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Wireless video streaming and playback on mobile handhelds has become a very popu-

lar application because of the advances of the high speed wireless access network and semi-

conductor technologies. How to deliver video content to different battery powered mobile

users (receivers) over heterogeneous networks is a fundamental problem to be solved. To

tackle this problem, a common approach is to use scalable video which can be adapted

according to sustainable receiving bandwidth and the available decoding power at the re-

ceiver. A key challenge in this approach is how to determine the appropriate spatial, tem-

poral, and amplitude resolution (STAR) at which to decode the video, to maximize the

perceptual quality, given the bandwidth and power constraints. The solution of this prob-

lem requires accurate models that relate the quality, rate, and decoding complexity with the

STAR. Such models enable us to solve the aforementioned problem with an analytically

tractable solution.

In this thesis, we focus on the effect of temporal and amplitude resolutions (i.e. frame

rate and quantization stepsize) on the quality, rate and complexity. Three analytical models,

i.e., perceptual quality, rate and decoding complexity (power consumption) models are
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developed to explore the impact of temporal and amplitude resolution. We have applied

an “impact separation” methodology to differentiate the effect by temporal resolution (i.e.,

frame rate) and amplitude resolution (i.e., quantization stepsize) respectively, and proposed

single variable functions to express the separable effects of frame rate and quantization.

The overall models are then the product of a function of frame rate, and a function of

the quantization stepsize, where the model parameters are content dependent. We have

evaluated our proposed models using the actual measurement data, such as raw MOS (mean

opinion score) from subjective tests, bit rate and complexity points by real video encoding

and decoding. Results show that our models can accurately estimate the measurement data

with very small root mean square error (RMSE) and high Pearson correlation (PC).

We further investigated how how to estimate the model parameters using content fea-

tures. Toward this, we have implemented a lightweight, simple pre-processor using mac-

roblock based integer motion estimation. We have selected a set of features which can

be easily obtained from this simple pre-processor, such as the frame difference, displaced

frame difference, motion vector magnitude, motion direction activity, video contrast, etc.

Results show that, with a proper feature combinations, we can estimate the parameters very

well. Using our proposed models, we developed efficient algorithm to solve the power-rate

constrained scalable video adaptation problem analytically, i.e., providing the best decoded

video quality given the network bandwidth and local battery power constraints.

Our solution for video adaptation based on the bandwidth and power constraints as-

sumes that the receiver adapts its processor operating frequency based on the needed num-

ber of operations. This requires accurate prediction of the decoding complexity at the frame

or GOP (group of picture) level. Towards this goal we further developed a frame decoding

complexity prediction algorithm along with video decoding. According to our simulation

results using various videos with different contents, resolutions and bit rates, our model can

predict the frame decoding complexity very well (i.e., average relative error less than 3%).

The frame decoding complexity can be also extended to the GOP level model, which not

only improves the complexity prediction accuracy but also reduces the overhead. Also, we

devise our frame decoding complexity prediction algorithm on mobile platform to guide
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the processor voltage and frequency adaptation. In devices using dynamic voltage and fre-

quency scaling (DVFS), our complexity prediction based solution can achieve up to 50%

power saving for popular ARM processor, and more than 70% saving for Intel Pentium

mobile architecture.



x

List of Publications

Publications

1. Zhan Ma, Hao Hu and Yao Wang, “On complexity modeling of H.264/AVC video
decoding and its application for energy efficient decoding,” submitted to IEEE Trans.
on Multimedia, Nov. 2010.

2. Zhan Ma, Meng Xu and Yao Wang, “Power-rate optimized scalable video adapta-
tion,” prepared for IEEE Trans. on Circuits and Systems for Video Technology, Dec.
2010.

3. Zhan Ma, Hao Hu and Yao Wang, “DVFS-enabled energy efficient video decoding,”
IEEE ComSoc MMTC e-letter, pp.20-24, July 2010.

4. Yen-Fu Ou, Zhan Ma, Tao Liu and Yao Wang, “Perceptual Quality Assessment of
Video Considering both Frame Rate and Quantization Artifacts,” accepted by IEEE
Trans. on Circuits and Systems for Video Technology, Sept. 2010.

5. Yuanyi Xue, Yen-Fu Ou, Zhan Ma and Yao Wang, “Perceptual Video Quality Assess-
ment On A Mobile Platform Considering Both Spatial Resolution And Quantization
Artifacts,” Proc. of PacketVideo, Hong Kong, December 2010.

6. Zhan Ma, Jiancong Luo, Peng Yin, Cristina Gomila and Yao Wang, “Smoothed Ref-
erence Inter-layer Texture Prediction for Bit Depth Scalable Video Coding,” Proc. of
VCIP, San Jose, Jan. 2010.

7. Yen-Fu Ou, Zhan Ma, and Yao Wang, “Modeling the Impact of Frame Rate and
Quantization Stepsizes and Their Temporal Variations on Perceptual Video Quality:
A Review of Recent Works,” Proc. of IEEE CISS, Princeton, NJ, March 2009.

8. Yao Wang, Zhan Ma, and Yen-Fu Ou, “Modeling Rate and Perceptual Quality of
Scalable Video as Functions of Quantization and Frame Rate and Its Application in
Scalable Video Adaptation,” Proc. of PacketVideo, Seattle, WA, May 2009, (invited
paper).

9. Zhan Ma, Zhongbo Zhang and Yao Wang, “Complexity Modeling of H.264 Entropy
Decoding,” Proc. of IEEE ICIP, Oct., 2008

10. Zhan Ma and Yao Wang, “Complexity Modeling of SVC Decoding,” Proc. of IEEE
ICASSP, April 2008.



xi

11. Yen-Fu Ou, Zhan Ma and Yao Wang, “A Novel Quality Metric for Compressed Video
Considering both Frame Rate and Quantization Artifacts,” Proc. of VPQM, Arizona,
2009.

12. Yen-Fu Ou, Tao Liu, Zhi Zhao, Zhan Ma and Yao Wang, “Modeling the Impact of
Frame Rate on Perceptual Quality of Video,” Proc. of IEEE ICIP, Oct., 2008.

JCTVC Proposal

1. Zhan Ma and Andrew Segall, “System for graceful power degradation,” Joint Col-
laborative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC JTC1
MPEG, Doc. JCTVC-B114, Geneva CH, July 2010

Pending Patents and Disclosures

1. Zhan Ma, Andrew Segall, “System for graceful power degradation of video process-
ing,” July 2010.

2. Zhan Ma, Andrew Segall, “System for low resolution power reduction with deblock-
ing,” July 2010.

3. Zhan Ma, Andrew Segall, “System for low resolution power reduction with high
resolution deblocking,” July 2010.

4. Zhan Ma, Andrew Segall, “System for low resolution power reduction with deblock-
ing flag,” June 2010.

5. Zhan Ma, Andrew Segall, “System for low resolution power reduction with com-
pressed image,” June 2010.

6. Zhan Ma, Andrew Segall, “System for low resolution power reduction with low res-
olution intra prediction,” August 2010.

7. Zhan Ma, Andrew Segall, “System for low resolution power reduction with low res-
olution motion-compensation,” August 2010.

8. Zhan Ma, Andrew Segall, “System for frame buffer compression with edge directed
interpolation,” August 2010.

9. Zhan Ma, Do-Kyoung Kwon, “Methods and apparatus for classification based per-
ceptual video coding and its application on rate control,” August 2009.

10. Zhan Ma, Jiancong Luo, Peng Yin, “Methods and apparatus for motion compensation
with smoothed reference frame in bit depth scalability,” February 2009.

11. Jiancong Luo, Zhan Ma, Peng Yin, “Methods and apparatus for smoothed tone map-
ping of bit depth scalability” February, 2009.



xii

Contents

List of Figures xiv

List of Tables xviii

1 Introduction 1
1.1 Challenge, Motivation and Our Approach . . . . . . . . . . . . . . . . . . 1
1.2 Scalable Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Perceptual Quality Metric of Scalable Video 9
2.1 Motivation and Related Works . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Subjective Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Test Sequence Pool . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Test Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Data Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Proposed Quality Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Model for Temporal Correction Factor For Quality (TCFQ) Qt(t) . 18
2.3.2 Model for Normalized Quality vs. Quantization Qq(q) . . . . . . . 19
2.3.3 The Overall Quality Metric . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Rate Model of Scalable Video 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Proposed Rate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Model for Temporal Correction Factor for Rate (TCFR) Rt(t) . . . 27
3.2.2 Model for Normalized Rate vs. Quantization Rq(q) . . . . . . . . . 33
3.2.3 The Overall Rate Model . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Power Consumption Modeling and Prediction 38
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Scalable Video Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Complexity Modeling for Scalable Video Decoding . . . . . . . . . . . . . 42

4.3.1 Model for Normalized Complexity vs. Temporal Resolution Ct(t) . 44



xiii

4.3.2 Model for Normalized Complexity vs. Quantization Cq(q; s(t)) . . 45
4.3.3 The Overall Complexity Model . . . . . . . . . . . . . . . . . . . 47
4.3.4 Power Consumption Model for ARM Processor . . . . . . . . . . . 49

4.4 Complexity Prediction for H.264/AVC Decoding . . . . . . . . . . . . . . 54
4.4.1 H.264/AVC Decoder Abstraction . . . . . . . . . . . . . . . . . . 56
4.4.2 Frame-level H.264/AVC Decoding Complexity Modeling . . . . . 59
4.4.3 GOP-level H.264/AVC Decoding Complexity Model . . . . . . . . 75

4.5 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Model Parameter Prediction 78
5.1 Video Content Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Feature Extraction Preprocessor . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Model Parameter Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Model Evaluation Using Predicted Parameters . . . . . . . . . . . . . . . . 85

5.4.1 Predicted c and d for perceptual quality metric . . . . . . . . . . . 91
5.4.2 Predicted a, b and Rmax for rate model . . . . . . . . . . . . . . . . 92
5.4.3 Predicted g1, g2 and Cmax for complexity model . . . . . . . . . . 93

5.5 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Applications 96
6.1 Resource Constrained Scalable Video Adaptation . . . . . . . . . . . . . . 96

6.1.1 Rate-Constrained Bit Stream Adaptation . . . . . . . . . . . . . . . 97
6.1.2 Power-Rate Constrained Bit Stream Adaptation . . . . . . . . . . . 102

6.2 DVFS-enabled Energy Efficient Video Decoding . . . . . . . . . . . . . . 111
6.2.1 Proposed DVFS Control Driven by Complexity Prediction . . . . . 111
6.2.2 Intel PM 1.6 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.3 ARM Cortex A8 600 MHz . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Conclusion and Future Work 121
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 Extension of Proposed Models by Considering the Spatial Scalability124
7.2.2 Video Encoder Optimization . . . . . . . . . . . . . . . . . . . . . 125
7.2.3 Implementation of real-time SVC codec with STAR optimization . 125

Bibliography 126



xiv

List of Figures

1.1 Illustrative example of ubiquitous wireless video streaming to different
mobile users with different remaining battery power over diverse wire-
less/mobile access networks. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Hierarchical B prediction structure enabled in SVC, Tk indicates the tem-
poral resolution at level k. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 CIF (352x288) resolution test video sequences. . . . . . . . . . . . . . . . 12
2.2 Illustration of subjective quality rating test. . . . . . . . . . . . . . . . . . 13
2.3 Measured MOS against frame rate at different QP. The average 95% confi-

dent interval of all the sequences is 20.89. . . . . . . . . . . . . . . . . . . 15
2.4 Normalized MOS against frame rate at different QP. . . . . . . . . . . . . . 15
2.5 Normalized quality vs. temporal resolution (NQT), for different quantiza-

tion stepsize q. Points are measured data, curves are predicted quality using
Eq. (2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Normalized quality versus the quantization stepsize (NQQ) for different
frame rates t. Points are measured data and curves are predicted quality for
t = 30 Hz, using Eq. (2.3). . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Quality vs. quantization stepsize and frame rate. Points are measured MOS
data; curves are predicted quality using Eq. (2.4) . . . . . . . . . . . . . . 20

3.1 WVGA (832x480) resolution test video sequences. . . . . . . . . . . . . . 23
3.2 High definition 720p (1280x720) resolution test video sequences. . . . . . . 23
3.3 Normalized rate vs. temporal resolution (NRT) using different quantization

stepsize (q). Points are measured rates, curves are predicted rates by the
model of Eq. (3.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Illustration of the dyadic hierarchical prediction structure used to provide
the temporal scalability in SVC. . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Illustration of the hybrid predictive and transform coding structure, f(k)
is noted as the original k-th frame video signal, fp(k) means the predic-
tion signal of f(k) and f̂(k) is the reconstructed k-th frame which will be
buffered into memory as reference for future frame coding. . . . . . . . . . 30

3.6 Normalized rate vs. frame rate t (NRT) and its power function approxima-

tion, where Rt(t)
Rmax

=
(

t
tmax

)b
, t is the frame rate corresponding to each layer

level l, b = 0.6881 derived by least-square-error fitting. . . . . . . . . . . . 32



xv

3.7 Comparison between experiment rates and analytical rates prediction. . . . 33
3.8 Normalized rate vs. quantization stepsize (NRQ) using different frame

rates t. Points are measured rates, curves are predicted rates by the model
of Eq. (3.27). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Experimental rate points and predicted rates using the rate model (3.28). . 35

4.1 Scalable video decoding with single loop motion compensation, “reference
information update” module is used to update the inter-layer prediction data
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Normalized complexity versus temporal resolution (NCT) using different
quantization stepsize q. Points are measured complexity, curves are pre-
dicted complexity by the model of (4.4). . . . . . . . . . . . . . . . . . . . 46

4.3 Normalized complexity versus quantization (NCQ) using different frame
rate q. Points are measured complexity, curves are predicted complexity by
the model of (4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Power function approximation for s(t) where g1 and g2 are the content
dependent parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Comparison between measured complexity and predicted complexity using
the overall complexity model (4.6), prediction error is presented using both
Pearson correlation (PC) coefficients and RMSE normalized by the Cmax. . 49

4.6 Relation between voltage and frequency for ARM processors on TI OMAP35x. 52
4.7 Power consumption model for ARM processor, parameters are obtained via

least square error fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Simple power function approximation for power consumption model in

terms of the clock rate f [MHz], where κ1 = 3.06 × 10−10, ϕ = 3.19,
κ2 = 0.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 Illustration of H.264/AVC Decoder Decomposition. . . . . . . . . . . . . . 56
4.10 Variation of kbit when decoding “Harbour” at QP=28 on the Intel PM plat-

form. (a) In the frame decoding order over the entire sequence; (b) In the
frame decoding order over different temporal layers. . . . . . . . . . . . . 60

4.11 Illustration of entropy decoding complexity estimation using Eq. (4.15),
kbit is predicted using complexity data from the same layer nearest de-
coded frame. The actual and estimated Cvld of four test videos at all QPs
are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.12 Complexity consumption (in cycles) dissipated in itrans DM against the
non-zero MBs for all CIF resolution test videos. Parameters are obtained
via Least-square-error fitting. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Intra prediction complexity Cintra against the corresponding number of
intra MB nintraMB. Intra prediction complexity data from four different test
videos at different QPs are presented, and can be well fitted by Eq. (4.18). . 63

4.14 Modularized motion-compensation in H.264/AVC . . . . . . . . . . . . . . 64



xvi

4.15 Fractional pixel interpolation in H.264/AVC with “�” ,“©”, “3” stand-
ing for integer, half-, quarter-pel positions. The fractional points inside
“dashed” box need half-accuracy interpolation twice. . . . . . . . . . . . . 65

4.16 Interpolation complexity Cmcp against the number of 6-tap Wiener interpo-
lation filtering (nhalf) required. All interpolation complexity of four differ-
ent videos at different QPs are collected and presented together. . . . . . . 66

4.17 4×4 block edge illustration and boundary strength decision in H.264/AVC. 67
4.18 Illustration of kα in frame decoding order for Intel PM platform: (a) overall

sequence decoding (b)frame decomposition for different layers. . . . . . . . 70
4.19 Actual deblocking complexity against estimated complexity for both Intel

PM and ARM processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.20 Illustration of predicted and actual profiled complexity (in terms of cycles)

of concatenated sequences (in the order of “News”, “Soccer”, “Harbour”
and “Ice”) at QP 24 for frame and GOP-level respectively. . . . . . . . . . 73

4.21 Illustration of predicted and actual profiled complexity (in terms of cycles)
of different resolution concatenated sequences using rate control for frame-
level complexity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Illustration of rate model parameter prediction, i.e., a, b, Rmax using content
features for CIF resolution videos. . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Illustration of quality model parameter prediction, i.e., c, d, using content
features for CIF resolution videos. . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Illustration of complexity model parameter prediction, i.e., g1, g2, Cmax us-
ing content features for CIF resolution videos. . . . . . . . . . . . . . . . . 84

5.4 Illustration of rate model parameter prediction, i.e., a, b, Rmax using content
features for WVGA resolution videos. . . . . . . . . . . . . . . . . . . . . 87

5.5 Illustration of complexity model parameter prediction, i.e., g1, g2, Cmax us-
ing content features for WVGA resolution videos. . . . . . . . . . . . . . . 88

5.6 Illustration of rate model parameter prediction, i.e., a, b, Rmax using content
features for 720p resolution videos. . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Illustration of complexity model parameter prediction, i.e., g1, g2, Cmax us-
ing content features for 720p resolution videos. . . . . . . . . . . . . . . . 90

5.8 Quality model accuracy using predicted parameters c and d, scatter points
are for all 7 CIF videos: (a) PC = 0.95, eµ = 6.5%, emax = 18%, (b) PC =
0.96, eµ = 5.8%, emax = 16%, (c) PC = 0.97, eµ = 5.3%, emax = 12%. . . . 91

5.9 Rate model accuracy using predicted parameters a, b, Rmax, scatter points
are for all 7 CIF videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Rate model accuracy using predicted parameters a, b, Rmax, scatter points
are for 4 WVGA and 4 720p videos. . . . . . . . . . . . . . . . . . . . . . 93

5.11 Rate model accuracy using predicted parameters g1, g2, Cmax, scatter points
are for all 7 CIF videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



xvii

5.12 Rate model accuracy using predicted parameters g1, g2, Cmax, scatter points
are for 4 WVGA and 4 720p videos. . . . . . . . . . . . . . . . . . . . . . 94

6.1 Quality vs. rate at different frame rates. Points are measured data, curves
are based on the rate model in Eq. (3.28) and the quality model in Eq. (2.4). 97

6.2 Rate-Constrained SVC Video Adaptation . . . . . . . . . . . . . . . . . . 98
6.3 Optimal quantization stepsize qopt, frame rate topt, and the corresponding

quality Qopt versus the bit rate R by assuming q and t can take on any
continuous values within their respectives ranges. . . . . . . . . . . . . . . 99

6.4 Optimal operating points qopt, topt, and Qopt versus R by assuming t can
only take discrete values allowed by the dyadic prediction structure, whereas
q can vary continuously. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Power-Rate constrained scalable bit stream adaptation. . . . . . . . . . . . 103
6.6 Optimal quantization stepsize qopt versus the bit rate R and complexity C

assuming q and t can take on any continuous values within their respective
ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Optimal frame rate topt versus the bit rate R and complexity C assuming q
and t can take on any continuous values within their respective ranges. . . . 106

6.8 Optimal quality Qopt (corresponding to the topt and qopt) versus the bit rate
R and complexity C assuming q and t can take on any continuous values
within their respective ranges. . . . . . . . . . . . . . . . . . . . . . . . . 106

6.9 Optimal quantization stepsize qopt, frame rate topt and corresponding qual-
ity Qopt versus the bit rate R when the complexity takes discrete levels and
q and t take on any continuous values within their respective ranges. . . . . 109

6.10 Optimal quantization stepsize qopt, frame rate topt and corresponding qual-
ity Qopt versus the bit rate R when the complexity takes discrete levels
under dyadic prediction structure. . . . . . . . . . . . . . . . . . . . . . . 110

6.11 DVFS-enabled video decoding, the i-th frame or GOP decoding and ren-
dering is allocated in the slot [(i− 1)τ, iτ ]. . . . . . . . . . . . . . . . . . . 111

6.12 Complexity prediction based DVFS for H.264/AVC video decoding, com-
plexity profiler is embedded into video decoder and used to collect cycles
for each module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.13 Relation between voltage and frequency for Intel PM processor. . . . . . . 115
6.14 Power measurement using Agilent MSO7054A Digital Oscilloscope when

conducting video decoding on OMAP board. Voltage probes from scope
are connected with jumper J6 on OMAP board to collect the instant voltage
and current (via voltage difference over a resistance). . . . . . . . . . . . . 117

6.15 Average power recorded when conducting frame or GOP based video cod-
ing on OMAP35x EVM platform for “Performance”, “OnDemand” and
“eD-DVFS” (experimental D-DVFS) cases. . . . . . . . . . . . . . . . . . 118



xviii

List of Tables

1.1 SVC scalability and related tools . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Summary of notations and abbreviations used in this thesis . . . . . . . . . 8

2.1 Parameters for the quality model and model accuracy . . . . . . . . . . . . 20

3.1 Parameters for the rate model and model accuracy . . . . . . . . . . . . . . 36

4.1 SVC decoder modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Parameters for complexity model and model accuracy . . . . . . . . . . . . 50
4.3 Supported Dynamic Voltages and Clock Rates of ARM Processor on TI

OMAP35x EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Parameters for ARM power consumption model . . . . . . . . . . . . . . . 52
4.5 Essential DM and its CU in the H.264/AVC decoder . . . . . . . . . . . . . 57
4.6 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Supported Encoder Features . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8 Correlation coefficients for nα and nβ . . . . . . . . . . . . . . . . . . . . 69
4.9 CU abstraction for each DM . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.10 Constant kCU for Intel PM and ARM processors (in terms of CPU clock cycle) 72
4.11 Rate control Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.12 Normalized Prediction Error (mean µ and standard deviation σ) for Intel

PM and ARM platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 List of content features in consideration . . . . . . . . . . . . . . . . . . . 79
5.2 Weighted coefficients matrix for model parameters: one feature, CIF video . 86
5.3 Weighted coefficients matrix for model parameters: two feature, CIF video . 86
5.4 Weighted coefficients matrix for model parameters: three feature, CIF video 86
5.5 Weighted coefficients matrix for model parameters: one feature, WVGA

video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 Weighted coefficients matrix for model parameters: two feature, WVGA

video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Weighted coefficients matrix for model parameters: one feature, 720p video 89
5.8 Weighted coefficients matrix for model parameters: two feature, 720p video 90

6.1 Supported dynamic voltage (volt) and frequency (MHz) of Intel PM 1.6
GHz processor on ThinkPad T42 . . . . . . . . . . . . . . . . . . . . . . . 115



xix

6.2 Normalized Dynamic power consumption for Intel PM processor based on
analytical power models relative to using peak power . . . . . . . . . . . . 115

6.3 Normalized power consumption for ARM processor relative to using peak
power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



1

Chapter 1

Introduction

1.1 Challenge, Motivation and Our Approach

It is indeed the multimedia era now. Due to the advanced wireless access network

and semiconductor technologies, wireless multimedia services, particularly, wireless video

services are becoming ubiquitous in our daily life. We can easily use our SmartPhone to

watch the streaming video via WiFi or 3G network, we can also record video clips (or take

pictures) using the popular mobile devices and upload them to the social sharing network

community (like Youtube, Facebook, Twitter, etc). Furthermore, we can even use our

SmartPhone to do live video conferencing, such as the FaceTime introduced by the Apple

iPhone 4. Among them, wireless video streaming and playback (WVSP) is one of the most

popular applications.

As shown in Figure 1.1, there are two fundamental problems for a successful wireless

video streaming and playback application. One is how to deliver the same content to dif-

ferent users over different access networks without introducing much operation overhead.

The other is how to deal with the limited battery power supply for current mobile hand-

helds without losing much video playback quality. In principle, these two problem can

be rephrased as – how to deliver the same video with the best quality under the network

bandwidth and battery power constraints at mobile device?, i.e.,

max Q subject to R ≤ R0 P ≤ P0. (1.1)
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Figure 1.1: Illustrative example of ubiquitous wireless video streaming to different mobile

users with different remaining battery power over diverse wireless/mobile access networks.

where Q is the decoded video quality, R0 and P0 are the sustain network bandwidth and

battery power constraints for a typical mobile target. Specially, there are three aspects of

the problem (1.1),

• How to deliver the same video to different users via heterogeneous access networks

(e.g., WiFi, 3G, wired, etc)?

• How to ensure that the decoded video has the “best” quality for each receiver?

• How to prolong the battery life of the mobile handhelds without sacrificing the video

playback quality much?

An efficient and effective solution for above concerns promises the success of the applica-

tion.

We propose to use the scalable video to solve the diversities introduced by the under-

lying access networks and subscribed mobile receivers. In practice, a single scalable video

stream can be easily truncated into substreams with different reconstruction quality levels

(e.g., in terms of temporal resolution, amplitude enhancement 1 and spatial augment) to

meet the underlying network and end-user differences. Compared with the video transcod-

ing approach which usually requires the powerful server to do computational intensive

1We use the “amplitude scalability” to note the conventional quality or SNR scalability in scalable video
to avoid ambiguity with perceptual quality definition.
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video transcoding, scalable video just needs a lightweight adaptor to do the bitstream adap-

tation. Compared with simulcast, scalable video can reduce the total network bandwidth

requirement dramatically, especially when supporting many subscribers with different ac-

cess network bandwidth. To tackle the other two concerns, we have developed three ana-

lytical models to address the perceptual quality, rate and power consumption for scalable

video with the focus on the temporal and amplitude scalability 2. To further reduce the

power consumption in video decoding, we have devised an efficient frame or GOP (group

of pictures) decoding complexity prediction algorithm to guide the voltage and clock rate

adjustment of the underlying processor so as to save the video decoding energy.

To explore the impact of temporal and amplitude scalability on the perceptual quality,

rate and decoding power consumption, we propose to use an “impact separation” method-

ology. Specially, we normalize the raw data points for any given combination of temporal

and amplitude resolution, by the data points at maximum temporal and amplitude resolu-

tion respectively, and then investigate how to use appropriate analytical functions to model

the separated normalized effects. As a result, each model is expressed as the product of

a function of temporal resolution (i.e., frame rate) and a function of amplitude level (i.e.,

quantization stepsize), with two or three model parameters in total. For practical use, we

also explore the model parameter prediction using content features. Results indicate that

by choosing proper feature combinations, we can estimate the model parameters very well.

With the content predicted parameters, we also show that model predicted value, such as

mean opinion score (MOS) for quality model, bit rates for rate model, complexity (i.e., in

terms of cycles per second) for complexity model, can accurately predict the actual cor-

responding data points collected by experiments. We first give a brief introduction of the

scalable video coding in the following section. More details on model development will be

unfolded in subsequent chapters.

2The spatial scalability impact will be deferred as our future research.
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1.2 Scalable Video Coding

Scalable video coding (SVC) refers to the scalable extension of the H.264/AVC [1],

which is the latest video coding standard providing the temporal, amplitude and spatial

scalability. SVC has been actively researched for at least two decades. Several international

standards, such as MPEG-2 video [2], H.263 [3], and MPEG-4 visual [4], also define their

scalable profiles. However, none of them has been accepted and used in the market. Many

reasons have caused the failure of the scalable video coding in the history. Two of the most

important reasons are the poor coding efficiency [compared with the single layer coding]

and the dramatic complexity demands for enabling the scalable tools. Because of these

defects, no commercial product is available in the market to support those scalable tools

provided by previous video coding standards.

Unlike its predecessors, SVC 3 inherits the well-designed structure of the H.264/AVC

and introduces additional new tools (such as inter-layer intra prediction, inter-layer mode

and/or motion prediction, as well as the residual prediction) to remove the inter-layer re-

dundancy so as to provide the scalability efficiently. An optimized SVC encoder [5, 6]

can provide the scalable videos with just +10% bit rate overhead in comparison with the

H.264/AVC single layer coding. Because of the same network interface design shared by

both SVC and H.264/AVC (i.e., network abstraction layer (NAL) structure), and its own

layered structure, SVC is friendly to the error-prone network transmission that promises

the dominant role of the SVC in the networked video area. Moreover, the complexity is-

sue is well studied during the SVC standardization phase. Tools are chosen to provide the

decent coding efficiency without introducing much decoding complexity. One important

feature of the SVC is the “single loop motion compensation” or “single loop decoding”,

which constraints the decoding loop as to always close at the target layer without extra ref-

erence layer pixel domain reconstruction. Thus, compared with conventional single layer

H.264/AVC decoding, layered SVC decoding doesn’t bring too much computational over-

head [6]. Chapter 4 will present the detailed analysis and discussion regarding the SVC

3SVC is used to indicate the scalable extension of the H.264/AVC unless we point out explicitly.
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decoding complexity.

Table 1.1: SVC scalability and related tools
scalability tool
temporal hierarchical B picture (either dyadic or non-dyadic)

spatial, amplitude
inter-layer intra prediction

inter-layer mode/motion prediction
inter-layer residual prediction

Three basic types of the scalability are supported by the SVC, i.e. temporal, spatial and

amplitude scalability. As known, additional tools are developed to enable these scalability

as listed in Table 1.1. Hierarchical B pictures is used to provide the temporal scalability.

Compared with the conventional B pictures, hierarchical B only requires high-level syntax

signaling changes and also improves the coding performance. Dyadic or non-dyadic struc-

ture can be enabled to present different temporal resolutions to satisfy different application

scenarios as shown in Figure 1.2. In our work, we will focus on the dyadic hierarchical

prediction structure.

T0 T0T1T2 T2T3 T3 T3 T3

GOP (group of pictures)

(a) dyadic

T0 T0T1T2T2

GOP (group of pictures)

T1 T2T2 T2T2

(b) non-dyadic

Figure 1.2: Hierarchical B prediction structure enabled in SVC, Tk indicates the temporal

resolution at level k.

Layered structure is employed in SVC to enable the amplitude and spatial scalability.

To reduce the inter-layer redundancy, inter-layer intra prediction, inter-layer mode/motion

prediction and inter-layer residual prediction are used adaptively. Because of the resolution

change for spatial scalability, additional upsampling and inter-layer deblocking operations
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are required. This thesis work considers the joint amplitude and temporal scalable cod-

ing, while leaves the spatial scalability and overall combined scalability as future study.

Amplitude scalability, also noted as SNR or “quality” scalability in the literature, provides

the signal amplitude refinements from “poor” to “excellent” signal reconstruction. Simply,

we can control the quantization parameter (QP) at each layer to refine the video amplitude

fidelity. For example, we usually choose higher QP at base layer, and use smaller QP at

enhancement layer to improve the signal fidelity. There are two types of amplitude scala-

bility supported in SVC. One is the coarse grain scalability (CGS) that is the special case of

spatial scalability with identical video resolution for each layer. The motion compensation

(MCP) has to be conducted within the same layer in CGS [6]. The other one is the medium

grain scalability (MGS), which allows higher enhancement layer reconstruction signal as

reference to improve the coding efficiency. However, once the packets at enhancement

layer are lost, it will introduce the decoder drift. Thus, SVC introduces the key picture to

delimit the decoder drift between two key frames [6]. Also, transform coefficients split-

ting and packetization can be combined with MGS as well to provide more rate truncation

points. In our research, we have constrained the MGS with MCP at current layer to avoid

the decoder drift. With decoder drift impact, it is hard to evaluate the perceptual quality of

the decoded video. This constrained MGS is similar as the CGS, but with more amplitude

layers (e.g., up to 5 in our work). CGS can only support up to 3 layers because it uses the

same signaling syntax as the spatial scalability. More details about SVC technology and

related topics can be found in [5–9].

1.3 Dissertation Outline

This thesis is organized as follows. In Chapter 2, we first introduce the perceptual

quality metric of scalable video considering both frame rate and quantization artifacts. We

propose to separate the impact of frame rate and quantization, and use two single parame-

ter exponential functions to characterize the perceptual quality in terms of frame rate and

quantization respectively.
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In Chapter 3, we apply the same idea to separate the impact of the frame rate and

quantization on the bit rate, each of which can be well captured by a single parameter

power function. Together with the maximum bit rate encoded at maximum frame rate

and finest quantization, there are three content dependent parameters in our proposed rate

model.

In Chapter 4, we first derive the complexity model for joint temporal and amplitude

scalable video decoding as the product of a single parameter power function of the quantiza-

tion stepsize (where the parameter is temporal resolution adaptive and can be also modeled

as the power function of the frame rate), and a linear function of the temporal resolution.

Overall, there are also three parameters for the complexity model as the rate model. By in-

corporating the power consumption model for ARM processor, we extend our complexity

model to the power consumption model for scalable video decoding on ARM platform. In

addition to power consumption or complexity modeling considering the temporal and am-

plitude resolution variation, we also propose the on-line complexity prediction along with

the video decoding. The estimated frame decoding complexity can be used to dynamically

adapt the voltage and clock rate of underlying processor so as to save more power.

In Chapter 5, we explore the model parameter prediction using content features. We

have implemented a simple, lightweight pre-processor with a macroblock (i.e., 16x16)

based integer motion estimation engine ahead of real encoding to collect the necessary

information for feature extraction, such as residual signal, motion fields and original video

signal. In addition to present the parameter prediction performance, we also provide the

model accuracy with estimated parameters by comparing the prediction and original raw

data.

In Chapter 6, we present two popular applications using our developed models. At

first, we apply our models to guide the resource constrained scalable video adaptation, un-

der network bandwidth and mobile battery capacity constraints. Using our models, we can

solve the problem analytically without taking too much computing resource. The second

application is using our proposed complexity prediction algorithm to adapt the voltage and

frequency of the underlying processor so as to save video playback power. Our complexity
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prediction based DVFS (dynamic voltage and frequency scaling) scheme has been evalu-

ated on mobile architectures, including mobile laptop and SmartPhone platforms.

Chapter 7 concludes the thesis and discuss some future research directions.

To help the understanding, we first summarize the notations and abbreviations fre-

quently used throughout this thesis in Table 1.2.

Table 1.2: Summary of notations and abbreviations used in this thesis
name notation

q
quantization stepsize with ideal range (0, +∞)
in our system, we use qmin = 16 and qmax=104.

t
frame rate within (0, 30] Hz, in our simulation,
we set tmax = 30 Hz and tmin = 1.875 Hz.

Q(q, t)
perceptual quality encoded using q at frame rate t
Qmax as the maximum quality at tmax and qmin

R(q, t)
video bit rate encoded using q at frame rate t
Rmax as the maximum bit rate at tmax and qmin

C(q, t)
video decoding complexity at (q, t)-th layer
Cmax as the maximum complexity at tmax and qmin

P (q, t) SVC decoding power consumption model at (q, t)-th layer
µX mean of X
σX standard deviation of X
CIF common intermediate format with resolution at 352x288

QCIF quarter CIF with resolution at 176x144
WVGA wide video graphics array with resolution at 832x480

720p high definition video with resolution at 1280x720

MOS
mean opinion score, which is a numerical indication
of the perceived quality of compressed video or auido

PSNR peak signal to noise ratio

DVFS
dynamic voltage and frequency scaling, which is a technique
widely adopted in modern processors to conserve the energy
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Chapter 2

Perceptual Quality Metric of Scalable Video

In this chapter, we explore the impact of frame rate and quantization on perceptual

quality of a video. We propose to use the product of a spatial quality factor that assesses

the quality of decoded frames without considering the frame rate effect and a temporal

correction factor for quality, which reduces the quality assigned by the first factor according

to the actual frame rate. We find that the temporal correction factor for quality follows

closely an inverted falling exponential function, whereas the quantization effect on the

coded frames can be captured accurately by an exponential function of the quantization

stepsize q. The proposed model is analytically simple, with each function requiring only

a single content-dependent parameter. The proposed overall metric has been validated

using our subjective test scores as well as those reported by others in the literature [10].

For all data sets examined, our model yields high Pearson correlation (higher than 0.95)

with measured MOS. In the following Chapter 5, we further investigate how to predict

parameters of our proposed model using content features derived from the original videos.

Using content predicted parameters, our model still fits with measured MOS with high

correlation (over 0.97 in average).

2.1 Motivation and Related Works

Development of objective quality metrics that can automatically and accurately mea-

sure perceptual video quality is becoming more and more important as video applications
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become pervasive. Prior work in video quality assessment is mainly concerned with appli-

cations where the frame rate of the video is fixed. The objective quality metric compares

each pair of corresponding frames in deriving a similarity score or distortion between two

videos with the same frame rate. In many emerging applications targeting for heteroge-

neous users with different display devices and/or different communication links, the same

video content may be accessed with varying frame rate, frame size or quantization (assum-

ing the video is coded into a scalable stream with spatial/temporal/amplitude scalability).

In applications permitting only very low bit rate video, one often has to determine whether

to code an original high frame-rate video at the same frame rate but with significant quanti-

zation, or to code it at a lower frame rate with less quantization. In all proceeding scenarios

as well as many others, it is important being able to objectively quantify the perceptual

quality of a video that has been subjected to both quantization and frame rate reduction.

There have been several works studying the impact of frame rate artifacts on percep-

tual video quality. In a recent review of frame rate effect on human perception of video [11],

it is found that frame rate around 15 Hz seems to be a threshold of humans’ satisfaction

level, but the exact acceptable frame rate varies depending on video content, underlying

application, and the viewers. In addition, the authors of [12] proposed that the preferred

frame rate decreases as video bandwidth decreases, and two switching bandwidths cor-

responding to the preferred frame rates were derived. The work in [13] investigated the

preferred frame rate for different types of video. In [14], a particular high-motion type of

coded video sequences (sports game) was explored. It was found that high spatial quality

is more preferable than high frame rate for small screens. However, no specific quality

metric, which can predict the perceived video quality, were derived in these works [11–14].

The works in [15–17] proposed quality metrics that consider the effect of frame rate.

The work in [15] used logarithmic function of the frame rate to model the negative impact

of frame rate dropping on perceptual video quality in the absence of compression artifacts.

The model was shown to correlate well with subjective ratings for both CIF and QCIF

videos. However, this model requires two content-dependent parameters, which may limit

its applicability in practice. The metric proposed in [16] explores the impact of regular
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and irregular frame drop. The quality of each video scene is determined by weighting and

normalizing a logarithm function of temporal fluctuation and the frame dropping severity.

Finally, the overall quality of the entire video is the average of the quality indices over

all video scene segments. The work in [17] also considers the impact of both regular and

irregular frame drops and examines the jerkiness and jitter effects caused by different levels

of strength, duration and distribution of the temporal impairment. However, [16] did not

provide a single equation, which can predict the perceptual quality of regular frame drops,

and even though [17] did, the proposed quality model has four parameters, and the authors

did not consider how to derive these parameters from the underlying video.

Besides the study of frame rate impact on perceptual quality, Feghali et al. proposed a

video quality metric [18] considering both frame rate and quantization effects. Their met-

ric uses a weighted sum of two terms, one is the PSNR of the interpolated sequences from

the original low frame-rate video, another is the frame-rate reduction. The weight depends

on the motion of the sequences. The work in [19] extended that of [18] by employing a

different motion feature in the weight. The work in [20] proposed a quality metric consid-

ering block-fidelity, content richness fidelity, spatial-textural, color, and temporal masking.

They combined all these components into a quality index to predict the perceptual quality.

This model involves sophisticated processing to extract content components from video

sequences. Hence, it may not be applicable for practical application.

Our proposed model uses the product of a spatial quality factor (SQF) and a temporal

correction factor for quality (TCFQ). The first term assesses the quality of video due to the

quantization, and the TCFQ reduces the quality assigned by the first metric according to

the actual frame rate. Our model has only two content-dependent parameters, and corre-

lates very well with subjective ratings obtained in our subjective tests as well as subjective

scores reported in other papers [10], with significantly higher correlation than the metrics

proposed in other works as well as reduced complexity.
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(a) akiyo (b) city (c) crew (d) football

(e) foreman (f) harbour (g) ice (h) waterfall

Figure 2.1: CIF (352x288) resolution test video sequences.

2.2 Subjective Quality Assessment

2.2.1 Test Sequence Pool

Seven video sequences, “akiyo”, “city”, “crew”, “football”, “foreman”, “ice”, “wa-

terfall”, all in CIF (352 × 288) resolution at original frame rate 30 fps, are chosen from

JVT (Joint Video Team) test sequence pool [21], which are shown in Figure 2.1. All these

sequences are coded using the JSVM [22], which is the reference software for the scal-

able extension of H.264/AVC (SVC) developed by JVT. Each sequence is encoded with 5

amplitude and 5 temporal layers using constrained MGS. We extract bitstreams with four

temporal layers corresponding to the frame rates of 30, 15, 7.5, 3.75 Hz, and each temporal

layer in turn has four amplitude layers created with QP equal to 28, 36, 40, and 441, re-

spectively. A processed video sequence (PVS) is created by decoding a scalable bitstream

up to a certain temporal and amplitude layer.

The subjective rating tests for the seven sequences were done in two separate experi-

1Different from JSVM default configuration utilizing different QPs for different temporal layers, the same
QP is chosen among all temporal layers at a certain amplitude layer.
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ments. In the first experiment, 64 PVSs from four sequences (“akiyo”, “city”, “crew”, and

“football”) were rated, varying among four frame rates (30, 15, 7.5 and 3.75 Hz) and four

QP levels (28, 36, 40, and 44). In the second experiment, 60 PVSs from five sequences

(“akiyo”, “football”, “foreman”, “ice” and “waterfall”) are rated. In this case, we still test

among four frame rates but only among 3 QP levels (28, 36 and 40). This is because the

results from the first session show that it is very hard for the viewers to tell the difference

between QP=40 and 44. We included the two common sequences (“akiyo” and “football”)

in both experiments, so that we can determine an appropriate mapping between the subjec-

tive ratings from two experiments, following the algorithm described in [23].

Excellent

good

fair

poor

bad

PVS,

or

Reference

PVS,

or

Reference

PVS,

or

Reference

8 second8 second8 second

Vote Vote

100

60

80

40

20

0

12 minutes2 minutes

Training

Session

Testing 
Session

Figure 2.2: Illustration of subjective quality rating test.

2.2.2 Test Configuration

The subjective quality assessment, illustrated in Figure 2.2, is carried out by using a

protocol similar to ACR (Absolute Category Rating) described in [24]. In the test, a subject

is shown one PVS at a time, and is asked to provide an overall rating at the end of the clip.

The rating scale ranges from 0 (worst) to 100 (best) with text annotations shown next to the

rating numbers as shown in Figure 2.2. Most of the viewers for both of the subjective test

are engineering students from Polytechnic Institute of New York University, with age 23 to

35. Other details regarding each experiment are given below.
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1. The first experiment:

In order to shorten the duration of the test, the experiment is divided into two sub-

groups. Each of them contains 38 processed video sequences and lasts about 14

minutes. Each subgroup test consists of two sessions, a training session and a test

session. The training session (about 2 minutes) is used for the subject to accustom

him/herself to the rating procedure and ask questions if any. The training clips in-

cluding PVSs from “Soccer” and “Waterfall” are chosen to expose viewers to the

types and quality range of the testing clips. The PVSs in the test session (about 12

minutes) are ordered randomly so that each subject sees the video clips in a different

order. Thirty one non-expert viewers who had normal or corrected-to-normal vision

acuity participated in one or two subgroup tests. There are on average 20 ratings for

each PVS.

2. The second experiment:

Each subgroup contains 24 PVSs. The training clips (6 PVSs) are picked from the en-

tire PVS pool except the sequences included in the testing session and the selections

of testing points are uniformly distributed among the entire range. The sequences

in the test session are also ordered randomly. Thirty three non-expert viewers who

had normal or corrected-to-normal vision acuity participated in one or two subgroup

tests. There are on average 16 ratings for each PVS.

2.2.3 Data Post-Processing

Given the rating range from 0 to 100, different viewers’ scores tend to fall in quite

different subranges. The raw score data should be normalized before analysis. We first find

the minimum and maximum scores given by each viewer for a specific source sequence, we

then find the median of the minimum (resp. maximum) scores by all viewers for this source

sequence. All viewers’ scores for the same source video are normalized by the resulting

median of minimum and median of maximum. We then average normalized viewer ratings

for the same processed video sequence to determine its mean opinion score (MOS). More
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Figure 2.3: Measured MOS against frame rate at different QP. The average 95% confident

interval of all the sequences is 20.89.
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Figure 2.4: Normalized MOS against frame rate at different QP.
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details regarding how to perform the data post-processing can be found in [10].

After screening there are on average 15 and 14 user ratings for each PVS in the first

and second experiments, respectively. Figure 2.3 presents the subjective test results. We

see that no matter what QP level is, MOS reduces consistently as the frame rate decreases.

In order to examine whether the reduction trend of the MOS against the frame rate is

independent of the quantization parameter, we plot in Figure 2.4, the normalized MOS,

which is the ratio of the MOS with the MOS at the highest frame rate (30 Hz in our case),

at the same QP. We see that these normalized curves corresponding to different QPs almost

overlap with each other, indicating that the reduction of the MOS with frame rate is quite

independent of the QP.

2.3 Proposed Quality Metric

Our quality model is extended from our earlier work [10]. Instead of using the PSNR

in our model [10], we try to use the quantization stepsize to relate the picture spatial quality

directly. As described earlier, results in Figures 2.3 and 2.4 suggest that the impact of frame

rate and that of quantization is separable. We focus on examining the impact of frame rate

on the quality, under the same quantization stepsize; while trying to use prior models to

characterize the impact of quantization stepsize q on the quality, when the video is coded

at a fixed frame rate. The proposed model is written generally as

Q(q, t) = QmaxQq(q; tmax)Qt(t; q), (2.1)

where Qmax = Q(qmin, tmax),

Qq(q; tmax) =
Q(q, tmax)

Q(qmin, tmax)

is the normalized quality versus quantization stepsize (NQQ) under the maximum frame

rate tmax;

Qt(t; q) =
Q(q, t)

Q(q, tmax)



17

is the normalized quality vs. temporal resolution (NQT) under the same quantization step-

size q. Note that QmaxQq(q; tmax) models the impact of quantization on the quality when

the video is coded at the highest frame rate tmax; while Qt(t; q) describes how the quality

reduces when the frame rate reduces, under the same q. In other words, Qt(t; q) corrects

the predicted quality byQmaxQq(q; tmax) based on the actual frame rate, and for this reason

is also called Temporal Correction Factor for Quality (TCFQ).
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Figure 2.5: Normalized quality vs. temporal resolution (NQT), for different quantization

stepsize q. Points are measured data, curves are predicted quality using Eq. (2.2).

To see how the normalized quality ratings Qq(q; t) and Qt(t; q) vary with q and t

respectively, we plot the measured data from our subjective tests in Figures 2.5 and 2.6.

Unlike the rate data presented in Chapter 3, where the effects of quantization stepsize q

and frame rate t are quite separable, there are noticeable interactions between t and q in

their impact on the perceptual quality. This interaction in fact is well known, but not well

understood. However, as seen in Figure 2.5, the effect of q on the NQT curves Qt(t; q)

is inconsistent and relatively small. Also these variations may be in part due to viewer

inconsistency during the subject tests. To reduce the model complexity, we choose to

model the Qt(t; q) curves by a function of t only, denoted by Qt(t). For the model for

Qq(q; tmax), we use only the measured NQQ data at the frame rate tmax.
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Figure 2.6: Normalized quality versus the quantization stepsize (NQQ) for different frame

rates t. Points are measured data and curves are predicted quality for t = 30 Hz, using

Eq. (2.3).

2.3.1 Model for Temporal Correction Factor For Quality (TCFQ)Qt(t)

In a prior work [25], we have investigated the impact of the frame rate on the percep-

tual quality of uncompressed video, and found that the normalized quality can be modeled

very accurately by an inverted exponential falling function. Here we adopt the same func-

tion:

Qt(t) =
1− e−d t

tmax

1− e−d . (2.2)

As can be seen in Figure 2.5, this function can predict the normalized MOS very well. We

can see that the fitting is quite accurate for all sequences. Note that the parameter d char-

acterizes how fast the quality drops as the frame rate reduces, with a smaller d indicating

a faster drop rate. The d values for different sequences are provided in Figure 2.5. As

expected, sequences with higher motion have faster drop rates (smaller d). To demonstrate

the influence of the video content on the parameter, Figure 2.5 shows the TCFQ curves for

different videos. We can clearly see that d is larger for slower motion sequences.

The model in (2.2) is chosen by comparing several one-parameter functions, including

the exponential falling function in Eq. (2.2), the power function ( t
tmax

)d, and the logarithmic
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function
log(1+d t

tmax
)

log(1+d)
. By evaluating several data sets [10], it is shown that the inverted

exponential function in Eq. (2.2) is the best.

2.3.2 Model for Normalized Quality vs. Quantization Qq(q)

To model the variation of the perceptual quality with quantization when the video is

coded at a fixed frame rate tmax, in our earlier work [10,26], we assume that under the same

quantization parameter q, the PSNR of decoded frames at frame rate tmax would be similar

to the PSNR of decoded frames at a reduced frame rate t. So we use PSNR computed at

frame rate t to estimate the quality of the video coded at tmax. Based on the prior work

in [27], we use a sigmoidal function to relate the PSNR with the perceptual quality, with

two parameters. In the current work, based on measured NQQ points Qq(q; tmax) shown in

Figure 2.6, we propose to use an exponential function to capture the quality variation with

q at the highest frame rate tmax, i.e.,

Qq(q) = ece
−c q

qmin , (2.3)

with c as the model parameter. Compared with the original two parameter sigmoid function

proposed in [10, 26], the single parameter exponential function is simpler and easier to

analyze. Comparing the measured and predicted quality ratings shown in Figure 2.6, we see

that the model captures the quantization-induced quality variation very well at the highest

frame rate.

2.3.3 The Overall Quality Metric

Combining Eqs. (2.1), (2.2) and (2.3), the overall video quality model can be expressed

as

Q(q, t) = Qmax
e
−c q

qmin

e−c
1− e−d t

tmax

1− e−d . (2.4)

Note that Qmax is the MOS given for the video at qmin and tmax. Generally, this value

can be estimated by some preliminary subjective tests. In our subjective tests, the ratings



20

0 10 20 30
0

20

40

60

80

100
Akiyo

Frame Rate(Hz)

M
O

S

 

 

q = 16
q = 40
q = 64
Quality Model

0 10 20 30
0

20

40

60

80

100
City

Frame Rate(Hz)

M
O

S

 

 

q = 16
q = 40
q = 64
Quality Model

0 10 20 30
0

20

40

60

80

100
Crew

Frame Rate(Hz)

M
O

S

 

 

q = 16
q = 40
q = 64
Quality Model

0 10 20 30
0

20

40

60

80

100
Football

Frame Rate(Hz)

M
O

S

 

 

q = 16
q = 40
q = 64
Quality Model

0 10 20 30
0

20

40

60

80

100
Foreman

Frame Rate(Hz)

M
O

S

 

 

q = 16
q = 40
q = 64
Quality Model

0 10 20 30
0

20

40

60

80

100
Ice

Frame Rate(Hz)

M
O

S
 

 

q = 16
q = 40
q = 64
Quality Model

0 10 20 30
0

20

40

60

80

100
Waterfall

Frame Rate(Hz)

M
O

S

 

 

q = 16
q = 40
q = 64
Quality Model

Figure 2.7: Quality vs. quantization stepsize and frame rate. Points are measured MOS

data; curves are predicted quality using Eq. (2.4)

are given in the range of 0 to 100. But the viewers seldom give a rating of 100, even for

very high quality video, as is commonly observed in subjective tests. What is surprising

and fortunate is that the MOS values for the videos coded at qmin and tmax are very close

to each other for all seven test sequences, about 90. Therefore, we set Qmax to 90 in our

model. Note that on the more common MOS scale of 1 to 5, 90 out of 0 to 100 would

correspond to a MOS of 0.9× 4 + 1 = 4.6.

Table 2.1: Parameters for the quality model and model accuracy
akiyo city crew football foreman ice waterfall ave.

c 0.12 0.13 0.18 0.09 0.12 0.12 0.15
d 7.70 7.51 6.90 5.20 8.24 6.67 7.06

RMSE
Qmax

3.06% 6.41% 2.50% 4.54% 5.49% 5.38% 3.65% 4.40%

PC 0.99 0.95 0.99 0.98 0.94 0.96 0.98 0.97

Figure 2.7 compares the measured and predicted quality ratings by the model in (2.4).

The parameters c, d are obtained by least square error fitting. Table 2.1 summarizes the

parameters and the model accuracy in terms of RMSE and Pearson correlation (PC) values

for the seven sequences. Overall, the proposed model, with only two content-dependent

parameters, predicts the MOS very well, for sequences “akiyo” and “crew”, with a very
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high Pearson correlation (> 0.99), defined as

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

, (2.5)

where xi and yi are the measured and predicted rates, and n is the total number of available

samples. The model is less accurate for “foreman” and “city”, but still has a quite high

PC. We would like to point out that the measured MOS data for these two sequences do

not follow a consistent trend at some quantization levels, which may be due to the limited

number of viewers participating the subjective tests.

2.4 Discussion and Summary

As shown in previous plots, the model parameters c and d are video content depen-

dent. The model will be more useful if the model parameters can be predicted from some

content features derived from the original or compressed video signals. The details regard-

ing the quality model parameters prediction will be discussed in Chapter 5 together with

the parameters for proposed rate and complexity models. In addition to verify the accu-

racy of our proposed quality metric using these seven sequences, we also apply our model

to other data sets proposed in the literature. All comparison results show that our model

outperforms other related works with high PC. More details can be found in our published

work [10].

In summary, this chapter presents our perceptual quality metric considering both frame

rate and quantization artifacts. Based on the experimental data, we have found that the

impact of the frame rate and quantization is separable, therefore, we propose two single-

parameter exponential functions to capture the quality variation in terms of the variation of

frame rate and quantization stepsize respectively. Results show that our proposed model

can estimate the subjective MOS very well.
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Chapter 3

Rate Model of Scalable Video

This chapter presents the rate modeling for scalable video with focus on the joint

temporal and amplitude scalability. Like what we have done for the perceptual quality

model, we separate the impact of the quantization and frame rate, and propose two single-

parameter power functions to model the rate in terms of the quantization and frame rate

respectively. As shown, our proposed model can predict the actual video rate very accurate

(with average PC > 0.99, average RMSE < 1.5%) for videos with different content activ-

ities, resolutions, and etc. We have also found that the rate model parameters are highly

content dependent. The model will be more useful if the parameters can be predicted ac-

curately and easily. More details on rate model parameter prediction using content features

can be found in Chapter 5.

3.1 Introduction

Our proposed rate model, i.e., R(q, t), which relates the video bit rate R with the

quantization stepsize q and frame rate t. To the best of our knowledge, no prior work has

considered joint impact of frame rate and quantization on the bit rate. However, several

prior works have considered rate modeling in non-scalable video, and have proposed mod-

els that relate the average bit rate versus quantization stepsize q. Ding and Liu reported the
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(a) BasketballDrill (b) BQMall

(c) PartyScene (d) RaceHorses

Figure 3.1: WVGA (832x480) resolution test video sequences.

(a) mobcal (b) parkrun

(c) shields (d) stockholm

Figure 3.2: High definition 720p (1280x720) resolution test video sequences.
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following model [28],

R =
θ

qγ
, (3.1)

where θ and γ are model parameters, with 0 ≤ γ ≤ 2. Chiang and Zhang [29] suggested

the following model

R =
A1

q
+
A2

q2
, (3.2)

This so-called quadratic rate model has been used for rate-control in MPEG-4 reference

encoder [30]. We note that by choosing A1 and A2 appropriately, the model in (3.2) can

realize the inverse power model of (3.1) with any γ ∈ (1, 2). Only the quadratic term was

included in the model by Ribas-Cobera and Lei [31], i.e.,

R =
A

q2
. (3.3)

More recently, He [32] proposed the ρ-model,

R(QP) = θ (1− ρ(QP)) , (3.4)

with ρ denoting the percentage of zero quantized transform coefficients with a given quan-

tization parameter. This model has been shown to have high accuracy for rate prediction.

A problem with the ρ-model is that it does not provide explicit relation between QP and ρ.

Therefore, it does not lend itself to theoretical understanding of the impact of QP on the

rate.

3.2 Proposed Rate Model

In our work on rate modeling, we focus on the impact of frame rate t on the bit rate

R, under the same quantization stepsize q; while using prior models to characterize the

impact of q on the rate, when the video is coded at a fixed frame rate. Towards this goal,

we recognize that R(q, t) can be written as

R(q, t) = RmaxRq(q; tmax)Rt(t; q), (3.5)
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where Rmax = R(qmin, tmax) is the maximum bit rate obtained with a chosen minimal

quantization stepsize qmin and a chosen maximum frame rate tmax;

Rq(q; tmax) =
R(q, tmax)

R(qmin, tmax)

is the normalized rate vs. quantization stepsize (NRQ) under the maximum frame rate tmax,

and

Rt(t; q) =
R(q, t)

R(q, tmax)

is the normalized rate vs. temporal resolution (NRT) under the same quantization step-

size q. Note that the NRQ function Rq(q; tmax) describes how does the rate decreases

when the quantization stepsize q increases beyond qmin, under the frame rate tmax; while

the NRT function Rt(t; q) characterizes how does the rate reduces when the frame rate

decreases from tmax, under the same quantization stepsize q. We also call Rt(t; q) the tem-

poral correction factor for rate (TCFR), as it describes how to correct the rate estimate by

RmaxRq(q; tmax) based on the actual temporal resolution. As will be shown later by exper-

imental data, the impact of q and t on the bit rate is actually separable, so that Rt(t; q) can

be represented by a function of t only, denoted by Rt(t), and Rq(q; t) by a function of q

only, denoted by Rq(q).

To see how quantization and frame rate respectively influence the bit rate, we encoded

several test videos using the SVC reference software JSVM [22] and measured the actual bit

rates corresponding to different q and t. Specifically, eight CIF (i.e., 352x288) resolution

video sequences, “akiyo”, “city”, “crew”, “football”, “foreman”, “harbour”, “ice”, “wa-

terfall”, four WVGA (i.e., 832x480) videos, “BasketballDrill”, “BQMall”, “PartyScene”,

“RaceHorses” and four high definition (HD) 720p (i.e., 1280x720) sequences, “mobcal”,

“parkrun”, “shields”, “stockholm” are encoded into 5 temporal layers using dyadic hierar-

chical prediction structure, with frame rates 1.875, 3.75, 7.5, 15, and 30 Hz, respectively,

and each temporal layer contains 5 amplitude layers obtained with quantization parameter

(QP) of 44, 40, 36, 32, 28.1 Those test videos are shown in Figures 2.1, 3.1, 3.2, respec-

tively. We believe that our rate model can be applied widely by evaluating this large test
1Different from the JSVM default configuration utilizing different QPs for different temporal layers, the

same QP is applied to all temporal layers at each amplitude layer.
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Figure 3.3: Normalized rate vs. temporal resolution (NRT) using different quantization

stepsize (q). Points are measured rates, curves are predicted rates by the model of Eq. (3.6).
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video pool with different content feature, resolution, etc. Using the H.264/AVC mapping

between q and QP, q = 2(QP−4)/6, the corresponding quantization stepsizes are 104, 64, 40,

26, 16, respectively.

The bit rates of all layers are collected and normalized by the rate at the highest frame

rate, i.e., tmax = 30 Hz, to find NRT points Rt(t; q) = R(q, t)/R(q, tmax), for all t and

q considered, which are plotted in Figure 3.3. As shown in Figure 3.3, the NRT curves

obtained with different quantization stepsizes overlap with each other, and can be captured

by a single curve quite well. Similarly, the NRQ curves Rq(q; t) = R(q, t)/R(qmin, t) for

different frame rates t are also almost invariant with the frame rate t, as shown in Figure 3.8.

These observations suggest that the effects of q and t on the bit rate are separable, i.e.,

the quantization-induced rate variation is independent of the frame rate and vice verse.

Therefore, the overall rate modeling problem is divided into two parts, one is to devise

an appropriate functional form for Rt(t), so that it can model the measured NRT points

for all q in Figure 3.3 accurately, the other is to derive an appropriate functional form for

Rq(q) that can accurately model the measured NRQ points in Figure 3.8 for t = tmax. Note

that in fact, the Rq(q) model fits the NRQ points obtained at all different t. Generally for

given qmin and tmax, Rmax depends on the video content. Rmax prediction using the content

features will be explored in the following Chapter 5. The derivation of the models Rq(q)

and Rt(t) are explained in details as follows.

3.2.1 Model for Temporal Correction Factor for Rate (TCFR) Rt(t)

As explained earlier, Rt(t) is used to describe the reduction of the normalized bit rate

as the frame rate reduces. Therefore, the desired property for the Rt(t) function is that it

should be 1 at t = tmax and monotonically reduces to 0 at t = 0. Based on the measurement

data in Figure 3.3, we choose a power function, i.e.,

Rt(t) =

(
t

tmax

)b
. (3.6)

Figure 3.3 shows the model curve using this function along with the measured data.

The parameter b is obtained by minimizing the squared error between the modeled rates
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and measured rates. It can be seen that the model fits the measured data points very well.

We also provide the theoretical analysis to prove the power function expression is the right

choice to relate the bit rate in terms of the temporal resolution. More details regarding the

proof of the power function expression for Rt(t) will be unfolded as follows.

k k + Nk +
N

2
k +

N

2l
k + (1 − 2−l)N

GOP-N (group of N-pictures)

T0T0 T1Tl Tl

Frame #:
Layer #:

Figure 3.4: Illustration of the dyadic hierarchical prediction structure used to provide the

temporal scalability in SVC.

Theoretical analysis of Rt(t) using power function approximation

As shown in Figure 3.4, aN -picture GOP is exemplified. Because of the dyadic hierar-

chical prediction structure applied, temporal resolution or frame rate will be doubled when

another temporal refinement is added. Let l be the temporal layer number, and assume the

same quantizer used at different temporal layers, therefore, according to the rate-distortion

theory [33, 34], the distortion at l-th temporal layer can be expressed as

σ2
D,l = σ2

p,l2
−2λRl (3.7)

where Rl is the bit rate per pixel for image at temporal level l, and σ2
p,l is the variance of

temporal predictive error signal. Let σ2
D,l = σ2

D,0 because of the same quantizer applied at

different temporal layers, therefore, bits per pixel at l-the layer can be deducted as follows:

σ2
p,l/σ

2
p,0 = 2−2λ(R0−Rl), (3.8)

log2

(
σ2
p,l/σ

2
p,0

)
= −2λ

(
R0 −Rl

)
, (3.9)

Rl = R0 +
1

2λ
log2

(
σ2
p,l/σ

2
p,0

)
. (3.10)
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For simplicity, we use the σ2
l to replace σ2

p,l to indicate the predictive error signal variance.

Given the l-th temporal layer, the bits per pixel Rl is

Rl = R0 +
1

2λ
log2

(
σ2
l /σ

2
0

)
= R0 +G(σl;λ), (3.11)

where we assume G(σl;λ) = 1
2λ

log2 (σ2
l /σ

2
0) as the bit rate refinement due to the temporal

predictive coding.

As argued above, we have derived the Rl (bits per pixel) at l-th temporal layer as

a function of R0 (bits per pixel) at base layer (i.e., l = 0) and predictive error signal

refinements (i.e., σ2
l /σ

2
0). However, in practice, “bits per second [bps]” is more widely

used to represent the bit rate. Let Rl denote the bit rate (bits per second) up to l-th layer,

given the picture resolution atM and lowest frame rate at t0, we can obtain the bit rate (bits

per second) for successive temporal layers (up to):

TL# 0: R0 = R0Mt0, (3.12)

TL# 1: R1 = R1M(t1 − t0) +R0

= R0Mt1 +G(σ1;λ)M(t1 − t0)

= Mt0
(
2R0 +G(σ1;λ)

)
, (3.13)

TL# 2: R2 = R2M(t2 − t1) +R1

= R0Mt2 +M(t2 − t1)G(σ2;λ) +M(t1 − t0)G(σ1; l)

= Mt0
(
4R0 + 2G(σ2;λ) +G(σ1;λ)

)
, (3.14)

TL# l: Rl = R0Mtl +M
l∑

i=1

(ti − ti−1)G(σi;λ)

= Mt0

(
2lR0 +

l∑
i=1

2i−1G(σi;λ)

)
. (3.15)

Because of the dyadic hierarchical prediction structure applied, we can know that tl =

2l−1t0 with l ≥ 1. To derive the R0, we can let σ2
D,0 = σ2

q , where σ2
q represents the

distortion due to the quantization in video coding, therefore,

σ2
q = ε2σ2

02−2λR0 (3.16)

R0 =
1

2λ
log2

(
ε2σ2

0/σ
2
q

)
(3.17)
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where ε and λ are the signal parameters. By combing Eq. (3.17) and Eq. (3.15), we can see

that the bit rate at l-layer, i.e., Rl, is a function of σ2
l and related signal parameters, such

as λ and ε, etc. Thus, we have recognized that we have to derive the σ2
l explicitly so as to

express the Rl quantitatively.

Transform Coding Entropy
 Coding

Inverse
Transform 

Coding

Predictor

f(k) e(k)

ê(k)+

-

f̂(k)

fp(k)

Memory

Figure 3.5: Illustration of the hybrid predictive and transform coding structure, f(k) is

noted as the original k-th frame video signal, fp(k) means the prediction signal of f(k) and

f̂(k) is the reconstructed k-th frame which will be buffered into memory as reference for

future frame coding.

A hybrid predictive and transform coding structure is illustrated in Figure 3.5. Usually,

the predictive coding can be either spatial intra prediction or temporal inter prediction. Our

focus here is the temporal inter prediction which in practice employes the motion estimation

to find the best match from reference pictures. As shown in Figure 3.4, (k + N)-th frame

uses the backward k-th frame as its reference, and (k + N/2)-th frame uses the backward

k-th frame and forward (k +N) frame to construct the predictor bidirectionally, i.e.,

fp(k +N) = f̂(k) (3.18)

fp(k +N/2) = αf̂(k) + (1− α)f̂(k +N) (3.19)

where α is the weighting factor to show the percentage of the signal from backward ref-

erence. Further prediction signal can be derived similarly. With the focus on the temporal

predictive signal, we simply use the original signal to replace the reconstructed signal as

reference, i.e., f̂(k) ≈ f(k), and f̂(k +N) ≈ f(k +N), etc. Therefore, we can obtain the
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variance of the prediction error signal at each layer step by step as follows:

σ2
0 = E

[
(f(k +N)− f(k))2

]
= 2σ2

(
1− ρN

)
, (3.20)

σ2
1 = E

[
(f(k +N/2)− αf(k)− (1− α)f(k +N))2

]
= 2σ2

(
(α2 + (1− α)2)(1− ρN/2) + α(1− α)(1− ρN/2)2

)
, (3.21)

σ2
l = 2σ2

(
(α2 + (1− α)2)(1− ρN/2l) + α(1− α)(1− ρN/2l)2

)
. (3.22)

where ρ = E [f(k + 1)f(k)] as the correlation between two successive frames [35]. By

assuming the α = 0.5, we can further reach at

σ2
l = 0.5σ2

(
3− 4ρN/2

l

+ (ρN/2
l

)2
)
. (3.23)

By combining Eq. (3.17), Eq. (3.15) and Eq. (3.23),

Rl = Mt0

(
2lR0 +

1

2λ

l∑
i=1

2i−1 log2(σ
2
i /σ

2
0)

)

= Mt0

(
R0 +

l∑
i=1

2i−1 log2

(
ε2σ2

0/σ
2
q

)
+

1

2λ

l∑
i=1

2i−1 log2(σ
2
i /σ

2
0)

)

= Mt0

(
R0 +

1

2λ

l∑
i=1

2i−1 log2

(
ε2σ2

0

σ2
q

σ2
i

σ2
0

))

= Mt0

(
R0 +

1

2λ

l∑
i=1

2i−1 log2

(
ε2σ2

i

σ2
q

))

=
Mt0
2λ

(
log2

(
2ε2σ2(1− ρN)

σ2
q

)
+

l∑
i=1

2i−1 log2

(
ε2σ2(3− 4ρN/2

i
+ (ρN/2

i
)2)

2σ2
q

))
(3.24)

As known for the temporal scalable video, each layer l corresponds to an individual frame

rate t. For the dyadic prediction structure, frame rate t at l-th layer can be expressed as

t =
2l

N
tmax, (3.25)

where N is the GOP length and tmax is the maximum video frame rate (i.e., tmax = 30 Hz

in our work). Therefore, bit rate at l-th layer, i.e., Rl is equivalent to the bit rate at frame

rate t, Rt(t), i.e.,
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Rt(t) =
Mt0
2λ

R0 +

log2( t
tmax

N)∑
i=1

tiN

2tmax

log2

ε2σ2
(

3− 4ρ
tmax
ti + (ρ

tmax
ti )2

)
2σ2

q


 ,

(3.26)

where ti = (2i/N)tmax is the actual video frame rate at i-th temporal layer. Assuming

N = 16, λ = 1, ε = 1, σq = 1, σ = 10 and ρ = 0.95, we can plot the normalized bit

rate for each layer and approximate it using a power function accurately which is shown in

Figure 3.6.
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Figure 3.6: Normalized rate vs. frame rate t (NRT) and its power function approximation,

where Rt(t)
Rmax

=
(

t
tmax

)b
, t is the frame rate corresponding to each layer level l, b = 0.6881

derived by least-square-error fitting.

We also conduct the practical video coding to obtain the different rate points at dif-

ferent temporal layers. For different video sequences, we select the different ρ and λ (we

simply let α = 0.5) to derive the analytical rate points given the base layer bit rate (R0).

Here, we set the R0 using the experimental rate point at base temporal level. To avoid

the impact introduced by fractional interpolation, we set the integer motion compensation

to encode the videos. According to our experiments, we do notice that the fractional mo-

tion compensation affects the value of ρ, λ and α, but rate points are all well matched by
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Figure 3.7: Comparison between experiment rates and analytical rates prediction.

power function approximation. As shown in Figure 3.7, by choosing proper parameters

for different video content, the actual experimental rate points extracted at different tem-

poral level can be well predicted using the analytical rate model (3.26). Therefore, video

bit rate at different temporal resolution can be well captured by a single parameter power

function (3.6).

3.2.2 Model for Normalized Rate vs. Quantization Rq(q)

Analogous to the Rt(t) function, Rq(q) is used to describe the reduction of the nor-

malized bit rate as the quantization stepsize increases at a fixed frame rate. The desired

property for the Rq(q) function is that it should be 1 at q = qmin and monotonically reduces

to 0 as q goes to infinity. Based on the measurement data in Figure 3.8, we choose an

inverse power function, i.e.,

Rq(q) =

(
q

qmin

)−a
. (3.27)

Figure 3.8 shows the model curve using this function along with the measured data. It can

be seen that the model fits the measured data points very well. The parameter a charac-

terizes how fast the bit rate reduces when q increases. Interestingly all four test sequences

have very similar a values. We also tried some other functional forms, including falling

exponential. We found that the inverse power function yields the least fitting error. It is
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noted that the model in (3.27) is consistent with the model proposed by Ding and Liu [28],

i.e., Eq. (3.1), for non-scalable video, where they have found that the parameter a is in the

range of 0-2.
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Figure 3.8: Normalized rate vs. quantization stepsize (NRQ) using different frame rates t.

Points are measured rates, curves are predicted rates by the model of Eq. (3.27).

3.2.3 The Overall Rate Model

Combining Eqs. (3.5), (3.6), and (3.27), we propose the following rate model

R(q, t) = Rmax

(
q

qmin

)−a(
t

tmax

)b
, (3.28)
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where qmin and tmax should be chosen based on the underlying application, and Rmax is the

actual rate when coding a video at qmin and tmax. a and b are the model parameters. The

actual rate data of all test sequences with different combinations of q and t, and the cor-

responding estimated rates via the proposed model (3.28) are illustrated in Figure 3.9, we

note that the model predictions fit very well with the experimental rate points. The model

parameters, a and b, are obtained by minimizing the root mean squared errors (RMSE)

between the measured and predicted rates corresponding to all q and t. Table 3.1 lists the

parameter values. Also listed are the fitting error in terms of relative RMSE/Rmax, and the

Pearson correlation (PC) bewteen measured and predicted rates. We see that the model is

very accurate for all sequences, with very small relative RMSE and very high PC.
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Figure 3.9: Experimental rate points and predicted rates using the rate model (3.28).
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Table 3.1: Parameters for the rate model and model accuracy
seq. a b Rmax [kbps] RMSE/Rmax PC

akiyo 1.213 0.473 163 1.547% 0.9984
city 1.194 0.484 658 1.6738% 0.9977
crew 1.234 0.671 1382 1.2453% 0.9989

football 1.128 0.739 2154 1.5371% 0.9983
foreman 1.149 0.577 805 1.3055% 0.999
harbour 1.469 0.562 2044 1.5327% 0.9981

ice 1.039 0.617 693 1.4428% 0.9986
waterfall 1.294 0.436 463 1.4677% 0.9984

BasketballDrill 1.193 0.616 3517 0.9904% 0.9993
BQMall 1.127 0.576 4054 1.1346% 0.9991

PartyScene 1.366 0.61 5889 0.995% 0.9992
RaceHorses 1.27 0.664 7104 0.9247% 0.9992

mobcal 1.386 0.623 4495 1.1008% 0.999
parkrun 1.503 0.627 22920 1.2282% 0.9986
shields 1.376 0.517 5368 1.1799% 0.9988

stockholm 1.817 0.587 4006 1.4762% 0.9984
ave. 1.30% 0.9987

Note that parameter a characterizes how fast the bit rate reduces when q increases. A

larger a indicates a faster drop rate. Parameter b indicates how fast the rate drops when the

frame rate decreases, with a larger b indicating a faster drop. As expected, the “Football”

sequence, which has higher motion, has a larger b and “Akiyo”, has the least b.

In scalable video adaptation where a full-resolution scalable stream is already gener-

ated, one can easily derive the model parameters from the rates corresponding to several

different (t, q) combinations using least squares fitting. In applications requiring estimation

of model parameters from the original video sequence (e.g. for encoder optimization), it

will be important to characterize the relation between a, b, Rmax and some content features.

Study of the relation between the model parameters and video content will be discussed in

Chapter 5.
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3.3 Discussion and Summary

In this chapter, we propose to separate the impact of frame rate t and quantization

q on the bit rate, and apply two single-parameter power functions to relate the bit rate

in terms of frame rate and quantization stepsize respectively. We have found that using

power function for bit rate versus quantization stepsize is consistent with other works in

the literature. We also provide the theoretical analysis to show the power function is the

right choice to approximate the bit rate in terms of the frame rate. Additionally, we have

conducted simulations using a large range of test videos with different content activities

(such as motion, texture, etc) and resolutions. From the presented results, we see that our

proposed model can predict the actual encoding bit rates very well. Overall, the average PC

is above 0.99, and the average RMSE is less than 1.5% for all test sequences. As shown,

the parameters in rate model, i.e., a, b and Rmax are highly content dependent, which will

be elaborated in Chapter 5.
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Chapter 4

Power Consumption Modeling and Prediction

This chapter presents the power consumption modeling work for scalable video decod-

ing with the focus on joint temporal and amplitude scalability. Specifically, we first develop

the complexity model in terms of the amplitude and temporal resolutions, i.e., quantization

stepsize and frame rate. Then, the power consumption model is devised by mapping the

instant complexity requirements (i.e., cycles per second) to the processor power consump-

tion (i..e, watt). Like what we have done for the perceptual quality and rate models, we also

apply the same “impact separation” methodology to model the normalized complexity in

terms of frame rate and quantization stepsize respectively. In addition to the scalable video

decoding complexity modeling, we also analyze the complexity prediction from frame to

frame or GOP to GOP so as to guide the dynamic voltage and frequency scaling (DVFS)

of the underlying processor. To accurately capture the frame decoding complexity, we de-

compose the video decoder into 6 decoding modules (DM), each of which has an unique

complexity unit (CU) to address basic operations required for such DM. The average cycles

required by a certain CU are either constants or can be predicted easily by a simple linear

predictor. Currently, we propose to embed the number of CUs as the side information to

guide the decoder to do accurate complexity estimation.
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4.1 Motivation

Limited battery power supply is a crucial problem for the popular mobile video appli-

cations. Video decoding usually requires more energy compared with other services, such

as audio playback, texting, etc, which is due to its complicated computational operations

and dramatic data transfer within buffers. The shortage of battery power is more serious

for high-definition (HD) video decoding using the advanced video coding standard, such

as H.264/AVC and its scalable extensions [1,7]. Generally, there are two sources of energy

dissipation during video decoding [36]. One is the memory transfer. The other is CPU cy-

cles. Both are power consuming. We will focus on the computational complexity induced

power consumption and defer the off-chip memory complexity related power dissipation

investigation for our future study.

It is essential and necessary to know the power consumption of the scalable video

decoding so as to propose power efficient schemes. Moreover, power consumption can be

expressed as a function of the required video decoding complexity (in terms of cycles per

second) [37], i.e.,

P = Φ(C), (4.1)

where P and C describe the power consumption and computational complexity for video

decoding respectively, and Φ() abstracts the relationship between power consumption and

complexity which should be fixed for a typical hardware architecture [37]. Therefore, it is

necessary to have an accurate complexity model for scalable video decoding which can be

used to derive the power consumption model through (4.1).

4.2 Scalable Video Decoding

We choose the SVC to provide the scalable video with the focus on the joint tem-

poral and amplitude scalability. The temporal scalability is provided by the hierarchical

B-pictures [38]. Our work employes the dyadic hierarchical prediction structure, where the

temporal frame rate t is doubled when the temporal resolution is refined to the next higher
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level. An 8-picture GOP is exemplified in Figure 1.2(a) and the possible frame rates are 30,

15, 7.5, 3.75Hz respectively assuming the maximum frame rate is 30 Hz. Medium grain

scalability (MGS) is chosen to provide the amplitude scalability [6, 7]. To avoid the de-

coder drift, we have constrained the motion estimation and compensation at current layer.

To well exploit the inter-layer correlation, we have enabled all inter-layer predictions, such

as inter-layer intra prediction, inter-layer motion/mode prediction as well as the inter-layer

residual prediction to create the amplitude scalable video.

Entropy
Decoding

Intra
Pred.

Motion
Comp. Deblocking

Complexity Profiler

Dequant.
IDCT

Side Info.
Preparation

Ref. Info.
Update

Figure 4.1: Scalable video decoding with single loop motion compensation, “reference

information update” module is used to update the inter-layer prediction data structure.

To derive an accurate SVC decoding complexity model, we have to understand the

steps for the scalable video decoding in details. Like what we have done in [39], we ignore

the computational cycles required by high-level syntax parsing, such as parameter sets and

slice header, and focus on the macroblock-level syntax parsing and decoding. According

to our experiments presented in [39], the cycles for high-level syntax parsing are much

less than 0.01% in comparison to the overall SVC decoding, which means that macroblock

level parsing and decoding dominate the computing resource (and so as the energy).

As known, hierarchical B-picture is used to provide the temporal scalability, which

only has the different high-level signaling compared with conventional B-picture in H.264/AVC.

Therefore, the temporal enhancement decoding is similar as normal B-picture decoding.

For the amplitude scalable video, in order to reduce the decoder complexity, single loop

motion-compensation is required along with the SVC standardization [7]. Even with lay-

ered structure to provide the amplitude scalability, SVC decoder has the comparable de-

coder complexity to the H.264/AVC single layer decoder because of the single loop decod-

ing design [5].
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Table 4.1: SVC decoder modules
module functionality

entropy decoding
MB overhead parsing and quantized

transform coefficients (QTC) decoding

side info. preparation
side information initialization, such as

mode, motion updates for surrounding blocks
dequant. and IDCT MB dequantization and inverse transform

ref. info. update
inter-layer prediction update, such as

inter-layer transform coefficient refinements,
inter-layer motion, mode, residual updates, etc

intra prediction MB intra prediction

motion compensation
reference signal fetch, interpolation and

block reconstruction

deblocking
boundary strength calculation, edge filtering

and filter buffer update

Instead of using the inefficient SVC reference software [22], we have developed our

high modularized macroblock (MB) based SVC decoder targeting for the mobile hand-

helds. There are seven modules defined in our SVC decoder – entropy decoding, side

information preparation, dequantization and inverse transform, reference information up-

date, intra prediction, motion compensation and deblocking as illustrated in Figure 4.1. The

bitstream is first fed into entropy decoding to obtain interpretable symbols for the following

steps, such as side information (e.g., macroblock type, intra prediction modes, reference in-

dex, motion vector difference, etc) and quantized transform coefficients; the decoder then

uses the parsed information to initialize necessary decoding data structures, which is so-

called side information preparation. The block types, reference pictures, prediction modes,

motion vectors, will be computed and filled in corresponding data structures for further us-

age. By this step, we let other decoding modules focus on their particular jobs, and this

job isolation can make data preparation (for prediction purpose) and decoding more inde-

pendent without interference. The dequantization and inverse transform are then called to

convert quantized transform coefficients into block residuals. Before reaching the target

layer, the lower layer information, such as residuals, transform coefficients, intra recon-

structed pixels, will be updated and added up in reference information update module.
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Because of the single loop decoding design, the decoding loop closes at the target layer

only. At the target layer, decoded residuals are summed with predicted samples, from ei-

ther intra prediction or motion compensation to form reconstructed signal. Finally, the

deblocking filter is applied to remove blocky artifacts introduced by block based hybrid

transform coding structure.

Usually, there is another module called MB writeout which is used to write out the

reconstructed blocks. In our decoder implementation, we use the direct memory access

(DMA) to do the MB write-out as well as the reference block fetch for motion compen-

sation. Nowadays, DMA is a common feature for modern microprocessor, which runs for

efficient data exchange between memory buffers and does not require CPU cycles when

doing data transferring. Therefore, we don’t include this module into our computational

complexity modeling 1. Table 4.1 summaries the decoding modules and their functionality.

Each module can be well optimized using platform dependent instructions, such as MMX,

SSE at x386 [40] and NEON at ARM-cortex architectures [41]. Because of the “single

loop” design, compared with single layer H.264/AVC decoding, amplitude scalable video

decoding just requires extra inter-layer references updates, such as transform coefficients,

mode, motion and residual refinements, etc. For spatial scalability, additional upsampling

and inter-layer deblocking operations are required, which is out of current work scope and

deferred as our future research.

4.3 Complexity Modeling for Scalable Video Decoding

To model the complexity for SVC bitstream decoding, we implement the complexity

profiler to collect the frame decoding complexity as shown in Figure 4.1. The complexity

profiler can be supported by various chips, such as Intel Pentium mobile (Intel PM) [42] and

ARM Cortex A8 (ARM) [43]. A specific instruction set 2 is called to record the processor

1On the other hand, we have emulated the MB writeout and reference block fetch simply using the memory
operation functions provided by the standard C library, which means that the memory operation is part of CPU
computing as well. Results show that such memory data exchange is quite constant, which doesn’t affect our
research results.

2Different platforms will use different instruction sets to write/read the processor state in specific registers.
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state just before and after desired module, and the difference is the consumed computing cy-

cles. The number of computational cycles spent in complexity profiling is less than 0.001%

of the cycle number desired by the regular decoding module according to our measurement

data. Hence it is negligible. The details about how to implement the complexity profiler

for the Intel and ARM platforms can be found in [44]. For the SVC decoding complexity

modeling, we measure the decoding complexity on the ARM CPU [42]. For the follow-

ing complexity prediction for H.264/AVC decoding, we measure the complexity for both

Intel PM and ARM CPUs [43]. Like bit rate points for each temporal and amplitude layer

combination, we can obtain the complexity requirements (i.e., in terms of mega cycles per

second) for each layer as well.

The same “impact separation” methodology used for quality and rate models is applied

here as well, i.e., we focus on the impact of frame rate t on the complexity C, under the

same quantization stepsize q; while characterizing the impact of q on the complexity, when

the video is coded at a fixed frame rate. Towards this goal, the complexity model C(q, t)

can be written as

C(q, t) = CmaxCt(t; qmin)Cq(q; t), (4.2)

where Cmax is the maximum complexity demanded by decoding bitstreams coded at max-

imum frame rate and minimum quantization stepsize, i.e.,

Cmax = C(qmin, tmax), (4.3)

Ct(t; qmin) =
C(t, qmin)

C(tmax, qmin)

is the normalized complexity versus temporal resolution (NCT) under the minimum quan-

tization stepsize qmin and

Cq(q; t) =
C(t, q)

C(t, qmin)

is the normalized complexity versus quantization (NCQ) at any given any frame rate t. Note

that NCQ functionCq(q; t) tells how does complexity decreases as the quantization stepsize
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increases beyond qmin, given any frame rate t; while NCT function Ct(t; qmin) characterizes

how does complexity reduces as the frame rate decreases from tmax, under the minimum

quantization stepsize qmin. As will shown later by experimental data, we have found that

NCQ function Cq(q; t) can be modeled by a function of q with the model parameter as a

function of the frame rate t, denoted by Cq(q; s(t)) with s(t) as the frame rate dependent

parameter, and NCT function Ct(t; q) is independent of the q, denoted by Ct(t).

To see how complexity relates the temporal and amplitude resolution, we decode the

video bitstreams created using the same test video pool for rate model, including videos

with different content activities (such as texture, motion, contrast, etc) and different reso-

lution (i.e., CIF, WVGA and 720p). The test bitstreams are generated with five temporal

(i.e., corresponding to the frame rates at 1.875, 3.75, 7.5, 15, 30 Hz) and five amplitude

layers (i.e., corresponding to the QPs at 44, 40, 36, 32, 28), therefore, we can have 25

extracted bitstreams corresponding to the different combinations of the temporal and am-

plitude resolutions. Each extracted substream is decoded to collect the complexity. The

cycles of all layers are normalized by the cycle number at the highest frame rate to find

NCT points, which are plotted in Figure 4.2. As shown, the NCT points overlap for differ-

ent quantization stepsize and can be captured by a single curve quite well. Similarly, the

NCQ curves for different frame rate are plotted in Figuer 4.3. Unlike NCT curves, NCQ

curves are frame rate dependent. However, we have found that the NCQ curves can be also

predicted accurately by a function of quantization stepsize with a frame rate dependent pa-

rameter. Therefore, the overall complexity modeling work is divided into two parts, one

is to develop an appropriate functional form for Ct(t), so that it can model the measured

NCT points accurately, the other is to devise a proper function for Cq(q; s(t)) to model the

measured NCQ points accurately for every frame rate t. The derivation of respective Ct(t)

and Cq(q; s(t)) are explained as follows.

4.3.1 Model for Normalized Complexity vs. Temporal ResolutionCt(t)

As suggested earlier, Ct(t) is used to describe the reduction of the normalized com-

plexity as the frame rate reduces. Therefore, the desired property for the Ct(t) function
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is that it should be 1 at t = tmax and monotonically reduces to 0 at t = 0. Based on the

measurement data in Figure 4.2, we choose a linear function to model the NCT curves, i.e.,

Ct(t) =
t

tmax

, (4.4)

where tmax is a known variable (e.g., tmax = 30 Hz in our work). We do notice that a

power function, i.e., (t/tmax)
ϕ with ϕ around 1 (e.g., ϕ = 1.02 for “stockholm” video),

can provide better approximation. However, the reduction of the prediction error is limited.

Thus, we choose the simple linear function to model the NCT curves.

Figure 4.2 shows the model curve using (4.4) along with the measured data. It can be

seen that the model fits the measured data points very well.

4.3.2 Model for Normalized Complexity vs. Quantization Cq(q; s(t))

The same to the Ct(t) function, Cq(q; s(t)) is applied to describe the reduction of

the normalized complexity as the quantization stepsize increases (i.e., corresponding to

decoding less amplitude layers) at any given frame rate t. The desired property for the

Cq(q; s(t)) function is that it should be 1 at q = qmin and monotonically reduces to 0 as

q goes to infinity. Based on the measured data in Figure 4.3, we choose an inverse power

function, i.e.,

Cq(q; s(t)) =

(
q

qmin

)−s(t)
, s(t) = g1

(
t

tmax

)−g2
, (4.5)

where s(t) is the frame rate dependent parameter which can be captured by another two-

parameter power function as well. Here, g1 and g2 are content dependent parameters.

Figure 4.3 shows the model curve with frame rate sensitive parameter (4.5) along with

the measured data. In addition, s(t) can be well fitted by choosing proper g1 and g2 for

different sequences, as shown in Figure 4.4.
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Figure 4.2: Normalized complexity versus temporal resolution (NCT) using different quan-

tization stepsize q. Points are measured complexity, curves are predicted complexity by the

model of (4.4).
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Figure 4.3: Normalized complexity versus quantization (NCQ) using different frame rate

q. Points are measured complexity, curves are predicted complexity by the model of (4.5).

4.3.3 The Overall Complexity Model

Combining Eq. (4.3), Eq. (4.4) and Eq. (4.5), we can obtain the overall complexity

model as

C(q, t) = Cmax

(
q

qmin

)−s(t)(
t

tmax

)
, (4.6)

where

s(t) = g1

(
t

tmax

)−g2
,

with g1 and g2 as content dependent parameters for overall complexity model. The actual

complexity data of all test sequences with different combinations of q and t, and the cor-

responding estimated cycles via the proposed model (4.6) are illustrated in Figure 4.5, we

note that the model predictions fit very well with the experimental complexity points. The

model parameters, g1 and g2 are obtained by minimizing the mean squared errors (MSE)

between the measured and predicted complexity. Table 4.2 lists the parameter values, fitting

errors in terms of the relative RMSE, and the Pearson correlation (PC) between measured
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Figure 4.4: Power function approximation for s(t) where g1 and g2 are the content depen-

dent parameters.
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and predicted complexity. We see that the model is very accurate for all sequences, with

very small relative RMSE and very high PC.
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Figure 4.5: Comparison between measured complexity and predicted complexity using the

overall complexity model (4.6), prediction error is presented using both Pearson correlation

(PC) coefficients and RMSE normalized by the Cmax.

4.3.4 Power Consumption Model for ARM Processor

As discussed above, we can use the Eq. (4.1) to relate the processor power consump-

tion in terms of the complexity workload requirements. Currently, popular chips, such as

Intel Pentium mobile [42] and ARM [43], which are widely deployed on mobile devices,

can support dynamic voltage/frequency scaling (DVFS) according to the processor’s instan-

taneous workload and temperature, etc, or by user defined manner, so as to save energy [45].
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Table 4.2: Parameters for complexity model and model accuracy
seq. g1 g2 Cmax [mcps] RMSE/Cmax PC

akiyo 0.007 1.122 443 2.21% 0.9997
city 0.056 0.571 487 1.19% 0.9997
crew 0.134 0.027 512 0.68% 0.9993

football 0.122 0.097 530 0.98% 0.9997
foreman 0.066 0.396 478 1.08% 0.9997
harbour 0.221 0.027 600 0.94% 0.9984

ice 0.067 0.263 471 1.56% 0.9996
waterfall 0.048 0.636 453 1.48% 0.9994
BQMall 0.051 0.402 1858 0.92% 0.9999

RaceHorses 0.115 0.083 2064 0.83% 0.9995
BasketballDrill 0.037 0.671 1781 1.21% 0.9999

PartyScene 0.076 0.409 2034 1.27% 0.9992
mobcal 0.029 0.812 4535 1.97% 0.9995
parkrun 0.105 0.347 5413 1.74% 0.9975
shields 0.036 0.724 4407 1.33% 0.9996

stockholm 0.021 1.024 4201 2.09% 0.9993
ave. 2.15% 0.9994

Table 4.3: Supported Dynamic Voltages and Clock Rates of ARM Processor on TI

OMAP35x EVM
OPP 5 4 3 2 1

Voltage (volt) 1.35 1.27 1.20 1.00 0.95
Max. Freq. (MHz) 600 550 500 250 125
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Typically, for a DVFS-capable processor, there are four kinds of power consumption, i.e.,

Ptot = Pdyn + Pstc + Pdp + Pon, (4.7)

where

Pdyn = KeffV
2
ddf (4.8)

is the dynamic power with Keff as the effective circuit capacitance, Vdd is the supportable

voltage, and f is the clock frequency. Pstc is the static power due to the leakage sources,

such as subthreshold leakage (Isub), the reverse bias junction current (Ij) and gate leakage

current (Ig), etc and it can be written as

Pstc = Lg(VddIsub + |Vbs|Ij + VddIg),

Isub = K3e
K4VddeK5Vbs , Ig = K6e

K7Vdd , (4.9)

where Lg, Vbs, Ij , K3, K4, K5, K6 andK7 are constants [46,47]. The leakage power cannot

be neglected when the circuit feature sizes become smaller (below 90 nanometers) [46]. In

particular, for many processors deployed in popular mobile handhelds, which are fabricated

using 70nm or even smaller technology node, the static power cannot be ignored. Pon is

a constant, which always exists once the processor is turned on. Pdp is the short circuit

power, i.e., Pdp = VddIdp where Idp is the average direct path current. Typically, Vdd is

related to f by

Vdd = ωfφ + θ, (4.10)

where parameters ω, φ and θ are approximated by fitting the supportable pairs of fk and

Vk by the underlying platform. Hence we can approximate the total power as a convex

function of the voltage 3, noted as

Ptot(Vdd) = p1V
γ1
dd + p2Vdde

γ2Vdd + p3, (4.11)

where 1 < γ1 < 2, γ2 > 0, and pi, i = 1, 2, 3 are constants for a specified processor. For

simplicity, we can use P (Vdd) instead of the Ptot(Vdd).
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ARM processor, parameters are obtained

via least square error fitting.

Table 4.4: Parameters for ARM power consumption model
ω φ θ p1 p2 p3 γ1 γ2

6× 10−16 1.69 0.91 0.145 1.12× 10−5 0.12 1.44 7.05

Specifically, we have derived the analytical power consumption for the ARM pro-

cessor deployed on our TI OMAP35x EVM [48] [39]. The ARM processor on the TI

OMAP35x board only supports discrete set of voltage and frequency levels, as shown in

Table 4.3 [48]. Each pair of voltage and frequency is associated with a CPU operating point

(OPP) state. To derive the analytical power consumption model for ARM processor, we fit

the voltages and clock rates in Table 4.3 and have found that the voltage and frequency are

related by (4.10) with φ = 1.69, ω = 6 × 10−16 and θ = 0.91 as depicted in Figure 4.6.

To evaluated the relation between power and the voltage, we collect the instant power and

its corresponding voltage (by choosing a certain OPP), plot them as scatter points in Figure

4.7, and find its best fit using the power model in (4.11). Because of the unique mapping

between supply voltage and its clock rate for the ARM processor as shown in Table 4.3

and Figure 4.6, we can derive the power consumption model for ARM as a function of the

clock rate f , i.e., by combing Eqs. (4.11) and (4.10), we can reach at

P (f) = p1
(
ωfφ + θ

)γ1
+ p2

(
ωfφ + θ

)
eγ2(ωf

φ+θ) + p3, (4.12)

3Here, we merge the Pdyn and Pdp together and estimate them via the first item in Eq. (4.11).
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where the parameters are listed in Table 4.4. Furthermore, we have found that a simplified

power function can well approximate the power consumption with respect to the clock rate

for the ARM processor, as shown in Figure 4.8. Therefore, Eq. (4.12) can be rewritten as

P (f) = κ1f
ϕ + κ2, (4.13)

where κ1 = 3.06×10−10, ϕ = 3.19, κ2 = 0.26 and f is the clock rate in mega hertz (MHz).

As known, the parameters are fixed for a typical platform.
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Figure 4.8: Simple power function approximation for power consumption model in terms

of the clock rate f [MHz], where κ1 = 3.06× 10−10, ϕ = 3.19, κ2 = 0.26

In previous Section 4.3.3, we have developed the complexity model in terms of the

frame rate and quantization stepsize, which indicates how many cycles per second are re-

quired to conduct the decoding for a certain combination of the temporal and amplitude

resolution. In other words, cycles per second means the exact clock rate required in Hz.

Hence, we can map the complexity to the processor frequency directly, f = C(q, t). Comb-

ing Eqs. (4.1), (4.6) and (4.13), we can obtain the power consumption model for scalable

video decoding on ARM processor as

P (q, t) = Φ(C(q, t)) = κ1C(q, t)ϕ + κ2. (4.14)
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4.4 Complexity Prediction for H.264/AVC Decoding

In previous sections, we have presented the complexity model for scalable video

decoding with focus on the joint temporal and amplitude scalability, and applied a two-

parameter function to model the impact of complexity with respect to the frame rate and

quantization stepsize. Moreover, we extend the power consumption model for scalable

video decoding on ARM processor as a function of the frame rate and quantization step-

size, i.e., P (q, t), by combing the power consumption model of processor clock rate (4.13)

and SVC decoding complexity model (4.6). As known, the proposed power consumption

model of scalable video decoding can be applied to guide “smart” SVC adaption according

to the receiver battery status. After deciding the exact layers to extract, another problem

arises is whether we can further reduce the power consumption when conducting the video

decoding so as to save more power. One decent solution to achieve this is adapting the

the voltage and frequency of the underlying processor according to the instant video de-

coding complexity workload, and this dynamic voltage/frequency scaling (DVFS) function

is supported by various chips and microprocessors, such as Intel Pentium mobile [42] and

ARM cortex A8 [43]. In devices using dynamic voltage and frequency scaling (DVFS),

being able to accurately predict the complexity of successive decoding intervals is critical

to reduce the power consumption [37].

In this section, we will focus on the computational complexity modeling of the H.264

video decoding and defer the off-chip memory complexity investigation for our future

study. Specifically, we extend our prior work [49] beyond the entropy decoding complex-

ity and consider all modules involved in H.264/AVC video decoding, including entropy

decoding, side information preparation, dequantization and inverse transform, intra pre-

diction, motion compensation, and deblocking. First of all, we define these modules as

decoding modules (DMs), and denote their complexity (in terms of clock cycles) over a

chosen time interval by CDM. The proposed model is applicable to any time interval, but the

following discussion will assume an interval is one video frame. Furthermore, we abstract

the basic, common operations needed by each DM as its complexity unit (CU), so that CDM
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is the product of the average complexity of one CU over one frame, kCU and the number

of CUs required by this DM over this frame, NCU. For example, the CU for the entropy

decoding DM is the operation of decoding one bit, and the complexity of this DM, Cvld,

is the average complexity of decoding one bit, kbit, times the number of bits in a frame,

NCU = nbit. That is Cvld = kbitnbit. Among several possible ways to define the CU for

a DM, we choose the definition that makes the defined CU either fairly constant or ac-

curately predictable by a simple linear predictor. Note that the CU complexity may vary

from frame to frame because the corresponding CU operations change due to the adaptive

coding tools employed in the H.264/AVC. For example, in H.264/AVC, adaptive in-loop

deblocking filter is used to remove block artifacts, which applies different filters accord-

ing to the information of adjacent blocks, such as coding mode, quantization parameters,

motion vector difference etc. Basically, a strong filter is employed for intra coded blocks,

while a normal filter or no filter for inter coded blocks. The percentage of intra and inter

coded block is highly content dependent, thus the average cycles required by the deblock-

ing for one block, kdblk, would vary largely from frame to frame. Also, CU complexity

varies among different hardware platforms. Therefore, we also explore how to predict the

average complexity of a CU for a new frame, from the measured CU complexity in the

previous frames. Meanwhile, we assume that the number of CUs, NCU, can be embedded

into the bitstream to enable the decoder to conduct complexity prediction.

We measure the decoding complexity on both the Intel Pentium mobile CPU [42] (as

an example of a general purpose architecture) and ARM Cortex A8 processor [43] (as an

example of embedded architecture) to derive and validate our proposed complexity model.

In the following Chapter 6, we make use of our complexity model to adapt voltage and

clock rate on these platforms to evaluate the achievable energy saving on mobile handhelds,

and further measure the actual power consumption on the TI OMAP35x EVM board [48],

to validate our analytical results.
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Figure 4.9: Illustration of H.264/AVC Decoder Decomposition.

4.4.1 H.264/AVC Decoder Abstraction

The H.264/AVC decoder can be decomposed into the following basic decoding mod-

ules (DMs): entropy decoding, side information preparation, dequantization and IDCT,

intra prediction, motion compensation and deblocking as shown in Figure 4.9. Compared

with the SVC decoder decomposition in Figure 4.1, there is an additional module called

“reference information update” which is used to update the inter-layer reference informa-

tion, such as mode, motion, intra reconstructed pixels and residuals, etc. For H.264/AVC

single layer decoding, this additional module is not required. In addition to the collect

the overall complexity for each layer earlier, we embed the complexity profiler in the

H.264/AVC decoder to collect the cycles for each DM. As explained earlier, a H.264/AVC

decoder can be decomposed into 6 DMs: entropy decoding (vld), side information prepa-

ration (sip), dequantization and inverse transform (itrans), intra prediction (intra), mo-

tion compensation (mcp) and deblocking (dblk). Each DM requires both memory transfer

and computation by the CPU. For instance, the temporal reference block must be fetched

into the processor to form the reconstructed signal of the current block. Because the mo-

bile devices have limited on-chip memory space, we must store the temporal reference

frame(s) into off-chip memory, and fetch the required block as needed. These on-chip and

off-chip memory transfer operations can be done via the direct memory access (DMA) rou-

tine, which is a feature of modern computers and microprocessors. Using the DMA, the

memory data exchange can be performed independently without demanding CPU cycles.

In our work, the memory data transfer will be operated by the DMA without consuming

the processor resource. For example, the MCP can be sliced into three major parts: refer-
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ence block fetch, interpolation and block reconstruction (e.g., sum and clip). The reference

block fetch is conducted by the DMA. Only interpolation and block reconstruction are con-

ducted by the processor, and they contribute to the computational complexity. Furthermore,

instead of analyzing the video decoding complexity at macroblock level, we will discuss

the complexity of the H.264/AVC video decoding at frame level, and further GOP level.

Table 4.5: Essential DM and its CU in the H.264/AVC decoder
DM Functionality CU
vld side info. parsing and quantized bit parsing

transform coefficients decoding
itrans inverse transform module MB dequant. & IDCT
intra inverse intra prediction MB intra pred.
mcp motion-compensation Half-pel interpolation
dblk deblocking filter α-point filtering
sip side info. data structure init. MB data structure init.

For each DM, we define a unique complexity unit (CU) to abstract required fundamen-

tal operations. For example, for the entropy decoding DM, the CU is the process involved

in decoding one bit, whereas for the itrans DM, the CU is the process involved in de-

quantization and inverse transform for one macroblock (MB). Note that a CU includes all

essential operations needed for a basic processing unit (a bit for vld, a MB for itrans) in

a DM, instead of the basic arithmetic or logic Ops, such as add, shift, etc. Table 4.5

summarizes each DM and its corresponding CU.

Let CDM denote the required computation cycles to decode one frame by a particular

DM, then the overall frame decoding complexity is the sum of the individual complex-

ity required by each DM. As shown in Section 4.4.2, the complexity of each DM can be

written as the product of kCU - the complexity of one CU, and NCU - the number of CUs

required for decoding each frame. We further explain the CU identified for each DM and

the corresponding kCU and NCU in Section 4.4.2.

We choose to focus on two different platforms analyzing the decoding complexity:

the IBM ThinkPad T42 using the Intel PM processor and TI OMAP35x EVM board using

the ARM processor. Table 4.6 provides the configuration of these two hardware platforms.
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Table 4.6: Experiment Environment
item General-purpose System Embedded System
Platform ThinkPad T42 TI OMAP35x EVM
Processor Intel PM 1.6GHz ARM Cortex A8 600MHz
OS Ubuntu 8.04 Arago Embedded Linux
RAM 1G 256M

The former is representative of laptops using a low-power general purpose microprocessor,

while the latter is typical of SmartPhones or other handheld devices. We developed our own

H.264/AVC decoding software that can run on these two platforms efficiently. Targeting for

low complexity mobile applications, we have not considered CABAC (Context-Adaptive

Binary Arithmetic Coding), interlace coding, 8x8 transform, quantization matrix and error

resilient tools (e.g., flexible macroblock order, arbitrary slice order, redundant slice, data

partition, long term reference, etc). The baseline, main, and high profiles are supported but

without the tools listed above, while supportable levels are constrained by the underlying

hardware capability. For example, the decoder can decode bitstreams smoothly up to level

3 on our OMAP platform, and up to level 3.2 using Intel PM based ThinkPad T42 4. Our

decoder operates at the macroblock level [50], given the limited on-chip memory on mobile

processors, following the block diagram shown in Figure 4.9. In our implementation, we

use DMA to write back reconstructed samples from on-chip buffer to off-chip memory

and fetch a large chunk of data into on-chip memory for motion compensation, e.g., 3

macroblock lines, which means if the motion vector (MV) of current MB is within this

range, there is no need to do on-the-fly reference block fetching. It is possible that the

MV is out of this range (i.e., exceeding 3 macroblock lines) and need the interrupt of

CPU to fetch such reference block. However, according to our simulations, such events

happen with a very small probability (less than 1% in our experiments). Please note that

our decoder implementation represents a typical implementation for embedded systems

and hence the complexity model derived for our decoder is generally applicable.

In order to validate our complexity model, we have created test bitstreams using stan-

4The decoder will crash with insufficient memory when we try to decode bitstreams at higher levels for
OMAP board, while running very slow for Intel PM platform.
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Table 4.7: Supported Encoder Features
Item Description
GOP length 8-frame
reference number 1
slice map 1 slice per frame
entropy coding CAVLC, Exp-Golomb, Fix-length
transform 4× 4
intra prediction intra4x4, intra16x16
inter prediction variable-block size from 16x16 to 4x4
interpolation up to 1/4-pixel
deblocking enabled

dard test sequences, e.g., Harbor, Soccer, Ice, News, all at CIF (i.e., 352× 288) resolution.

These four video sequences have different content activities, in terms of texture, motion ac-

tivities, etc. A large quantization parameter (QP) range, from 10 to 44 in increments of 2, is

chosen to create the test bitstreams. Particularly, we enable the dyadic hierarchical-B [51]

prediction structure in the encoder, thus the test bitstreams inherently support the tempo-

ral scalability [6]. The reference software of scalable extension of the H.264/AVC video

coding standard (SVC) 5, i.e., JSVM [22], is used for generating the H.264/AVC compli-

ant test bitstreams. Note that these bitstreams are with the temporal scalable functionality

enabled. The adopted encoder setting is described in Table 4.7. These created bitstreams

are decoded on both Intel PM and ARM featured platforms and the complexity per DM as

well as the total complexity per frame are measured.

4.4.2 Frame-level H.264/AVC Decoding Complexity Modeling

In this section, we identify the CU for each DM and further consider how to predict

the CU complexity from frame to frame.

5Compared with the H.264/AVC reference software, i.e., JM, JSVM outputs the same encoded bitstream
using the same encoding configuration, but with slight difference in high level header signaling, which doesn’t
affect our work.
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Figure 4.10: Variation of kbit when decoding “Harbour” at QP=28 on the Intel PM plat-

form. (a) In the frame decoding order over the entire sequence; (b) In the frame decoding

order over different temporal layers.

Entropy Decoding

Intuitively, we model the entropy decoding complexity as the product of the bit de-

coding complexity and the number of bits involved, i.e.,

Cvld = kbit · nbit, (4.15)

where kbit is the average cycles required for decoding one bit, and nbit is the number

of bits for a given frame. Note that nbit can be exactly obtained after de-packetizing

the H.264/AVC NAL (network abstraction layer) unit [1]. The total bits in H.264/AVC

bitstream are mainly spent for side information, and Quantized Transform Coefficients

(QTC). Generally, the average cycles required by bit parsing for the side information and

QTC are different [49]. Because the percentage of bits spent on each part varies with the

video content and the bit rate, the average cycles required per bit parsing kbit cannot be

approximated well by a constant. As exemplified in Figure 4.10(a) for “Harbour” at QP 28,

kbit varies largely in decoding order. However, after decomposing frames into different

temporal layers, we have found that kbit changes more slowly from frame to frame in the

same temporal layer, as shown in Figure 4.10(b). Thus we can update kbit for the current

frame using the actual bits and the consumed cycles by entropy decoding for the previous

decoded frame in the same layer. Although only data for “Harbour” at QP 28 for Intel PM
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platform are presented here, the data for all other sequences at different QPs are similar

according to the measured complexity data.

The estimated and actual cycles of all test bitstreams are plotted in Figure 4.11 for

both Intel and ARM platform. From this figure, it is noted that the actual complexity can

be well estimated by Eq. (4.15) and the proposed method for predicting kbit.
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Figure 4.11: Illustration of entropy decoding complexity estimation using Eq. (4.15), kbit

is predicted using complexity data from the same layer nearest decoded frame. The actual

and estimated Cvld of four test videos at all QPs are presented.

Side Information Preparation

After parsing the overhead information in the bitstream, macroblock type, intra pre-

diction mode, sub-macroblock type, reference index, motion vectors, etc, are obtained

and stored in proper data structure for future reference. We further include macroblock

sum/clip, deblocking boundary strength calculation into SIP DM. Let kMBsip represent the

average clock cycles for side information preparation per macroblock, and nMB the number

of macroblock per frame. The total complexity for SIP can be written as

Csip = kMBsip · nMB, (4.16)

Generally, kMBsip depends on the frame type. For example, in intra mode, we don’t need

to fill the motion vector and reference index structures. For uni-directional prediction in

P-frame, we only need to fill the forward prediction related data structure, whereas for bi-

directional prediction in B-frame, we need to fill both forward and backward related data
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structures. We have found from measured complexity data that kMBsip is almost constant

in the same temporal layer, but different among temporal layers. Thus, we have predicted

kMBsip from prior decoded frame in the same layer as with entropy decoding.

Dequantization and IDCT

Only 4-by-4 integer transform and scalar de-quantization are considered in our cur-

rent work 6. We have unified the dequantization and IDCT as a single decoding module,

i.e., “itrans”. In H.264/AVC, the dequantization and IDCT can be skipped for zero mac-

roblocks, and only operate at non-zero macroblocks. We have found that the computa-

tion complexity of macroblock dequantization and IDCT is fairly constant for all non-zero

blocks. Therefore, given a frame, the complexity consumed by itrans can be written as,

Citrans = kMBitrans · nnzMB (4.17)

where nnzMB is the number of non-zero macroblock per picture. kMBitrans describes the

complexity of macroblock de-quantization and IDCT, and is a constant.
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Figure 4.12: Complexity consumption (in cycles) dissipated in itrans DM against the non-

zero MBs for all CIF resolution test videos. Parameters are obtained via Least-square-error

fitting.

Figure 4.12 shows the measured complexity for the itrans DM for Intel and ARM

platforms, respectively. It is shown that for a given implementation platform, kMBitrans is

indeed a constant independent of the sequence content.
6In H.264/AVC, there is a second stage transform, i.e., Hadamard transform, applied on the luma DC (e.g.,

for intra16x16 mode), and chroma DC coefficients. For simplicity, we merge these hadamard transforms into
4-by-4 integer transform. Also, we defer the adaptive transform (with 8-by-8) for our future work.
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Intra Prediction

In intra prediction module, adaptive 4 × 4 and 16 × 16 block-based predictions are

used for luma component, and 8×8 block based prediction is used for chroma. There are 4

prediction modes of intra16x16, 9 prediction modes of intra4x4 for luma component, and

4 prediction modes of intraCr for chroma components. We have found from experimental

data that there is no need to differentiate among different intra prediction types. Rather, we

can just model the total complexity due to intra prediction by

Cintra = kintraMB · nintraMB, (4.18)

where kintraMB denotes the average complexity of performing intra-prediction for one intra-

coded MB (averaged over all intra-prediction types), and nintraMB is the the number of intra

macroblock per frame.
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Figure 4.13: Intra prediction complexity Cintra against the corresponding number of intra

MB nintraMB. Intra prediction complexity data from four different test videos at different

QPs are presented, and can be well fitted by Eq. (4.18).

We collect and plot the number of intra macroblock and its corresponding intra pre-

diction complexity for each frame from all test videos decoding data in Figure 4.13. It is

shown that the model (4.18) works pretty well for different video content at different quan-

tization levels (i.e., compressed via different QP), and parameter kintraMB is constant for a

specific implementation on a target platform.
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Figure 4.14: Modularized motion-compensation in H.264/AVC

Motion Compensation

The overall motion compensation module is divided into three parts: reference block

fetching, interpolation and block reconstruction (sample sum and clip), as depicted in Fig-

ure 4.14. As mentioned above, the reference block fetching is conducted by DMA which

does not consume CPU cycles. Only interpolation and block reconstruction are discussed

in current section. Note that, on block reconstruction step, the compensated signal and

residual block are added prior to being fed into deblocking filter, and its computational

complexity can be treated as a constant because of the fixed sum and clip operations per

macroblock. Thus, our major work in motion compensation module of video decoding

is to model the complexity dissipated on the fractional accuracy pixel interpolation. Our

experiment results show that the complexity of chroma interpolation can be approximated

by a constant. The luma interpolation will further be addressed in details in subsequent

sections. For simplicity, the term “interpolation” stands for the “luma interpolation” unless

we point out exactly.

A naive way to model the complexity of MCP would be

Cmcp = k1 · nmcpMB, (4.19)

where k1 is the unit complexity for macroblock interpolation, and nmcpMB is the number

of macroblocks requiring interpolation. However, according to our extensive simulations,

it is hard to predict k1 accurately using any information from a given bitstream, or the

complexity of the MCP DM in previous frames. This is because the MCP complexity for

each MB depends on the motion vector for the MB. When both components of the MV are

integers, no computation complexity is needed, whereas when one or both components are

fractional numbers, more computations are required.
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Figure 4.15: Fractional pixel interpolation in H.264/AVC with “�” ,“©”, “3” standing

for integer, half-, quarter-pel positions. The fractional points inside “dashed” box need

half-accuracy interpolation twice.

Instead of investigating at block level, we analyze the MCP complexity at pixel level.

In H.264/AVC, 6-tap Wiener filtering is applied to interpolate a half-pel pixel, while 6-tap

Wiener plus 2-tap bilinear filtering are required for quarter-pel interpolation. Typically, the

cycles required by 6-tap Wiener filtering and bilinear filtering are constants for a specified

implementation, thus the complexity dissipated for interpolation is determined by the num-

ber of 6-tap Wiener and bilinear filtering operations. In Figure 4.15, we sketch the integer,

half-pel, and quarter-pel positions according to the interpolation defined in the H.264/AVC

standard [1]. The “�” positions are directly obtained via DMA from off-chip memory. The

other 15 fractional positions need to be interpolated on-the-fly, and they consume different

complexity because they require different interpolation filters. Due to the on-chip buffer

limitation of embedded system architecture, which does not permit frame-based interpola-

tion, whether to do interpolation is determined by the parsed motion vector pairs, i.e., (mvx,

mvy) for a block.

Note that there are complexity differences in half-pel interpolation operations. For

example, in Figure 4.15, pixel “b” and “h” can be created via 6-tap Wiener filter at one

time. However, position “j” should be computed after creating “b” or “h”. Thus, “b” and

“h” require one 6-tap filtering, and “j” needs 6-tap filtering twice. Let us assume the unit

complexity for constructing “b”, “h” and “j” are kb, kh and kj respectively. Assuming the

unit complexity of 6-tap Wiener filtering is khalf, then we can write kb = kh = khalf, kj =
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Figure 4.16: Interpolation complexity Cmcp against the number of 6-tap Wiener interpo-

lation filtering (nhalf) required. All interpolation complexity of four different videos at

different QPs are collected and presented together.

As explained in the standard, the quarter-pel pixels will be computed from adjacent

half and/or integer pixels using bilinear filter [1]. Then, the 12 quarter-pel positions can be

categorized into two classes: one needs a 6-tap plus a bilinear filter, such as “a”, “c”, “d”,

“n”, and the other requires twice 6-tap filtering plus a bilinear operation, like “e”, “f”, “g”,

“i”, “k”, “p”, “q”, “r”. Based on our measured complexity data, we have found that the

half-pel interpolation using the 6-tap Wiener filter dominates the overall interpolation com-

plexity, thus, the computational complexity of bilinear filtering can be neglected to simplify

our further exploration. Therefore, we propose to approximate the MCP complexity by the

product of the number of 6-tap Wiener filtering operations and the unit complexity required

to perform one 6-tap Wiener filtering 7, i.e.,

Cmcp = khalf · nhalf, (4.20)

where khalf is average complexity required to conduct one 6-tap Wiener filtering, and nhalf

is the number of 6-tap filterings needed in decoding a frame. In the encoder, once we know

the motion vector of each block, we can obtain the exact nhalf. We can embed nhalf in the
7We found that there was slight difference between interpolation complexity for P and B pictures. Specif-

ically, there was a constant offset for B picture interpolation (e.g., less than 2% compared with total frame
decoding cycles in our simulation on Intel PM), however, compared with the total complexity consumed by
whole frame decoding, this constant offset can be ignored.
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bitstream header of each frame to enable the decoder to predict the complexity associated

with motion compensation. Parameter khalf is fairly constant for a fixed implementation.

The actual nhalf and cycles consumed by the MCP module have been collected by

decoding all test bitstreams, and plotted in Figure 4.16. Note that the model (4.20) can

quite accurately express the relationship between MCP (i.e., interpolation) complexity and

the number of half-pel filtering operations.
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Figure 4.17: 4×4 block edge illustration and boundary strength decision in H.264/AVC.

In the H.264/AVC video coding standard, an adaptive in-loop deblocking filter [1] is

applied to all 4 × 4 block edges for both luma and chroma components, except picture

boundaries 8. There are several options defined in the H.264/AVC standard [1] to inform

the decoder to apply the proper filter. However, in this paper, we only consider the two

basic options, i.e., option 0 and 1 which indicate to enable and disable deblocking filter

respectively 9. Figure 4.17 depicts the block edge with related edge-crossing pixels dis-

tributed in left and right blocks, and the boundary strength decision tree defined in the

H.264/AVC [1, 52]. Figure 4.17(b) shows that the boundary strength (e.g., Bs level) is

determined by the block type, CBP (code block pattern), reference index difference, and
8Actually, the filter could be applied to 8 × 8 block edges if 8 × 8 transform is adopted, and the filtering

operation will be disabled at some slice boundaries by enabling high-level filter syntax controlling. However,
in our discussion, we just concern one slice per picture, and adopt only 4× 4 as basic block size.

9The conditional filter crossing slice boundary, and separated filters for luma and chroma components are
not considered in this paper.
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motion vector difference from block p and q. According to our simulations, the complexity

of calculating Bs can be treated as a constant, but with slight difference for I/P/B-picture.

In our complexity modeling, the complexity of Bs calculation is merged with the SIP com-

plexity Csip as discussed before in Sec. 4.4.2. Here, we only consider the edge filtering

operations and its computational demands for in-loop deblocking.

The filtering strength is categorized into 3 classes according to the value of computed

Bs, i.e.,

Bs =


4 Strong Filtering

1, 2, 3 Normal Filtering

0 No Filtering.

Typically, for intra-coded blocks, Bs takes value of 4 and 3, while Bs is 0, 1, 2, or 3 for

inter-coded blocks (including skip mode). Therefore, the total complexity can be written

as

Cdblk = kintraMB,dblk · nintraMB + kinterMB,dblk · ninterMB, (4.21)

where kintraMB,dblk and kinterMB,dblk are the average complexity required for filtering intra-

coded and inter-coded macroblocks, respectively, and nintraMB and ninterMB are the number

of intra and inter coded macroblock, respectively. Since we have embedded nintraMB for

intra prediction, ninterMB is a known parameter given a frame resolution, i.e., ninterMB =

nMB−nintraMB. For intra-coded block, because only Bs = 4 and 3 are employed, kintraMB,dblk

is relatively constant; while for inter coded macroblock, kinterMB,dblk varies with respect to

the percentage of the zero Bs edges. In addition to the boundary strength control, edge-

crossing pixel difference is also used to determine whether to do filtering. Thus, even

with non-zero Bs, edge filtering can be also skipped for crossing pixels as defined in the

standard [1]. Therefore, there is large variation in kinterMB,dblk. Also, because of the non-

stationarity video content distribution, the deblocking complexity is hard to predict with a

reasonable accuracy based on our experimental data, and Eq. (4.21) is not a good model

for estimation.

As defined in [1], different Bs leads to different filtering operations on edge crossing

pixels, e.g., pi and qj with i ∈ {0, 1, 2, 3}. Typically, for Bs = 0, there is no filter applied.
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For Bs = 4, the strongest filter will be employed, which uses all pixels, i.e., pi, qi, i =

{0, 1, 2, 3} to modify pi and qi with i = 0, 1 and 2, as depicted in Figure 4.17(a). For Bs =

3, 2 or 1, six edge-crossing pixels, i.e., pi and qi with i = 0, 1, 2 are used to update the

pi and qi with i = 0, 1. In addition to the Bs, we also need to calculate the difference of

edge-crossing pixels for a certain pixel line, such as

δα = |p0 − q0|,

δβ = |p0 − p1|, or |q0 − q1|.

If δα and δβ are less than predetermined Alpha and Beta thresholds defined in [1], filtering

operations corresponding to Bs are applied; Otherwise, the deblocking is skipped even with

non-zero Bs.

Table 4.8: Correlation coefficients for nα and nβ
Seq. Harbour Ice News Soccer ave.

Corr. coeff. 0.985 0.995 0.992 0.990 0.991

For simplicity, we define α-points (i.e., αpts) and β-points (i.e., βpts) to categorize all

edge-crossing pixels as depicted in Figure 4.17(a) which are required to do filtering, i.e.,

αpts = {p0, q0}

βpts = {p1, q1, p2, q2}.

Thus, the deblocking complexity is the sum of cycles dissipated among α-points and β-

points,

Cdblk = k′αnα + kβnβ, (4.22)

where k′α and kβ are the average cycles required to do α-point and β-point filtering, and

nα and nβ are the numbers of respective α-point and β-point per frame. We have found

from our experimental data the decision to filter β-point is highly correlated the decision

to filter α-point, i.e., once α-point requires filtering operations, the corresponding β-points
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will also be filtered with very high probability (i.e., > 0.99 on average as exemplified in

Table 4.8). Thus, Eq. (4.22) can be reduced to

Cdblk = (k′α + kβ · κ)nα
def
= kα · nα, (4.23)

with kα denoting the generalized average complexity for filtering α-points.
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Figure 4.18: Illustration of kα in frame decoding order for Intel PM platform: (a) overall

sequence decoding (b)frame decomposition for different layers.

Typically, kα varies from frame to frame due to the content adaptive tools used in

conducting deblocking filtering. We have found that kα changes slowly from frame to

frame in the same temporal layer as illustrated in Figure 4.18(b). As with complexity

modeling for entropy decoding, instead of using a fixed kα, we predict kα of the current

frame using previous frame deblocking complexity in the same layer and the embedded

number of α-points. Figure 4.19 demonstrates that the proposed model in Eq. (4.23) and

method for predicting kα can accurately predict the deblocking complexity.

The Overall Frame-level Complexity Model

From the above discussion, we conclude that each DM complexity can be abstracted

as the product of its CU complexity and the number of involved CU. The total complexity

required by frame decoding can be expressed as

Cframe =
∑

DM
CDM =

∑
DM
kCU(DM) ·NCU(DM), (4.24)
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Figure 4.19: Actual deblocking complexity against estimated complexity for both Intel PM

and ARM processors.

where kCU(DM) indicates the complexity of the CU for a particular DM, and NCU(DM) is the

number of CUs involved in a DM. Table 4.9 lists the CU for each DM, and its corresponding

abstraction. We assume that the number of CUs in each frame for different CUs, i.e., NCU,

can be embedded into the video bitstream packets as the metadata to conduct decoding

complexity estimation. For example, one can packetize the raw H.264/AVC bitstream into

a popular container, e.g., FLV, and put NCU information in the container header field. Note

that nbit and nMB are not embedded since they can be obtained by de-packetizing the NAL

unit of H.264/AVC bitstream, parsing the sequence and picture parameter sets before frame

decoding. Therefore, only four numbers, nnzMB, nintraMB, nhalf and nα, need to be embedded

using 8 bytes. Even for videos coded at the very low bit rate of 96kbps, this embedded

overhead only counts for 1.5% of the video bit rate. For GOP-level complexity prediction

(see Section 4.4.3), the overhead is even smaller. As for the CU complexity, i.e., kCU, as

shown in the previous subsections, for a given implementation platform, it is a constant for

some CU, whereas for some other CU (i.e., bit parsing, SIP and α-point filtering), it needs

to be predicted from the measured complexity of the previous frame in the same temporal

layer. In practice, we can set the initial kCU to some default values for decoding the first

frame. Alternatively, we can pre-decode one frame in each temporal layer (or one GOP for

GOP model) to obtain the specific kCU of each involved CU ahead of real video playback.

Once we initialize all kCU for a target platform, we update them automatically frame by

frame according to the actual DM complexity and number of involved CU (i.e., NCU) of

the previous decoded frame. Table 4.9 summarizes whether a kCU is a constant or needs
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prediction. The constant kCU is further listed in Table 4.10 for Intel and ARM processors.

Table 4.9: CU abstraction for each DM
DM CU kCU NCU (over a frame or GOP)
vld Bit parsing kbit: predicted nbit : # of total bits
sip side info. preparation kMBsip: predicted nMB : # of total MBs
dblk α-point deblocking kα: predicted nα : # of α-points

itrans MB dequant. & IDCT kMBitrans: constant nnzMB : # of non-zero MBs
intra MB intra prediction kintraMB: constant nintraMB : # of intra MBs
mcp Half-pixel interpolation khalf: constant nhalf : # of half-pel interp.

Table 4.10: Constant kCU for Intel PM and ARM processors (in terms of CPU clock cycle)
kMBitrans kintraMB khalf

Intel PM 7.2× 104 7× 103 1.1× 103

ARM 1.7× 105 1.2× 104 2.7× 103

To verify the accuracy of this estimation strategy, we collect the actual and predicted

frame decoding complexity for all four test videos with QP ranging from 10 to 44., and

calculate their prediction error. Let δ(i) denote the relative prediction error for frame i.

We calculate the mean and standard deviation (STD) of δ(i) over all frames and over all

sequences coded using different QPs, as a measure of the prediction accuracy. As shown

in the simulation results listed in Table 4.12, the prediction error is very small, with small

mean and STD (i.e., both less than 3% on average). We also present the predicted and ac-

tual frame complexity in decoding order for the concatenated video consisting of “News”,

“Soccer”, “Harbour” and “Ice” in Figure 4.20(a-b) at QP 24. Results for other QPs are sim-

ilar according to our experiments. Based on these results, our proposed model can estimate

the frame decoding complexity for the H.264/AVC video decoding very well.

Table 4.11: Rate control Configuration
resolution # frame bit rate (kbps)

QCIF (176×144) 1100 250
CIF (352×288) 1100 500

4CIF (704×576) 1400 1000
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Table 4.12: Normalized Prediction Error (mean µ and standard deviation σ) for Intel PM

and ARM platform

Seq.
Intel PM ARM

Frame GOP Frame GOP
µ σ µ σ µ σ µ σ

Harbour 3.22% 3.20% 1.37% 1.21% 3.30% 3.33% 1.28% 1.19%
Ice 2.00% 1.68% 1.20% 0.88% 2.38% 2.36% 1.84% 1.65%
News 1.36% 1.17% 1.39% 1.11% 1.32% 1.11% 1.34% 1.11%
Soccer 3.32% 2.98% 2.92% 2.58% 3.62% 3.22% 2.97% 2.71%
ave. 2.48% 2.26% 1.72% 1.45% 2.66% 2.51% 1.86% 1.65%
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(a) µ = 2.37%, σ = 2.36%
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(b) µ = 2.40%, σ = 2.49%
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(c) µ = 1.85%, σ = 1.80%
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(d) µ = 1.66%, σ = 1.89%

Figure 4.20: Illustration of predicted and actual profiled complexity (in terms of cycles) of

concatenated sequences (in the order of “News”, “Soccer”, “Harbour” and “Ice”) at QP 24

for frame and GOP-level respectively.
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(a) QCIF@250bps, µ = 2.50%, σ = 2.20%
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(b) CIF@500kbps, µ = 3.00%, σ = 2.90%
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(c) 4CIF@1Mbps, µ = 3.10%, σ = 2.30%

Figure 4.21: Illustration of predicted and actual profiled complexity (in terms of cycles) of

different resolution concatenated sequences using rate control for frame-level complexity

model.
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Performance under Rate Control and Different Spatial Resolutions

The results reported so far are for decoding videos coded using constant QP, and at

the CIF resolution. To verify the accuracy of the complexity model for videos coded under

variable QP (due to rate control) and other spatial resolutions, we also created bitstreams

using the JSVM [22] for three resolutions, QCIF, CIF and 4CIF. As before, we concate-

nate 4 different videos to form a test sequence under each resolution. For QCIF and CIF

resolution, we use the videos in the order of “News”, “Soccer”,“Harbour”, “Ice” while the

4CIF resolution sequence is the concatenation of “Soccer”, “Harbour”,“Ice”, “Crew” and

“City” 10. Table 4.11 gives the sequence length and bit rate setting for QCIF, CIF and 4CIF

respectively.

As shown in Figure 4.21, our complexity model can accurately predict the decoding

complexity for different videos with various content activities, at different resolutions and

bit rates. Because of the space limit, we choose to present the results on the Intel plat-

form only. ARM based simulations have the similar high accuracy under rate control and

different spatial resolution.

4.4.3 GOP-level H.264/AVC Decoding Complexity Model

As shown in the previous section, the proposed model can predict the decoding com-

plexity for each video frame with a high accuracy, assuming that the number of CUs re-

quired for each DM of each frame, NCU, can be embedded in the bit stream, and that the

decoding complexity for each DM can be measured for each decoded frame and used to

predict the kCU for the next frame in the same temporal layer. Here, we extend the com-

plexity model from frame-level to GOP-level, and show that the same model still works

well, where N̂CU now denotes the number of CUs required for each DM over each GOP,

and decoding complexity for each DM over the entire GOP can be measured and used to

predict the kCU for the next GOP. Let Cgop describe the complexity dissipated for decoding

10We don’t have “News” video at 4CIF resolution.
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a GOP, it can be written as

Cgop =
∑

j
Cframe(j) =

∑
j

∑
CU
kCU(j)NCU(j)

=
∑

CU
kCU
∑

j
NCU(j) =

∑
CU
kCUN̂CU, (4.25)

where N̂CU =
∑

j NCU(j) is the number of a particular CU over the entire GOP, such as the

number of the intra macroblock per GOP, GOP bits number, etc. In practice, even when

kCU(j) varies from frame to frame, we can use kCU to denote the average CU complexity

across a GOP and use (4.25) to estimate the total complexity of a GOP. Like what we have

proposed in frame based model, kCU will be updated GOP by GOP using the previous GOP

complexity data. Similarly, we assume N̂CU can be embedded into the packetized stream at

the GOP header.

To validate our above proposal, we plot the measured cycles consumed by GOP de-

coding and estimate complexity using our proposed model for the four test videos at QP 24

on both Intel PM and ARM platforms in Figure 4.20(c-d). These figures show that the GOP

level prediction works very well. We also provide the mean and standard deviation for the

GOP-level complexity prediction error in Table 4.12. Note that the GOP-level prediction

improves the accuracy compared to the frame-level model according to the results listed in

Table 4.12 and pictured in Figure 4.20. This is because the average CU complexity over a

GOP varies more slowly than that over a frame, and hence the prediction of kCU at the GOP

level is more accurate.

Compared with frame based complexity prediction, GOP level complexity model only

needs to store the metadata at GOP level instead of frame level, thus reduces the overhead.

Also, for dynamic voltage/frequency scaling, we only need to adjust the voltage/frequency

at the beginning of every GOP instead of every frame.

4.5 Discussion and Summary

In summary, the work presented in this Chapter consists of two parts: in the first

half, we develop a complexity model for scalable vide decoding considering the tempo-
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ral and amplitude variations, i.e., C(q, t). Three content dependent parameters, i.e., Cmax,

g1 and g2, will be further discussed in the subsequent chapter. We then extend the com-

plexity model C(q, t) to the power consumption model for the ARM processor. Since the

ARM processor is widely used in SmartPhones, mobile Pads, etc, our proposed power con-

sumption model for scalable video decoding can be applied practically. Together with the

quality model and rate model in Section 2.3.3 and 3.2.3, we can conduct the power-rate

constrained scalable video adaptation for a typical mobile video streaming scenario, where

network condition and battery power capacity are both constrained in practice. Please refer

to the following Chapter 6 for more details regarding employing our proposed models in

real applications.

The second part deals with the complexity prediction along with the video decoding.

The overall video decoder is decomposed into 6 decoding modules (DM), each of which is

controlled by a unique complexity unit (CU). We have defined those CUs to ensure that its

average complexity (i.e., per frame or per GOP) is either constant or can be easily predicted

from previous decoded data. In the current study, we embed the number of CUs, i.e,NCU, as

the metadata in the header field of the container (such as FLV, MKV, etc) associated with

the video bitstream. According to our simulation data, our proposed complexity predic-

tion algorithm can accurately estimate the frame or GOP decoding complexity for various

videos with different contents, resolutions and bitrates. Our proposed prediction algorithm

can be used to dynamically adapt the voltage and frequency of the underlying processor

(DVFS) so as to save the power. More details regarding the complexity prediction based

DVFS will be presented in Chapter 6.
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Chapter 5

Model Parameter Prediction

As shown in previous chapters, our model parameters are video content dependent.

The models will be very useful if the model parameters can be accurately predicted from

some content features. In this chapter, we investigate the video content features, such as

frame difference (FD), displaced frame difference (DFD), motion activities, etc, and use

linear weighted features to estimate the parameters for our proposed models. We first ex-

plore and describe various features parameter prediction. We then present the stepwise fea-

ture selection approach for selecting a subset of features that minimize the cross-validation

error for all test sequences.

5.1 Video Content Feature

As shown in previous chapters, we have applied an “impact separation” methodol-

ogy to differentiate the joint temporal and amplitude impact on perceptual quality, rate and

power consumption (or complexity). Each model is well explained by the product of a func-

tion in terms of the frame rate, and a function in terms of the quantization stepsize. Overall,

we have eight content dependent parameters as listed in Table 2.1, 3.1 and 4.2. As shown in

the experimental results, the parameters are indeed content dependent. To well explore the

correlation between content features and model parameters, we analyze all model parame-

ters, and establish the general relationship between them and contents. For example, Rmax
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is the maximum bit rate, which is mainly composed of the bits for encoding motion vec-

tors and residuals, therefore, Rmax should be a function of the motion vector and residual

features. In H.264/AVC, the motion and residual information have the direct impact on the

decoding complexity [39]. Whether to do interpolation or deblocking is highly depending

on the motion vector (or motion vector difference), i.e., interpolation will be skipped if the

block has the integer motion vector, and the deblocking filter will be disabled if the motion

vector difference of neighboring blocks is smaller than a predefined threshold. Roughly

speaking, Cmax – maximum cycles required for decoding full-resolution bitstream, can be

estimated as a function of motion and residual as well. Overall, we correlate the model

parameters with motions, residual signal, video frame contrast, etc. Specifically, we have

defined three input signals to derive the features, one is the residual (error) signal, such

as frame difference (FD), displaced frame difference (DFD), etc; the second one is the

original signal; and the third one is the motion fields. A set of content features is trained

and built upon those three inputs, as detailed in Table 5.1. In general, this set of content

features consists of two subsets. One includes the original features derived from raw in-

put sources. The other contains the inter-normalized features using the prior subset. More

details regarding how to derive the value of the individual feature will be presented in the

subsequent section.

Table 5.1: List of content features in consideration
input source feature

original features

residual
frame difference (FD) µFD, σFD

displaced frame difference (DFD) µDFD, σDFD

motion
motion vector magnitude (MVM) µMVM, σMVM
motion direction activity (MDA) σMDA

original video contrast σorg
inter-normalized features

normalized FD (NFD) by contrast η(µFD, σorg) = µFD/σorg
normalized DFD (NDFD) by contrast η(µDFD, σorg) = µDFD/σorg

normalized MVM by contrast η(µMVM, σorg) = µMVM/σorg
normalized MVM by σMVM η(µMVM, σMVM) = µMVM/σMVM
normalized MVM by σMDA η(µMVM, σMDA) = µMVM/σMDA
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5.2 Feature Extraction Preprocessor

In [10], we extract features by enabling all possible encoding features in H.264/AVC,

such as fractional accuracy interpolation, variable block size motion compensation, etc.

These features are accurate but not practical in real applications. Alternatively, we propose

to use a simple, lightweight pre-processor ahead of real encoding to obtain the features. In

this pre-processor, we apply a simplified motion compensation engine to obtain the DFD

and motion fields. To reduce the complexity, only macroblock based (i.e., 16x16) integer

motion estimation is used in our preprocessor. Besides, we apply the pre-processor upon

the original raw video signal in order to avoid the coding effects, such as quantization. For

a N -picture video source, we would have frame difference, displaced frame difference,

motion field signal with the length of N -1 pictures after applying the pre-processor frame-

by-frame 1. For any i-th FD picture, we can calculate its mean and standard deviation,

i.e., µFD(i) and σFD(i), then, the mean and standard deviation for whole sequence can be

obtained via

µFD =
1

N − 1

N−1∑
i=1

µFD(i), (5.1)

σFD =
1

N − 1

N−1∑
i=1

σFD(i). (5.2)

The same method can be applied to obtain the mean and standard deviation of the DFD

signal. Usually, we will have a pair of value, i.e., (mvx, mvy) for any motion vector, then the

motion vector magnitude and direction can be defined as

|mv| =
√
|mvx|2 + |mvy|2, (5.3)

θmv = arctan(mvy/mvx). (5.4)

Similarly, we can calculate the mean and standard deviation of the MVM and standard de-

viation of the MDA using the same method discussed above 2 Please note that, we exclude

the zero motions, i.e., (mvx, mvy) = (0, 0), to calculate the MDA feature.
1As known, the first frame is skipped without creating its FD, DFD, motion signals since there isn’t

reference frame for the first frame within a video sequence.
2The standard deviation of the MVM is the same as the motion activity intensity (MAI) defined in [10].
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5.3 Model Parameter Prediction

We have defined a set of features for model parameter prediction as shown in earlier

sections. In this section, we present the parameter prediction using the trained feature

and show the prediction accuracy. According to our experimental data, we have found

that a single feature can not give an accurate estimation, thus two or three features are

combined together and their weighted sum is used to predict the model parameter, i.e.,∑
k ωkFk + ω0, k = 1, 2, . . . , K, where ωk indicates the individual weighting coefficient

for k-th feature Fk and K is the total number of features examined.

Moreover, we apply the cross-validation to choose the best features and their weighted

coefficients. Specifically, we first choose a number of features, for example, two features

are selected out of the feature set together instead of using the stepwise feedforward ap-

proach proposed in [10]. In order for the solution to be generalizable to other sequences

outside our test sequences, we use the leave-one-out cross-validation error (CVE) criterion.

Assume the total number of sequences is M , for a particular set of chosen features, we

arbitrarily set one sequence as the test sequence and the remaining M − 1 sequences as the

training sequences. We determine the weights ωk to minimize the mean square fitting error

for the training sequences. We then evaluate the square fitting error for the test sequence.

We repeat this process, each time using a different sequence as the test sequence. The aver-

age of the fitting errors for all the test sequences is the CVE associated with this feature set.

The best features and weighting coefficients are chosen according to the minimum CVE.

By using above procedure, we have examined all model parameters using one-feature, two-

feature and three-feature combined prediction, as shown in Figures 5.1, 5.2, 5.3 for CIF

resolution videos 3. Table 5.2, 5.4 and 5.3 list the weighted coefficients, i.e., ωk for CIF

videos.

As shown, one-feature prediction doesn’t work well for CIF resolution videos. Some

parameters have been predicted with high accuracy by using two features, such as a, Rmax,

Cmax; some parameters require three-feature prediction, such as c, d, g1, g2, etc. It is

3Since we only have 7 test sequences for quality model, we have presented 7 CIF videos for all model
related parameters.
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Figure 5.1: Illustration of rate model parameter prediction, i.e., a, b, Rmax using content

features for CIF resolution videos.
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Figure 5.2: Illustration of quality model parameter prediction, i.e., c, d, using content fea-

tures for CIF resolution videos.
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Figure 5.3: Illustration of complexity model parameter prediction, i.e., g1, g2, Cmax using

content features for CIF resolution videos.
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noted that the PC will be improve when we choose more features, however, to reduce the

complexity, we limit 3 as the maximum number of features applied for CIF videos. Let

YCIF = [a, b, Rmax, c, d, g1, g2, Cmax] be the predicted parameter set and X be the feature

set, according to our simulation data, we can obtain the feature set and corresponding

weighting matrix for different feature combination cases. For instance, we can derive the

feature set for CIF videos with one-feature, i.e.,

XCIF,1 = [σMDA, σMVM, σFD, σDFD, µDFD, η(µMVM, σorg)] , (5.5)

where η(µMVM, σorg) is the µMVM normalized by the original video contrast σorg. Thus, it

requires seven original features, i.e., σMDA, σMVM, σFD, σDFD, µDFD, µMVM, σorg, then, we derive

the inter-normalized feature η(µMVM, σorg) to construct the feature set (5.5).

Additionally, results for WVGA and 720p videos are presented as well from Figure 5.4

to Figure 5.7. Since we only conduct the experiments on CIF videos to build the quality

model, we only show the results regarding the prediction of rate and complexity model

parameters. Similarly, we choose different combination of features to show the accuracy

of the parameter prediction. It is noted that two-feature combined prediction is sufficient

to produce accurate estimation. Table 5.5, 5.6, 5.7 and 5.8 list the weighted coefficients

for best selected features. According to the simulation results, we have found that even for

the same model parameter, we should use different feature combinations to estimate for

different video resolutions. Moreover, a stable weighted coefficient matrix and feature set

should be trained via a large amount of test videos with various content activities. Based on

our experiments, our developed feature set and matrix can be applied to the similar video

content as our test sequences. Since the chosen test sequences already cover a large range

of content activities, we believe that our result can be applied widely (but of course not

applicable to every video content).

5.4 Model Evaluation Using Predicted Parameters

In addition to presenting the above parameter prediction results (i.e., Figure 5.1 to 5.7),

we also plug these predicted parameters into our proposed models, and verify the estimation
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Table 5.2: Weighted coefficients matrix for model parameters: one feature, CIF video
σMDA σMVM σFD σDFD µDFD η(µMVM, σorg) ω0

a -0.15 1.31
b 0.05 0.45

Rmax 322.24 182.63
c -3.7× 10−3 0.15
d -0.5 8.63
g1 0.02 0.01
g2 -0.16 0.81
Cmax 378.83 454.69

Table 5.3: Weighted coefficients matrix for model parameters: two feature, CIF video
a b Rmax c d g1 g2 Cmax

ω0 1.22 0.47 36.40 0.17 7.85 -0.02 0.85 441.01
σFD -0.02
σDFD -0.03
σMVM 0.07 245.43 0.022 -0.31 8.79
σMDA 0.05
µFD -0.35
µDFD 0.03 -0.02 0.012
µMVM 0.11

η(µFD, σorg) 94.64
η(µDFD, σorg) 2932.90
η(µMVM, σMVM) 2.32

Table 5.4: Weighted coefficients matrix for model parameters: three feature, CIF video
a b Rmax c d g1 g2 Cmax

ω0 1.22 0.47 465.78 0.11 6.89 -0.01 1.05 462.89
σFD -0.03 -0.01
σDFD 0.05 -0.95
σMVM 0.06 -0.38 11.48
σMDA 190.78 0.09 0.05
σorg -7.27 0.05 -0.58
µMVM 218.28 0.20

η(µFD, σorg) 0.43
η(µDFD, σorg) 0.39 -1.26 0.17 0.25
η(µMVM, σMVM) -0.29
η(µMVM, σMDA) 0.43
η(µMVM, σorg) 0.13 17.49
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Figure 5.4: Illustration of rate model parameter prediction, i.e., a, b, Rmax using content

features for WVGA resolution videos.

Table 5.5: Weighted coefficients matrix for model parameters: one feature, WVGA video
a b Rmax g1 g2 Cmax

ω0 1.48 0.46 -939.42 -0.18 0.72 1396.40
σFD -0.02
σDFD 0.06
µDFD 1329.50 118.13

η(µDFD, σorg) 1.36
η(µMVM, σMVM) -0.48
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Figure 5.5: Illustration of complexity model parameter prediction, i.e., g1, g2, Cmax using

content features for WVGA resolution videos.

Table 5.6: Weighted coefficients matrix for model parameters: two feature, WVGA video
a b Rmax g1 g2 Cmax

ω0 0.51 0.73 9419.70 0.14 -4.70 922.06
σFD -785.21 -0.02
σDFD 0.28
σMDA -0.50 10.49
σorg 9.80

η(µFD, σorg) -1.56 1.50
η(µDFD, σorg) 5447.80
η(µMVM, σMDA) -1.66
η(µMVM, σorg) 53810.00 1.17
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Figure 5.6: Illustration of rate model parameter prediction, i.e., a, b, Rmax using content

features for 720p resolution videos.

Table 5.7: Weighted coefficients matrix for model parameters: one feature, 720p video
a b Rmax g1 g2 Cmax

ω0 2.46 0.66 -26220.00 -0.07 1.90 3532.80
σFD -0.13
σDFD 457.79
σMDA -0.11
µFD 0.01
µMVM -0.46

η(µDFD, σorg) 331450.00
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Figure 5.7: Illustration of complexity model parameter prediction, i.e., g1, g2, Cmax using

content features for 720p resolution videos.

Table 5.8: Weighted coefficients matrix for model parameters: two feature, 720p video
a b Rmax g1 g2 Cmax

ω0 2.27 0.64 -10615.00 -0.20 1.51 1471.30
σFD -1.03 0.02
σDFD 0.08 -0.13
σorg 1.7× 10−3

µMVM 3409.50
η(µFD, σorg) -0.93 -1.80
η(µDFD, σorg) 78.29 39638.00
η(µMVM, σMDA) 2952.20
η(µMVM, σMVM) -602.10
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accuracy with respect to the actual simulation data.

5.4.1 Predicted c and d for perceptual quality metric

Following the earlier discussion, parameters c and d can be predicted using different

features (and their combinations). As shown in Figure 5.2, one feature does not work well,

three-feature combination gives the excellent estimation and two-feature choice is in the

middle. To see how the predicted c and d affect the predicted MOS provided by the quality

model, we use the perceptual quality metric with predicted c and d to calculate the MOS

scores and compare them with the original MOS data obtained by subjective rating. It is

noted that such evaluation is more meaningful than presenting the parameter prediction

only.
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Figure 5.8: Quality model accuracy using predicted parameters c and d, scatter points are

for all 7 CIF videos: (a) PC = 0.95, eµ = 6.5%, emax = 18%, (b) PC = 0.96, eµ = 5.8%,

emax = 16%, (c) PC = 0.97, eµ = 5.3%, emax = 12%.

Figure 5.8 presents the prediction accuracy between predicted MOS using quality

model and original collected MOS data. In addition to providing the Pearson correlation

(PC) coefficient, we also define another prediction performance evaluation metric – rela-

tive error. For all tests, we will have a set of predicted MOS Y and a corresponding set of

original MOS X, then the relative error is

e =
|X−Y|

X
, (5.6)
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where we use its mean and maximum to quantify the accuracy of the prediction, i.e., eµ

and emax. Ideally, if we have both eµ = 0 and emax = 0, the prediction is perfect. However,

in practice, we always have prediction error, where both eµ > 0 and emax > 0. Clearly, the

smaller eµ and emax, the better prediction. As shown in Figure 5.8, PC does not differ much

when we choose to use one, two or three features. However, we have found that three-

feature combined prediction indeed gives the best result of the relative error, i.e., points are

more squeezed in subplot 5.8(c), and one feature prediction is the least accurate, i.e., points

are more dispersed. Interestingly, we have found that two-feature combined prediction has

the decent MOS prediction and already gives the good estimation, although the two-feature

combined prediction does not work very well for some other parameters, such as shown in

Figure 5.2 (i.e., parameter c only has 0.89 PC).

5.4.2 Predicted a, b and Rmax for rate model
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Figure 5.9: Rate model accuracy using predicted parameters a, b, Rmax, scatter points are

for all 7 CIF videos.

As shown in Figure 5.9, we present the prediction accuracy for CIF videos by compar-

ing the actual rates and model estimated rates, where the model parameters are predicted

using content features. According to our experimental results, rate prediction has very high

PC (over 0.99) for all cases, i.e., one-feature, two-feature and three-feature. However, by

calculating the average RMSE over all test sequences, we have found that three-feature
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Figure 5.10: Rate model accuracy using predicted parameters a, b, Rmax, scatter points are

for 4 WVGA and 4 720p videos.

combined prediction gives the best result, where almost all scatter points are merged to the

“perfect line” (i.e., y = x). On the other hand, we can also notice that the scatter points are

more dispersed for one-feature parameter prediction as shown in subplot 5.9(a). Similarly,

two-feature combined prediction already gives the good estimation on actual bit rates.

In addition to CIF videos, we also present the prediction accuracy for other 4 WVGA

and 4 720p videos. All results show that with the feature predicted parameters, our model

can estimate the actual bit rates accurately.

5.4.3 Predicted g1, g2 and Cmax for complexity model
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Figure 5.11: Rate model accuracy using predicted parameters g1, g2, Cmax, scatter points

are for all 7 CIF videos.
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Figure 5.12: Rate model accuracy using predicted parameters g1, g2, Cmax, scatter points

are for 4 WVGA and 4 720p videos.

As shown in Figure 5.11, we present the prediction accuracy for CIF videos by com-

paring the actual complexity and model estimated cycles, where the model parameters,i.e.,

g1, g2 and Cmax, are predicted based on content features. According to our experimental

results, complexity prediction has very high PC (over 0.99) for all cases. However, by

calculating the average RMSE over all test sequences, we have found that three-feature

combined prediction gives the best result, where almost all scatter points are merged to the

“perfect line” (i.e., y = x). Meanwhile, we can also notice that the scatter points are more

dispersed for one-feature parameter prediction as shown in subplot 5.11(a), in particular

starting from 400 mega cycles per second (mcps) to the highest value. Instead, two-feature

combined prediction already performs well for actual complexity estimation.

Similarly, in addition to CIF videos, we also provide the prediction accuracy for other

4 WVGA and 4 720p videos. All results show that, using the content feature predicted

parameters, our model can still estimate the actual complexity accurately.

5.5 Discussion and Summary

In practice, our proposed models will be more useful if we can estimate the model

parameters via the underlying video contents instead of explicitly presenting them. Also,

according to our extensive simulation results, we have found that the model parameters

are indeed content dependent. This chapter explores the model parameter prediction using
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content features. Toward this goal, we first abstract useful content features, and develop

a lightweight pre-processor to obtain those features. In general, we have considered the

features related to the residual signal such as frame difference, displace frame difference

etc, motion fields, such as motion vector magnitude, motion direction activity, etc and orig-

inal video signal, such as video contrast. Different feature combinations are examined in

our study to show the parameter prediction accuracy. Simulation results show that three-

feature combined prediction works well for CIF videos and two-feature prediction provides

the accurate estimation for WVGA and 720p videos. For different video resolution, differ-

ent feature combination and weighted function will be applied. We also plug the estimated

parameters into our proposed model, and find that the actual MOS, rate and complexity can

be well estimated using two-feature combined prediction.

Based on our simulations, the content feature set is quite stable for various videos.

We also note that, the weighted coefficients varies largely, which brings the large variation

when we introduce new test video. It might be helpful to do the feature normalization

before conducting the generalized linear regression. However, it is out of the scope of

current study and deferred as our future work.
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Chapter 6

Applications

In this chapter, we present several popular applications using our proposed models.

First, we apply our proposed models to guide the resource constrained scalable video adap-

tation. In particular, we consider the situation where the network bandwidth is the only

limitation. We then analyze the situation where the video receiver has the limited battery

capacity and access network bandwidth, which is the typical scenario for video playback

capable mobile handhelds. The second application we have studied is using our complexity

prediction algorithm to guide the DVFS of the underlying processor so as to conduct the

energy efficient video decoding.

6.1 Resource Constrained Scalable Video Adaptation

The first deployment is using our proposed models to guide the scalable video adapta-

tion given the constrained resource (such as access network bandwidth, remaining battery

capacity, user preference, etc.) at the receiver. This is typical for mobile handheld, where

it is powered by the battery with limited capacity and always has network bandwidth con-

straint when connecting with the wireless access point. In the following sections, we will

first introduce the solution using our proposed quality and rate models to guide the rate con-

strained bit stream adaption; then we extend our solution to consider the limited remaining

battery power as well using our devised power consumption model.
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6.1.1 Rate-Constrained Bit Stream Adaptation

Combining the rate and quality models, we draw in Figure 6.1 1, quality vs. rate curves

achievable at different frame rates. We also plot the measured MOS data on the same figure.

The model fits the measured data very well for sequences “akiyo”, “crew” and “waterfall”.

But the model is not as accurate at some frame rates for “football”, “city”, “foreman” and

“ice”. The inaccuracy is mainly due to the difference between the predicted quality and

MOS for these sequences. We suspect that this is partly due to the large spread of the

viewer quality ratings to these sequences, due to the difference in the temporal sensitivity

among the viewers. It is clear from this figure, that each frame rate is optimal only for a

certain rate region, which will be further elaborated as follows.
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Figure 6.1: Quality vs. rate at different frame rates. Points are measured data, curves are

based on the rate model in Eq. (3.28) and the quality model in Eq. (2.4).

In this section, we consider how to apply our proposed rate and quality models to per-

form rate-constrained SVC bit stream adaptation. Figure 6.2 provides a system view of the

adaptation problem. For each video, a single full-resolution scalable stream is available at

a media content server, which will be adapted at a network proxy or gateway in response

to the user channel conditions and viewing preferences. When a user requests the video
1Since we only have results for 7 CIF videos regarding the quality model, we present the adaptation

application for those seven sequences. We believe that the same scheme can be applied to other videos as
well.
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Figure 6.2: Rate-Constrained SVC Video Adaptation

from the server, the adaptor (sitting at the proxy) will determine an appropriate video rate

R0 based on the user’s channel condition (e.g. R0 is the sustainable transmission rate for

the given channel condition minus all the overheads for channel error correction and pack-

etization). Based on R0 and the user’s viewing preference setting (embedded in the user

profile sent to the adaptor), the adaptor determines the optimal set of temporal and ampli-

tude layers (more generally spatial layers) to extract, so as to provide the best perceptual

quality. In Figure 6.2, we assume that the adaptor monitors the channel condition based

on some feedbacks from the user. (The user may inform the adaptor its desired rate R0

in alternative implementations.) Furthermore, it determines the quality model parameters

based on the user’s preference setting, which describes the user’s preferred tradeoff among

spatial, temporal, and amplitude resolutions. Recall that parameters a, b, c, d and Rmax can

be predicted accurately using the content features as discussed in earlier Chapter 5. For a

simple implementation, we can embed those features in the full-resolution bitstream as side

information, which can be parsed at adaptor to estimate the parameters. Based on the target

rate R0 and the model parameters, the adaptor determines the optimal frame rate topt and

quantization qopt, and corresponding temporal and amplitude layers. Finally the adaptor

extracts these layers from the scalable bit stream and delivers the resulting bit stream to the

user.

For a given target rate R0, the adaptation problem can be formulated as the following
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constrained optimization problem,

Determine t, q to maximize Q(q, t)

subject to R(q, t) ≤ R0. (6.1)

In the following subsections, we employ proposed rate and quality models to solve this op-

timization problem, first assuming the frame rate can be any positive value, and then con-

sidering the discrete set of frame rates afforded by the dyadic temporal prediction structure.

Optimal solution assuming t and q continuous values
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Figure 6.3: Optimal quantization stepsize qopt, frame rate topt, and the corresponding qual-

ity Qopt versus the bit rate R by assuming q and t can take on any continuous values within

their respectives ranges.

We first solve the constrained optimization problem in (6.1) assuming both the frame

rate t and quantization stepsize q can take on any value in the range of t ∈ (0, tmax),

q ∈ (qmin,+∞). To simplify the notation, let Q̂ = Qmax

(1−e−d)e−c , t̂ = t/tmax, q̂ = q/qmin,

R̂ = R/Rmax, and R̂0 = R0/Rmax, the rate and quality models in (3.28) and (2.4) become

respectively

R̂
(
q̂, t̂
)

= q̂−at̂b, (6.2)

Q
(
q̂, t̂
)

= Q̂e−cq̂
(

1− e−dt̂
)
. (6.3)
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By setting R̂
(
q̂, t̂
)

= R̂0 in (6.2), we obtain

q̂ = a

√(
t̂b/R̂0

)
, (6.4)

which describes the feasible q for a given t, to satisfy the rate constraint R0.

Substituting (6.4) into (6.3) yields

Q(t̂) = Q̂e
− c·t̂ψ

a
√

R̂0

(
1− e−dt̂

)
, t̂ ∈ (0, 1) (6.5)

where ψ = b/a. Equation (6.5) expresses the achievable quality with different frame rate

under the rate constraint R0. Clearly, this function has a unique maximum, which can be

derived by setting its derivative with respect to t̂ to zero. This yields

R̂0 =

(
cψt̂ψ−1(1− e−dt̂)

de−dt̂

)a

. (6.6)

For any given rate constraint R0, we can solve (6.6) numerically to determine the

optimal frame rate topt. Then using (6.4) and (6.5) we can determine the optimal quantiza-

tion stepsize qopt, and the corresponding maximum quality Qopt at the rate R0. Figure 6.3

shows topt, qopt, and Qopt as functions of the rate constraint R0. As expected, as the rate

increases, topt increases while qopt reduces, and the achievable best quality continuously

improves. Notice that topt increases more rapidly for the “football” sequence than for the

other sequences, because of its faster motion. Based on the parameters derived from our

subjective test data, even at the highest bit rates examined, the optimal frame rate is below

20 Hz for the other three sequences. Note that had we used a smaller qmin to allow much

higher values for Rmax, topt would have increased to 30 Hz beyond some rates.

Optimal solution under dyadic temporal scalability structure

A popular way to implement temporal scalability is through the dyadic hierarchical B-

picture prediction structure, where the frame rate doubles with each more temporal layer.

With 5 temporal layers, the corresponding frame rates are 1.875, 3.75, 7.5, 15 and 30 Hz.

From a practical point of view, it will be interesting to see what is the optimal combination
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Figure 6.4: Optimal operating points qopt, topt, and Qopt versus R by assuming t can

only take discrete values allowed by the dyadic prediction structure, whereas q can vary

continuously.

of the frame rate and quantization stepsize for different bit rates under this structure. To

obtain the optimal solution under this scenario, for each given rate, we determine the quality

values corresponding to all five possible frame rates using (6.5), and choose the frame rate

(and its corresponding quantization stepsize using (6.4)) that leads to the highest quality.

The results are shown in Figure 6.4. Because the frame rate t can only increase in discrete

steps, the optimal q does not decrease monotonically with the rate. Rather, whenever topt

jumps to the next higher value (doubles), qopt first increases to meet the rate constraint,

and then decreases while t is held constant, as the rate increases. Consistent with the

previous results in Figure 6.3, for football, the optimal frame rate transition to 30 Hz at an

intermediate bit rate; whereas for the other sequences, the optimal frame rate stays at 15

Hz even at the highest bit rates examined. As mentioned earlier, had we used a lower qmin,

we would have seen transitions to 30 Hz after some rates.

The results in Figure 6.4 can be validated by cross checking with Figure 6.1. For

example, for “Crew”, in the rate region below 25.0 kbps, 1.875 Hz leads to the highest

quality, in the rate range between 25 and 61 kbps, 3.75 Hz gives the highest quality, between

61 and 253 kbps, 7.5 Hz is the best, and beyond 253 kbps, 15 Hz provides the highest
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quality. Connecting the top segments for each sequence in Figure 6.1 will lead to the

optimal Q vs. bit rate curve in Figure 6.4.

In practice, the SVC encoder with amplitude scalability does not allow the quanti-

zation stepsize to change continuously. The finest granularity in quality scalability is a

decrement of QP by 1 with each additional quality layer. This means that the quantization

stepsize reduces by a factor of 2−1/6 with each additional layer. In practice, much coarser

granularity is typically used, with decrement of QP by 2 to 4 typically. When we constrain

q to take only discrete values corresponding to such QP values, in addition to allow only

dyadic frame rates, one cannot always meet a rate constraint exactly. One can still solve

the optimal t and q for any given rate constraint using the proposed models, by exhaustive

search within the finite set of feasible values for t and q.

6.1.2 Power-Rate Constrained Bit Stream Adaptation

In this subsection, we extend our earlier solution regarding the rate-constrained SVC

adaptation to power-rate constrained problem by considering an additional constraint intro-

duced by the limited remaining battery capacity of mobile handhelds. The system model

for power-rate constrained problem is illustrated in Figure 6.5. As we can see, target bit

rate R0 and remaining power P0 are provided by the user channel condition and its local

profile (such as battery status). For example, the power constraint P0 can be informed by

the user according to its remaining battery capacity (i.e., Br mAh) and how long he wants

his mobile to be active (before shut-down) (i.e., τon), then we can simply use Br/τon to

estimate the required power P0. Usually, we want the τon > τvideo, where τvideo indicates

the length of video playback, so as to avoid running out the battery. Other researchers

have already provided some efficient ways to estimate the remaining battery capacity [53],

which is out of the scope of our work. Here, we simply assume we have the knowledge

of the remaining battery capacity for video playback, for instance, κ percentile of the total

remaining battery power, i.e., Bvideo = κBr, 0 < κ < 1. Together with the total playback
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length of the video, we can obtain the power limitation to guide the adaptation, i.e.,

P0 =
Bvideo

τvideo
= κ

Br

τvideo
, (6.7)

where κ ∈ (0, 1) is a known variable which can be configured by user, and τvideo is the

length for video playback which can be easily obtained by “user”–“server” communication

for live video streaming scenario, or by fast parsing container header field associated with

the local buffered video clip.
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Figure 6.5: Power-Rate constrained scalable bit stream adaptation.

In previous Section 4.3.4, we have devised a power consumption model for scalable

video decoding on ARM cortex A8 processor [43], which is a function of the frame rate

t and quantization stepsize q. Therefore, we can derive the feasible points for q and t by

solving P (q, t) ≤ P0 with P0 defined as the limited power bound. Since the same type of

ARM processor is commonly deployed on various mobile handhelds, such as SmartPhones,

mobile Pads, etc, we believe that our model can be used widely. Even with new ARM pro-

cessor, such as ARM cortex A9, we believe that our model can be migrated to it smoothly.

Recall that all parameters, i.e., a, b, c, d, g1, g2, Rmax and Cmax can be well predicted us-

ing the content features in Chapter 5. We can embed those features in the full-resolution

bitstream as side information, which can be parsed at adaptor to estimate the parameters as

suggested earlier. Based on the target rate R0, power bound P0 and the model parameters,

the adaptor determines the optimal frame rate topt and quantization qopt, and corresponding
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temporal and amplitude layers. Finally the adaptor extracts these layers from the scalable

bit stream and delivers the resulting bit stream to the user/receiver.

For a given target rate R0 and power bound P0, the adaptation problem can be written

as

Determine t, q to maximize Q(q, t)

subject to R(q, t) ≤ R0,

P (q, t) ≤ P0. (6.8)

Because of the unique mapping between power consumption and complexity workload as

discussed in previous Section 4.3.4, we can also rewrite the optimization problem as

Determine t, q to maximize Q(q, t)

subject to R(q, t) ≤ R0,

C(q, t) ≤ C0, (6.9)

where C0 is determined by the P0 according to Eq. (4.14).

In the following paragraphs, we employ proposed complexity, rate and quality models

to solve this optimization problem, first assuming that the frame rate, quantization stepsize

and supportable complexity level can be any positive value, second considering the discrete

set of the complexity level enabled by the typical processor, and then evaluating the discrete

frame rates afforded by the dyadic temporal prediction structure and discrete complexity

levels constrained by the underlying processor.

Optimal solution assuming continuous t, q and C0

Let q̂ = q/qmin, t̂ = t/tmax, R̂0 = R0/Rmax, Q̂max = Qmaxe
c/(1 − e−d), Ĉ0 =

C0/Cmax, by combing Eqs. (2.4), (3.28) and (4.6), we can have the adaptation problem as

max Q̂maxe
−cq̂(1− e−dt̂), (6.10)

s.t. q̂−at̂b ≤ R̂0, (6.11)

q̂−g1 t̂
−g2 t̂ ≤ Ĉ0. (6.12)
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Obviously, we can apply the constrained optimization tool by introducing the lagrangian

multipliers to solve the above problem. However, it is noted thatQ(q̂, t̂),R(q̂, t̂) andC(q̂, t̂)

are monotonic function with respect to t̂ and q̂ (and same as the t and q because of the

linear scaling), therefore we can always have the solution of q̂opt and t̂opt when we set the

reasonable constraint bounds R̂0 and Ĉ0. Because of the monotonicity of (6.11) and (6.12),

we can decompose the original 2-D optimization into two 1-D optimization, i.e., either

(6.11) or (6.12) is active at the boundary, then leave the other as the only one constraint.

The proof of the monotonicity for those models with respect to frame rate and quantization

stepsize can be found in [54].

Particularly, we first assign the rate constraint as active condition, i.e., q̂−at̂b = R̂0.

Thus, we can present q̂ as a function of t̂, i.e., Eq. (6.4). Then, we plug Eq. (6.4) into (6.12)

to determine the optimal t̂, i.e., (
t̂b/R0

)−g1 t̂
−g2
a · t̂ ≤ Ĉ0. (6.13)

The t̂opt and q̂opt are chosen so as to yield the best video quality using Eq. (6.10).

Figure 6.6, 6.7 and 6.8 show the optimum solution given any network bandwidth

R0 and complexity C0 constraints. For each pair of input R0 and C0, we can find the

optimal quantization stepsize qopt in Figure 6.6, optimal frame rate topt in Figure 6.7 and

corresponding best quality Qopt in Figure 6.8.
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Figure 6.6: Optimal quantization stepsize qopt versus the bit rate R and complexity C

assuming q and t can take on any continuous values within their respective ranges.
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Figure 6.7: Optimal frame rate topt versus the bit rate R and complexity C assuming q and

t can take on any continuous values within their respective ranges.
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Optimal solution assuming continuous t, q and discrete C0

The complexity constraint is defined to show how many cycles per second is sufficient

to provide the smooth video playback, which is the same as the required CPU frequency

in Hz. Previously, we assume the continuous complexity, i.e., continuous frequency. How-

ever, in practice, the supportable CPU frequency is discrete as shown in Table 6.1 and

Table 4.3 for Intel PM 1.6 GHz and ARM cortex A8 600 MHz processor, which means that

we can only support several levels of the CPU clock rate. For example, our ARM proces-

sor can support 125, 250, 500, 550 and 600 MHz in default. Referring to Table 4.2, even

for motion intensive “football” sequence, the required maximum frequency is 530 MHz,

therefore, we choose the 550 MHz as the maximum clock rate. Since the 550 MHz is quite

close to 500 MHz, we choose to skip the 500 MHz and only select 125, 250 and 550 MHz

to examine the discrete complexity levels. We believe that such evaluation can be applied

widely, given the discrete clock rates supported by the popular micro-processors.

Figure 6.9 shows the optimal combination of q and t given the bit rate constraint R0

at a typical discrete complexity level. Let us take “football” sequence as an example. For

different complexity levels, we have different optimal qualities. When we have sufficient

computing power, we will have the magenta curves for q(R), t(R) and Q(R), which are

the same as the results presented in rate constrained problem where complexity is not con-

strained. The curves for q(R), t(R) and Q(R) will be altered when we add the complexity

constraint. From 550 MHz to 250 MHz, we can see the best quality is reduced, and there is

a turning point for the blue curve of frame rate t, which means that the complexity bound

will break if we further increase the frame rate, and the subsequent bit rate increment is

mainly due to the the decreasing of the quantization stepsize. This result suggests that the

temporal decoding is more complex than the amplitude decoding (also proves that SVC

layered decoding has the quite similar complexity compared with single layer decoding).

Because of the decrement of the quantization stepsize, the overall quality still stays stable

even we have to reduce the frame rate at 250 MHz. It means that the temporal quality re-

duction is compensated by the spatial quality improvement by the decreasing quantization

stepsize. However, when we only have 125 MHz computing capability, we see that the
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quality will decrease as well after a certain bit rate, where the frame rate reduces largely

and the decrement of the quantization stepsize can not compensate the temporal quality

reduction although the bit rate is still going up. In reality, because of the finite amplitude

levels encoded in the bit rate, we do not further decrease the quantization stepsize when the

frame rate meets the complexity constraint. We can choose the bit rate Rt corresponding to

the maximum supportable quality Qt to deliver the bit stream with Rt ≤ R0.

Optimal solution under dyadic temporal scalability structure and discrete C0

Furthermore, we apply our solution under the dyadic prediction structure, where we

can only support five discrete frame rates, i.e., 1.875, 3.75, 7.5, 15, and 30 Hz given the

maximum frame rate at 30 Hz and the 16-picture GOP for temporal scalability. More prac-

tically, we follow the assumption discussed earlier to choose the discrete complexity level

supported by the ARM processor. Therefore, our solution is more generic and applicable

for the practical system. Please note that we still assume the continuous quantization step-

size. Because the frame rate t can only increase in discrete steps, the optimal q does not

decrease monotonically. Rather, whenever topt jumps to the next higher value (doubles),

qopt first increases to meet the rate constraint, and then decreases while t is held constant, as

the rate increases. Figure 6.10 shows the same plots in comparison to the Figure 6.4 when

we set the complexity level at 550 MHz. Consistent with the previous results, for football,

the optimal frame rate transition to 30 Hz at an intermediate bit rate; whereas for the other

sequences, the optimal frame rate stays at 15 Hz even at the highest bit rates examined.

When the mobile doesn’t have enough power, the complexity level is reduced to 250 MHz

(illustrated using blue curve in Figure 6.10) the optimal t does not go to 30 Hz anymore

because of the complexity constraint. Moreover, the optimal frame rate will decrease when

we have even lower complexity support, i.e., 125 MHz, which is consistent with previous

results shown in Figure 6.9. We also see that the quality, frame rate and quantization curves

are truncated for 125 MHz, where the terminating point corresponds to the best quality. If

we keep trying to increase the bit rate, the perceptual quality will reduce because of the

severe reduction of the temporal video quality. In reality, we can choose to stop at the
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Figure 6.9: Optimal quantization stepsize qopt, frame rate topt and corresponding quality

Qopt versus the bit rate R when the complexity takes discrete levels and q and t take on any

continuous values within their respective ranges.
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Figure 6.10: Optimal quantization stepsize qopt, frame rate topt and corresponding quality

Qopt versus the bit rateRwhen the complexity takes discrete levels under dyadic prediction

structure.
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maximum quality point for insufficient computational complexity supply.

6.2 DVFS-enabled Energy Efficient Video Decoding

τ

· · ·

· · ·
(i − 1)τ

· · ·

· · ·
iτ0

w/o DVFS

w/ DVFS

video decoding
slot

slack 
slot

Figure 6.11: DVFS-enabled video decoding, the i-th frame or GOP decoding and rendering

is allocated in the slot [(i− 1)τ, iτ ].

Dynamic voltage/frequency scaling (DVFS) is a technique that adjusts the voltage

and frequency of a processor based on the required processing cycles C, and completion

deadline of a task (with time interval τ ). In a traditional processor without DVFS, the

processor always runs at a maximum voltage Vmax and frequency fmax, regardless required

CPU cycles, as illustrated in the upper part of Figure 6.11. With DVFS, the CPU frequency

f is adjusted according to C, so that in the ideal case f = C/τ ≤ fmax, and Vdd ≤ Vmax, as

depicted in the bottom part of Figure 6.11, thereby reducing the total power consumption.

6.2.1 Proposed DVFS Control Driven by Complexity Prediction

From previous sections, our proposed complexity model can estimate the video decod-

ing complexity accurately for the next frame or GOP, based on certain embedded data in the

packetized stream and the measured processing cycles for some DM for the previous frame

or GOP. Let us take frame-based video decoding as an example in the following discussion,

where each frame must be decoded and rendered within the allocated time slot (e.g. τ = 33

ms. for a 30 Hz video). Note that the discussion can be applied to the GOP-based setting

similarly.



112

Complexity Prediction

DVFS Control

H.264/AVC Decoder
(with Complexity Profiler)

DeMUX

NCU(i)

Cframe(i)

(fi, Vi)

Constant kCU
CU = MBitrans, 

intraMB, half

Measured kCU(i − 1)

CU = bit, MBsip, α

Packetized H.264/AVC 
stream for frame i

H.
26

4/
AV

C 
co

m
pl

ia
nt

 
ra

w 
bi

ts
tre

am
Decoded Video

Figure 6.12: Complexity prediction based DVFS for H.264/AVC video decoding, complex-

ity profiler is embedded into video decoder and used to collect cycles for each module.

Figure 6.12 illustrates our DVFS control scheme for H.264/AVC video decoding based

on frame level complexity prediction. A similar process applies to GOP level DVFS ad-

justment as well. Usually, the raw H.264/AVC bitstream is packed into a certain container

in popular applications, e.g., FLV, AVI, MKV, etc, for delivery or storage. In our work, we

fill the NCU for each frame into the header field of the container. Then the decomposed raw

video bitstream can be decoded by any available H.264/AVC decoder. When complexity

prediction is done at GOP interval, the NCU information only needs to be embedded in the

container header of packetized stream for a whole GOP. The packetized H.264/AVC stream

is parsed to obtain the complexity metadata NCU and H.264/AVC compliant raw bitstream

(for example, Annex B compliant bitstream). Together with the kCU which is either con-

stant, or from the prediction using complexity data of the previous decoded DM, the parsed

NCU can be used to estimate cycles required by current DM decoding. Subsequently, the es-

timated total complexity for the current frame is used to select and set the proper frequency

and voltage for the underlying processor prior to conducting current frame decoding. Based

on our profiling, we have found that such DVFS control (together with complexity profiling

and prediction) only requires cycles on the order of tens, which is far less than the cycles

demanded by video decoding. Moreover, the voltage transition due to DVFS is around
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70 µs [45] 2, which is far less than the real-time frame decoding constraint, for example,

about 0.2% of 33 ms for 30Hz video. Thus such transition latency is acceptable for video

decoding.

Typically, there is a set of discrete Vk and fk supported by a processor to enable

DVFS. For Intel PM processor on ThinkPad T42, there are 6-level voltages supported as

listed in Table 6.1 [42], while there are 5 achievable voltages and corresponding maximum

clock rates for the ARM processor on TI OMAP35x EVM platform, as presented in Ta-

ble 4.3 [48]. To validate the power saving using DVFS, we create a video stream using

concatenated sequences in the order of “News”, “Harbour”, “Ice” and “Soccer” at QP 24,

each of which contains 120 frames 3. Our experimental data provide that the maximum er-

ror between predicted and measured complexity is 8.7%, therefore, we scale the predicted

complexity by a factor of 1.1 to avoid underestimation, and use this scaled version to set

voltage and frequency of DVFS. On Intel platform, we use the scaled frame or GOP com-

plexity to obtain the analytical power consumption. For the OMAP system, in addition to

the analytical power saving, we also conduct real power measurement when doing DVFS

enabled video decoding on the OMAP35x board. Two DVFS schemes are conducted for

both experimental and analytical power saving investigation, 4 which are

• Discrete DVFS (D-DVFS): only the discrete sets of voltage and frequency listed in

Table 6.1 and Table 4.3 are allowed. We choose the frequency f (and its correspond-

ing V ), that is the smallest one which is equal or larger than min(C/τ, fmax), where

τ is the frame interval.

• Continuous DVFS (C-DVFS): here we assume that the frequency and voltage can

be adjusted continuously. The frequency is set to f = C/τ , while the voltage is

determined by the Eq. (4.10).

2The actual transition latency for our ARM platform is 78 µs.
3Because of the limited internal memory for data recording supported by our scope, we created new

concatenated videos with 480 frames in total without using the longer sequences exemplified in previous
sections.

4Currently, we only use the default discrete Vk and fk supported by the OMAP system to do experimental
power saving investigation, without implementing continuous frequency and voltage adjustment.
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In the following paragraphs, we will present power savings by using DVFS through

both analysis and measurements.

6.2.2 Intel PM 1.6 GHz

In this section, the DVFS enabled analytical power saving is computed for Intel PM

processor on our ThinkPad T42 platform in comparison with traditional CPU operation

without DVFS. As known, this 1.6 GHz Intel PM processor is fabricated using 90nm

technology, and the dynamic power dominates the total power consumption. According

to the discrete voltages and frequencies supported by the processor in Table 6.1 [42],

we have found that the voltage Vdd is linearly related to the frequency f , with φ = 1,

ω = 5.6×10−10, and θ = 0.61, as illustrated in Figure 6.13. Thus, the dynamic power (4.8)

can be represented as a function of f , i.e.,

Pdyn = Keff

(
ωfφ + θ

)2
f. (6.14)

In Table 6.2 we present the estimated dynamic power saving for two DVFS cases

compared to the “Performance” scheme without DVFS. For the “Performance”scheme,

we assume the CPU runs at maximum voltage Vmax and clock rate fmax regardless of the

required CPU cycles, and use P = Keff (ωf
φ
max + θ)2fmax (in watt) to note the average

power consumption for conducting video decoding. Although we separate the frame and

GOP based video decoding, the “Performance” power consumption is the same for both,

since same voltages are held during the entire video duration.

In comparison to the power consumption required by “Performance” scheme using

peak power, the power saving factors of D-DVFS and C-DVFS are up to 2.94 and 3.33

for frame based video decoding, and are 3.03 and 3.45 for GOP based video decoding, as

shown in Table 6.2.

6.2.3 ARM Cortex A8 600 MHz

In this section, we investigate the total power consumption required by ARM processor

on the OMAP35x board given that the leakage power can not be ignored for our 65nm
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Table 6.1: Supported dynamic voltage (volt) and frequency (MHz) of Intel PM 1.6 GHz

processor on ThinkPad T42
Voltage 1.484 1.420 1.276 1.164 1.036 0.956

Max. Freq. 1600 1400 1200 1000 800 600

600 800 1000 1200 1400 1600
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Frequency (MHz)

V
ol

ta
ge

 (
vo

lt)

Intel PM

 

 

discrete V
dd

 vs. f

V
dd

= ω fφ + θ, φ = 1

ω = 5.5e−10, θ = 0.61

Figure 6.13: Relation between voltage and frequency for Intel PM processor.

Table 6.2: Normalized Dynamic power consumption for Intel PM processor based on ana-

lytical power models relative to using peak power
QP=24 QP=36

Frame GOP Frame GOP
D-DVFS 34% 33% 31% 31%
C-DVFS 30% 29% 28% 27%
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fabricated ARM processor. Similar as the Intel PM processor, the ARM processor on the

TI OMAP35x board only supports a discrete set of voltage and frequency levels, as shown

in Table 4.3 [48]. Each pair of voltage and frequency is associated with a CPU operating

point (OPP) state. We first experiment with the video decoding on OMAP board using

ARM processor for three cases: one is “Performance” which fixes the voltage and clock

rate at the maximum value, the second one is “onDemand” which adapts the processor

voltage and clock rate at a regular interval (e.g., 156 ms for our OMAP system) based on

the measured CPU load [55], and the third one is the DVFS using our proposed complexity

prediction method. For the “onDemand” DVFS control on the OMAP system, we have

found that the default starting voltage and frequency is 1.27 volt and 550 MHz, which

corresponds to OPP 4. If the CPU load is over 80% of the peak load supported by the

chosen OPP state in the previous interval, the OPP state will be changed to the next higher

level in the current interval. If the CPU load is below 20% of the peak load, the OPP state

will be adjusted to the next lower level. Since we only use available discrete voltages (clock

rates) supported by ARM processor, the complexity model based DVFS can be treated as

experimental D-DVFS (eD-DVFS). Along with video decoding, we measure the voltage

and current through ARM processor 5 using Agilent MSO7054A Digital Oscilloscope. This

oscilloscope is capable of sampling at 10KHz and storing almost 5 million data points.

Figure 6.14 illustrates the test environment where instant voltages are collected by the

scope, and the laptop is used to control and command the OMAP board via serial port. The

recorded data is transferred via USB from the scope for data post-processing.

Figure 6.15 plots the average power of three experimental cases in video decoding

order, for both frame and GOP-based complexity prediction. Note that the DVFS reduces

the processor power consumption. According to the simulation results, the power sav-

ing factors of our proposed complexity prediction based DVFS are 1.59 compared to the

traditional “Performance” scheme, and 1.40 in comparison to the default “OnDemand” so-

lution, for the frame-based complexity prediction, and are 1.61 and 1.42 respectively for

5To make our simulation accurate, we disable the DSP core inside OMAP system, and only conduct the
video decoding using ARM processor.
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Figure 6.14: Power measurement using Agilent MSO7054A Digital Oscilloscope when

conducting video decoding on OMAP board. Voltage probes from scope are connected

with jumper J6 on OMAP board to collect the instant voltage and current (via voltage

difference over a resistance).

the GOP-based complexity prediction.

To derive analytical power savings, we fit the voltages and clock rates in Table 4.3

for ARM processor, and have found that the voltage and frequency are related by (4.10)

with φ = 1.69, ω = 6 × 10−16 and θ = 0.91, as depicted in Figure 4.6. To evaluate the

relation between power and the voltage, we collect the instant power and its corresponding

voltage, plot them as scatter points in Figure 4.7, and find its best fit using the power model

in (4.11).

Table 6.3 lists the power consumption of analytical D-DVFS and C-DVFS schemes

as well as the experimental “OnDemand” and “eD-DVFS” cases relative to the power con-

sumed using “Performance” scheme. Note that our experimental DVFS (eD-DVFS) is very

close to the analytical result for D-DVFS 6. In practice, the processor voltage/frequency

transition requires additional power. However, this kind of power dissipation is negligible

according to the results of eD-DVFS and analytical D-DVFS in Table 6.3. Ideally, if the

processor supports continuous voltage and frequency, and the frequency is set according

to the predicted complexity, based on the analytical result obtained with C-DVFS, it is

6Here, D-DVFS and C-DVFS are analytical derivations, while eD-DVFS, eD-DVFS(seg) and onDemand
are experimental real measurements.
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possible to save the power consumption by half approximately, compared with the orig-

inal “Performance” scheme. The fact that the power savings achievable by experimental

measurements (eD-DVFS) and that by analytical derivation (D-DVFS) are very close also

suggests that on-chip memory access does not consume significant amount of power. This

is because the analytical power saving is derived without including the on-chip memory ac-

cess energy impact and the measured total power consumption by the CPU, which includes

the power consumption due to computation cycles and on-chip memory access.
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Figure 6.15: Average power recorded when conducting frame or GOP based video coding

on OMAP35x EVM platform for “Performance”, “OnDemand” and “eD-DVFS” (experi-

mental D-DVFS) cases.

Table 6.3: Normalized power consumption for ARM processor relative to using peak power
QP=24 QP=36

Frame GOP Frame GOP
onDemand 88% 88% - -
eD-DVFS 63% 62% - -
D-DVFS 62% 62% 56% 55%
C-DVFS 52% 51% 47% 45%

eD-DVFS(seg) 52% 47% - -

As shown above, the difference using DVFS with frame or GOP-based complexity

prediction is slight. This is due to the relatively small complexity variation from frame to
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frame in the adopted test video. If the decoding complexity changes more rapidly from

frame to frame, the GOP based DVFS is expected to provide more power saving. For ex-

ample, the frame decoding complexity varies more significantly during the “Soccer” period

within the simulated concatenated video, i.e., from frame #400 to #480 according to our

experimental data. Also, the instant power for the eD-DVFS scheme changes rapidly as

presented in Figure 6.15(a). The last row in Table 6.3, i.e., eD-DVFS(seg), provides the

average power consumption for this video segment. It is shown that GOP-based method

consumes 90% of the power required by the frame-based method. This result is encourag-

ing, as GOP-based complexity prediction and DVFS control not only leads to more power

savings, but also requires less computation and bit rate overhead to enable complexity pre-

diction, and involves less frequent adjustment of the processor frequency and voltage. A

downside of the GOP-level scheme is that it incurs more delay in video decoding (1 GOP

instead of 1 frame, in our case, 1 GOP includes 8 frames). For applications that can accept

longer delay, GOP based model is more practical.

The power savings reported so far are for decoding the test video at QP 24. It is

expected that at higher QP (and hence lower bit rate), more savings are achievable using

DVFS, compared to using the peak power invariably. Specifically, we have coded the

same concatenated sequence at QP 36, and estimated the power consumption by the two

platforms for decoding this sequence using the same analytical models. The results are also

provided in Tables 6.2 and 6.3. The power saving factors obtainable with D-DVFS and C-

DVFS increase to 3.23 and 3.7, respectively, for the Intel processor; and become 1.82 and

2.22 for the ARM processor.

6.3 Discussion and Summary

The chapter presents the practical applications using our propose models. First of

all, we apply our model to solve the power rate constrained scalable video adaptation,

which is a typical problem for wireless video streaming and playback on mobile device,

where the network bandwidth and mobile battery capacity are usually bounded. We first
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solve the rate constrained problem assuming that the complexity constraint is unlimited (or

relaxed). Then, we extend the solution to consider the limited complexity as well. Not only

do we provide the theoretical results assuming the continuous quantization stepsize and

frame rate, but we also present the results for practical coding system where the temporal

scalability is discrete due to the hierarchical dyadic prediction structure. Moreover, in

practice, the complexity constraint is also discrete, which is consistent with the reality

where the micro-processor only supports limited discrete clock rate (and corresponding

voltage). Thus, we believe that our solution can be applied widely to the practical system.

Furthermore, we have presented the DVFS-enabled energy efficient video decoding,

where the DVFS is driven by our complexity prediction algorithm. Particularly, we use

our video decoding complexity prediction algorithm to guide the voltage and clock rate ad-

justment of the underlying processor. We have validated our complexity prediction based

DVFS algorithm on both Intel PM and ARM processors. Results show that our method

has achieved an outstanding performance regarding the power saving. For Intel PM pro-

cessor, where the dynamic power dominates, we just need 34% power in comparison to

the “Performance” method where we assume the maximum clock rate and voltage regard-

less the actual workload. Meanwhile, we require 62% power to the “Performance” scheme

for ARM processor, where the static leakage power can not be ignored. Those results are

shown for default limited OPPs of the underlying processor with the frame level complex-

ity prediction. In devices supporting more fine voltages and clock rates, the power saving

can be even more. In addition, the saving can be further augmented if we use the GOP level

complexity prediction.
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Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we model the perceptual quality, rate and power consumption for scal-

able video with the focus on the joint temporal and amplitude scalability. We apply the

“impact separation” methodology to differentiate the impact from temporal resolution (i.e.,

frame rate t) and amplitude resolution (i.e., quantization stepsize q) so as to construct the

analytical models for perceptual quality, rate and power consumption. Each model can be

expressed as the product of a function in terms of the frame rate and a function in terms of

the quantization stepsize.

First, to develop the perceptual quality metric, we first normalize the perceptual score

(i.e., MOS) for each combination for frame rate and quantization by the MOS at the maxi-

mum frame rate (i.e., tmax) for any given q to obtain the normalized quality versus tempo-

ral resolution (NQT), which is also called temporal correction factor for quality (TCFQ).

Based on our extensive simulations, we have found a single-parameter inverted exponential

function of frame rate that can well predict the NQT curves. On the other hand, curves for

normalized quality versus quantization (NQQ) at maximum frame rate can be well cap-

tured by another single-parameter exponential function of q as well. Therefore, the overall

quality metric considering both temporal and quantization variation can be expressed as a

product of maximum quality Qmax (i.e., obtained at maximum frame rate and minimum
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quantization stepsize), an exponential function of quantization and an inverted exponential

function of frame rate. According to our experiments, we have found that Qmax is fixed

for every videos, then our model only has two content dependent parameters. Based on the

verification using our test data as well as other data set proposed in the literature, our ana-

lytical quality model can well predict the perceptual quality at any combination of temporal

and quantization level.

Second, we use two power functions to express the relationship between normalized

rate versus temporal resolution (NRT) and normalized rate versus quantization (NRQ), in

terms of frame rate and quantization stepsize respectively, where NRT and NRQ can be

derived using the same method for quality model development. Specifically, the overall

rate model is the product of maximum bit rate Rmax encoded using maximum frame rate

and minimum quantization, a power function of frame rate and a power function of quan-

tization. In addition to the experimental findings, we also provide the theoretical analysis

to show that the power function approximation fits the NRT curves very well. In general,

there are three parameters in our rate model including Rmax and other two power function

related parameters. We have validated our proposed rate model using various videos with

different content activities and resolutions. Results show that our model has a very high

prediction accuracy.

Third, similar as above, we separate the impact of frame rate and quantization for scal-

able video decoding complexity model by normalizing the complexity for any combination

of frame rate and quantization with respect to points at maximum frame rate and minimum

quantization. We have found that normalized complexity versus frame rate (NCT) at any q

can be well explained by a linear function. However, normalized complexity versus quanti-

zation (NCQ) curves are highly temporal dependent. Therefore, we use the power function

with a frame rate dependent parameter to express the NCQ. According to our simulation

data using a wide range of videos, our proposed model is very accurate of predicting the

actual complexity for scalable video decoding at at any given frame rate and quantization.

Furthermore, we extend the complexity model to the power consumption model for the

scalable video decoding on ARM processor, by bridging the power consumption as a func-
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tion of the instant CPU clock rate, which, in other words, is the the complexity workload

demand.

Fourth, in addition to develop the complexity model considering the temporal and am-

plitude resolution variation. We also propose the complexity prediction model to estimate

the frame or GOP decoding cycles along with the video decoding. The estimated cycles

are used to dynamically adapt the voltage and clock rate of the underlying DVFS-capable

processor so as to save more power. To accurately capture the frame decoding complex-

ity, we decompose the entire decoder into 6 decoding modules (DM), each of which is

controlled by an unique complexity unit (CU). These CUs are defined to ensure that their

average complexity (per frame) is either constant or can be easily predicted using previous

decoded data. At the current stage, the number of CUs involved (i.e., NCU) are embedded

as metadata inside the header field of a certain container (such as FLV, MKV) associated

with the video track, so as to inform the decoder to do fine DVFS adjustment. According

to our results, such metadata occupy less than 2% for a 96 kbps video stream. The per-

centage is much smaller for high bit rate video streams. Based on our experimental data,

our complexity prediction based DVFS can achieve half power saving for popular ARM

processor, which is much better than the default “onDemand” DVFS method provided by

many operation systems (OSs).

Fifth, the proposed models will be more useful if we can predict the model parameters

accurately using content features, and results show that the parameters are indeed content

adaptive. First of all, we abstract a set of content features that can be derived from residual

signal, e.g., frame difference, displaced frame difference, etc, motion fields e.g., as motion

vector magnitude and motion direction activity, etc and original video signal e.g., as video

contrast. To obtain the input raw information, we have implemented a lightweight pre-

processor in the video encoding by enabling macroblock based integer motion estimation.

Compared with video encoding, the pre-processor is much simplified. According to the re-

sults, we have found three-feature combined prediction can estimate the model parameters

for CIF videos very well, and two-feature combination is sufficient to estimate the model

parameters for WVGA and 720p videos. We do note that the weighted coefficients and fea-
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tures are different for different video resolutions even for the same model parameter. We

will conduct further investigation in our future research. We also plug the estimated model

parameters into our analytical models to compare with the raw data obtained by real exper-

iments. Results show that, with the proper predicted parameters, our model can estimate

the simulation data very well.

Moreover, we apply the proposed models to do resource constrained scalable video

adaptation. At first, we solve the rate constrained video adaptation problem to maximize

the video quality given the limited network bandwidth (i.e., bit rate). We also extend the

solution to do power-rate constrained scalable video adaption, where the network band-

width and mobile battery power are both bounded. Each time, given the bit rate and power

consumption constraint, we will calculate a best combination of frame rate and quantiza-

tion stepsize, which yields the best perceptual quality. Using our models, we can tackle

the above problem analytically instead of computational intensive dynamic programming

or brute force search. Currently, we can simply embed the features and weighted coeffi-

cients [for model parameter prediction] as metadata in the bitstreams to guide the video

adaptation at proxy or gateway.

7.2 Future Work

7.2.1 Extension of Proposed Models by Considering the Spatial Scal-

ability

Our proposed models have considered the joint impact of temporal and amplitude

scalability provided by the SVC. Practically, we should investigate the quality, rate and

complexity variation introduced by spatial scalability, and incorporate the spatial resolu-

tion impact into current metrics to establish the complete models Q(s, t, q), R(s, t, q) and

C(s, t, q), where s, t and q mean the spatial resolution index (i.e., frame size), temporal

resolution (i.e., frame rate) and amplitude level (i.e., quantization stepsize), respectively.
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7.2.2 Video Encoder Optimization

As shown in this thesis, we have developed the analytical models, and applied them

to guide the video adaptation so as to choose the best extracted point to provide the best

video quality. On the other hand, our models can be applied to the encoder as well, where

we can use the models to choose the best combination of encoding parameters, such as

spatial, temporal and amplitude resolution (STAR), to maximize the perceptual quality

of reconstructed video given the network bandwidth R and encoding or decoding power

consumption (P ) constraints.

7.2.3 Implementation of real-time SVC codec with STAR optimization

Practically speaking, it will be much more useful if we can plug our STAR optimiza-

tion into the real SVC product, in particular for mobile platform. However, according to

our best knowledge, no commercial real-time SVC codec on mobile platform are available

in the market so far. Given the popular, fast and well-known open source x264 [56] for

H.264/AVC single layer encoder, our group is working on implementing the SVC func-

tionality on top of the x264 code base. Many encoder functions are inherited and reused to

improve the encoder efficiency so as to ensure that x264 with SVC tools can still achieve

the real-time encoding, in particular on mobile platform, such as ARM. For the decoder

part, we have developed C-code based standard compliant SVC decoder for our research.

This decoder is platform independent and highly modularized. Our next step is to use

the platform dependent instructions, such as “MMX”, “SSE” [42] on x386 architecture,

and “NEON” [43] on ARM architecture to do the code optimization for speedup. With

the real-time SVC codec, we can incorporate our STAR algorithms to guide the encoder

optimization and receiver side video adaptation to emulate the real mobile video commu-

nication over wireless networks. With our STAR algorithm, we can provide the best video

quality under the access network bandwidth and/or remaining battery capacity constraints.
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