes in variation interval wont significantly influence the perceptual quality. The effect

of video content is significant for P1-P4. This suggests that the video content does affect

viewer ratings for all the cases, but it influences viewer ratings less significantly at lower tl

(smaller F -value) . As we next look at the three-way ANOVA interaction between ∆t and

frequency, all the cases show significant differences (p-value of all the cases are < 0.05).

In addition, the interaction between content and frequency also has significant difference

for all the cases P1 - P4, while there is no significant interaction between content and ∆t.
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Figure 4.53: Q(rqh, rql) vs. ravg/rmax using Eq. (4.17) with PCC=0.976, RMSE = 0.041.

Points are measured data and curves with same marker are the same ql. The model uses a

total of 5 model parameters for each sequence.
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Figure 4.54: Q(rqh, rql) vs. ravg/rmax using Eq. (4.20) with PCC=0.956, RMSE = 0.053.

Points are measured MOS and curves with same marker are the same ql. The model uses a

total of 3 model parameters for each sequence.
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Figure 4.55: Q(rqh, rql) vs. rqh/rmax.
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Figure 4.56: Q(rqh, rql) vs. rqh/rmax using Eq. (4.21) with PCC=0.961, RMSE=0.052.

Points are measured data and model curves are obtained by least square fitting. The model

uses one model curve for each sequence. βrv is a constant value of 0.47 for all five source

sequences.
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Figure 4.57: Q(rqh, rql) vs. ravg/rmax using Eq. (4.21) with PCC=0.961, RMSE=0.052.

4.4.2 Statistical Significance for QS Variation

Results given under P1 in Tab. 4.10 are obtained by considering all test conditions

together. We can see that QS variation, frequency, and video content all have significant

impact on the subjective ratings. Furthermore, there is no significant interaction between

each pair of QS variation, content and frequency and neither the three way interaction of

them.

In addition to conducting ANOVA over all data, we also looked at a few specific cases,

which are also given in Tab. 4.10. P2 and P3 correspond to cases where ql and qh are similar

and qh is not too high. The ANOVA results show that the quality difference is insignificant,

which is also as expected as the quality with ql and that with qh are very similar when ql

is close to qh. This result confirms that the observed improvement when switching from

qh=40 to ql=25, 16 in Fig. 4.29 is not statistically significant. P4 and P5 correspond to cases

where ql and qh are very different. ANOVA results confirm that the difference in the quality

ratings between the considered pairs is statistically significant, and Fz and video content

both impact the observed difference. This is as expected, as a viewer can easily notice

the difference in visual quality caused by switching between ql and qh, when ql and qh are
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Table 4.9: Three-way ANOVA results for FR variation
Variables F -value p-value

P1 : (30, 15) and (30, 30)
∆FR 1.74 0.187

Frequency 21.22 0
Content 10.58 0

Content*frequency 2.56 0.009
∆FR*frequency 44.95 0
∆FR*Content 1.65 0.15

P2 : (15, 7.5) and (15, 15)
∆FR 45.02 0

Frequency 3.19 0.042
Content 11.34 0

Content*frequency 2.6 0.008
∆FR*frequency 8.21 0
∆FR*Content 0.52 0.72

P3 : (30, 15) and (15, 15)
∆FR 44.52 0

Frequency 21.69 0
Content 14.24 0

Content*frequency 3.28 0.001
∆FR*frequency 35.1 0
∆FR*Content 0.47 0.75

P4 : (15, 7.5) and (7.5, 7.5)
∆FR 31.36 0

Frequency 2.48 0.08
Content 7.59 0

Content*frequency 2.06 0.03
∆FR*frequency 7.35 0.0007
∆FR*Content 1.69 0.15

very different. This result confirms that the observed quality improvement when switching

between 102 and 16 as QSb=102 in Fig. 4.29 is not by chance. The effect of video content

is significant for P2-P5. This suggests that the video content does affect viewer ratings for

all the cases, especially it significantly influences viewer ratings for larger ∆q.
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Table 4.10: Three-way ANOVA results for QS Variation
Factors F -value p-value

P1 : All Data
∆q 26.8 1e-5

Content 5.25 9e-4
Frequency 4.28 0.01

Content*frequency 0.07 0.99
∆q*frequency 0.54 0.82
∆q*Content 0.45 0.96

∆q*Content*frequency 0.05 1
P2 : Q(40, 40) and Q(40, 25)

∆q 0.02 0.886
Content 8.16 6.3e-3

Frequency 2.89 0.11
Content*frequency 1.62 0.25

∆q*frequency 2.11 0.18
P3 : Q(40, 40) and Q(40, 16)

∆q 2.53 0.15
Content 11.1 0.002

Frequency 3.15 0.09
Content*frequency 1 0.5

∆q*frequency 3.15 0.09
P4 : Q(16, 16) and Q(16, 102)

∆q 3041 0
Content 20.41 3e-4

Frequency 5.52 0.03
Content*frequency 1 0.5

∆q*frequency 5.52 0.03
P5 : Q(102, 102) and Q(16, 102)

∆q 368.79 0
Content 243.21 0

Frequency 5.52 0.031
Content*frequency 1 0.5

∆q*frequency 5.52 0.03

4.5 Summary

In this chapter, we report the results of our subjective experiments to investigate the

impact of periodic FR/QS variation on the perceived video quality. We observed following
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interesting trends. Regarding the FR variation, firstly, under the same tavg the quality for a

video with a constant frame rate is higher than that with FR variation, alternating between

tl and th; and secondly, the degradation due to FR change is more severe when ∆t is higher;

thirdly, points corresponding to tl=th/2 are quite close to the operational quality-frame rate

curves achievable by using constant FR for most of the sequences. But those with tl lower

than th/2 are much below the curve. Finally, when fl is fixed, alternating between tl and th

is generally better than staying at tl as th/tl ≤ 2. The slope of improvement reduces as th

increases, and the degree of improvement is inconsistent. However, the quality improve-

ment become saturated as th/tl > 2.

Regarding the QS variation, firstly, under the same average QS, a video with a constant

QS is perceptually more appealing than a video with variable QS; Secondly, the quality of

a video with varying QS alternating between qh and ql is generally equal or better than a

video with a constant high QS qh , when qh is high and the improvement is more significant

when Fz is longer; and thirdly, the quality degradation due to QS variation between ql

and qh, compared to the quality achievable with a constant low QS ql follows an inverse

exponential function of the ratio ql/qh, and the dropping rate is slower with a longer Fz.

Regarding the analytical modeling, the quality degradation due to FR/QS variation

follows an inverse exponential function of FR/QS ratio tl/th (or ql/qh). The overall quality

for a given tl, th (or ql, qh) can be modeled by either the product of two exponential func-

tions or one exponential function. The former one consists of one sub-model for constant

FR/QS and the other for FR/QS variation. The later one utilizes one simple function, which

is dependent on only tl (or qh), because the perceived quality in the lower quality segments

dominates the overall perceived quality. Although the model performance of the later one is

not as good as the former one, it require less number of parameters (one content-dependent

αtv/αqv) and acceptable prediction accuracy with PCC value of around 0.96-0.97. Regard-

ing the bit rate fluctuation due to the FR/QS variation, for a given rtl/rth (or rqh/rql), we

propose two models to capture the quality effect. Similar to the proposed quality model

in terms of tl/th (or ql/qh), we use the same function form ,but, in terms of rtl/rth (or

rqh/rql) instead. It is also interesting to observe that the falling trend of MNQTcr(r; s, t)
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is more exponential law, but the falling trend of MNQQcr(r; s, q) is more like power law

or sigmoid function. We also conducted three-way ANOVA to evaluate the statistical sig-

nificance of the impact of FR/QS variation, changing interval and video content on the

perceived quality.
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Chapter 5

Model Parameter Prediction Using Content Features

As shown in previous chapters, our model parameters are video content dependent.

The model will be very useful if the model parameters can be predicted from some content

features derived from the original or compressed video sequences in this section. In this

chapter, we explore various features for parameter prediction, and then present the stepwise

feature selection approach for selecting a subset of features that when linearly combined

can minimize the cross-validation error for all test sequences.

This chapter is organized as followed. Sec. 5.1 gives some introduction and descrip-

tion of the content features. Sec. 5.2 and 5.2 present the parameter estimation for model

parameters obtained by VQMTQ model (in Chapter 2) and QSTAR model (in chapter 3),

respectively. We conclude this chapter in Sec. 5.4
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Figure 5.1: The content impact for NQS, NQT, NQQ.
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5.1 Description of the Video Content Features

As shown in Fig. 5.1, the dropping rates of NQS, NQT, NQQ curves, and consequently

the model parameters, α̂s, αt, αq are sequence dependent. According this observation, we

found that the dropping rate of the quality with TR, characterized by αt, depends on the

motion of the objects in the image. It becomes smaller (or model curves drops faster) for

fast motion videos (e.g., Ice, Soccer) and vise verse. Based on the feedback from viewers,

this is because that it’s difficulty for the human eye in tracking moving objects in a video

when the frame rate is reduced, and hence it should depend on features that reflect the

temporal variation of the video. In addition, the dropping rate of the quality with SR and

QS, characterized by αs and αq, respectively, are both depends on the spatial information of

the images, such as texture details. For instance, the source sequences with smaller αs and

αq tend to contain more details (e.g., Foreman, Harbour and Soccer), and hence are more

susceptible to blurring introduced by up-sampling of high QS sequences. In the following,

we define all the features that we have considered.

a) Frame Difference

A simple measure of the temporal variation of a video is the mean of the absolute difference

between co-located pixels in successive frames, defined as FD.

b) Normalized Frame Difference

We note that a sequence with high contrast tends to have a large frame difference even with

small motion, and vice verse. Therefore, we also define the normalized frame difference as

NFD = FD/STD, (5.1)

where STD stands for the average standard deviation of the pixel values in each frame and

is used to measure the contrast of a video.

c) Motion Vector Magnitude (MVM)
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Frame difference only measures the variances of co-located pixel values in successive

frames, but it does not reflect the actual motion trajectory among successive frames. A

more precise way to characterize the motion content is to evaluate motion vectors (MVs).

In our study, MVs are extracted from bitstreams encoded by JSVM912 [60]. That is the

faster searching method, which uses variable block sizes and maximum search range of

32 by 32 with quater-pel accuracy. In order to find the best matching blocks, we disable

the rate-distortion optimization. We define the motion feature, MVM, as the mean of the

motion vector magnitudes that are in the top 10% percentile.

d) Displaced Frame Difference (DFD)

DFD is the mean of the absolute difference between corresponding pixels in successive

frames using estimated MV. When motion estimation is accurate, even when MVM is

large, DFD could be small. Hence DFD could reveal whether the motion in the underlying

sequence is complex and difficult to estimate.

e) Motion Activity Intensity (MAI)

In [47, 48], the authors proposed to use a motion activity intensity feature or MAI as

the weighting parameter in their model (i.e. MA in Eq.(5) proposed in [48]). This feature

is defined as the standard deviation of motion vector magnitude, and is used as a MPEG-7

motion-descriptor [73].

f) MVM Normalized by the Contrast (MVM STD)

Similar to normalized frame difference, we investigate several normalized motion vector

features. The NMV STD feature normalizes the MVM feature by the contrast, defined as

NMV STD = MVM/STD, (5.2)

g) MVM Normalized by Motion Activity Intensity (MVM MAI)

Similar to the NMV STD in Eq. (5.2), we also normalize motion vector magnitude by

motion activity intensity, i.e.,

NMV MAI = MVM/MAI, (5.3)
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h) MVM Normalized by Variance of Motion Vector Direction (MVM MDA)

Video sequences with higher motion vector magnitude as defined before do not nec-

essarily have consistent large motion. It is possible that all the motion vectors are pointing

to different directions. It is noted that human eye may be more sensitive to the motion with

coherent direction. In other words, the human eye may observe the motion jitter more eas-

ily when the underlying video containing moving objects with consistent motion directions.

We measure the motion direction incoherence by the variance of motion vector directions,

where for a given MV with MVx and MVy as vertical and horizontal components, respec-

tively, its direction is defined as

θMV = arctan(MVx/MVy), 0 ≤ θMV ≤ 2π. (5.4)

Here, we calculate the standard deviation of θMV and denote this feature as the motion

direction activity or MDA. We further normalize the motion vector magnitude feature by

MDA, yielding

NMV MDA = MVM/MDA. (5.5)

g) Gabor Texture (Gobar)

Judging from the results shown in Fig. 2.8 the parameter s is likely dependent on the

contrast of the video and the amount of details present in a video. Notice that s is small for

sequences with more details such as city, football, waterfall, and large for sequences with

less details such as akiyo, ice, crew. To reflect the contrast of an image frame, we use the

STD defined above, the standard deviation of gray level values. Figure 5.5 (a) shows that

there is no consistent trend between s and STD.

In order to derive features that can reflect the amount of details in a video frame,

we use the Log-Gabor filter [74]. It has been adopted to generate low level features for

exploring visual attention, such as saliency map, foveate detection. The transfer function

of Log-Gabor filter is constructed in term of two components, Fm(w) and Fn(θ) with scale
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m = 1, 2, ...M and orientation n = 1, 2, ..., N :

Gmn(w, θ) = Fm(w) · Fn(θ) (5.6)

Fm(w) = exp(
− ln(w/w0,m)2

2(ln(σ/w0,m))2
)

Fn(θ) = exp(
−(θ − φn)2

2σ2
θ

),

where w0,m = 2
m`

, σθ = π
N

, and φn = (n−1)π
N

. In our study, we set ` = 3 (pixels) σ/w0,m =

0.65 following [75]. With M = 2, and N = 2, there are a total of four output images for

each original image as shown in Figure 5.6. As can be seen, the Gabor filters with this

parameter setting capture the horizontal and vertical edges in two different scales. We see

that ”City”, ”Football” and Waterfall” have much stronger responses than the other two

images. We apply four Gabor filters (using the Matlab script from [75]) to 5 frames of

each sequence that are uniformly sampled across the entire video, and find the mean and

standard deviation of the absolute pixel values in each output image, and further average

the resulting values from the four filters separately. These are denoted as Gm and Gstd.

Finally we average Gm and Gstd over all 5 frames to derive two Gabor features, Ĝm and

Ĝstd, which measure the overall strength and variations of horizontal and vertical edges in

a sequence. Figure 5.5(b) and (c) show the scatter plots of these two Gabor features with

parameter s.

Table 5.1 lists all the content features included in the training procedure and their

mathematical symbols. Note that each feature is derived from the original video signals at

4CIF and 30Hz.

1 2 3 K. . .

Training Testing

Figure 5.2: The Leave-One-Out Method
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Table 5.1: The list of content features and the mathematical symbols
Features Symbol Definition
FD/DFD µFD, σFD, µDFD, σDFD

STD σ
MVM/MDA/MAI µMVM, σMDA, µMAI

NFD η(µFD, σ) = µFD/σ
NDFD η(µDFD, σ) = µDFD/σ

NMV STD η(µMVM, σ)= µMVM/σ
NMV MAI η(µMVM, µMAI) = µMVM/µMAI

NMV MDA η(µMVM, µMDA) = µMVM/µMDA

Gabar Ĝm, Ĝstd

5.2 Parameter Estimation for VQMTQ Model

The scatter plots in Fig. 5.4 show that none of the features we considered correlate very

well with parameter b, and several features had similar Pearson correlations. Therefore, we

examined how to combine multiple features using the Generalized Linear Model [76]. Gen-

erally, the GLM using K features, fk, k = 1, 2, ..., K, can be expressed as
∑

k akfk + a0.

We use a stepwise feedforward approach to select the features. Specifically, we first choose

one feature that minimizes a chosen error criterion. We then find the next feature, which,

together with the first feature, has the largest reduction in the error. This process is repeated

until the error does not reduce any more. In order for the solution to be generalizable to

other sequences outside our test sequences, we use the leave-one-out cross-validation error

(CVE) criterion. The main idea is to randomly pick one sequence for testing while the rest

are for training as illustrated in Fig. 5.2. Assume the total number of sequences is M (In

our case, M = 7). For a particular set of chosen features, we arbitrarily set one sequence

as the test sequence and the remaining M − 1 sequences as the training sequences. We de-

termine the weights ak to minimize the mean square fitting error for the training sequences.

We then evaluate the square fitting error for the test sequence. We repeat this process, each

time using a different sequence as the test sequence. The average of the fitting errors for all

the test sequences is the CVE associated with this feature set.
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Recall the VQMTQ model proposed in chapter 2, i.e.,

VQMTQ1(PSNR, f) =

Q̂max

(
1− 1

1 + ep(PSNR−s)

)
1− e−b

f
fmax

1− e−b
. (5.7)

VQMTQ2(q, f) = Qmax
e
−c q

qmin

e−c
1− e−d

f
fmax

1− e−d
. (5.8)

Where b, s, c and d are model parameters. We will demonstrate the prediction results in the

following sections.

5.2.1 Prediction of Model Parameter b

For parameter b, we consider the following features described earlier in Sec. 5.1Figure 5.4

shows the scatter plots of these features vs. parameter b, and also provides the Pearson cor-

relation of each feature with the parameter.

Using the stepwise feature selection approach described in Sec. 5.2, we found that

using the features MDA and DFD yields the lowest CVE. The final weighting coefficients

are determined by minimizing the average square fitting error among all 7 sequences, which

yields

b̂ = 10.72− 0.6 · µMDA − 0.13 · µDFD (5.9)

Table 5.2 lists the PCC and CVE of parameter b associated with each single feature and

the predictor given in (5.9). Figure 5.3 shows the TCF curves obtained using predicted b

values. We see that they fit with the measured normalized MOS quite well, only slightly

worse than the results obtained when the parameter b is derived by fitting the TCF curve

with the measured MOS data.
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Figure 5.3: The measured normalized MOS and temporal correction factor (TCF) against

frame rate using predicted b.

5.2.2 Prediction of Parameter s

For parameter s, we consider all the features introduced in Sec. 5.1. This yields a

predictor involving two features, Ĝm and NFD:

ŝ = 34.8298− 1.88 · Ĝm − 2.23 · η(µDFD, σ) (5.10)

Figure 5.5(d) shows that ŝ is highly correlated with parameter s. Table 5.3 summarizes the

PCC and CVE of parameter s.As can be seen the SQF matches with the measured MOS

at the highest frame rate very well, almost as good as the SQF when the parameter s is

obtained by fitting.

5.2.3 Model Verification Using Predicted b, s, c, and d

Figure 5.7 (left part) illustrates the predicted quality by the proposed model (Eq. 2.11)

when the parameters b and s are predicted using Eq.(5.9) and Eq.(5.10) and measured MOS.

Table 5.4 summarizes the model performance in terms of PCC and RMSE. Compared to

previous Fig. 2.12, 2.21 and Table 2.2, we see that the predicted quality match with the

measured MOS very well, only slightly worse than those obtained with parameters that are

derived by fitting the model to the measured MOS directly.
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Figure 5.4: Relation between parameter b and the feature values for different sequences.

The Pearson Correlation (PCC) coefficients between ”b” and individual feature are (a)

PCC=−0.66, (b) PCC=−0.64, (c) PCC=−0.69, (d) PCC=−0.78, (e) PCC=−0.7, (f)

PCC=−0.78, (g) PCC=−0.74, (h) PCC=−0.51, (i) PCC=−0.43, (j) PCC=0.94



153

Table 5.2: Fitting Accuracy for Parameter b and different features and the proposed predic-

tor
Dataset #1

PCC CVE
FD -0.66 0.67

NFD -0.64 0.72
MVM -0.69 0.6
DFD -0.78 0.47
MAI -0.7 0.6
MDA -0.78 0.48

NMV STD -0.74 0.53
NMV MAI -0.51 0.9
NMV MDA -0.43 1.5

b̂ 0.94 0.16
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ŝ

Figure 5.5: Relation between parameter s and the feature values for different sequences.

The Pearson Correlation (PCC) coefficients between ”s” and individual feature are (a)

PCC=0.63, (b) PCC=−0.7, (c) PCC=−0.94, (d) PCC=−0.76, (e) PCC=0.97
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Table 5.3: Fitting Accuracy for Parameter s and different features and the proposed predic-

tor
Dataset #1

PCC CVE
STD 0.63 3.25
NFD -0.7 2.71
Ĝm -0.94 0.63
Ĝstd -0.76 1.67
ŝ 0.97 0.21

Figure 5.6: The Gabor texture map of each sequence, where m = 2, n = 2
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Table 5.4: Goodness of fit by VQMTQ model using predicted parameters
akiyo city crew football foreman ice waterfall Ave

Estimated parameters of VQMTQ1(PSNR, f)
ŝ 31.21 26.49 29.63 26.02 28.28 30.90 26.89
b̂ 8.40 7.43 7.34 5.25 7.90 7.40 6.66

RMSE 3.92% 5.31% 2.3% 3.95% 8.61% 7.1% 3.23% 4.94%
PCC 0.99 0.97 0.99 0.98 0.90 0.95 0.98 0.97

Estimated parameters of VQMTQ2(q, f)
ĉ 0.14 0.13 0.12 0.09 0.12 0.12 0.13

d̂ 8.01 7.33 6.87 5.59 7.01 6.84 7.60
RMSE 5.10% 6.19% 7.02% 4.24% 6.80% 7.35% 4.49% 6.00%
PCC 0.98 0.94 0.96 0.97 0.93 0.95 0.97 0.95

Similar to the prediction of parameter b and s, we also find the optimum predicted c

and d by minimizing CVE. Table 5.4 summarizes the model performance in terms of PCC

and RMSE. By utilizing parameter predictor, we can predict the perceptual quality of a

video when coded using a chosen (t, q) combination automatically. In practical encoding

applications, since we can access the original source signal at encoder side, it is easy to

estimate the model parameter from its corresponding content features.

5.3 Parameter Estimation for QSTAR Model

Recall that the proposed QSTAR model in chapter 3 is defined as

QSTAR(s, t, q) = MNQQ(q; smax)MNQS(s; q)MNQT(t)

=
1− e−αq(

qmin
q

)

1− e−αq
1− e−α̂sL((QP(q))( s

smax
)βs

1− e−α̂sL(QP(q))

1− e−αt(
t

tmax
)βt

1− e−αt
, (5.11)

and we use a subset of features introduced in Sec. 5.1 to build predictors for the model

parameters (e.g., α̂s, αt, αq). As for parameter prediction for the VQMTQ model described

in Sec. 5.2, we use a GLM [76] to predict each parameter from multiple features. There,

the features to be included and the predictor coefficients for different parameters are deter-

mined separately. However, in this section, we choose to find a minimal feature set that can

predict all parameters simultaneously and accurately.
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Let pl,m,m = 1, 2, ...,M , l = 1, 2, ..., L, denote the lth parameter ofmth sequence and

fk,m, k = 1, 2, ..., K, the kth feature of mth sequence, pl,m is predicted using a generalized

linear predictor, gl,0 +
∑K

k=1 gl,kfk,m. This predictor can be written in a vector form, i.e.,

P̂m = GFm, (5.12)

where P̂m = [p̂1,m, p̂2,m, ..., p̂L,m]T contains the predicted parameters for sequence m, G is

a L×(K+1) matrix containing coefficients gl,k and Fm = [1, f1,m, f2,m, ..., fK,m]T contains

the features of sequence m.

In order to find the optimum solution for the feature set and corresponding G that

can minimize the prediction error and be generalizable to other sequences outside our test

sequences, we use the leave-one-out cross-validation error (CVE) criterion. Let FK denote

all the possible feature sets with a number of K features. For a particular set of chosen

K features γK ∈ FK, we arbitrarily set one source sequence as a test sequence (i.e., mt)

and remaining (M -1) sequences as training sequences (i.e., Γ). We determine the optimal

predictor matrix G by minimizing the fitting error EΓ for (M -1) training sequences, defined

as EΓ = 1
M−1

∑
m∈Γ

∥∥P̂m − Pm

∥∥2. We then find the predicted model parameter P̂ using

the previously determined G for the test sequence, and evaluate the fitting error Emt which

is the sum of the quality difference absolute value under all STAR combinations for this

sequence. We repeat this process, each time using a different sequence as the test sequence,

and find the average of all fitting errors, EγK = 1
M

∑
M
mt=1Emt , associated with this feature

set γK . For a given K, the set of features that leads to the least CVE EγK is chosen. We

evaluate the CVE starting with K = 1 and increase K until the minimal CVE does not

reduce significantly. The resulting K features are the final feature set chosen. We then

re-compute the predictor matrix G to minimize the average parameter fitting error over all

the sequences, i.e., 1
M

∑M
m=1

∥∥P̂m −Pm

∥∥2.

Using this procedure, we found that four features, σDFD, σ, µMDA, η(µMVM, µMAI),
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Figure 5.7: Predicted quality against measured MOS. Left: Model parameters b and s

are predicted using Eq.(5.9) and Eq.(5.10) with PCC=0.97 for VQMTQ model.; Right:

Model parameters, α̂s, αt, αq are predicted from content features with PCC=0.98 for QS-

TAR model.

can accurately predict 3 model parameters α̂s, αt, αq, with the following predictor matrix:

G =


−1.1586 −0.1161 0.0817 1.4706 1.0795

2.3749 −0.3763 0.0142 0.3601 1.0728

23.8838 0.4797 −0.1039 −10.1363 −4.2012

 (5.13)

Table 5.5: The Predicted parameters and performance of QSTAR model.

city crew harbour ice soccer fg foreman Avg.
Parameters obtained by least square fitting with MOS data

RMSE 0.018 0.025 0.038 0.033 0.032 0.058 0.038 0.035
PCC 0.998 0.996 0.992 0.993 0.992 0.979 0.991 0.991

Parameters predicted from video content features
αq 7.45 4.29 9.17 6.15 6.37 10.76 4.38
α̂s 3.68 4.07 3.85 4.33 4.55 5.11 5.56
αt 3.99 3.35 2.76 2.92 2.15 2.95 3.69

RMSE 0.017 0.023 0.039 0.054 0.030 0.060 0.032 0.036
PCC 0.997 0.995 0.988 0.989 0.991 0.977 0.992 0.987

We plot the scatter plot of predicted quality using the model parameters estimated

from the video content with measured data in Fig. 5.7 (right part). Table 5.5 (lower half)

summarizes the model performance and shows that the four-feature prediction provides

a very high PCC of 0.988 and a small RMSE of 0.036, very close to the performance
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of the model whose parameters are from least square fitting (see Tab. 5.5). Recall that

in Sec. 5.2, each model parameter requires at least two content features and a total of five

features are need for estimating two parameters. Here, we only need four features to predict

three parameters by finding the optimal features and the predictor matrix for all parameters

jointly.

5.4 Summary

In practice, our proposed models will be more useful if we can estimate the model pa-

rameters via the underlying video contents. Also, based on our observations from previous

chapters, we have found that the model parameters are indeed content dependent. In order

to automatically predict the model parameters from original video signals, we first abstract

useful content features, and develop a lightweight pre-processor to obtain those features. In

general, we have considered the features related to the residual signal such as frame differ-

ence, displace frame difference etc, motion fields, such as motion vector magnitude, motion

direction activity, etc and original video signal, such as video contrast. Different feature

combinations are examined in our study to show the parameter prediction accuracy. By ap-

plying the GLM with CVE criteria on combinations of all content features, the simulation

results show that stepwise selection of two-feature combined prediction for each parameter

provides the accurate estimation for CIF video while four-feature exhausted-search pre-

diction for all parameters is appropriate for QSTAR model. For different video resolution,

different feature combinations and weighted functions will be applied. We also compare the

predicted quality using estimated model parameters with the measured data and show that

both the VQMTQ and QSTAR models still have high accuracy using predicted parameters.
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Chapter 6

Conclusions

In this dissertation, our goal was to investigate how to estimate perceptual video qual-

ity for video transmission under heterogeneous network environment using a simple qual-

ity metric considering temporal, spatial and quantization artifacts. In this chapter, we first

summarize our major contributions, and address some possible future works.

6.1 Summary and Conclusions

While perceptual video quality assessment has attracted significant attention in recent

years, objective quality assessment is in its early phase. The research discussed and models

proposed in this dissertation are important supplements to the existing research work in

literature. The major contributions of this thesis are listed below.

Chapter 2: This work is concerned with the impact of quantization and frame rate on the

perceptual quality of a video. We conducted subjective ratings of a total of 100 video

sequences coded at different frame rates and quantization stepsizes from seven source

videos of different characteristics. The videos are displayed on a native size (CIF

resolution) in laptop monitor. We demonstrate that the degradation of the perceptual

quality due to the increase of QS and reduction of FR can be accurately captured

by the product of two functions, a spatial quality factor that reflects the impact of

quantization, and a temporal correction factor that reveals the impact of frame rate.
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For the temporal correction factor, an inverse exponential function of the normalized

frame rate can accurately reflect the impact of frame rate reduction on the perceived

quality. For the spatial quality factor, we established three possible models. The first

one employs a sigmoidal function of the PSNR, the second one uses the exponen-

tial function of the normalized QS, and the third one adopts the inverse exponential

function of the inverse of the normalized QS (which is equivalent to the normalized

amplitude resolution). The model using PSNR is useful for evaluating the quality

of coded video, whereas the models using QS is useful for rate control in video en-

coding and for adaptation of pre-coded scalable video. Each model function has a

single parameter that is video-content dependent. The proposed model is shown to

be highly accurate, compared to the subjective ratings from our own subjective tests

as well as test results reported in several other papers. Although for the subjective

test data we have, the two proposed spatial quality models using QS have similar

accuracy, the inverted exponential model should be more applicable in applications

involving a large range of QS.

Chapter 3: The model developed in Chapter two considering only the impact of TR and

QS is extended to consider the individual and joint effect of SR, TR, and QS. We

conducted subjective ratings over 189 videos coded at different combinations of SR,

TR, and QS, created from 7 source videos with wide range of video contents. The

videos are displayed on mobile display platforms so that our model can be more

applicable in mobile video applications. Subjective tests are conducted on mobile

display platforms so that our model can be more applicable in mobile video appli-

cations In the proposed model, we use a one-parameter inverse exponential function

to capture the quality decay v.s. SR, TR and QS individually. The parameter in

each function is sequence dependent. The overall model is the product of these three

functions (i.e., MNQS, MNQT, MNQQ). We further found that the model parameter

of MNQT is statistically independent SR and QS, but the parameters of MNQS and

MQNQ depend on both SR and QS. The model with the content-derived features

has a high PCC (=0.988) with subjective ratings. In addition to MNQQ model, we
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further propose MNQP and MNQR when QS is not available. They hold the same

merit of MNQQ that the falling trend is independent of TR but SR. Both MNQP

and MNQR are derived using inverted exponential function, which approximate the

measured data very well with PCC=0.98. The proposed models are further validated

on subjective ratings reported in eight other databases.

Chapter 4: We conducted subjective experiments to investigate the impact of periodic

FR/QS variation on the perceived video quality. We observed several interesting

trends, such as under the same average FR/QS, a video with a constant FR/QS is per-

ceptually more appealing than a video with FR/QS variation; the quality of a video

with alternating FR (th,tl) is generally equal or better than a video with a constant FR

tl for fast motion content, and the lower the tl, the larger the improvement; while the

quality of a video with alternating QS (qh, ql) is usually equal or better than a video

with constant QS qh, and the higher the qh, the larger the improvement. We further

found that and inverse exponential function of FR ratio tl/th can accurately approxi-

mate the quality degradation from a video with constant FR=th. Similarly, an inverse

exponential function of the QS ratio ql/qh can accurately capture the quality degra-

dation from a video with constant QS=ql. Each model has a PCC with the subjective

ratings around 0.97. We further examined the relation between the quality degrada-

tion and the bit rate fluctuation due to FR/QS variation, and found that the quality

degradation can also be accurately modeled by an inverse exponential function of the

bit rate ratio (rtl/rth or rql/rqh). Finally, we conducted three-way ANOVA to eval-

uate the statistical significance of the impact of FR/QS variation, changing interval

and video content on the perceived quality.

Chapter 5: The parameters of the models presented in the previous chapters depend on the

characteristics of the video content. While developing these models, the parameters

for each source video are determined by least squares fitting with the subjective rat-

ings for all the processed versions of this source. For these models to be applicable to

other videos for which no subjective data are available, we must be able to predict the
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model parameters from content features computed from original or processed video.

In this chapter, we consider how to predict the parameters for the VQMTQ model

and the QSTAR model from content features computed from original sources. We

considered a variety of content features that can reveal the motion and texture char-

acteristics of a video. By an exhaustive search among all possible combinations of

these features under a cross validation error (CVE) criterion, we found that the two

parameters of the VQMTQ model can be accurately predicted from a generalized

linear model using two features only, whereas the three parameters of the QSTAR

model can be accurately predicted using four features. Both models still have high

correlation with subjective ratings of our test videos when using predicted model

parameters.

6.2 Future Work

In this section, we present some ideas for future extensions of the work developed in

this dissertation.

First, although the proposed models, i.e., QSTAR, is developed for videos generated

by the H.264/SVC codec, we expect that the same function form is applicable to scalable

videos coded using other codecs and to non-scalable videos coded at different (s,t,q) combi-

nations. However, the model parameters for the same video content may differ, depending

on the encoder configurations. This hypothesis needs to be validated in future studies.

Second, The proposed quality models, together with the rate model, also as a function

of STAR in [71], can be used to determine the optimal STAR that maximizes the quality

given a rate constraint, both for video encoding/transcoding and for scalable video adapta-

tion. Our prior work [54, 72] has investigated a subset of this problem, where SR is fixed,

and only TR and QS are adapted, based on quality and rate models as functions of TR

and QS only. Extension of this work to include the SR dimension, using the newly devel-

oped quality and rate models, both as functions of SR, TR, and QS, is another interesting

direction for future research.
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Third, the work in Chapter 4 investigates the impact of periodic frame rate/quantiza-

tion changes on the perceptual quality individually under several changing intervals. Fu-

ture studies will examine the impact of other factors including wider range of changing

interval, variation of spatial resolution, and joint impact of FR, QS and spatial resolution

variation. One challenge issues in modeling the impact of temporal/quantization variation

of the STAR on the quality is how to design the subjective test to help understand the effect

of likely variation patterns. Our subjective study that involves periodic FR/QS variations

is only the first step towards this direction. Based on findings from these as well as other

subjective tests, we hope to model the video quality over a certain duration with STAR

variation, as a function of the average STAR as well as some statistics characterizing their

temporal variation.

Fourth, based on our simulations in Chapter 5, the content feature set is quite stable

for various videos. however, the weighting coefficients for the chosen features vary largely,

which brings the large variation when we introduce new test video. It might be helpful to

do the feature normalization before conducting the generalized linear regression.
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