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AN ABSTRACT

ADAPTIVE AND MULTIMODAL APPROACH

TO MULTIMEDIA CONTENT ANALYSIS

by

Zhu Liu

Advisor: Yao Wang

Submitted in Partial Ful�llment of the Requirements

for the Degree of Doctor of Philosophy (Electrical Engineering)

January 2001

The volume of multimedia data generated nowadays is exploding. To eÆ-

ciently access and retrieve desired information, tools that enable automated analysis

based on content are becoming indispensable. Multimedia content is de�ned at both

perceptual and conceptual levels. The former refers to the content characterized

purely by intrinsic perception properties such as color, motion, or acoustic features.

The latter refers to the content that is speci�ed based on concepts or semantics such

as sunset, anchors, or news headline stories. At both levels, the content is embedded

in multiple forms that are usually complimentary to each other. The main objective

of this thesis is to adaptively analyze the multimedia content by integrating cues

from multiple modalities, including audio, video, and text, mainly in the scope of

news broadcast.

At the perceptual level, news broadcast data is segmented and classi�ed

into di�erent video events such as news reporting and commercials. Audio and vi-
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sual features are developed and integrated, aiming at discriminating di�erent events

e�ectively. Various classi�cation mechanisms, including linear fuzzy threshold, max-

imum likelihood using Gaussian Mixture Model and Hidden Markov Model, Neural

Network, as well as Support Vector Machine, are benchmarked.

At the conceptual level, algorithms and demonstration systems for three

applications are developed. In News Broadcast Browsing System, recovering and

presentation of the embedded hierarchy structure of news broadcast are addressed.

Important semantic objects such as hosting characters and headline news stories

are adaptively extracted using the audio/visual models that are bootstrapped from

on-line data. The problem of eÆcient search and retrieval of segmented multimedia

objects based on audio is discussed in Query-by-example in Audio System. A distance

metric framework is proposed to determine the di�erence of mixture type Probability

Density Functions, and is applied in measuring the dissimilarity of audio segments

based on their model parameters. In Major Cast Detection System, we developed

an algorithm to detect the major casts in video, for example, anchor persons in

news broadcasts and major characters in movies. The algorithm integrates both

speaker and face information and constructs a ranked list of major casts based on

their temporal and spacial presence.
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Chapter 1

Introduction

Multimedia content analysis refers to computerized understanding of the

semantic meanings of a multimedia document, such as a video sequence with ac-

companying audio track and closed caption. Tools that enable automated content

analysis are becoming indispensable as we enter the digital multimedia information

era, when we need to eÆciently access, digest, and retrieve multimedia information.

This dissertation tackles this problem at di�erent semantic levels by integrating cues

from multiple modalities, mainly in the scope of news broadcast data.

1.1 Observations and Approaches

Most of our work is driven by the following two observations. First, the

semantics of a multimedia document are embedded in multiple forms that are usually

complimentary to each other. For example, a live coverage on TV about an earthquake

conveys information that is far beyond what we hear from the reporter. We can see

and feel the e�ect of the earth quake, while hearing the reporter talking about the

statistics. Therefore, it is necessary to analyze all types of data: image frames, sound

tracks, texts that can be extracted from image frames, and spoken words that can

be deciphered from the audio track. Second, multimedia content is de�ned at both

perceptual and conceptual levels. The former refers to the content characterized
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purely by intrinsic perception properties such as color, motion, or acoustic features.

The latter refers to the content that is speci�ed based on concepts or semantics such

as sunset, anchors, or news headline stories. Multimedia content analysis should be

done at both of these levels, and we may integrate di�erent modalities at one or

both levels depending on the application. The novelty of this thesis also lies in the

combination of these two points of view.

Perceptual level indexing serves as the foundation for the conceptual level

analysis. Two major tasks at this level are the parsing of a multimedia document and

the detection of basic multimedia events. For a video, this usually means to segment

the entire video into shots, within which the audio and/or visual characteristics are

coherent, and scenes, which correspond to semantically meaningful units, and to

classify each scene or shot into prede�ned categories of events. Multimeida events

may be de�ned at di�erent levels, e.g. news or commercial at high level, and speech or

music at low level. Beyond such \labeled" indexes, some audio and visual descriptors

may also be useful as low-level indexes, so that a user can retrieve a video clip that

is aurally or visually similar to a query example.

Conceptual level analysis is more application driven, and the approaches are

determined by the interested semantics of di�erent applications. In this thesis, we

propose various algorithms utilized in three distinct multimedia content analysis sys-

tems: news broadcast browsing system, audio query system, and major cast detection

system. The addressed techniques include anchor person detection, face detection and

tracking, news story generation, audio content description and comparison, speaker

and face clustering, and etc. Di�erent conceptual level objects, for example, face

and speaker identi�cation, news summary, and major casts are extracted. While per-

ceptual level indexes are helpful, conceptual level \labels" are more meaningful and

intuitive for the users to understand the main idea of a video.

With the huge amount of multimedia data available, audio-visual summary

is also essential in building a video retrieval system, to enable a user to quickly browse
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through a large set of returned items in response to a query. Beyond a text summary

of the video content, an audio-visual presentation will give the user a better grasp of

the characters, the settings, and the style of the video. Such issues are also studied

accordingly in this thesis.

1.2 Previous Work

Earlier research in this �eld has focused on using visual features for seg-

mentation, classi�cation, and summarization of video content. Recently, researchers

have begun to realize that audio characteristics are equally, if not more, important

when it comes to understanding the semantic content of a video. This applies not

just to the speech information, which obviously provides semantic information, but

also generic acoustic properties. For example, we can tell whether a TV program is

a news report, a commercial or a sports game, without actually watching the TV or

understanding the words being spoken, because the background sound characteristics

in these scenes are very di�erent. When either audio or visual information alone

is not suÆcient in determining the scene content, combining audio and visual cues

may resolve the ambiguities in individual modality, and thereby help to obtain more

accurate answers.

Visual based approach started from computer vision [1], which aims to un-

derstand the content and structure of image. Although the state of art in this �eld

is still far away from its ultimate objective - emulation of the functionality of human

eyes, techniques in restricted application �elds do gain great success. Among them

are applications in medicine domain, object detection, face recognition [2], and etc.

Since Zhang et al. [3, 4, 5] introduced the concept of content-based video processing,

there has been much work done in this �eld [6, 7]. Flickner et al. [8] developed QBIC

system which allows users to �nd pictorial information in image and video database

based on color, shape, texture and sketches. Yeung and Yeo [9, 10] proposed to use
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video posters to compactly present and fast browse pictorial content. Rui et al. [11]

explored the automatic extraction of video structures from both the physical shots

and the semantic scenes and developed tools that can construct table of content

(TOC) to assist user's access. Ferman and Tekalp [12] proposed a clustering-based

framework to segment video sequence and generate visual summary for video man-

agement. In face detection and recognition �eld, many algorithms can be found in

[13, 2, 14]. Rowley et al. proposed a neural network based face detection algorithm

in [15], where a 20� 20 region is fed into a neural network after light correction and

histogram equalization. The structure of the neural network is elaborately designed

with three types of hidden neurons aiming to detect di�erent facial features.

As a complimentary e�ort, audio based content analysis has existed for

decades. The traditional approaches are speech and speaker recognition, which an-

swer the question, who says what. Among the various well established techniques

developed in this �eld, Hidden Markov Model (HMM) based framework is successful

in speech recognition [16] and text dependent speaker recognition [17], and Gaus-

sian Mixture Model (GMM) is suitable for text-independent speaker recognition [18].

Until recently, broader types of audio content, including di�erent types of music,

background noise, and other general sounds like water, animals, etc. are studied.

Saunders [19] proposed a technique to discriminate speech and music in radio broad-

cast. Saraceno and Leonardi [20] further classi�ed audio into four types: silence,

speech, music, and noise. A more elaborate audio content categorization was pro-

posed by Wold et al [21], which divided audio content into 10 groups: animal, bells,

crowds, laughter, machine, instrument, male speech, female speech, telephone, and

water. Furthermore, instrument sound was classi�ed into altotrombone, cellobowed,

oboe, percussion, tubularbells, violinbowed, and violinpizz. Zhang and Kuo [22] clas-

si�ed audio content in a hierarchical way. At the coarse level, audio data is classi�ed

into speech, music, environmental sounds, and silence, and at the �ne level, environ-

mental sounds are further classi�ed into applause, rain, birds' sound, etc. Di�erent
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sets of audio features aiming to simulate the human hearing perception and reect

the characteristics of audio content are also developed in these works.

Approaches combining multiple modalities in video content analysis are rel-

atively new [23, 24, 25, 26, 27, 28, 29]. Boreczky [30] used HMM framework for

video segmentation using both audio and image features. Saraceno and Leonardi [31]

considered segmenting a video into the following basic scene types: dialogs, stories,

actions, and generic. This is accomplished by �rst dividing a video into audio and

visual shots independently, and then grouping video shots so that audio and visual

characteristics within each group follow some prede�ned patterns. In [32], a hier-

archical segmentation approach was proposed that can detect scene breaks and shot

breaks. The algorithm is based on the observation that a scene change is usually asso-

ciated with simultaneous changes of color, motion, and audio characteristics, whereas

a shot break is only accompanied with visual changes. Lienhart et al. [33] proposed to

use di�erent criteria to segment a video into scenes with similar audio characteristics

and scenes with similar settings, and dialogs. The scheme considers audio features,

color features, orientation features, and face information. In [34], Liu and Huang

reported their approach to adaptively detect unknown anchor person using on-line

trained audio and visual models. Name-It [35] is a project aiming at automatically

associating faces detected from video frames and names detected from the closed cap-

tion in news. It does not rely on any pre-stored face templates for selected names,

which is both the challenge and novelty of the system.

1.3 Dissertation Outline

This thesis is organized as follows. In Chapter 2, perceptual level multimedia

content analysis is described. Then in Chapters 3, 4, and 5, three di�erent concep-

tual level multimedia analysis applications are presented. Demonstration systems are

developed to show the e�ectiveness of proposed techniques, and corresponding simu-
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lation results are shown and discussed. Finally, in Chapter 6, we draw our conclusions

and indicate possible future works.

In Chapter 2, we introduce the video indexing at the perceptual level. Specif-

ically, a video is �rst segmented into clips and then each clip is classi�ed into interested

events. Audio and visual features are developed aiming at discriminating di�erent

types of events e�ectively. Feature space reduction techniques are also studied. Var-

ious classi�ers, including linear fuzzy classi�er, neural network, maximum likelihood

using Gaussian Mixture Model and Hidden Markov Model, and Support Vector Ma-

chine are benchmarked.

In Chapter 3, we �rst present the hierarchy of news broadcast, and then

show the approach we adopted to recover the structure automatically. Addressed

issues include how to adaptively detect anchor person and how to extract headline

news stories by integrating both audio and text information. A Table-of-Content is

generated to guide the user eÆciently browse interested news document.

In Chapter 4, an audio-based query system is described. The audio sig-

nal is segmented into homogeneous segments whose features are characterized using

Gaussian Mixture Models. A new metric framework for measuring the similarity be-

tween two Probability Density Functions of mixture type is described and applied to

GMMs. Beyond passive skimming the multimedia summaries, the developed tech-

niques enable the user to actively search the multimedia document based on audio

property.

In Chapter 5, we present an approach for automatically generating the list

of major casts for video based on both audio and visual information. A template-

based face detection and tracking algorithm is proposed. After speakers and faces

are detected and clustered, the major casts are chosen relying on face and speaker

correlation values, and are sorted based on the importance scores determined by their

temporal and spatial presence. Based on the list of major casts, the user is able to

�nd the attractive portion of video based on both audio and visual characteristics.
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Chapter 2

Perceptual Level Multimedia Content Indexing

This chapter discusses video indexing at perceptual level, which provides

the basis for conceptual level content analysis. Speci�cally, video is �rst segmented

into clips that are about 2 seconds long, and then each clip is classi�ed into di�er-

ent events, such as news reporting and commercials based on their intrinsic signal

properties. The task is formalized as a pattern recognition problem, where two im-

portant issues are features utilized and classi�cation mechanism. Audio and visual

features are exploited aiming at discriminating di�erent types of events e�ectively.

Feature dimension reduction techniques are also considered. Various classi�ers in-

cluding linear fuzzy classi�er, neural network, maximum likelihood using Gaussian

Mixture Model (GMM) and Hidden Markov Model (HMM), as well as Support Vector

Machine (SVM) are benchmarked.

2.1 Feature Extraction

Video events are characterized by accompanying audio and visual proper-

ties. Di�erent categories of video events may be e�ectively separated by di�erent

sets of audio and/or visual features. For example, audio information is feasible to

di�erentiate speech from music since this two types of events are de�ned mostly based

on their acoustic di�erence. Color information may be helpful for extracting football
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games from basketball games, since the color patterns of playgrounds for these two

kinds of games are distinct. In this section, we �rst describe the audio and visual

features we developed, and then introduce some feature space reduction techniques

based on feature correlation.

2.1.1 Audio Features

Audio signal has been studied for video shot/scene segmentation and video

scene classi�cation [20, 36, 37, 38]. We developed a set of audio features [39, 40, 41,

42], which have been found to be quite e�ective in characterizing di�erent types of

video events, e.g. commercials, games, and news reporting.

As illustrated in Figure 2.1, a digitized audio waveform is segmented into

clips, which may or may not overlap with previous clips and cover constant or variable

duration. Then each clip is divided into frames of 512 samples, each overlapping with

the previous frame by 256 samples. Eight features are computed for each frame.

Based on these frame level features, we extract 14 features for each audio clip.

To clearify the motivation of audio feature extraction procedure, we plot

some of the features for audio clips from distinctive video events: commercial, bas-

ketball game, and news reporting. These graphs show that each feature is designed

to be capable of discriminating di�erent video events.

Time Domain Features Volume distribution of an audio signal reveals the tempo-

ral variation of the signal magnitude. We use the root mean square of the magnitude

within each frame to approximate the volume of that frame. The volume of the nth

frame is de�ned as

v(n) =

vuut 1

N

N�1X
i=0

s2n(i); (2.1)

where sn(i) is the i
th sample in the nth audio frame and N is the frame length.
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Figure 2.1: An audio clip used in video segmentation and classi�cation.

Figures 2.2 and 2.3 show the waveforms and volume contours of three dif-

ferent video events. From these plots, we know that the volumes of these three audio

clips have di�erent distribution. To measure the volume variation of an audio clip,

we de�ne three time-domain features based on the volume distribution. The �rst

one is the volume standard deviation (VSTD), which is the standard deviation of the

volume over a clip. The second one is the volume dynamic range (VDR), which is the

di�erence between the maximum volume and the minimum volume in the clip. The

last one is the volume undulation (VU), which is the accumulation of the di�erence of

neighboring peaks and valleys of the volume contour in the clip. These three features

are normalized by the maximum volume in the clip.

Zero crossing rate (ZCR) is the number of times that an audio waveform

crosses the zero axis. To detect silence periods, we compare the volume and ZCR

of each frame to some preset thresholds. Using both volume and ZCR can prevent

misclassfying the low energy unvoice speech as silent signal. Based on the result of
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Figure 2.2: Waveforms of three audio clips.
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Figure 2.3: Volumes of three audio clips.

silence detection, we calculate the non-silence ratio (NSR), which is the ratio of the

non-silent interval to the entire clip. We also calculate the standard deviation of zero

crossing rate (ZSTD).

Frequency Domain Features The volume contour of a speech waveform typically

peaks at 4Hz [43]. We de�ne the 4-Hz modulation energy (4ME) as

4ME =

R
1

0 W (!)jC(!)j2d!R
1

0 jC(!)j2d! (2.2)

where C(!) is the Fourier transform of the volume contour of an audio clip andW (!)

is a triangular window function centered at 4 Hz. Clips composed of speech tend to

have higher 4ME values than those composed of music or noise.

Pitch is the fundamental period of an audio waveform. We use the short
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time Average Magnitude Di�erence Function (AMDF) to determine the pitch of each

frame. The AMDF is de�ned as

(l) =

PN�l�1
i=0 jsn(i+ l)� sn(i)j

N � l
(2.3)
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Figure 2.4: The AMDF of one speech frame.

Figure 2.4 shows the AMDF graph for a speech frame. We use the algorithm

in [44] to determine pitch from AMDF. The algorithm searches the �rst valley point in

the AMDF starting from the origin. The valley is de�ned as a local minimum which

satis�es additional constraint in terms of its value relative to the global minimum

and its curvature. For example, the AMDF in Figure 2.4 has two valleys. The pitch

frequency is the reciprocal of the time period between the origin and the �rst valley.

The search range is from 50 Hz to 450 Hz, which is the pitch range of normal human

speech. We assume the pitch frequency is zero when no pitch is found. A median

�lter is used to eliminate falsely detected pitches. Figure 2.5 gives the pitch tracks of

the same three audio clips as used in Figure 2.2. In the commercial clip, there exists

music background with overlapping notes and the detected pitch at a particular frame
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depends on which note is stronger. Therefore, the pitch track stays at for short

intervals and there exist both high and low pitch periods. In the basketball clip,

since there is signi�cant background noise, the pitch track is very rough, rarely with

a smooth region. In the news clip, the pitch track is smooth and lasts relatively

long. The intervals between two smooth tracks correspond to silence/unvoice period.

From the detected pitch contours, we derive three features: standard deviation of

pitch (PSTD), smooth pitch ratio (SPR), and non pitch ratio (NPR). The SPR is the

percentage of frames in a clip that have similar pitches as the previous frames. The

NPR is the percentage of frames with no pitch detected.
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Figure 2.5: Pitch contours of three audio clips.
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Figure 2.6: Spectrograms of three audio clips.

To obtain frequency domain features, we �rst calculate the spectrogram of

an audio clip, which is a 2D plot of the short-time Fourier transform (over each audio
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frame) along the time axis. Figure 2.6 shows the spectrograms of the three audio

clips given in Figure 2.2. Let Si(!) represents the short-time Fourier transform of the

ith frame. The frequency centroid, C(i), and the bandwidth, B(i), are de�ned as

C(i) =

R
1

0 !jSi(!)j2d!R
1

0 jSi(!)j2d!
;

B2(i) =

R
1

0 (! � C(i))2jSi(!)j2d!R
1

0 jSi(!)j2d!
(2.4)

Figures 2.7 and 2.8 show the contours of the frequency centroid and band-

width computed based on the spectrograms. The zero regions in the contour cor-

respond to silent frames. From these �gures, we can see that the basketball clip's

frequency centroid is high and has bigger dynamic range, on the other hand, the

news clip has low frequency centroid and bandwidth during the voice period and high

centroid and bandwidth during the unvoice period. In the commercial clip, there is a

continuous music background, so the frequency centroid and bandwidth contours are

quite smooth.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

F
re

qu
en

cy
 C

en
tr

oi
d 

(H
z)

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

F
re

qu
en

cy
 C

en
tr

oi
d 

(H
z)

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1000

2000

3000

4000

5000

F
re

qu
en

cy
 C

en
tr

oi
d 

(H
z)

Time (s)

(a) Commercial (b) Basketball (c) News

Figure 2.7: Contours of frequency centroid of three audio clips.

The clip level frequency centroid (FC) and the bandwidth (BW) are calculated

as the energy-weighted means of frequency centroid and bandwidth of each frame,

respectively. Because the frame with high energy has more inuence to human ears,

the weighting for a frame is proportional to the energy of the frame.

The energy distribution in di�erent frequency bands also varies quite signif-

icantly among di�erent types of audio signals. We divide the entire spectrum into
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Figure 2.8: Contours of bandwidth of three audio clips.

four subbands. Each subband consists of six critical bands which represent cochlear

�lter in the human auditory model [45]. The frequency ranges of the four subbands

are 0 { 630 Hz, 630 { 1720 Hz, 1720 { 4400 Hz, and 4400 { 11025 Hz. We calculate

subband energy ratios, which are the ratios of the energies in the four subbands to the

total energy, for each frame. Figure 2.9 shows the 4 subband energy ratio contours

of the three audio clips given in Figure 2.2. The four contours in the commercial clip

are rather smooth, on the other hand, the contours in basketball clip vary a lot. The

energy ratio of subband 1 in the news clip is much higher than those of the other

subbands. Since the four subband energy ratios sum to 1, we only consider the �rst

three ratios as features. From the frame level energy ratios, we calculate clip level

ratios by using a weighted average, where the weightings are proportional to the en-

ergy of the frames. We refer the three clip level subband features as ERSB1, ERSB2,

and ERSB3.

To summarize, we develop fourteen clip level audio features:

� NSR: non-silence-ratio

� ZSTD: standard deviation of zero crossing rate

� VSTD: volume standard deviation

� VDR: volume dynamic range
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Figure 2.9: Energy ratio in 4 subbands of three audio clips.

� VU: volume undulation

� 4ME: 4-Hz modulation energy

� PSTD: pitch standard deviation

� SPR: smooth pitch ratio

� NPR: non pitch ratio

� FC: frequency centroid

� BW: frequency bandwidth

� ERSB1-3: energy ratios of subbands 1-3.

2.1.2 Visual Features

Several excellent papers [46, 11] have appeared recently, summarizing and

reviewing various visual features, within the categories of color, texture, shape, and

motion, which are useful for image/video indexing. The visual features are chosen

based on the observed signal properties of the underlying classes. In broadcast news,

the dominant classes of events are news reporting and commercials. Due to the cost

of air time, a piece of commercial tends to have more actions, corresponding to more
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shot transitions and faster motion within each shot. To reect such di�erence, color

and motion features are extracted to capture (1) higher frequency of shots (using

color) and (2) higher motion energy (using motion information).

Color Features The e�ectiveness of the color histogram feature depends on the

color coordinate used and the quantization method. Wan and Kuo [47] studied the

e�ect of di�erent color quantization methods in di�erent color spaces including RGB,

YUV, HSV, and CIE L*u*v*. Here we use RGB space for its simplicity and e�ec-

tiveness. Based on color histogram, we choose the most dominant color (DC) and its

percentage (DCP) as color features. The dominant color represents the overall color

perception of one frame, and the percentage shows how dominant the color is. Both of

them are important for discriminating video events. For example, the dominant color

for basketball game is orange, and that of football games is green. The dominant color

of in-studio news report frames may have higher percentage than that of live news

report since the color of studio environment is much more concentrated. Means and

standard deviations of the above features within one clip are used as clip level color

features. While color histogram may not necessarily directly reect the video style

(e.g., both news reporting and commercials may have similar color distributions), the

change rate of color histogram does. We compute the di�erence between the color

histograms (DCH) from two adjacent frames by the �2 distance, and use its mean

and variance within a video clip as two extra color features.

Motion Features We extract two types of motion features: frame-wise dominant

motion (DM) and block-wise motion energy (ME). We use the phase correlation

function (PCF) between two frames [37] to compute the dominant motion vector.

When one frame is the translation of the other, the PCF has a single peak at a

location corresponding to the translation vector. When there are multiple objects

with di�erent motions in the scene, the PCF tends to have multiple peaks, each with
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a magnitude proportional to the number of pixels experiencing a particular motion.

In this sense, the PCF reveals similar information as the motion histogram. But it

can be computed from the image intensity directly, and therefore is not a�ected by

motion estimation inaccuracy. Similar to color features, we also use the percentage

of dominant motion (PDM) as a frame feature. The motion energy between two

adjacent frames is computed as follows. First, each image is divided into 8�8 blocks,

and for each block, motion based block matching [48] is performed within a search

range of 16�16. Let Di denote the total intensity di�erence between two blocks. The

motion energy of a block k is the weighted motion magnitude ek = � �
p
Æx2 + Æy2,

where Æx and Æy represent the best displacement (with minimum Di) along x and

y axes, � is the weight calculated as � = 1 + bDi

Ti
c. Here, Ti is a pre-determined

constant. When Di is smaller than Ti, the score is the motion magnitude itself. The

higher the Di is, the larger the � is and so is the motion energy ek. When the changes

are caused by small motion, the motion energy is small. When a sudden scene change

occurs, the motion energy becomes large. We then use the sum of the motion energy

from all blocks E =
P

k ek as the overall motion energy between two adjacent frames.

Means and variances of all above motion features within one video clip are used to

characterize the motion property.

Overall, we develop eighteen clip level visual features:

� DCR, DCG, DCB: mean red, green, and blue components of dominant color

� PDC: mean percentage of dominant color

� DCRSTD, DCGSTD, DCBSTD: standard deviation of red, green, and blue

components of dominant color

� PDCSTD: standard deviation of percentage of dominant color

� DCH: mean of di�erence between the color histograms

� DCHSTD: standard deviation of di�erence between the color histograms
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� DMX, DMY: mean X and Y components of dominant motion

� PDM: mean percentage of dominant motion

� DMXSTD, DMYSTD: standard deviation of X and Y components of dominant

motion

� PDMSTD: standard deviation of percentage of dominant motion

� ME: mean motion energy

� MESTD: standard deviation of motion energy

2.1.3 Correlation Between Audio and Visual Features and

Feature Space Reduction

Given a long list of audio and visual features that one can come up with, a

natural question to ask is whether they provide independent information about the

scene content, and, if not, how to derive a reduced set of features that can best serve

the purpose. One way to measure the correlation among features within the same

modality and across di�erent modalities is by computing the covariance matrix,

C =
1

N

X
x2�

(x�m)(x�m)T with m =
1

N

X
x2�

x; (2.5)

where x = (x1; x2; : : : ; xK)
T is a K-dimensional feature vector, � is the set containing

all feature vectors derived from training sequences, N is the total number of feature

vectors in �: The normalized correlation between features i and j is de�ned by

~C(i; j) =
C(i; j)q

C(i; i)C(j; j):
(2.6)

where C(i; j) is the (i; j)-th element in C:
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Figure 2.10: The normalized correlation matrix of features from di�erent modalities.

Figure 2.10 shows the normalized correlation matrix in absolute value de-

rived from a training set containing �ve types of TV programs: commercials, news,

live basketball games, live football games, and weather forecast. About ten minutes

of each scene type are included in the training set. A total of 28 clip level fea-

tures are considered: 14 audio features, 8 color features and 6 motion features. The

color features include DCR, DCG, DCB, DCP, DCRSTD, DCGSTD, DCBSTD, and

DCPSTD; and the motion features are DMX, DMY, DMP, DMXSTD, DMYSTD,

and DMPSTD. Figure 2.10 shows the normalized correlation matrix of features from

di�erent modalities, where the �rst 14 features are audio features, the next eight are

color features, and the last six are motion features. It is clear that the correlations

among di�erent modalities are very low. Within the same modality, high correlation

exists among some features, such as NSR, VSTD, and VDR, SPR and NPR, FC and

BW, and ERSB1 and ERSB2 among audio features, the means and variances of three

color components in the dominant color.

High correlation among certain features in the above example suggests that
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the feature dimension can be reduced through proper transformations. Two powerful

feature space reduction techniques are Karhunen Loeve Transform (KLT) [49] and

Multiple Discriminant Analysis (MDA) [50], both using linear transforms. With

KLT, the transform is designed to decorrelate the features, and only those features

with eigen-values larger than a threshold will be retained. With MDA, the transform

is designed to maximize the ratio of between inter-class scattering and intra-class

scattering. The maximum dimension of the new feature space is the number of

classes minus one. Figure 2.11 shows the 2D projection of the 14 audio feature

vectors from news and commercial clips using Karhunen Loeve transformation. The

separability is evident, which shows that the integrated clip level features can capture

the characteristics of underlying audio events of interest.
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Figure 2.11: 2D projection of feature vectors using Karhunen Loeve Transformation.

Figure 2.12 shows the distribution of feature points from �ve scene classes

(denoted by di�erent symbols and colors). The original feature space consists of the

same 28 features used in Figure 2.10. The left plot is based on two original features:

FC and the mean of the most dominant color (red component). The middle plot is
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Figure 2.12: Distribution of two features in the original feature vector, after KLT,

and after MDA.

based on the �rst two features obtained after applying KLT on the original feature

vector. The right plot is based on the �rst two features obtained with MDA. We can

easily see that there is the least amount of inter-class overlapping in the feature space

obtained with MDA. This means that the two new features after MDA have the best

scene discrimination capability.

2.2 Video Event Classi�cation

Besides feature extraction, classi�cation method is also an important issue.

Five types of classi�ers are benchmarked in this work. Speci�cally, we used linear

Fuzzy classi�er, Neural Network classi�er, Gaussian Mixture Model (GMM) classi-

�er, Support Vector Machine (SVM) classi�er, and Hidden Markov Model (HMM)

classi�er.
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2.2.1 Linear Fuzzy Classi�er

In fuzzy classi�er, each feature is associated with a fuzzy membership func-

tion for each type of events. The impact that each feature attribute to the overall

decision is realized in the form of a weighted sum, where each weight is derived from

the fuzzy membership function of that feature. An overall threshold value is then

applied to the weighted sum to reach the �nal decision of the classi�cation. The

membership function we used is a piece-wise linear function shown in Figure 2.13,

where the solid line and dash line are two types of functions for speci�c features.

Suppose we want to classify two events: news report and commercial, then, for news

report, the membership function of audio feature NSR follows the dashed line in the

�gure. The lower NSR is, the more likely the corresponding clip is news report.

f

1

0
T1 T2

feature

Figure 2.13: Membership function used in linear fuzzy classi�er.

2.2.2 Neural Network Classi�er

Arti�cial neural networks have been used successfully as pattern classi�ers

in many applications for their ability to implement nonlinear decision boundaries

and their capability to learn complicated rules from training data [51, 52]. Conven-

tional multi-layer perceptron (MLP) use the all-class-in-one-network (ACON) struc-

ture, which is shown in Figure 2.14(a). Such a network structure has the burden of

having to simultaneously satisfy all the desired outputs for all classes, so the required
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number of hidden units tends to be large. Besides, if one wants to adapt the network

to new training data or add new classes, all the weights need to be re-computed.

On the other hand, in the one-class-one-network (OCON) structure, one subnet is

designated for recognizing one class only [53]. The structure is illustrated in Figure

2.14(b). Each subnet is trained individually using the back-propagation algorithm

so that its output is close to 1 if the input pattern belongs to this class, otherwise

the output is close to 0. Given an input audio clip, it is classi�ed to the class whose

subnet gives the highest score. An advantage of the OCON structure is that one can

accommodate a new class easily by adding a subnet trained for that class. Given the

network structure, we still can adjust the classi�er performance by one parameter:

the number of hidden neurons. The choice of this number is a tradeo� between the

capability and generality of the network.

Input Features

. . .

Output

. . .

. . .

Input Features

MAXNET

Classification Result

(Class 1) (Class N)

. . . . . .

. . . . . .
. . .

(a) All class one network Structure (b) One class one network Structure

Figure 2.14: Two di�erent structures of Neural Network

2.2.3 Gaussian Mixture Model Classi�er

Another approach is to build models for the underlying classes using labeled

training data. Based on such trained models, a test sample can be classi�ed using
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maximum likelihood (ML) method. Here we use Gaussian Mixture Model. A GMM

model consists of a set of weighted Gaussian's:

f(x) =
KX
i=1

!i � g(Mi;�i;x);where g(Mi;�i;x) =
expf� (x�Mi)

T��1

i
(x�Mi)

2
g

(
p
2�)n

q
det(�i)

; (2.7)

where K is the number of mixtures, Mi and �i are the mean vector and covariance

matrix of the ith mixture, respectively, and !i is the weight associated with the ith

Gaussian. Based on training data, the parameter set � = (!;M;�) are optimized

such that f(x) best �ts the given data. The initial parameters are estimated from a

clustering algorithm, then expectation maximization (EM) method is used to itera-

tively re�ne the parameters until some preset conditions are met.

It has been proven that ML based estimation method for Gaussian mixture

model has no solution [54] due to the fact that, theoretically, there is no upper bound

for the likelihood value during the training. Therefore, we limit the covariance of each

feature within a speci�ed range as a constraint.

The decision about the number of mixtures to be used in the model is empir-

ical, relating to both the data characteristic and the amount of training data available.

If the amount of training data is small, a model with a large number of mixtures is not

reliable. On the other hand, a model with a small number of Gaussian's constructed

based on suÆcient amount of training data may not adequately approximate the data

to a desirable precision.

2.2.4 Support Vector Machine Classi�er

Support vector machine maps an input space into a high-dimensional feature

space denoted by Z (a Hilbert Space) [55] through some non-linear mapping � chosen

a priori and then construct the optimal separating hyperplane in the feature space,

making it possible to construct linear decision surfaces in the feature space which

correspond to the nonlinear decision surfaces in the input space [54, 56, 57].
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To construct the optimal separating hyperplane in the feature space, there is

no need to consider the feature space in explicit form. Without knowing the mapping

function �, we can express the inner product of vectors z1 and z2 in feature space Z

as (z1 �z2) = K(x1;x2), where z1 and z2 are the images in the feature space of vector

x1 and x2 in the input space. The kernel function K(x;y) can be any symmetric

function that satis�es the Mercer condition [54]. In this work, we experimented dot

product, polynomial and radial basis function (RBF) as kernel functions. They are

de�ned as:

Kdot(x;y) = x � y; (2.8)

Kpoly(x;y) = ((x � y) + 1)d; d = 1; ::: (2.9)

KRBF (x;y) = exp(�kx� yk2); (2.10)

where d is the order of polynomial kernel and  is a parameter of RBF.

The pattern recognition problem in SVM can be formulated as: For a set of

samples (zi; yi), zi 2 Z, yi 2 �1, i = 1; :::; N , we want to �nd the optimal hyperplane

f(z) = (w � z) + b, that satis�es sign(f(zi)) = yi. The embedded idea introduced

by SVM is to minimize an upper bound on the generalization error. Considering the

freedom to scale w and b simultaneously, there is another requirement for a canonical

pair:

min
i=1;:::N

j(w � zi) + bj = 1 (2.11)

In the separable case, all samples satisfy the following separation constraints:

yi((zi �w) + b) � 1; i = 1; :::; N (2.12)

During training, we want to maximize the hyperplane margin (see Figure

2.15), that is the sum of the shortest distance from the hyperplane to the closest

positive and negative samples, so that to maximize the generalization ability of SVM

classi�er. This is equivalent to minimizing �(w) = 1
2
kwk2, since the shortest distance
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Figure 2.15: The optimal separating hyperplane in SVM.

from positive and negative samples to the hyperplane is 1=kwk. The corresponding
Lagrangian is

LP =
1

2
kwk2 �

NX
i=1

�i(yi((zi �w) + b)� 1) (2.13)

with �i � 0. The requirement that the gradient of LP with respect to w and b must

vanish leads to conditions:

w =
NX
i=1

�iyizi;
NX
i=1

�iyi = 0 (2.14)

Substituting these conditions to the original Lagrangian, we get the dual form that

we need to maximize:

LD =
NX
i=1

�i �
1

2

NX
i;j=1

�i�jyiyjzizj; (2.15)

subject to constraints �i � 0, and
PN

i=1 �iyi = 0. This quadratic programing problem

can be solved by numerical methods to get �i. The samples zi with positive �i are

called support vectors. b is compute by

b = �1

2
w[x1 + x�1]; (2.16)
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where x1 is any support vector belonging to the class labeled 1, and x�1 is any support

vector belonging to the class labeled �1. Together with their �i values and b, support
vectors compose the parameters of the SVM.

During testing, we assign the class of z, f(z) to be sign(wz+ b), which is

f(z) = sign(
NX
i=1

�iyi(z � zi) + b): (2.17)

In the non-separable case, we need to introduce slack variables: �i � 0; i =

1; :::; N . The separation constraints are relaxed to yi((zi�w)+b) � 1��i; i = 1; :::; N .

Now, we need to minimize, �(w) = 1
2
kwk2 + C

PN
i=1 �i, where

PN
i=1 �i is an upper

bound on the number of training errors, and C is the penalty to errors. Following

the similar procedure in the separable case, we can �nd the coeÆcients �i.

Due to its nature of locality, results of the above classi�ers are often quite

noisy. Contextual information is used in a smoothing mechanism that reaches a

�nal classi�cation by considering the overall classi�cation within a predetermined

neighborhood. One e�ective smoothing method is to use a median �lter to post-

process the clip-based classi�cation labels.

2.2.5 Hidden Markov Model Classi�er

The above methods make decision based on the feature vector from one

incoming clip. This is sometimes not feasible, since there may be overlapping in

feature space for di�erent video events. To reliably detect video events, the temporal

information need also be considered. This means that we need to classify the video

input based on a sequence of clips, and utilize the embedded temporal variation

pattern. Hidden Markov Model is very powerful in such kind of task and has been

successfully used in speech recognition domain.

There are two types of HMM, discrete and continuous models. A discrete

HMM is characterized by the following parameters[16]:
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� N, the number of states in the model. S = fs1; s2; : : : ; sNg is the set of the

states. The state at time t is given by qt 2 S; 1 � t � T , where T is the length

of the observation sequence.

� M, the number of di�erent observation symbols. V = fv1; v2; : : : ; vMg is the

collection of all the possible observation symbols. Here, we assume that all the

possible realizations of the observation vector o are quantized into a �nite set

of symbols, using a pre-designed vector quantizer with M codewords.

� A = fai;jg, the state transition probability matrix, where ai;j = P [qt+1 =

Sjjqt = Si]; 1 � i; j � N; with the state transition coeÆcients satisfying 0 �
ai;j � 1;

PN
j=1 ai;j = 1; 1 � i; j � N:

� B = fbi(k)g, the observation symbol probability matrix with bj(k) = P [Ot =

vkjqt = Sj]; 1 � j � N; 1 � k �M .

� � = f�ig, the initial state distribution, where �i = P [q1 = Si]; 1 � i � N:

We use the notion � = (A;B;�) to indicate the complete parameter set

of the model. For a continuous HMM, the observation probabilities of the feature

vectors are characterized in a parameterized form.

The HMM training process follows the Baum-Welch method. The initial

parameters of A and B are chosen randomly and the initial values of � are uniformly

distributed for each state. After training we have �1; �2; : : : ; �C, where C is the

number of target classes. In classi�cation stage, we use maximum likelihood method.

2.3 Simulation Results and Discussion

Here we present two sets of results under di�erent applications. The �rst

one is to separate news from commercial [58], and the second one is to classify �ve TV

programs: commercial, basketball games, football game, news report, and weather
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forecast [59, 60]. Di�erent feature sets and classi�ers are studied in both simulation

settings. All the results reported in this section are raw error rate without any smooth-

ing. By raw error rate, we refer to the rate calculated from the initial classi�cation

performed on each clip without any smoothing.

2.3.1 Classi�cation of News and Commercial

Overall, we acquired 4 hours of data from NBC Nightly News, of which, 2

hours of the data is used for training and the rest for testing. Audio track is sampled

at 16 KHz with 16 bits per sample, visual track is digitized at 10 frames per second,

with size 160� 120. Most commercials (the only non-news reporting portion in our

task) are speech mixed with music background but some contain conversation only.

The news reporting includes clean speech from studio and noisy live report. All the

data used are manually labeled as news or commercial. In linear fuzzy classi�er,

we use nine audio clip features: NSR, VSTD, ZSTD, VDR, VU, 4ME, SMR, NUR,

and ERSB2. In GMM and SVM classi�ers, we test three cases: fourteen audio clip

features; four visual clip features, speci�cally, DCH, DCHSTD, ME, and MESTD;

and combination of these audio and visual features.

The linear fuzzy classi�er achieves 11:8% accuracy. This also shows that the

nine audio features used are well-separated for the two video events.

The benchmarking results of GMM classi�er on �ve di�erent mixtures (from

2 to 32 in octave step) is shown in Table 2.1. In the table, we give the classi�cation

results in three cases that use 1) audio features only, 2) visual features only, and

3) the two types of features combined. To combine audio and visual features, they

are simply concatenated into a big feature vector. When the mixture number is too

small, or too big, the error rates are high. This is because that simple models can

not precisely approximate the distribution of real data. On the other hand, complex

models do not have good generalization property. Visual only approach gives poor

performance. The lowest error rate of 7:97% is reached when the number of mixture
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is 8 with combined features. Compared with the results using audio features only,

about 8% improvement is achieved by exploiting additional visual information. From

our experiments, it can be seen that although visual features help, it is not very

signi�cant with the current integration framework. This may be due to the fact that

the integration at clip level may be at too �ne resolution, making it more diÆculty to

capture the dynamics of the visual di�erence between the underlying classes of events.

If a larger context is considered, say several adjacent clips, the e�ect of adding visual

features may become more obvious.

Number of mixture Features used

Audio Visual Combined

2 9.29 38.2 8.83

4 8.60 31.6 8.43

8 8.66 30.3 7.97

16 10.1 31.2 8.26

32 9.98 35.7 8.20

Table 2.1: Error rates of GMM classi�ers. (unit: %)

Kernel type Features used

Audio Visual Combined

Dot product 7.34 26.8 6.89

2nd polynomial 8.03 26.2 8.37

3rd polynomial 9.98 26.2 8.20

Radial basis function 10.67 26.4 7.51

Table 2.2: Error rates of SVM classi�ers. (unit: %)

Table 2.2 presents the classi�cation results from SVM classi�ers based on

audio only, visual only and combined features. Four kernel functions are tested: dot

product, 2nd, and 3rd order polynomials, and radial basis function. The  coeÆcient

used in radial basis function is set to 0:1. Best performance occurs when combined

features are used with dot product as the kernel function. With SVM approach,

adding visual information introduces about 6% of improvement compared to using

audio information only.
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Although linear fuzzy threshold classi�er gives poorer performance, it is

simple and light weight in computation. SVM classi�ers give the best performance,

but the computation cost is higher in both training and testing stages compared to

those of GMM classi�ers.

2.3.2 Classi�cation of Commercial, Basketball, Football, News,

and Weather Forecast

We have collected 20 minutes of broadcast video for each of the �ve classes

of TV programs. The audio data is sampled at 22.05 KHz and 16 bits per sample,

and the visual data is acquired at 10 frames per second with resolution 240 � 180.

We separate data into training set and testing set arbitrarily. Each scene class in

both sets contains about 10 minutes of video. The video data is divided into 1.5

seconds long clips and each clip overlapped with the previous clip by 1 second. For

each clip, we extracted fourteen audio clip features and fourteen visual clip features

described in Section 2.1. The visual features include DCR, DCG, DCB, DCRSTD,

DCGSTD, DCBSTD, DCP, DCPSTD, DMX, DMY, DMXSTD, DMYSTD, DMP,

and DMPSTD. The feature vectors of every 20 successive clips form one observation

sequence (11 seconds long) for the HMM classi�er. To improve the eÆciency of limited

data, we generate the next sequence by shifting one clip from the previous one. This

yield about 1,000 training sequences and 1,000 testing sequences for each scene class.

Since there is no simple theoretical way to choose the number of states

and the number of observation symbols, we test di�erent combinations. Table 2.3

gives the average classi�cation accuracies for di�erent choices of state/observation

symbol combinations using audio features alone. The average accuracy is de�ned as

the average of the percentages of a class being correctly classi�ed, averaged over �ve

classes. As seen from the table, the HMM classi�ers perform best when the number

of states is 5 and the number of symbols is 512. The average accuracy varies slightly
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as the number of states changes while the observation size is �xed at 256, whereas

the variation is more signi�cant when the observation size is 512. In general, the

performance improves initially as the number of observation symbols increases, but

then starts to drop as the number of symbols exceeds a certain limit. This is partly

because the number of training sequences becomes insuÆcient as the number of model

parameters to be trained increases.

Number of Number of States

Symbols 4 5 6 7 8

64 74.94 76.45 74.19 74.35 76.94

128 76.19 75.85 77.66 78.36 76.48

256 80.53 79.71 78.11 80.69 80.07

512 79.27 81.08 77.68 76.32 80.28

Table 2.3: Average classi�cation accuracy using audio features based on HMM with

di�erent numbers of states and symbols

Table 2.4 shows the detailed classi�cation results for the HMM with 5 states

and 256 symbols using audio features only. The classi�er can accurately classify

basketball games, football games and weather forecast. However, a high percentage

of news report is misclassi�ed as weather because pure speech is dominant in both of

these events. The average accuracy of classifying the three super-classes (commercials,

basketball/football games, and news/weather reports) is 93.37%.

Output Class

ad bskb ftb news wth

ad 75.66 7.36 0.38 15.66 0.94

bskb 1.46 91.79 5.29 1.46 0.00

ftb 1.82 13.28 83.64 1.26 0.00

news 0.00 0.19 4.58 57.55 37.68

wth 0.00 0.00 0.00 10.08 89.92

Table 2.4: Classi�cation accuracy of 5-state HMM with 256 observation symbols using

audio features only (Average accuracy: 79.71 %)

We also test the neural network approach [41] and GMM classi�er on the
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same data sets. For neural network classi�er, the overall classi�cation accuracy is

72.8% and the classi�cation accuracy of commercial, games, news/weather report is

86.8%. We get 7.0% improvement of overall classi�cation accuracy by using HMM.

For GMM classi�er, we test four cases of mixture numbers: 8, 16, 32, and 64. The

average accuracies obtained with di�erent number of mixtures are about 60%, and

the results are not very sensitive to the number of chosen mixtures.

By Multiple Discriminant Analysis, we reduce the dimension of audio fea-

tures from 14 to 4. Classi�cation results using the reduced set of features are similar

to the original set of features. Table 2.5 gives the results for 5-state HMM with 256

observation symbols.

Output Class

ad bskb ftb news wth

ad 86.03 9.34 0.75 3.11 0.75

bskb 8.76 85.22 5.66 0.36 0.00

ftb 5.14 8.06 86.40 0.40 0.00

news 1.17 0.00 4.28 66.12 28.43

wth 0.00 0.00 0.00 20.64 79.36

Table 2.5: Classi�cation accuracy of 5-state HMM with 256 observation symbols using

the reduced audio feature set by MDA (Average accuracy: 80.63 %)

Table 2.6 shows the results for 5-state HMM with 256 observation symbols

using both audio and visual features. They are simply concatenated into a big feature

vector. The results are much better than those using audio features alone. The reason

may be due to the discrimination capability of visual features in separate news and

weather, as well as basketball games and football games.

2.4 Summary

In this chapter, we present a solution for perceptual level video indexing,

speci�cally, we solve the problem of detecting di�erent video events in broadcast
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Output Class

ad bskb ftb news wth

ad 91.23 7.08 0.00 1.60 0.09

bskb 2.55 86.13 8.21 3.10 0.00

ftb 1.58 1.34 94.31 2.77 0.00

news 2.63 1.66 3.02 64.95 27.75

wth 0.00 0.00 0.00 4.17 95.83

Table 2.6: Classi�cation accuracy of 5-state HMM with 256 observation symbols using

both audio and visual features.(Average accuracy of 86.49 %).

news. Based on the audio/visual features, several di�erent classi�cation schemes are

tested. While all of them give reasonably good results, the Gaussian Mixture Model

based Maximum Likelihood classi�er is attractive for computational eÆciency and

good performance. Di�erent combinations of audio/visual feature sets and classi-

�ers are suitable for di�erent tasks. The indexing results at perceptual level provide

fundamental content units for the conceptual level multimedia content analysis.
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Chapter 3

News Story Hierarchy Generation

This chapter addresses the conceptual level content analysis on structured

multimedia data such as broadcast news. Extraction of semantically meaningful

content for the purpose of information indexing and retrieval has long been a strong

interest in the research community. Such tasks are mainly achieved, in the past,

through data analysis in individual media [61, 62]. There are diÆculties associated

with these existing techniques, especially the performance su�ered from lack of either

reliability in single media processing or reinforcement from other media. This chapter

presents how to utilize the new dimensions that multimodal data represents and to

explore novel solutions that can achieve much more than what one can achieve from

one media alone.

Using the techniques described in the chapter, a hierarchy of di�erent types

of content can be automatically identi�ed. Examples of such content include di�erent

speakers (e.g., anchor), news reporting (correspondences or interviews), news stories,

news summaries, or commercials. From such extracted semantics, a Table-of-Content

(ToC) can be constructed that provides a compact yet meaningful abstraction of

the data, serving as an e�ective index table. Compared with conventional linear

information browsing or keywords based search with a at layer, the enabled ToC

facilitates non-linear browsing capability that is especially desired when the amount

of information is huge.
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3.1 News Story Hierarchy and Involved Techniques

We observe that a typical national news program consists of news and com-

mercials. News consists of several headline stories, each of which is usually introduced

and summarized by the anchor prior to and following the detailed report by corre-

spondents, quotes, and interviews from news makers. Commercials are usually found

between di�erent news stories. With this observation, we propose an integrated solu-

tion to recover this content hierarchy by utilizing cues from di�erent media whenever

it is appropriate. Figure 3.1 shows the hierarchy we intend to recover.

Audio

Video

Text This is the broadcast content transcribed by human. It is used to illustrate the construction of semantics using automated techniques based on multimedia

NewsNews CommercialsCommercials
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Figure 3.1: Content hierarchy of broadcast news programs.

In this hierarchy, the lowest level contains the continuous multimedia data

stream (audio, video, and text). At the next level, we separate news from commercials

(C). The news is then segmented into the anchor person's speech (A) and the speech

from others (D). The intention of this step is to use detected anchor's identity to
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hypothesize a set of story boundaries that consequently partition the continuous text

(synchronized using speech text alignment technology) into adjacent blocks of text.

Higher levels of semantic units can then be extracted by grouping the text blocks

into news stories and news introductions. In turn, each news story can consist of

either the story by itself or augmented by the anchor person's introduction. Detailed

semantic structure at the story level is shown in Figure 3.2.

Story Segments Non-story Segments

News Segments

News Summary

of the Day
Story summariesAugmented storiesNews stories

Sum & Story

Correlation

Database for Broadcast News Content

Figure 3.2: Relationship among the semantic structures at story level.

In this Figure, input consists of news segments with boundaries determined

by the location of anchor person segments. Commercial segments are not included.

Using duration information, each news segment is initially classi�ed as either the story

body (having longer duration) or news introduction or non-story segments (having

shorter duration). Further text analysis veri�es and re�nes the story boundaries, the

introduction associated with each news story, and the news summary of the day.

The news data is segmented into multiple layers in a hierarchy to meet di�er-

ent needs. For instance, some users may want to retrieve a story directly; some others

may want to listen to the news summary of the day in order to decide which story

sounds interesting before making further choices; yet others (e.g., a user employed
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in the advertising sector) may have a totally di�erent need: to monitor commercials

from competitors in order to come up with a competing commercial. Our segmenta-

tion mechanism partitions the broadcast data in di�erent ways so that direct indices

to the events of di�erent interests can be automatically established.

3.2 Anchor Person Detection

Automatically detecting a speci�c person is often instrumental in automated

video indexing tasks. For instance, identifying the anchor persons in broadcast news

can help to recover various kinds of content such as news stories and news summary

[24, 63, 64]. Most of the existing approaches to this problem are based on either

acoustic [65, 24] or visual properties [64] alone. Some targeted at detecting a pre-

de�ned anchor (supervised). Some aimed at detecting whoever the anchor is from

the given data (unsupervised). While supervised detection can be useful in identity

veri�cation tasks, it is usually not adequate in detecting unspeci�ed anchors. In this

section, we address the problem of unsupervised anchor detection. Given a broadcast

news program, we like to accurately identify the segments corresponding to whoever

the anchor is.

Most of the work in detecting a particular host are based on either visual

(appearance) or acoustic (speech) cues only. In visual based detection, there are

two classes of approaches. One is model based and the other is clustering based. The

former often uses a visual template as the model that usually includes both the target

as well as the background. Such models are not exible and not scalable. Depending

on what is being used in the model (anchor or anchor shot), this class of methods

can be very sensitive to (1) the appearance of the anchor (especially when di�erent

anchors appear on di�erent dates of the same program), (2) the studio background

(color and the visual content in the background), and (3) the location and the size of

the anchor.
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With an unsupervised clustering approach, keyframes are clustered and the

anchor keyframes may be identi�ed as the ones from the largest cluster. This kind of

methods will work only when the visual appearance of the studio scenes within the

same program basically remains the same. From the recent data that we acquired

from di�erent news broadcasters, this property is often not true. Figure 3.3(a) and

Figure 3.3(b) show two anchor scenes from NBC Nightly News program on the same

day. From there, we can see that the location and scale of the anchor are very

di�erent and the background change is more dramatic. When the assumption of

similar appearance does not hold, anchor keyframes are conceivably scattered across

several clusters. Another problem is that there is sometimes no anchor appearance

when the anchor is speaking. Obviously, such anchor segments can only be recovered

when the audio information is simultaneously utilized in anchor detection.

(a) keyframe 379 (b) keyframe 467

Figure 3.3: Two anchor keyframes from NBC Nightly News on April, 14, 1999.

In audio based anchor detection, there are two parallel categories of tech-

niques. One is model based and the other is unsupervised clustering based. The

model based methods have similar weakness as in the visual domain. On the other

hand, clustering based methods are usually very sensitive to background noise in the

audio track such as music or environmental sounds. If visual information is considered

at the same time, the noisy anchor speech segments may be recovered by relying on

the visual cues.

The approach proposed in this section is precisely to exploit both types

of cues and utilize them to compensate each other. Although our goal is to perform



40

unsupervised detection, our approach is model based (supervised) with the distinction

(compared with conventional o�-line model based method) that our audio/visual

models will be built on-the-y. Simultaneous exploitation of both audio and visual

cues enables the initial on-line collection of appropriate training data which will be

subsequently used to build the adaptive audio/visual models for the current anchor.

The adapted models can then be used, in the second scan, to more precisely extract

the segments corresponding to the anchor.

3.2.1 Adaptive Anchor Detection Using On-Line Audio/Visual

Models

To adaptively detect an unspeci�ed anchor, we present a new scheme de-

picted in Figure 3.4. There are two main parts in this scheme. One is visual based

detection (top part) and the other is integrated audio/visual based detection. The

former serves as a mechanism for initial on-line training data collection where pos-

sible anchor video frames are identi�ed by assuming that the personal appearance

(excluding the background) of the anchor remains salient within the same program.

Two di�erent methods of visual based detection are described in this dia-

gram. One is along the right column where audio cues are �rst exploited that identify

the theme music of the given news program. From that, an anchor frame can be reli-

ably located, from which a feature block is extracted to build an on-line visual model

for the anchor. Figure 3.3 illustrates the feature blocks for two anchor frames. From

this �gure, we can see that the feature blocks capture both the style and the color of

the clothes and they are independent of the image background as well as the location

of the anchor. By properly scaling the features extracted from such blocks, the on-line

anchor visual model built from such features are invariant to location, size, scale, and

background. With the model, all other anchor frames can be identi�ed by matching

against it.
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Figure 3.4: Diagram of proposed integrated algorithm for anchor detection.

The other method for visual based anchor detection is for when there is no

acoustic cues such as theme music present so that no �rst anchor frame can be reliably

identi�ed to build an on-line visual model. In this scenario, face detection is applied

and then feature blocks are identi�ed in a similar fashion for every detected human

face. Once invariant features are extracted from all the feature blocks, dissimilarity

measures are computed among all possible pairs of detected persons. An agglomera-

tive hierarchical clustering is applied to group faces into clusters that possess similar

features (same cloth with similar colors). Given the nature of the anchor's function,

it is clear that the largest cluster with the most scattered appearance time corre-

sponds to the anchor class. Both methods described above enable an adaptive anchor

detection in visual domain.

Visual based anchor detection only is not adequate because there are situa-

tions where the anchor speech is present but not the anchor appearance. To precisely

identify all anchor segments, we need to recover these segments as well. This is

achieved by combining with audio based anchor detection. The visually detected an-
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chor keyframes from the video stream identify the locations of the anchor speech in

audio stream. Acoustic data at these locations can be gathered as the training data

to build an on-line speaker model for the anchor, which can then be applied, together

with the visual detection results, to extract all the segments from the given video

where the anchor is present.

3.2.2 Theme Music Detection

One salient landmark in a news program is the theme music. The anchor in

news usually appears right after the theme music. Therefore, identifying the theme

music in audio stream will help to extract an on-line model of the current anchor,

from which remaining anchor frames can be recovered via similarity matching.

To detect theme music, we extract seven frame-level auido features. They are

Root Mean Square (RMS) Energy, Zero Crossing Rate (ZCR), Frequency Centroid

(FC), Bandwidth (BW), and SubBand Energy Ratio (SBER) in three subbands.

Detailed description of these features can be found in Section 2.1.1. A template

is built against a particular chosen theme music. Since the playback rate for theme

music is always constant, there is no need to apply expensive dynamic programming in

template matching. In such situations, linear correlation evaluation works adequately

well. Let T = (t1; :::tN) be the target theme music template, and O = (o1; :::oM)

be the testing sequence, where ti and oi are extracted feature vectors (column wise)

from corresponding ith frame and M and N are the frame number of two sequences.

The similarity between the template and the testing sequence at nth frame is de�ned

as:

S(n) =

PN
i=1(ti � t)T � (oi+n � on)qPN

i=1 kti � tk2
qPN

i=1 koi+n � onk2
; n = 0; :::;M �N (3.1)

where t is the mean feature vector of the template, on is the mean of the testing

frames on, ... on+N , k�k is norm. When S(n) is found to be a local maximum and its
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value is higher than a preset threshold, it is declared as the beginning of the theme

music. Figure 3.5 shows the similarity values of one theme music for a half hour

news program. The actual beginning time of the target theme music is 96 second,

which can be easily detected by simple thresholding. Once the theme music location

is speci�ed, a keyframe can be chosen as the anchor using a �xed o�-set in time.

From the chosen keyframe, anchor face and its feature block (cloth part) can then be

localized which serves as the model for visual based matching.
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Figure 3.5: Similarity graph of theme music detection

3.2.3 Face Detection

Instead of using expensive face detection algorithms, such as neural net-

work based approach [15], we adopt a light weight detection scheme that uses a skin

color model [66] with veri�cations of facial features based on face projection pro�les

in X and Y directions. We reasonably assume that the anchor mostly appears as

front views. Figure 3.6 illustrates the steps in color based face detection algorithm.

There are two major parts: (1) locating the face candidate regions and (2) verifying

the face candidates. The �rst part is composed of three steps: skin tone likelihood

computation (against the skin color model), morphological smoothing operation, and
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region growing. The second part veri�es the face candidates using four criteria: shape

symmetry, aspect ratio, horizontal, and vertical pro�les. Some of the intermediate

processing results are shown on the right of the �gure.
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Figure 3.6: Diagram of face detection algorithm.

Chroma Chart of Skin Tone

To e�ectively model skin color, we use the Hue Saturation Value (HSV) color

system [67]. Compared with standard Red Green Blue (RGB) color coordinate, HSV

produces more concentrated distribution for skin color. Most humans, despite the

race and age, have similar skin hue, even though they may have di�erent saturation

and values. As value more depends on image acquisition setting, we use hue and

saturation only to model human skin color. Figure 3.7 gives the distribution of 2000

training data points, in hue-saturation space, which are extracted from di�erent face

samples. Clearly, it is appropriate to use a Gaussian with full covariance matrix to

model this distribution. The hue of skin-color centroid is about 0.07, indicating that
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skin color is somehow between red and yellow. To reduce the boundary e�ect, we

shift the hue-saturation coordinate before computing the skin color likelihood value

so that the mean of the Gaussian model is located at the center (0:5; 0:5).
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Figure 3.7: The distribution of skin color from selected training data.

Locating Face Candidates

Based on the trained skin color model, a likelihood value can be computed

for each pixel. To reduce the noise e�ect so that connected candidate face regions

can be more reliably obtained, we (1) �rst linearly map the log likelihood value to

the range of 0 to 255 and (2) apply gray scale morphology opening operation on the

likelihood values. A 3� 3 structuring element is applied with amplitude of 64. After

thresholding, a blob coloring algorithm [1] is performed on the binary image so that

each connected component corresponds to one candidate face region, which can be

described by a rectangular box as the bounding box.

Face Veri�cation

Non-face objects (regions) can have similar human skin-like color. Face

veri�cation step is designed to further test that the candidate regions detected using
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color only have other distinct visual features of a human face. A common approach

in the literature is to match the candidate region with a face template so that facial

con�guration can be identi�ed. This method is not only sensitive to lighting condition

but also can be computationally expensive. We propose a di�erent method that

veri�es a face region by testing four criteria. First of all, a face should be symmetric

with respect to the center line of the region. Second, a face should be elongated with

an acceptable aspect ratio. Although these two simple rules eliminate many fake face

candidates, they are not suÆcient. The symmetric region may be round or square

or totally di�erent from real face shape, we still need to strengthen the veri�cation

criteria. Third, since the symmetric shape of face is pretty much an ellipse, the

intensity projection pro�le in X direction should present a nice parabolar shape (see

Figure 3.8(a)). Forth, due to distinct facial features (eyes, nose, mouth, and their

spatial con�gurations), the intensity variations projected along Y direction should

obey certain characteristic pro�les. This can be illustrated in Figure 3.8(b) where

three valley points on the curve, denoted as v1, v2, and v3, correspond to eyes (v1),

mouth (v3), and possibly (not as obvious) shadow of nose (v2). The last two tests

can be done by matching the projected X and Y pro�les from the candidate region

with the model pro�les.

Formally, let FC be the intensity image of candidate region, with height M

and width N , and FC(i; j); 0 � i < M; 0 � j < N; is the intensity value at pixel

(i; j). To �nd the line of symmetry, we need to search all possible horizontal positions

to identify the point with maximum symmetric degree, de�ned as

SD(k) = 1�
PM�1

i=0

Pwk

j=0 jFC(i; k � j)� FC(i; k + j)jPM�1
i=0

Pwk

j=0(FC(i; k � j) + FC(i; k + j))
;

N

4
� k � 3N

4
; (3.2)

where wk = min(k;N � k). Suppose the maximum of SD(k) happens when k = kc,

the left and right boundary of face candidate region is adjusted to kc � wkc and

kc + wkc. When SD(kc) is adequately high, we further compute the aspect ratio
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N=M based on the updated boundary and compare it with preset up bound and low

bound thresholds. If the face candidate region passes both symmetry and aspect ratio

tests, we move on to the next step.

To generate the facial feature projection model pro�les, a set of face images

are chosen as training data. To ensure consistent scaling, the projection pro�les for

individual training faces are scaled properly using certain points on the curves as

registration points. For horizontal (X axis) model pro�le, the registration point is

the center of symmetry. For vertical (Y axis) model pro�le, two most widely separated

valley points (eyes and mouth) are identi�ed and used as registration points. Fixing

the registration points, individual pro�les can be re-scaled so that they all cover the

same projection range. Figure 3.8 shows the model pro�les. Since the contour of

human face is like ellipse, the horizontal pro�le of face has maximum value around

the middle and decreases when approaching both sides. As explained before, the three

valley points in Figure 3.8(b) (v1, v2,, and v3) as well as their spatial con�gurations

correspond to distinct facial features.
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Figure 3.8: The projection pro�les used in face veri�cation.

Let the horizontal model pro�le be MHP (n); 0 � n < P , and the testing

horizontal pro�le from a face candidate region be THP (n); 0 � n < P , where P is

the length of model pro�le, the linear correlation between MHP (n) and THP (n) is
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computed as

Corr(MHP ; THP ) =

PP�1
n=0 (MHP (n)�MHP )(THP (n)� THP )qPP�1

n=0 (MHP (n)�MHP )2
qPP�1

n=0 (MHP (n)�MHP )2
: (3.3)

where MHP and THP are the mean value of MHP (n) and THP (n). The linear correla-

tion between vertical model pro�le and the testing pro�le can be similarly obtained.

If the correlation values are higher than preset thresholds, the candidate region is

then veri�ed as a face region.

3.2.4 Feature Block Extraction

The features used in visual based anchor detection should be invariant to

location, scale, and background scenes. We devise a feature extraction scheme that

satisfy these conditions. A rectangular feature block, covering the neck-down clothing

part of a person, is localized with a �xed aspect ratio with respect to the detected

human face. The reason to use this area is two folds. The appearance of a face is

sensitive to both lighting and orientation, making it diÆcult to be used for recognition

or even veri�cation. On the other hand, from the detected faces, we can easily locate

the neck-down cloth section as a salient feature block where the color combination of

the clothes a person is wearing is fairly robust within one news program. This can be

seen from Figure 3.3 where the two keyframes from the same person from the same

program indicate that using the detected face information to verify that the two are

the same person is very diÆcult. However, the visual appearances of the two feature

blocks are extremely similar if proper scaling and normalization are performed. In

addition, by localizing the feature blocks via face detection, the background scenes

(even though they can be very di�erent as evidently shown in Figure 3.3) become

irrelevant to the detection process.

Assume the rectangular area of a detected face region is N � M , where

N = xmax� xmin, M = ymax� ymin, xmax and xmin are the left and right boundaries,
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ymin and ymax are the top and bottom boundaries. A feature block is then de�ned as

the rectangular Æx � Æy where

Æx = Xmax �Xmin; Æy = Ymax � Ymin;

with

Xmin = maxf0; xmin �
1

2
�Ng; Xmax = minfW � 1; xmax +

1

2
�Ng

and

Ymin = minfH � 1; ymax + 1g; Ymax = minfH � 1; Ymin +
1

2
�M:g

where H and W are the height and width of the input image. Such de�ned feature

block correspondes to the area on a person from neck down. This is illustrated in Fig-

ure 3.3 with the feature block superimposed on the anchor image. Since the ultimate

objective is to detect anchor person keyframes, we only consider those face regions

whose sizes fall into a reasonable range which is true for normal news programs.

3.2.5 Invariant Feature Extraction

The intention of identifying feature blocks is to extract, within the blocks,

the features that are useful in identifying the anchor class. Two features are computed

from each feature block. Both designed as dissimilarity measures, one measuring

the dissimilarity between existing color components and the other measuring the

di�erence in intensity distributions in space. The former is computed based on color

histograms, capturing the dominance of color components (but ignoring the spatial

information). The latter is derived via motion compensated block matching where

the more similar the two feature blocks, the smaller the intensity di�erence there is.

Such matching is performed with proper scaling and normalization of the dynamic

range of the intensity values.

We experimented with 3D color histograms. Each of the color channel Red,

Green, and Blue is quantized into K bins by performing a mapping rqx;y = Q(Rx;y),
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gqx;y = Q(Gx;y), and bqx;y = Q(Bx;y) where Q is the quantization function. Then a 3D

color histogram with K�K�K bins can be constructed by increasing, for every pixel

(x; y) in the feature block, the vote in bin (rq(x; y); gq(x; y); bq(x; y)). This forms a

sparse histogram in 3D space. To measure the dissimilarity dh between two feature

blocks Fi and Fj with respect to their 3D histograms H i and Hj, �2 is adopted:

dh(Fi; Fj) = �2(H i; Hj) =
X
k

(H i
k �H

j
k)

2

H i
k +H

j
k

:

In motion compensated block matching, for a corresponding pair of small

n � n regions, each within its feature block, the best matching score is de�ned as

the lowest absolute di�erence in intensity values and is identi�ed during the search

performed in a pre-de�ned small neighborhood. Since the motion compensated block

matching is performed between two feature blocks with most likely di�erent sizes,

proper scaling needs to be done. Assume (x; y) is the coordinate of a pixel point

within a feature block with size dx� dy and dx = xmax� xmin and dy = ymax� ymin.

To match this feature block with another feature block dx0�dy0 with dx0 = x0max�x0min

and dy0 = y0max � y0min, the scaled counter point of (x; y) is (x0; y0), computed as

x0 = x0min +
dx0

dx
� (x� xmin); y

0 = y0min +
dy0

dy
� (y � ymin):

The dissimilarity measure from block matching between two feature blocks, denoted

by dm, is the average absolute intensity di�erence per pixel after motion compensation.

While color histogram based matching examines the dissimilarity in color

composition of the involved feature blocks, it does not indicate that the existing color

components are similarly con�gured in space. Motion compensated block match-

ing provides a measure that can compensate in this regard. Therefore, we combine

both features to ensure that both aspects are simultaneously considered in grouping.

That is, dissimilarity D(Fi; Fj) between two feature blocks Fi and Fj is de�ned as:

D(Fi; Fj) = wh � dh(Fi; Fj) + wm � dm(Fi; Fj) where wh is the weight on dh and wm

is the weight on dm.
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3.2.6 Visual Based Anchor Detection

As described earlier, there are two ways to detect the anchor keyframes in

the visual domain. On-line model based approach is enabled when theme music is

present. Unsupervised clustering is applied when there is no on-line visual model can

be established.

In model based method, given the visual modelMv for the anchor, a feature

block Fi is considered as the anchor if D(Mv; Fi) is lower than a pre-de�ned threshold.

In unsupervised method, an agglomerative hierarchical clustering [68] is performed.

Initially, each feature block is a cluster on its own. During each iteration, two clus-

ters with minimum dissimilarity value are merged, where the dissimilarity between

two clusters is de�ned as the maximum dissimilarity among all possible pairs of two

feature blocks from each cluster. This procedure continues until the minimum cluster

dissimilarity is larger than a preset threshold. Due to the fact that anchor is the

host of the program, hence with continuous appearances, the largest cluster is �nally

identi�ed as the anchor class.

Compared with existing unsupervised anchor detection algorithms where

the entire image is usually used in clustering, our approach is more accurate, more

adaptive, and more robust. The localized feature blocks allow our approach to dis-

card irrelevant background information so that misclassi�cation caused by using such

information can be minimized. In addition, as the features are invariant to location,

scaling, and certain degree of rotation, the clustering method is able to group anchor

frames together despite the fact that the images appear very di�erently.

3.2.7 Audio/Visual Integrated Anchor Detection

In broadcast news data, there are situations where anchor speech and anchor

appearance do not co-exist. To use the anchor as the landmark to index content,

we need to extract all video segments where anchor's speech is present. Therefore,
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visual based detection result is not adequate. In our scheme, it serves initially as

the mechanism to adaptively collect appropriate audio training data so that an on-

line acoustic model for the anchor can be dynamically established. Detected anchor

keyframes identify the audio clips where the anchor is present, that can be used to

train a speaker model. The on-line trained acoustic model is then applied back to the

video stream, for the second scan, to extract anchor speech segments.

Rose and Reynolds [69, 18] reported that maximum likelihood method based

on Gaussian Mixture Model is suitable for robust text-independent speaker recogni-

tion task. We also use GMM to model speakers. The features we used are 13 order

Mel-frequency cepstral coeÆcients (MFCCs) [16], pitch period, 13 delta MFCCs, and

delta pitch period. These 28 features are computed every 16 msec. Based on them we

build a target GMM for anchor person and also a background GMM for non-anchor

audio, which includes environmental noise, music, and speech of other persons. The

number of mixtures of both models is chosen to be 64 based on our benchmark

studying. There are two types of anchor models: o�-line and on-line models. To

train o�-line model for known anchor, we use training speech collected for the speci-

�ed anchor. To build the on-line anchor model for unknown anchor, we use the audio

signal accompanying the anchor keyframes.

During detection step, we compute the log likelihood ratio (LLR) of input

frame regarding to anchor GMM and background GMM. To smooth out the grainy

e�ect of frame based LLR value, we consider the average LLR value within a clip.

When the average LLR is higher than certain threshold, we classify the corresponding

clip as anchor speech. Three tap Median �lter is used as post-processing to further

rectify and smooth the recognition results. Finally we remove all anchor segments

which are shorter than 6 seconds and merge neighboring anchor segments which are

less than 6 seconds away. This heuristic rule is commonly true for news programs.
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3.3 News Story Extraction

Up to this point, we have a set of hypothesized story boundaries as shown

in Figure 3.9. The segments with label \A" indicates that they are anchor segments,

\D" detailed news reporting, and \C" commercials. With identi�ed \A" segments,

the synchronized text can be partitioned into two sets of text blocks:

T1 = fT 1
1 ; T

2
1 ; :::; T

n
1 g;

T2 = fT 1
2 ; T

2
2 ; :::; T

n
2 g;

where T i
1 is a block of text that starts with anchor speech and T i

2 is a subblock of

T i
1 containing only the text from the anchor speech. Based on the structure of the

broadcast news, each news story consists of one or more T i
1's.
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k: blocks of text segmented using anchor ID
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k: blocks of text from anchor speech only

Figure 3.9: Illustration of how the detected anchor segments lead to initial text

partition for story segmentation.

Our goal is to extract three classes of semantics: news stories, augmented

stories (augmented by the introduction of the story by the anchor), and news summary

of the day. At this stage, text cues are further integrated with the cues from audio and

video in performing the analysis to (1) separate news stories and news introductions,

(2) verify story boundaries, (3) for each detected story, identi�es the news introduction

segment associated with that story, and (4) form news summary of the day by �nding

a minimum set of news introduction segments that cover all the detected stories.
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With blocks of text available at this point, the task is to determine how

these blocks of text can be merged to form semantically coherent content based on

appropriate criteria. Since news introductions are to provide a brief and succinct

message about the story, they naturally have much shorter durations than the detailed

news reports. Based on this observation, we initially classify each block of text as a

story candidate or an introduction candidate based on duration. Such initial labels

are shown in Figure 3.10(b) where I stands for introduction and S stands for story.

The remaining tasks are to verify the initial classi�cation of news introductions and

stories and to form three classes of semantics indicated in Figure 3.10(c): individual

news stories, augmented news stories, and a news summary. A news story represents

merely the story body itself. An augmented story consists of the introduction that

previews the story and the story body. The news summary of the day is composed of

the introductions for each and every news story reported on that day. For example, in

Figure 3.10(c), the second augmented story is formed by the third introduction section

and the second story body. The news summary of the day does not necessarily include

all the introduction sections. What we are seeking is a mimimum set of anchor speech

that previews all the headline stories. For example, in Figure 3.10(c), the second

introduction section is not included in news summary of the day.

Formally, our input data for text analysis is two sets of blocks of text: T1 =

fT 1
1 ; ::; T

i
1; ::; T

m
1 g where each T k

1 , 1 � k � m, begins with the anchor person's speech

(corresponding to the blocks shown in Figure 3.10(b)) and T2 = fT 1
2 ; ::; T

j
2 ; ::; T

n
2 g

where each T k
2 , 1 � k � n, contains only the anchor's speech. Since the blocks

in both sets are all time stamped, we have m = n and T k
2 � T k

1 . To verify story

boundaries, we evaluate similarity measure sim() between every pair (Tb1 ; Tb2) of

adjacent blocks [70]:

sim(Tb1; Tb2) =

P
w fw;b1 � fw;b2qP
w f

2
w;b1

�P
w f

2
w;b2

:

Here, w enumerates all the token words in each text block; fw;bi is the weighted
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Figure 3.10: Illustration of the process of story boundary identi�cation.

frequency of word w in block bi, i 2 1; 2; and 0 � sim() � 1. Here, token words are

extracted by excluding all the stop words from the text. The frequency of each token

word is then weighted by the standard frequency of the same word computed from a

corpus of broadcast news data collected from NBC Nightly News in 1997. The higher

the frequencies of the common words in the two involved blocks are, the more similar

the content of the blocks is. We experimentally set up a threshold to determine the

story boundaries.

The output of the story boundary veri�cation is a set of text blocks

S = fS1; S2; :::; Smg;

where Si = T
j
1 � T

j
2 ; 1 � i; j � n. With news stories segmented, we take set T2 and

the story set S as input to further extract other classes. For each story, we extract

its introduction by �nding a T k
2 that has the highest similarity to that story (T k

2

is not necessarily connected) Merging each story with its introduction, we form an

augmented story. That is, using S and T2, augmented news stories set

Sa = fSa
1 ; S

a
2 ; :::; S

a
mg
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can be generated by identifying each

Sa
i = Si

[
T
j
2 ; 1 � i � m; 1 � j � n

such that sim(Si; T
j
2 ) is maximized. Notice here, di�erent Si may associate with the

same T
j
2 .

The news summary of the day is extracted with the criterion that it has to

provide the minimum coverage for all the stories reported on that day. Therefore, it

is a minimum set of T k
2 's that together introduces all the stories of the day without

overlap (i.e., each story has to be introduced but only once). Based on this, a set of

text blocks from T2 is chosen to form news summary of the day by using the following

criterion:

NS =
[

1�ki�n

T ki
2 ;

such that
Pm

i=1 sim(Si; T
ki
2 ) is maximized. With such a higher level of abstraction,

users can browse desired information in a very compact form without losing primary

content.

In contrast to conventional discourse segmentation methods, our grouping

criterion is simultaneously based on audio/visual cues. Since anchor-based segmen-

tation provides the initial grouping of text, in e�ect, (1) adaptive granularity that

is directly related to the content is achieved, (2) the hypothesized boundaries are

more natural than those obtained using a �xed window, (3) blocks formed in this way

not only contain enough information for similarity comparison but also have natural

breaks of chains of repeated words if true boundaries are present, (4) the original

task of discourse segmentation is achieved by boundary veri�cation, and (5) once a

boundary is veri�ed, its location is far more precise than what conventional discourse

segmentation algorithms can achieve. This integrated multimodal analysis provides

an excellent starting point for the similarity analysis and boundary detection.

Di�ering from most studies in the literature where the processing is applied

only to adjacent blocks of text, some of the semantics we attempt to extract require
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merging of disconnected blocks of text. One example is the news summary of the

day (because the anchor's introductions to di�erent headline stories are scattered

throughout the half-hour program).

3.4 News Story Presentation

In the previous sections, we addressed a mechanism to recover the semantic

structure of the data so that it can be used for creating a table of content for the

news. For e�ective retrieval, there is another equally important task related to human

machine interface: how to present the extracted semantic units in a form that is

compact, concise, easy to understand, and at the same time visually pleasing. Now,

we examine three aspects of this task. First, how to present the semantic structure

to the users; second, how to represent the particular semantics based on the content

of the news story; and third, how to form the representation for news summary of

the day.

3.4.1 Representation for News Semantic Structure

A commonly used presentation for semantic structure is in the form of a

table of content. Since this concept is familiar to most users, we employ it in our

representation as well. In addition, in order to give users a sense of time, we also design

a streamline representation for the semantic structure. Figure 3.11(a) shows our

presentation for the semantic structure of a news program. On the left of the screen,

di�erent semantics are categorized in the form of a table of content (commercials,

news, and individual news stories, etc.). It is in a familiar hierarchical fashion which

indexes directly into the time stamped media data. Each item listed is color coded

by an icon of a button. To play back a particular item, a user simply clicks on the

button of the desired item in this hierarchical table. On the right of this interface is

the streamline representation where the time line runs from left to right and top to
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bottom. The time line has two layers of categorization. The �rst layer is event based

(anchor speech, others' speech, and commercials) and the second layer is semantics

based (stories, news introduction, and news summary of the day). Each distinct

section is marked by a di�erent color and the overall color codes correspond to the

color codes used in the table of content. Obviously, the content categorized in this

representation is aligned with time simultaneously.

(a) Representation for semantic structures (b) P layback interface

Figure 3.11: Representation for extracted semantic structures.

These two representations are directly related to each other, although one

(table) is more conceptual and the other more visual. When users click on a particular

segment in the streamline representation, it triggers the same e�ect as clicking on a

particular item in the table of content. When an item in the table is chosen to

be played back, the corresponding segment in the streamline becomes active (ash),

which also gives users a sense of time. For example, if a user chooses to play the

second story by clicking on the second item under story category in the table of

content, the corresponding segment in the streamline representation will blink during

the play back. Therefore, while the table of content provides a conceptual abstraction
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of the content (without the structure along time), the streamline representation gives

a description of how content is distributed in the news program. With these two

complementary representations, users can quickly get a sense of both the semantic

structure of the data and the timing. Through this representation, users can easily

perform non-linear retrieval.

Figure 3.11(b) is the wondow which displays streaming playback. It is trig-

gered when users click on a particular item. In this playback window, the upper

portion shows the video and the lower portion the text synchronized with the video

and audio. Currently, we display only the key frames (as opposed to the original

video stream). The text scrolls up with time. In the black box at the bottom, the

timing with respect to the starting point of the program is given.

3.4.2 Representation for News Stories

For each extracted news story, we developed two forms of representation.

One is textual and the other is combination of text with visual. Our goal is to

automatically construct the representation in a form that is most relevant to the

content of the underlying story. For textual representation, keywords are chosen

from the story according to their importance computed as weighted frequency. In

the table of content shown in Figure 3.11(a), next to each story listed, a set of 10

keywords are given. The intention is that users will get a feeling about the content of

the story. Another more detailed representation for a story is called \story icon". To

invoke it for a particular story, users can click on the \StoryIcon". Figure 3.13 gives

one example of such story representation. We designed a content based method to

automatically construct this visual story representation.

Within the boundary of each story, a keyword histogram is �rst constructed

as shown in Figure 3.12 where the X axis is the keyframe numbers and the Y axis is

the frequency of the keywords. In the �gure, the solid curve is the keyword histogram.

A �xed number of key frames within the boundary are chosen so that they (1) are
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not within anchor speech segments and (2) yield maximum covered area with respect

to the keywords histogram. The peak points marked on the histogram in Figure 3.12

indicate the positions of the chosen frames and the shaded area underneath them

de�nes the total area coverage on the histogram by the chosen key frames.

5550454035 60

-  The area covered by the chosen key frames
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3

2

1
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Figure 3.12: Histogram of keywords within a story.

Figure 3.13: Visual representations for stories about El Nino.

The representation of one story is shown in Figure 3.13. The chosen story

is the third (which can be seen in the table of content on the left portion of the
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interface). The presentation for each story has three parts: the upper left corner

is a set of 10 keywords automatically chosen from the segmented story based on the

relative importance of the words; the right part displays the text of the story; the rest

is the visual presentation of the story consisting of �ve images chosen from video in the

content based manner described above. Figure 3.13 is the visual representation about

El Nino story. We can see from this �gure that the story representation constructed

this way is compact, semantically revealing, and visually informative with respect

to the content of the story. Compared with linear browsing or low level shot cut

browsing, our system allows a more e�ective content based non-linear information

retrieval.

3.4.3 Representation for News Summary of the Day

Finally, we construct the representation for the news summary of the day.

It is composed of k images, where k is the number of headline stories on a particular

day. The k images are chosen so that they are the most important in each story, as

measured by the covered area size in the keyword histogram. Figure 3.14 gives the

visual presentation for the news summary of the day for the NBC Nightly News on

12th of February, 1998. From this presentation, a user can see immediately that there

are a total of six headline stories on that particular day. Below the representative

image for each story, the list of its keywords is displayed dynamically so that users can

get a sense of the story from the keywords. In this example, the �rst story is about

the weapon inspection in Iraq where Russians are suspected to tip Saddam. The

second story is about Clinton scandal. The third one is about El Nino. The fourth

one is about whether secret service workers should testify against the president. The

�fth is about the high suicide rate among youngsters in an Indian village. The sixth

is about government's using tax dollars to pay the rent for empty buildings. From

these examples, the e�ectiveness of this story-telling visual representation for the

news summary is evident.
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Figure 3.14: Representation for news summary of the day.

3.5 Simulation Results and Discussion

A total of seven half hour broadcast news programs are used for our experi-

ments, collected from NBC Nightly News Broadcast from February to April of 1999.

The targeted anchor person is Tom Brokaw. The seven days are February 18, 19, 23,

March 3, 8, 9 and April 14, 1999. To simplify the notation, these testing sequences

are denoted as 990218, 990219, 990223, 990303, 990308, 990308, 990309, and 990414

respectively. Each program covers about 5 minutes anchor speech, scattered in the

program. The audio signal is sampled at 16kHz and 16 bits per sample. Due to the

size of raw visual data, only keyframes are retained after real-time shot change detec-

tion operation [71]. The image size of each keyframe is 160 by 120. As the keyframes

are compressed in JPEG format, the quality is degraded, which poses a challenge to

our face detection algorithm.

In separating news and commercials, we use the trained model in Section 2.3

with median �lter smoothing as post-processing. The experimental results from GMM

model-based approach is shown in Table 3.1 which illustrates that the best average
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classi�cation error rate is 2.9% when four component mixtures are used. Table 3.2

gives the classi�cation results using the SVM method. Three kernels, dot product,

second order polynomial, and third order polynomial, are tested and the former two

provided better performance. Comparing GMM with SVM, it can be seen that the

results are comparable with GMM result (2.9% error rate) slightly better than that

of SVM (3.4% error rate).

# of components 2 4 8 16 32

990218 1.1% 0.7% 0.9% 0.8% 0.8%

990219 1.2% 2.0% 1.6% 1.7% 1.7%

990223 4.3% 3.7% 5.3% 4.3% 3.7%

990303 2.3% 2.4% 2.8% 2.8% 2.3%

990308 4.3% 4.0% 4.1% 2.9% 2.9%

990309 7.0% 7.4% 7.1% 7.5% 7.5%

990414 2.4% 0.0% 2.7% 1.8% 1.8%

Overall 3.2% 2.9% 3.5% 3.1% 3.0%

Table 3.1: Classi�cation error rates using GMM model based classi�ers.

Kernel Type Dot Poly2 Poly3

990218 1.8% 1.4% 1.5%

990219 1.1% 3.4% 3.2%

990223 3.0% 3.1% 2.2%

990303 2.5% 2.6% 5.3%

990308 3.1% 2.9% 2.7%

990309 7.8% 9.4% 8.9%

990414 4.8% 2.3% 5.4%

Overall 3.4% 3.6% 4.2%

Table 3.2: Classi�cation error rates using SVM based classi�ers.

Prior to further experimentations, we built several o�-line models. The

skin color model and the human face model pro�les are trained based on 30 face

keyframes of a set of di�erent people. These are generic models and not speci�c to

any particular person. In order to compare our approach with conventional audio

based anchor detection, we also built, o�-line, the acoustic speaker model for our
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target anchor as well as the acoustic model for background audio. To train these

models, we labeled a data set containing 20 minute clean speech from Tom Brokaw

and 50 minute non-target audio data, including speech, environmental sound, and

music.

Table 3.3 provides the detailed results on face detection on the seven testing

programs. The second column of the table gives the total number of keyframes for

each program. Considering the length of each program (around 30 minutes), the

average duration of a keyframe is about 3 seconds, although the actual duration

may vary greatly. The duration of a keyframe from commercials may be as short as

one half of a second and that of an anchor keyframe can be as long as one half of

a minute. The third column of Table 3.3 is the ground truth, the real number of

keyframes where the anchor is present within each program. The number of detected

face images is listed in the fourth column. The �fth column gives the number of

anchor faces among all detected faces (also identi�ed manually). The last column is

the visual-based anchor detection result given as the number of faces in the anchor

cluster.

Test Keyframe Anchor Detected Detected Anchor

Sequence Keyframe Face Anchor Cluster Size

990218 587 14 39 10 9

990219 551 11 29 9 9

990223 555 16 38 12 12

990303 545 12 42 9 9

990308 572 11 37 9 8

990309 583 12 41 10 9

990414 552 17 31 12 11

Total 3945 93 257 71 67

Table 3.3: Face detection results

There are two types of detection error: false rejection and false acceptance.

It is usually true that reducing one error rate will increase the other. Since the main

purpose of visual based anchor detection is to exploit the visual cues to locate on-line
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audio training data of the target speaker to build an adaptive acoustic model, it is

obviously necessary for us to minimize the false acceptance rate to ensure the quality

of the collected training data.

During the experiments, face detection is followed by feature block localiza-

tion and invariant feature extraction. A matrix of dissimilarity vectors are formed

for clustering purpose. In color histogram based feature extraction, a 3D histogram

is built with the resolution of 16� 16� 16. Because feature dh and dm have di�erent

dynamic ranges, we set the weights wh and wm to be 1:0 and 0:2 so that both mea-

sures fall into the similar range. After the clustering, the largest cluster is classi�ed

as the anchor class. In our experiments, we set up the thresholds so that the false

alarm rate can be kept minimum during both face detection and anchor detection.

Computed from the results in Table 3.3, the statistics yielded are: detection accuracy

- 72%; false rejection rate - 28%, and false acceptance rate - 0%. Examining the

falsely rejected anchor frames, it was found that they fall into mostly two categories:

poor quality of anchor facial color (due to fade in/out, they are missed during face

detection) and side views of the anchor (when the rotation is severe, the correspond-

ing feature block does not possess the similar visual features as the ones from frontal

views). In simulation, we also experimented with using histogram or motion based

measure only for clustering. The performance is not as satisfactory which indicates

that the combined feature vector is more e�ective. Some of our experimental results

for testing sequence 990218 are visualized in Figure 3.15, where the upper part gives a

set of detected faces and their corresponding feature blocks and the lower part shows

the �nal cluster for the anchor.

When theme music is present and can be detected, an on-line visual model

based approach can be used. In our experiments, all test data contains distinct NBC

Nightly News theme music and all such segments in our testing data are accurately

detected. Using them as cues, an anchor keyframe can be precisely identi�ed and

used as the on-line visual model for the anchor. However, depending on the shot
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Figure 3.15: Results of anchor keyframe detection.

cut algorithm, the quality of the �rst anchor frame extracted this way varies because

a shot cut algorithm may sometimes cut in the middle of the fade in/out, yielding

a keyframe with poor visual quality. In this case, the on-line visual model based

anchor detection may fail. Among seven testing programs, two failed using this

approach. For the other �ve testing data, it yielded comparable anchor detection

results as clustering method, with yet much less computation (no need to compute

the dissimilarity matrix).

In our experiments, on an average, around 70% of the anchor speech data

can be successfully collected on-line with the help of the visual cues (visual based

anchor detection). This is more than adequate amount of data needed to train the

on-line acoustic model for the anchor. For each testing program, a speaker model
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is built and applied back to the audio stream to extract all the segments where the

anchor speech is present. Currently, we measure the performance at segment level.

Figure 3.16 illustrates the relation of detected anchor segments and ground truth,

where detected segments are denoted by solid horizontal lines, and the target speaker

segments are denoted by pairs of dashed vertical lines. Four measures are used:

Segment Hit Rate (SHR), Segment False-alarm Rate (SFR), Di�erence of segment

starting time (Diffst), and Di�erence of segment ending time (Diffend). Diffst is

de�ned as the di�erence of starting time of detected anchor segment and that of the

corresponding real anchor segment. Diffend is de�ned in a similar way.
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Figure 3.16: Normalized score in a portion of a test broadcast showing actual segment

boundaries of the target speaker (dashed vertical lines) and estimated target segment

boundaries (solid horizontal lines).
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In audio based anchor detection, we set up to compare the performance of

both o�-line and on-line model based detection results. Tables 3.4 and 3.5 show the

experimental results using each method. In both tables, the second column gives

the real anchor segments manually labeled. The third and forth columns give the

number of hit segment and false detected segment. The SHR of o�-line approach

is 95:4% while on-line approach gives 90:8%. For SFR, on-line approach is 2:3%,

better than o�-line - 8:0%. The �fth and sixth columns give the mean and standard

deviation of Diffst. Those of Diffend are shown on the last two columns. Overall,

the experimental results from both approaches showed similar performance, with

obviously the on-line method having the full exibility of detecting arbitrary anchors

while the o�-line approach can not.

Testing True Hit False Diffst Diffst Diffend Diffend
Sequence Segment Mean STD Mean STD

990218 12 12 0 632 263 503 2154

990219 13 13 1 798 1718 -536 722

990223 12 10 0 1567 1487 -1148 1313

990303 12 11 1 2137 2547 -663 641

990308 12 11 2 651 1300 -469 1354

990309 12 12 1 661 2396 -778 4264

990414 14 14 2 174 1233 121 1988

Total/AVerage 87 83 7 946 1563 -424 1777

Table 3.4: Anchor person detection using o�-line speaker model (Unit of Diff� is

msec)

The text analysis generates four classes: stories, augmented stories, story

introduction, and the news summary of the day. Story segmentation results are shown

in Table 3.6. The second column (Ng) is the known number of stories (ground truth)

in a program, the third column (Ns) is the number of segmented stories, the fourth

column (Noff) is the number of segmented stories whose boundaries di�er from the

ground truth, and the last column (Woff ) is the average number of words contained

in the shifted boundaries. We examine the quality of story segmentation from two
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Testing True Hit False Diffst Diffst Diffend Diffend
Sequence Segment Mean STD Mean STD

990218 12 12 1 632 263 1503 2538

990219 13 12 0 1069 674 -1116 1288

990223 12 11 0 729 183 -1236 1368

990303 12 10 0 1094 1028 -410 1699

990308 12 10 0 1692 1763 -1407 1106

990309 12 11 0 669 278 -658 1014

990414 14 13 1 479 848 -455 4167

Total/AVerage 87 79 2 909 720 -540 1883

Table 3.5: Anchor person detection using on-line speaker model (Unit of Diff� is

msec)

aspects. One is the segmentation itself. That is, how many stories are indeed correctly

extracted. Another aspect is the precision of the story boundary. As we can see from

the table, the only missegmentation occurred for 990218 where two adjacent blocks

of text are mistakenly merged due to the high similarity score. By examining the

content, it was found that the two merged adjacent headline stories are both about

murder cases so that many words used in both stories are the same (e.g., justice,

killing, murder, police, testi�ed, trial, lawyers, etc.). The high rate of word overlap

leads to high similarity between the two stories. On the precision of the segmented

stories, even though 62% of the stories do not have the exact boundary as the ground

truth, the average number of words deviated from the ground truth boundary is as

low as 5.7, excluding the result from 990309. This precision is very high compared

with reported results in the literature. Since result from 990309 has unusually poor

precision (in one of the �ve segmented stories), we analyze it separately. For 990309,

there are only two stories (out of �ve) having their boundaries not exactly aligned

with the true boundary. One shifted by 5 words (which is normal) and the other

shifted by 32 words. The reason for this severe shift is due to the fact that the text in

closed caption for the beginning of that story is totally di�erent from what is being

said in the audio track.
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One common contributor to all the boundary shifts is due to the quality of

text-speech alignment. We found that most of the words shifted around boundary

are within the �nishing sentence of reporters. For example, in the end of reporting

a story, the correspondence often concludes the story by, say, "Robert Hager, NBC

News, New York". Almost all the boundary shifts occurred in this particular type of

sentence.

Test data Ng Ns Noff Woff

990218 6 5 4 4.75

990219 5 5 4 3.5

990223 5 5 3 4.3

990303 5 5 3 11.3

990308 6 6 4 5.25

990309 5 5 2 (32+5)/2

990414 6 6 3 5.3

Table 3.6: Performance of story segmentation based on integrated audio and text

processing.

3.6 Summary

This chapter proposes an integrated approach to automatically generate in-

dices for news broadcast at conceptual level. The experimental results show that the

integrated anchor person detection algorithm achieves similar performance as audio

based approach, but with much more exibility. Text and audio based story extrac-

tion algorithm produces more accurate story boundaries. The embedded hierarchical

structure of news program is successfully recovered, and the automatically generated

table of content allows users to browse through large amounts of multimedia data

with convenience and eÆciency.
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Chapter 4

Query-by-example in Audio

This chapter addresses the issues in (1) automatic index generation based on

acoustic content in an unsupervised way and (2) eÆcient search and retrieval based on

given audio query examples [72, 73]. Audio content analysis for information indexing

and retrieval is a relatively new �eld that has attracted more attention in recent years.

In [21], Wold et al. proposed to classify the audio into more than 10 di�erent audio

content. Although such supervised classi�cation can be useful when there are a �xed

number of known categories, it is not adequate to index general audio content, where

content category is not a prior de�ned. How to eÆciently query the audio content is

also a very important issue, especially for database of middle and large size.

4.1 Overview of Audio Based Query

For unconstrained browsing and query, it is often impossible to plan ahead

in terms of what can or can not be retrieved. For example, a user may want to

�nd the audio clips that sound similarly to an audio sample in hand. In this case,

to retrieve the desired clips, the audio data in the database has to be segmented

(but not necessarily labeled), each segment has to be matched against the sound of

interest, then the clips that are similar to the given example can be returned to the

user. Here, the intention is to �nd similar clips but not necessarily to understand
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what the clips are. In an unsupervised manner, we segment an audio stream into

homogeneous audio events, which provide a set of primitives so that higher level of

grouping and clustering can be further performed. Another advantage is that this

allows a free form browsing and query-by-example.

The goal of our work is to provide users the means of organizing the audio

stream, to derive some useful structure of the data, and then to allow users to quickly

browse or query about the content they need. Figure 4.1 illustrates the block diagram

of the audio query system. Our strategy is that we �rst extract a set of audio events

via unsupervised segmentation, and then use a Gaussian Mixture Model (GMM) to

represent each homogeneous segment. To meet the query needs, we further propose

a parametric distance metric so that the acoustic similarity between di�erent audio

events can be measured. To recover the content structure, an unsupervised clustering

method is applied to group the segments that possess similar acoustic properties into

the same cluster. A query system is then built to (1) present the content structure,

(2) provide a search/browsing interface, and (3) enable query by audio example.

Client

Audio URL

Ranked

Audio List

WWW

Fetch Query Audio

Shot Segmentation

Model Generation

Server

Query Processing

Engine

Query

Results

Query

Model Database

On-line Processing

Off-line Processing

Audio Database

Figure 4.1: Illustration of audio query system.
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4.2 Audio Event Segmentation and Modeling

Segmentation is the �rst step to explore the content structure of an audio

stream. Parallel to the shot cut in visual domain, the objective is to identify the

boundaries of changes in terms of some acoustic properties. A succinct and accurate

representation - modeling of each segment is also indispensable for eÆcient audio

storage and query.

4.2.1 Audio Event Segmentation

The audio event segmentation algorithm consists of three steps: feature

extraction, splitting, and merging. We employ 13 order Mel-frequency cepstral coef-

�cient (MFCC) features for each frame. During splitting, we identify possible scene

change boundaries. During merging, neighboring scenes are merged if their contents

are similar.

MFCC is widely used in speech domain and it provides a smoothed version

of spectral that considers the non-linear human hearing property. The degree of

smoothness depends on the order of MFCC being employeed. Two properties of

MFCC, one being that the �rst coeÆcient is proportional to the audio energy and

the other being that there is no correlation among di�erent coeÆcients, make MFCC

attractive.

In the second step, low energy frames, which are local minimum points of

the volume contour, are located as boundary candidates. Figure 4.2 shows the volume

contour of an audio �le, where all low energy frames are indicated by circles. For each

boundary candidates, the di�erence (see de�nition below) between its neighbors (both

left and right) is computed. The de�nition of neighbors is illustrated in Figure 4.2,

where for frame X, two dotted rectangular windows W1 and W2 are the neighbors of

X and each with length of L seconds. If the di�erence is higher than certain threshold

and it is the maximum in surrounding range, we declare that the corresponding frame
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is a scene boundary.
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Figure 4.2: Illustration of audio segmentation.

Exteneded Kullback Leibler distance (KLD) [74] is adopted to measure the

di�erence. For two 1-dimension Gaussian's G(m1; �1) and F (m2; �2), the extended

KLD between G and F can be directly computed from the model parameters

DP (G;F ) =
�21
�22

+
�22
�21

� 2 +

 
�21 + �22
�21�

2
2

!
(m1 �m2)

2 (4.1)

Since we assume that di�erent audio features are independent, the overall

distance is simply the summation of extended KLD of each feature.

The above described splitting process yields, in general, over-segmentation.

A merging step is necessary to group similar neighboring segments together to form

homogeneous audio events. This is done by comparing the statistical properties of

adjacent segments. The extended KLD of adjacent segments is computed. If it is
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lower than a threshold, the two segments are grouped and the corresponding feature

vectors are updated.

After the segmentation, each boundary point is located at the transition

from one homogeneous audio event to another. While this may describe the primitive

structure of the audio content, more can be done to identify its higher level structure.

For example, for an audio stream containing a dialog, the speech of the same speaker

distributed at di�erent time instances can be grouped as one cluster. We achieve this

using an agglomerative hierarchical clustering algorithm [68].

4.2.2 Audio Event Modeling

Using all the feature data corresponding to a speaker segment to represent

the speaker is the most accurate way, since that is all information we can collect.

Unfortunately, because of the huge storage space required and high computation load

involved, we can not a�ord to do that when the number of speakers and the length

of speaker segments are large. An alternative way is to approximate the feature

distribution by certain models, and then use corresponding parameters to determine

the di�erence of speakers. In this way, we may sacri�ce accuracy, but the succinct

representation will save much computation and storage. We choose GMM in this task

due to its capability to approximate any distribution within required accuracy. For

an audio segment, a model is generated by �tting the model with the features of that

segment. The derived model parameters serve as the representation of the segment.

We may choose the number of mixtures as the tradeo� between computation load

and model accuracy. In certain situations, prior knowledge of data characteristics

will also help to make the choice.

One immediate question is how to measure the dissimilarity between two

segments based on their model parameters, which is very important in both audio

segment clustering and audio query. There is no existing metric in the literature

that can e�ectively measure the dissimilarity between two mixture type probability
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density functions (PDFs), like GMMs. In the next section, we propose a new distance

metric, in its closed form solution, that measures the distance between two PDFs of

mixture type, directly from their parameters.

4.3 Model Di�erence Measurement

The distance between each pair of audio events is de�ned as the distance of

corresponding GMMs. Generally, the distance is required to satisfy three properties:

non-negativeness, symmetry, and triangular inequality [75]. Let G(x), F (x), and

H(x) be three PDFs. Denote D(G;F ) as the distance between G(x) and F (x), the

three properties can be formalized as,

D(G;F ) � 0; and D(G;F ) = 0 i�.G = F (4.2)

D(G;F ) = D(F;G) (4.3)

D(G;H) +D(H;F ) � D(G;F ) (4.4)

4.3.1 Need for New Metric for Model Distance

There are several approaches available to measure the di�erence between

two PDFs, which may or may not satisfy the three properties of distance measure.

One approach de�nes the distance in Lr space by

DLr(G;F ) =

�Z
x2X

jG(x)� F (x)jrdx
�1=r

; (4.5)

where commonly used values of r may be 1 or 2. Although satisfying all three distance

properties, DLr is usually computed by numerical method and the complexity can

easily go beyond control with the increased dimension.

Another approach is the relative entropy or Kullback Leibler distance (KLD).
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It is de�ned as [74],

DKL(G;F ) =

Z
x2X

G(x) log
G(x)

F (x)
dx (4.6)

It is obvious that KLD satis�es only the �rst property. By extending the original KLD

to DKL(G;F ) + DKL(F;G), the second condition can be met. Although the third

property still does not hold, the extended KLD is popular in many applications due

to the lack of other alternatives. There are practical ways to approximateDKL(G;F ).

For example, data sequences TG and TF can be generated from models G and F and

then the average log-likelihood ratio of the sequences with respect to G(x) and F (x)

can be used to approximate the extended KLD. That is,

DSeq(G;F ) =
1

N
(j log p(TGjG)

p(TGjF )
j+ j log p(TF jF )

p(TF jG)
j); (4.7)

where N is the length of the data sequences TG and TF . The performance of DSeq

is a function of both the value of N as well as the data generation procedure. The

bigger the N is, the more reliable is the approximation. At the same time, it makes

the estimation more expensive.

Since GMMs are characterized by their component model parameters, the

most desirable solution is to compute the distance directly from their respective pa-

rameters. Ideally, it is hoped that such a method can achieve at least comparable

performance with a precise closed form solution which consequently can lead to a

more eÆcient computational procedure. The existing method in this category can

handle only simpli�ed cases. For example, the extended KLD between two Gaus-

sian's in one dimension can be simply computed by Formula 4.1. While the compu-

tation of DP is simple and it can be extended to handle higher dimension Gaussian,

it can not handle multiple mixture Gaussians. Even with the possibility of simpli-

fying the models so that (4.1) can be applied, the outcome often indicates that it

is not e�ective. This can be illustrated in a simple example. Consider two GMMs

G = 1=3�N(�2; 1) + 2=3�N(1; 1) and F = 1=3�N(2; 1) + 2=3�N(�1; 1), where
N(m; �) is Gaussian distribution with mean m and standard deviation �. Obviously,
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both G and F have two components that are distributed very di�erently. Hence,

the distance between them is clearly not zero. To apply (4.1), both G and F have

to be simpli�ed into one mixture Gaussian, denoted by G0(mG; �G) and F 0(mF ; �F ),

where the new mean and standard deviation can be derived as the weighted aver-

age of mean and standard deviation from their components. This yields the same

mean (mG = mF = 0) and standard deviation (�G = �F ) for both G0 and F 0 which

leads to DP (G
0; F 0) = 0. Evidently, the measure derived using extended KLD from

the simpli�ed model fails to capture the obvious di�erence between the two original

PDFs.

Therefore, there is a need to develop other alternatives that can e�ectively

measure the di�erence between GMMs directly from their model parameters. In the

following section, we proposes such an alternative.

4.3.2 Proposed New Metric

Suppose G(x) and H(x) are two PDFs of mixture type,

G(x) =
NX
i=1

�igi(x); H(x) =
KX
k=1

Khk(x); (4.8)

where G(x) is a mixture of N element PDFs gi(x), H(x) is a mixture of K element

PDFs hk(x), and �i and k are corresponding weights that satisfy
PN

i=1 �i = 1 andPK
k=1 k = 1. For simplicity, in the rest of this chapter, we will not use x explicitly

in other formulae. Denote the distance between any two element PDFs gi and hk by

d(gi; hk), the overall distance between G and H is de�ned as

DM(G;H) = min
w=[wik]

NX
i=1

KX
k=1

wikd(gi; hk); s:t: (4.9)

wik � 0; 1 � i � N; 1 � k � K (4.10)
NX
i=1

wik = k; 1 � k � K;
KX
k=1

wik = �i; 1 � i � N (4.11)

According to the de�nition, any component gi in one mixture can interact



79

with any other component hk in the other mixture via weighted element distance

wikd(gi; hk). The degree of interaction is inversely proportional to the element dis-

tance and proportional to the mixture weights �i and k. The weights wik are ulti-

mately determined through optimizing with respect to the given constraints in (4.10,

4.11). The proposed framework can be visualized in Figure 4.3.
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h1 h2 hk hK
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� 1
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Figure 4.3: Distance between two mixture type PDFs.

Clearly, the solution is posed as a linear programming problem. There are

many algorithms available to solve it eÆciently, such as simplex tableau method [76].

We have a total of N�K free parameters (wik's) and N+K equality constrains, where

onlyN+K�1 of them are independent. By the optimization theory, at mostN+K�1
of the N�K parameters will not vanish. The above problem has solution because (1)

we can easily �nd a feasible vector that satisfy all the constrains: wik = �i � k and

(2) the upper bound for the objective function exists: MD = maxik d(gi; hk), which

is proved as follows,

DM(G;H) =
NX
i=1

KX
k=1

wikd(gi; hk) � MD
NX
i=1

KX
k=1

wik =MD
NX
i=1

�i =MD (4.12)
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4.3.3 Property of the New Metric

The proposed metric is de�ned as a general framework, constructed based

on element distances. Its generality is due to the fact that the element distance

measure is left unspeci�ed. Depending on di�erent application needs, appropriate

element distance measures, which may even be non-parametric, can be plugged in

and the overall distance between two mixture PDFs can be computed using the same

framework. Furthermore, there is no requirement about the speci�c type of element

distribution or that each element PDF should be the same type. If the element

distance satis�es the three general distance property, the overall distance also does.

The proof of the �rst two properties is straightforward. We here focus on the proof

of the third property. For any three mixture PDFs, G, H, and F , we need to show

that,

DM(G;H) +DM(H;F ) � DM(G;F ) (4.13)

The de�nitions of G and H are the same as (4.8). F is similarly de�ned as

F =
PM

j=1 �jfj, satisfying
PM

j=1 �j = 1.

Applying the de�nition in (4.9) to both pairs (G;H) and (H;F ), we have

their distances as,

DM(G;H) =
NX
i=1

KX
k=1

wikd(gi; hk) (4.14)

DM(H;F ) =
KX
k=1

MX
j=1

vkjd(hk; fj) (4.15)

where wik and vkj satisfy
PN

i=1wik =
PM

j=1 vkj = k,
PK

k=1wik = �i, and
PK

k=1 vkj = �j.

Then

DM(G;H) +DM(H;F )

=
NX
i=1

KX
k=1

wikd(gi; hk) +
KX
k=1

MX
j=1

vkjd(hk; fj)

=
KX
k=1

[
NX
i=1

MX
j=1

wikvkj

K
(d(gi; hk) + d(hk; fj))]
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�
KX
k=1

[
NX
i=1

MX
j=1

wikvkj

k
d(gi; fj)]

=
NX
i=1

MX
j=1

(
KX
k=1

wikvkj

k
)d(gi; fj) (4.16)

Let �ij =
PK

k=1
wikvkj
k

then (4.16) can be rewritten as,

DM(G;H) +DM(H;F ) �
NX
i=1

MX
j=1

�ijd(gi; fj) (4.17)

On the other hand, for any set �ij that satis�es the equation constraints

in (4.11), the following inequality is also true since DM(G;F ) is the outcome of

optimization,

DM(G;F ) �
NX
i=1

MX
j=1

�ijd(gi; fj) (4.18)

Actually the variables �ij indeed satisfy the required constrains.

NX
i=1

�ij =
NX
i=1

KX
k=1

wikvkj

k
=

KX
k=1

vjk = �j (4.19)

Similarly we have
PM

j=1 �ij = �i. Putting (4.17) and (4.18) together, we

proved (4.13).

4.3.4 Performance of the New Metric

While we have proved that the new metric proposed possesses certain prop-

erties, we also like to demonstrate that it has similar behavior as other existing

measures in experimentation. In this section, we compare it with the two previously

de�ned measures: DL2 and DSeq based on synthetic data. For simplicity, we perform

the comparison on 2 dimensional GMMs F and G, each with two mixtures. The

element distance used is KLD de�ned in (4.1). Speci�cally, F is

F = 0:5N

0
B@
2
64 1

0

3
75 ;
2
64 1

1

3
75
1
CA+ 0:5N

0
B@
2
64 �1

0

3
75 ;
2
64 1

1

3
75
1
CA (4.20)
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where N(�; Æ) is a 2-D gaussian with mean vector � and diagonal covariance Æ. The

comparison is conducted in four settings, in each of which, by perturbing the model

parameters in G we observe how the three di�erent measures (DL2 , DSeq, and DM)

react to the changes.

In setting one, G has exactly the same component Gaussians as F with yet

variable mixture weights,

G = �N

0
B@
2
64 1

0

3
75 ;
2
64 1

1

3
75
1
CA+ (1� �)N

0
B@
2
64 �1

0

3
75 ;
2
64 1

1

3
75
1
CA (4.21)

where � varies between 0 and 0:5.

In setting two, the two component Gaussians of G have the same weights

and covariances as those of F but with variable mean vectors, changed along a circle

of radius one.

G = 0:5N

0
B@
2
64 cos�

sin�

3
75 ;
2
64 1

1

3
75
1
CA+ 0:5N

0
B@�

2
64 cos�

sin�

3
75 ;
2
64 1

1

3
75
1
CA (4.22)

where � is in the range 0 to �.

Setting three is similar to setting two except we vary the mean vectors of G

symmetrically in the �rst dimension.

G = 0:5N

0
B@
2
64 m

0

3
75 ;
2
64 1

1

3
75
1
CA+ 0:5N

0
B@�

2
64 m

0

3
75 ;
2
64 1

1

3
75
1
CA (4.23)

where m is from 0:5 to 1:5.

In setting four, G has the same weights and mean vectors for both compo-

nents but with the covariance changing along both dimension simultaneously.

G = 0:5N

0
B@
2
64 1

0

3
75 ;
2
64 Æ

Æ

3
75
1
CA+ 0:5N

0
B@
2
64 �1

0

3
75 ;
2
64 Æ

Æ

3
75
1
CA (4.24)

where Æ ranges from 0:5 to 1:5.

Figure 4.4 shows the plotted behavior of the three measures under four

di�erent settings. All the curves are normalized so that the maximum distance is 1.
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Figure 4.4: Behaviors of three di�erent measures under four testing settings.

From these plots, one can see that the overall behaviors of all three are consistent in

all settings. DM curve overlaps with DL2 in setting one and part of setting three. In

setting four, DM falls between DL2 and DSeq. These plots show that the proposed

new metric behaves similarly in di�erent scenarios as the existing measures that have

been widely used in practice. But the proposed metric is obviously more eÆcient in

terms of computation. In addition, with this metric, there is no need to store or to

generate data points in order to compare the di�erence between two PDFs. This is

signi�cant, particularly in content based search and retrieval where large amounts of

data is pre-indexed, stored, preferably, in a succinct parametric form, and searched

in real-time. For example, to retrieve the speech segments of a particular speaker

given as an query example, all the pre-stored speaker segments in a database have

to be matched against the given query sample. In this case, having a measure that
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can compare the similarity directly from the speaker model parameters will be much

more eÆcient than the ones that require to generate the data points from the models

�rst and then compare, especially when the search range is large, a realistic scenario

in almost all content based retrieval tasks.

4.4 Query Processing Engine

Traditional query is based on text information. With the fast development of

multimedia applications, not only the demand has grown out of needs in text, but also

the manual annotation is no longer feasible. Query based on acoustic characteristics

is one alternative to text based retrieval. For example, to retrieve some audio clips

based on text, one has to know exactly how this clip is labelled. But there are many

cases where users know only how the content (speakers, music, or songs) sounds like

but not what semantics it has been identi�ed previously. Therefore, retrieval by audio

example is an alternative to conventional text based retrieval. The user can simply

provide a sample audio stream and ask to retrieve the audio segments that posess

similar acoustic properties.

Technically, the sample audio is �rst segmented, and each segment is �tted

by a GMM based on the procedure previously described. Normally, the sample audio

is expected to be short and the entire example audio stream is one homogeneous audio

event. In this case, sample GMM is compared with those saved in the database. When

there are several audio events in the example, there are more alternatives to process

the query. One is to choose the dominant segment (longest one) and then make the

query based on its GMM. Another possibility is to use all the segments in query

without considering their temporal order. The query results may be similar to any

of the segments in the query example. If temporal order is considered, measures

that can characterize both the duration and the order simultaneously are needed.

Although dynamic programming (DP) is a good candidate for this kind of matching
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procedure, we currently do not use DP approach due to its expensive computation

and our requirement to perform eÆcient on-line query against a large audio database.

We instead adopt a simpler method.

Denote the query sequence Q by (Q1; Q2; :::; QN) and an audio sequence S in

database by (S1; S2; :::; SM), where Q has N segments and S has M segments. Without

loss of generality, we assume that M � N . Qi and Si are GMMs, representing the

corresponding segments. The distance between Q and a portion of S started at t is

computed as,

DQ;S(t) =
NX
i=1

DM(Qi; St+i�1)w(Qi; St+i�1) (4.25)

where w(Qi; St+i�1) is a weight related to the duration of Qi and St+i�1. If the

duration di�erence is not considered, w can be assigned to 1. Otherwise, it should

reect the duration e�ect. Suppose the duration of segment Qi is T
Q
i and that of Sj

is T S
j , one possible de�nition of w is,

w(Qi; Sj) =
T
Q
iPN

k=1 T
Q
k

� (2�
min(T

Q
i ; T

S
j )

max(T
Q
i ; T

S
j )

) (4.26)

4.5 Query-by-Example in Audio System

To evaluate the proposed approach in audio indexing and retrieval, experi-

ments are performed on an audio query system. The interface of the system is shown

in Figure 4.5. Users can provide their audio sample by specifying the URL of the

audio �le. The user may trig three tasks: segmenting the audio sample, clustering

the segments, and querying the database. The indexed audio segments are presented

as blocks of di�erent colors in Figure 4.5. When clustering is performed, segments

within the same cluster will be painted with the same color. The query results are

painted using a designated highlight yellow color where di�erent hit segments will

have di�erent brightness, depending on the similarity scores (the more similar, the

brighter the color is). When the query is performed across di�erent audio streams,
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the order of the hit streams will be returned according to the degree of similarity mea-

sured as the minimum distance between the sample segment and any hit segment of

an audio stream. As can be seen from the top of Figure 4.5, the interface o�ers users

the means to adjust the sensitivity values in di�erent tasks based on their application

needs.

Figure 4.5: The interface of audio query system.

4.6 Simulation Results and Discussion

All the audio data in our database is in the format of mono raw data with

16 KHz sampling rate and 16 bit resolution per sample. To measure the segmenta-

tion performance we test on two TV news broadcast sequences, denoted by test1 and

test2, each about 30 minutes. The ground truth of the segment boundaries are gener-
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ated manually, where speaker changes, speech/music changes, and news/commercial

changes are annotated. Overall, test1 has 157 segments and test2 has 159 segments.

The length of window used in segmentation is 3 seconds. Four measurements are

designed to evaluate the performance based on identi�ed event boundaries: 1) Hit

Rate (HR) - the ratio of the number of correctly detected boundary points (within

two seconds deviation) to the true number of boundary points, 2) False Alarm Rate

(FR) - the ratio of the number of falsely detected boundary points to the number

of detected boundary points, 3) Mean Di�erence (MD) - the average di�erence (in

ms) between correctly detected boundaries and the true boundaries, and 4) Standard

Deviation of boundary di�erence (SD). Table 4.1 gives the results from the two test

sequences. The high FR is due to the variation in the background sound.

Sequence HR (%) FR (%) MD (ms) SD (ms)

test1 92.26 20.56 -336 736

test2 93.63 22.22 -235 658

Table 4.1: Audio segmentation results.

A database containing 278 audio events is constructed, each is about 10 to 30

seconds long. Every event is an acoustically homogeneous segment such as a segment

of speech from a particular speaker or a piece of music, whose parameters are stored

in the database. During query, an audio segment is provided by users as the query

example and the retrieval process is to �nd all the audio segments in the database

that have the similar acoustic properties as the query example. For example, if the

query sample is a piece of speech from president Clinton, the task is to �nd all Clinton

speech segments from the database.

Using the given query example, a 4 mixture GMM is built and compared

with all other GMMs stored in the database. Two categories of measures are used to

perform the comparison of GMM models. One is the distance measure by sequence

DSeq and the other category is the proposed distance measure. Since the proposed

distance measure uses element distance measure as building block, we choose, in
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this experiment, two types of element distance measures to show that the proposed

framework has the exibility of adapting to di�erent application needs. One element

distance measure is L1 norm and the other is L2 norm, both satisfy all three distance

properties. Formally the distance between f and g can be written as,

dLr
(f; g) =

 
NX
i=1

j�fi � �
g
i jr +

NX
i=1

j�fi � �
g
i jr
!1=r

; r = 1; 2 (4.27)

where N is feature dimension, �
f
i , �

g
i , �

f
i and �

g
i are the the i

th means and standard

deviations of f and g.

Even though the mean and standard deviation may have very di�erent dy-

namic ranges, the choice is reasonable for this application because when one range is

much larger than the other, the impact from the smaller one is negligible in the over-

all distance value. Plugging in the two chosen element distance measures, it yields

two measures, denoted by DME1 and DME2. Using each of the three measures, we

compute distance between the given query example and each of the audio event in

the database. When the distance is smaller than a threshold (can be set by user), the

corresponding audio event is considered as a hit.

To evaluate the retrieval performance, we use Recall Rate (RR) and False

detection Rate (FR). Speci�cally, they are de�ned as follows. Assume that there

are T recorded events in database. Given a query example, there are Q events in

the database that are the true match. If the retrieval process returns R events as

query results, among which C events are the correct match, then RR is de�ned as

C=Q, and FR is de�ned as (R � C)=(T � Q). Similar to the Receiver Operating

Characteristic (ROC) in classical detection theory [77], we can plot a FR-RR graph

(similar to the PF-PD graph in detection theory) by varying the similarity threshold

of query processing engine in Figure 4.6 to visualize the retrieval performance.

The query is for a particular speaker, the anchor of NBC Nightly News,

Tom Brokaw. In the database, there are 55 segments that are Tom Brokaw's speech.

We use each of them as a query example and compute the corresponding FR-RR

graph. Figure 4.6 shows the average FR-RR graph of all the query performance. As
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it can be seen from the �gure, DME1 and DME2 display similar performance as DSeq.

When FR < 0:11, DME2 is slightly worse than DSeq, and DME2 is slightly better than

DSeq when FR > 0:11. While computing DSeq, we choose the length of the testing

sequence as 5000. For each query, the computation time of DSeq is 25 times more

than DM1 and DM2. Taking into account the signi�cant reduction in computation,

the proposed new metric outperforms the existing ones.
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Figure 4.6: Performance comparison using FR-RR curves.

4.7 Summary

This chapter proposes a new approach for content based audio indexing

and query. The audio signal is segmented into homogeneous events whose features

are characterized using GMM models. A new metric for measuring the similarity
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between two PDFs of mixture type is described and applied to GMMs. Both audio

clustering and on-line query are based on this new metric. An audio retrieval system

is presented as a demonstration of the e�ectiveness of the proposed techniques. From

the experimental results on both synthetic and real data sets, it can be seen that our

proposed approach is promising for audio content indexing, description, search, and

retrieval.
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Chapter 5

Major Cast Detection

Major casts, for example the anchor persons or reporters in news programs

and principal characters in movies play an important role, and their occurrences

provide good indices for organizing video content. The users may easily digest the

main scheme by skimming the list of major casts and sampling related video clips.

This chapter presents an approach for automatically generating the list of major casts

for video based on both audio and visual information.

5.1 The Diagram of Major Cast Detection Algo-

rithm

Figure 5.1 illustrates the major cast detection algorithm we proposed. Each

major cast is characterized by two attributes: face and speech. The detection pro-

cedure is to �nd corresponding face occurrences and speech segments by analyzing

video in two levels. Audio and visual information is utilized separately in low level,

and in high level cues from di�erent modalities are combined [78].

In the �rst level, video sequence is segmented independently in audio and

visual tracks. In audio track, clean speech chunks are �rst extracted using techniques

similar to those mentioned in Chapter 2, within which speaker boundaries are iden-

ti�ed. Video is segmented into homogeneous shots, and face detection and tracking
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Figure 5.1: Major cast detection algorithm.

are applied within and among shots. After all speaker segments and face tracks are

detected, they can be grouped by independent or integrated clustering method so

that segments containing the same speaker and tracks consisting of the same face

are merged. In the second level, we analyze the temporal correlation among di�erent

faces and speakers and link them to certain characters. A list of major casts is then

constructed, and we present each cast's face and corresponding speech segments in an

order that reects the characters' importance. The importance score is determined

based on the accumulative temporal and spatial presence of each cast.
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5.2 Speaker Segmentation and Clustering

5.2.1 Speaker Segmentation

Besides speech signal, there are other kinds of sound in audio track, for

example, music, speech with music, noise, speech with noise, and etc. To recog-

nize and cluster di�erent speakers, we want to extract speaker information based

on clean speech only. Noisy speech may deteriorate the accuracy of speaker model

and further reduce the speaker segmentation and clustering performance. Therefore

the proposed speaker segmentation algorithm includes two steps: 1) Extract the clean

speech chunks from the audio track. 2) Locate the speaker boundaries in clean speech

audio chunk.

Clean speech can be extracted by techniques introduced in Chapter 2. Here

we use the 14 clip-level audio features and compare three classi�cation mechanisms:

neural network, GMM, and SVM classi�ers.

Speaker segmentation follows the procedure presented in Section 4.2. We

modify the algorithm a little bit such that it is better targeted for segmenting speakers

within clean speech chunk, but not general audio. When we compare the di�erence of

two audio blocks, we use MFCCs and delta MFCCs, and only consider those frames

for which pitch is detectable. These frames normally correspond to voice, which

reects the characteristics of speaker's vocal track. By this way, speaker boundaries

are more reliably detected. Similar to Section 4.2.2, each speaker segment is �t by a

GMM. Again, only those frames that have pitch values are used to train the GMM.

5.2.2 Speaker Clustering

Distance matrix of all speaker segments is computed by the proposed dis-

tance metric de�ned in Section 4.3.2. Note we use extended KLD as the element

distance. Based on the distance matrix, we apply a clustering algorithm to group
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speaker segments into di�erent speakers. Considering that the used distance does

not satisfy the triangular inequality property of general distance, we employ a two

step hierarchical clustering algorithm [68]. Initially in the �rst step, each segment is

a cluster on its own. During each iteration, two clusters with the minimum dissimi-

larity value are merged, where the dissimilarity between two clusters is de�ned as the

maximum dissimilarity among all possible pairs of segments, one from each cluster.

This procedure continues until the minimum inter-cluster dissimilarity is larger than a

preset threshold T1. Then in the second step, we de�ne the dissimilarity between two

clusters as the minimum dissimilarity among all possible pairs of segments, one from

each cluster. The two clusters with minimum dissimilarity merge in each iteration

until the minimum dissimilarity is larger than another threshold T2, where T2 < T1.

After clustering, speaker segments with similar audio property are grouped

together. The thresholds T1 and T2 are intentionally set low to make sure few

segments from di�erent speakers are grouped together. Although it is possible that

segments from the same speaker are scattered into di�erent clusters, it is possible to

merge them based on corresponding face similarity.

5.3 Face Detection and Tracking

Parallel to speaker segmentation and clustering, face information are also

recovered from the visual track. Based on the proposed face detection algorithm, face

tracks are extracted and clustered.

5.3.1 Face Detection in Still Image

This section describes the procedure of detecting faces in a still image of

complex scene [79]. The basic procedure is �rst described, and applying the basic

procedure in di�erent locations we can �nd faces with certain sizes con�ned by the

size of the face template. Then we show how to detect faces with di�erent sizes by
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applying the basic procedure in multi-resolutions. Training procedure for average face

template and consideration of performance improvement are also discussed.

Basic Procedure of Face Detection

Fm

n

Face Template F

(size M x N)

Test Image T (size I x J)

i

j

T

s

Fswarping

F

Figure 5.2: Illustration of template matching.

In Figure 5.2, F is the face template image of sizeM�N , T is the test image

of size I � J , and each small block represents a pixel. The task is to �nd a region in

the test image T that is best matched with the template by some warping functions

that map the columns/rows in the region to those of the template. We make use of

two constraints for the warping functions. The global constraint is that the height

and width of the face in test image are no less than those of the face template, and

no bigger than twice of the face template. For a given top-left pixel position, s, of a

candidate region, the regions for which we need to examine are all rectangles that end

at any pixel within the shaded area. The largest candidate region is illustrated by

a bold rectangle in the �gure. The local constraint is that one or two rows/columns

in candidate region are mapped to each row/column of the face template. Let Fs
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represent a current candidate region,with size I 0 � J 0, the row and column mapping

functions f and g from Fs to F can be formalized as,

8><
>:
f(i) = m; i = 1; :::; I 0; m = 1; :::;M

g(j) = n; j = 1; :::; J 0; n = 1; :::; N
; (5.1)

subject to 8>>>>>>>><
>>>>>>>>:

f(1) = 1; f(I 0) =M

g(1) = 1; g(J 0) = N

f(i) + 1 � f(i+ 1) � f(i); f(i+ 2) > f(i)

g(j) + 1 � g(j + 1) � g(j); g(j + 2) > g(j)

(5.2)

The mapped image F̂ can be computed by,

F̂ (m;n) =
AV ERAGE

f(i,j)jf(i)=m, g(j)=ng
Fs(i; j) (5.3)

where m = 1; :::;M; n = 1; :::; N .
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Figure 5.3: Row mapping function.

All possible row mapping f can be illustrated in a trellis shown in Figure

5.3. Two types of element mapping are shown on the right of the �gure: 1) one row of

face region to one row of template, and 2) two rows to one row. We use the intensity

di�erence square between F̂ and F as the matching error (ME) of Fs and F based on

the mapping functions f and g.
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MEf;g(Fs; F ) =
MX
m=1

NX
n=1

(F̂ (m;n)� F (m;n))2 (5.4)

It is easy to see that to �nd out the minimum matching error between Fs

and F, we need to search 2M � 2N combination of di�erent f and g. Brute force

searching is not feasible even for small size of F. Here we want to utilize dynamic

programming to solve this problem. Suppose F i;j
s and Fm;n are the top left i� j and

m�n part of Fs and F respectively. We de�ne the partial error (PE) as the minimum

matching error between F i;j
s and Fm;n,

PE(m;n; i; j) = min
f 0;g0

MEf 0;g0(F
i;j
s ; Fm;n); (5.5)

and the best matching value (MV) between Fs and F is

MV (Fs; F ) = max
i=M;:::;2M;j=N;:::;2N

(1� PE(M;N; i; j)

2�2FMN
); (5.6)

where �F is the intensity standard deviation of face template. IfMV (Fs; F ) is higher

than a preset threshold, the corresponding portion of Fs is declared as face candidate.

Inspired by the mechanism of dynamic programming, we hope to �nd the

optimal path that start at (0, 0, 0, 0) and end at (M, N, I', J') in a 4-D trellis of

PE(m, n, i, j). Based on the constraints of mapping functions f and g, we know

PE(m, n, i, j) can be updated from limited number of ancestors, such as PE(m-

1, n-1, i-1, j-1). If we can determine PE(m, n, i, j) based on its recent ancestors,

and the delta matching error is independent of the trellis path of the corresponding

ancestor, dynamic programming algorithm can be used to search the global optimal

solution. Unfortunately, we �nd that these conditions are not met here because the

delta matching errors between PE(m, n, i, j) and its ancestors also depend on their

trellis paths since the mapping functions of the ancestors are inherited by PE(m, n,

i, j) and are used in computing delta matching errors.

Knowing that 2-D dynamic programming is not feasible in our task, we

propose an iterative 1-D dynamic programming procedure for row- and column-wise
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template matching. Suppose that we have the initial column mapping function be-

tween Fs and F as g0. In the ith (i � 1) iteration, we �rst set gi�1 as the column

mapping function and use row-wise dynamic programming to �nd best f i that min-

imizes MEf i;gi�1(Fs; F ). Then we set the f i constant, and use column-wise DP to

�nd the best gi that minimizes MEf i;gi(Fs; F ). This two step DP is iterated until

we �nd a convergent solution. The procedure will converge since in each step of each

iteration we get a non-increasing matching error.

The initial column mapping function g0 can be chosen randomly or system-

atically. The method we used is as follows. First, f 0 is set in three con�gurations so

that: 1) each row in the test region maps to one row in the template, 2) alternatively

every one row and two rows in the test region map to one row in the template, and 3)

every two rows map to one row. Then, we apply column-wise DP to �nd the best g0's

accordingly. The g0 that gives minimum matching error is chosen to be the original

column mapping function.

Face Detection in Multiple Resolutions

To �nd out all faces of various sizes in the test image, we apply the basic

procedure over multiple resolutions. At each resolution, we process all Fs that start at

any pixel of T to �nd all faces of a certain size. Since the basic procedure can handle

faces of the same to twice the size of the template face, two successive resolutions

should di�er in size by a factor of 2. The coarsest resolution image should have a

size equal to or greater than the face template. After the face candidates over all

resolutions are detected, we sort them based on their matching values. To �nalize

face boundaries, we remove all those candidates that overlap with any candidates

with higher matching values.
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(a) Face template region.

(b) Average face template.

(c) Partial training faces.

Figure 5.4: Generation of average face template.

Generation of Average Face Model

Since essentially the proposed method is a 2-D template matching algorithm,

we need to build a face template, which pretty much determines the detection per-

formance. The face template should grasp as much as possible the common features

of human face, while at the same time is not vulnerable to the background and indi-

vidual character, e.g. the style of hair or the shape of beard. With this consideration

in mind, we decide to use a rectangle that encloses the eye brows and the upper lips

as face template, which is illustrated by the rectangle in Figure 5.4 (a). While larger

size template provides more accurate face model, it also requires more computation

in face detection. By trial and error, we set the template size 20 � 26 as a tradeo�.

The training data we used to compute the average face template is from the AR face

database of Purdue University [80]. All the face images in the database are labeled

according to the light condition, facial expression, and etc. We choose 132 faces with

neutral expression as training data. The face detection algorithm is applied to all
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these training images using a face template manually chopped from one image, and

the F̂ 's corresponding to all detected face regions are averaged to produce the trained

face template. Figure 5.4 (c) shows partial detected face regions that are used to build

the face model. Figure 5.4 (b) shows the �nal face template.

Improvement of the Performance

We are interested in two issues of performance here: accuracy and speed.

To improve the detection accuracy, we impose a preprocessing step before iterated

dynamic programming procedure. The intensity values of the three square regions

that are used to determine the original column mapping function g0 are adjusted so

that the means and standard deviations of intensity are equal to those of the face

template. There are two ways to reduce the computation load of the algorithm. First

when there is other information like color available, we can use skin-tone [34] to reduce

the search area. Since we only want to use color information to grossly restrict the

face location, we use a loose criterion so that no possible face region is lost in the

very early stage. Second, we need not to search all possible starting position pixel by

pixel, but in a hierarchical way. For example, in the �rst round, we search at the step

S1�S1, and then at the second round, we only search the neighborhood of the most

possible starting positions chosen in �rst round by step S2 � S2, where S2 < S1.

This procedure continues until the searching step is 1� 1.

5.3.2 Face Tracking in Video

In face tracking, we need to �nd out di�erent face trajectories along time

axis. Instead of tracking faces directly on the entire video, we �rst segment the video

sequence into shots, then track faces in each shot independently, and �nally cluster

face tracks of all shots such that faces of the same person are grouped together.
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Video Shot Segmentation

Most researchers use the �2 distance between color histograms of successive

frames to detect shot changes [81]. This method is sensitive to ash light and is apt to

miss smooth transition, such as fade in and fade out. Although motion information

may help to cope with ash light e�ect, and accumulated histogram distance can

detect smooth transition, these methods introduce more computation load. Here we

consider the color histogram distance of frames that are K frames apart. A shot cut

typically leads to continuous high values of certain distance that last K frames. On

the other hand, a camera ash often yields two single-frame peaks that are K frames

apart. When a smooth transition happens, the distance contour usually follows a

triangular shape. Based on these observations, smooth transition can be robustly

detected and camera ash can be easily �ltered out. Through experiments, we �nd

that K = 6 gives reliable results for video digitized at 10 frames per second.

Face Tracking Within Each Shot

Two stages are involved for face tracking in each shot: detecting frontal faces

and expanding face tracks in surrounding frames. In the �rst stage, an average face

model is used to detect faces in each frame, where only frontal faces can be e�ectively

detected. In the second stage, we use detected faces as new face templates to search

faces in neighboring frames bidirectionally. Since it is reasonable to assume that the

location and size of faces within each shot do not change much, we only need to search

faces in neighboring regions of the detected faces. The updated face templates are

expected to catch up with the smooth transition of faces from frontal view to others.

When there is no skin-color occurrence in the �rst frame of a shot, we may simply

skip the whole shot since the frames within each shot share similar color distribution.

Figure 5.5 illustrates two cases for face track expansion. The �rst case is

simple, where one face track is detected in the �rst stage, and it starts at frame fs
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Figure 5.5: Illustration of face track expansion.

and ends at frame fe. We use the face detected in frame fs as template to �nd face

in frame fs�1. Similar procedure is iterated backward until there is no face detected

or the shot boundary is met. The starting frame of the face track is then extended to

frame fS, and following the same method, the ending frame is extended to frame fE.

In the second case, two separated face tracks are detected. We �rst extend the face

track with smaller starting frame number. During forward expansion, once f 1E = f 2s ,

we test whether the two face tracks overlap spatially. If overlap, they are merged into

one track, and only f 2e need to be extended forward. Otherwise, the two tracks are

expanded independently. For cases that more than two separated faces are detected

in a shot, similar procedures are applied.

Face Track Clustering

After the faces within each shot are tracked, we want to group the trajec-

tories of the same face in di�erent shots. The similarities among face tracks are

measured by the similarity values among their representative faces, which have the

maximummatching values corresponding to the average face template. By setting the

smaller face as template and the bigger one as test image, the proposed face detection

algorithm can determine the similarity between two faces using the matching value.

When necessary, we re-sample the smaller face so that both of its height and width

are not bigger than the bigger one. After we compute the similarity matrix of the

representative faces of the entire video, we use agglomerative hierarchical clustering
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algorithm [68] to group face tracks.

5.4 Integrated Major Cast Detection

In current study, we only consider detection of major cast appearances that

are accompanied by both speech and face. Satoh et al. used visual and text infor-

mation to associate faces with names [35]. Our approach is basically to associate

faces with speech for major casts. Three situations of face occurrences for a speci�c

speaker are 1) speaker's face is not shown in the video, 2) only speaker's face is shown,

and 3) more than one face including speaker's face are shown. To determine the face

corresponds to a detected speaker, we utilize the temporal correlation between faces

and speakers. In this section, we �rst gives the de�nition of speaker face correlation

matrix. Based on this matrix, we show the integrated speaker segments and face

tracks clustering algorithm, and major cast choosing and ordering method.

5.4.1 Speaker Face Correlation Matrix

We utilize the temporal correlations among di�erent speakers and faces to

�nd out the embedded mapping relationship. Suppose there are M speaker seg-

ments, S1; S2; :::; SM , and N face tracks, F1; F2; :::; FN . Di�erent speaker segments

or face tracks may be the same person. To make our approach general, we assume

that speaker segment Si has Li discontinuous sub-segments: s
i
1; s

i
2; :::; s

i
Li
, each sub-

segment has two attributes: starting time(ST) and ending time(ET). Similarly, face

track Fi has li discontinuous sub-tracks: f i1; f
i
2; :::; f

i
li
, each sub-track has three at-

tributes: starting time, ending time, and face size(FS). Here we use the middle frame

of each face sub-track to determine the face size. Then the speaker face correla-

tion(SFC) matrix is an N �M matrix, whose item SFC(i; j) is de�ned as:



104

SFC(i; j) =
LiX
m=1

ljX
n=1

OL(sim; f
j
n)� FS(f jn); (5.7)

where OL(x; y) is the overlapping duration of speaker sub-segment x and face sub-

track y, and FS(y) is the face size of face sub-track y. Figure 5.6 illustrates the

correlation between speaker segment Si and face track Fj. Such de�ned correlation

value not only considers the temporal overlapping among speaker segments and face

tracks, but also reects the e�ect of face size. The second property is very useful when

more than one face show up during a speech segment, where the face with bigger size

is more likely to be the real speaker.

si
1 si

2 si
Li

fj
1 fj

2 fj
lj

OL OL OL...

Si

Fj

Correlation

Figure 5.6: Illustration of Speaker Face Correlation.

Based on the speaker face correlation matrix, for each speaker segment, we

can easily determine the face track that corresponds to the same person by choosing

one with maximum correlation value. Although the speech and face of one person may

not be perfectly synchronized, this method is still feasible if only dominant portion

of corresponding audio and visual appearances are overlapped.

5.4.2 Integrated Speaker Face Clustering

While speaker segments or face tracks can be clustered independently, it is

obvious that they can help each other. For example, when we judge whether two faces

are from the same person, if corresponding speakers sound similar, we may tolerate

more about the di�erence of faces. Here we propose a new integrated approach

that cluster face tracks and speaker segments simultaneously. Suppose after speaker
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segmentation and face tracking, we have M speaker segments, N face tracks, denoted

in the same way in the last section. The distance matrix among speaker segments is

DMS, the distance matrix of face tracks is DMF, and their correlation matrix is SFC.

The idea is to de�ne an augmented distance matrix for speaker segments/face tracks

based on both distance among speaker segments/face tracks and distance among

corresponding face tracks/speaker segments weighted by their correlation values. We

use DMS' to denote the augmented distance matrix of speaker segments, and DMF'

for face tracks. The item in DMS' and DMF' can be computed as,

DMS 0(i; j) = �f �min(

Pm=N
m=1

Pn=N
n=1 SFC(i;m)SFC(j; n)DMF (m;n) + Tf�Pm=N
m=1

Pn=N
n=1 SFC(i;m)SFC(j; n) + �

; Tf )

+DMS(i; j); 1 � i; j �M: (5.8)

DMF 0(i; j) = �s �min(

Pm=M
m=1

Pn=M
n=1 SFC(m; i)SFC(n; j)DMS(m;n) + Ts�Pm=M
m=1

Pn=M
n=1 SFC(m; i)SFC(n; j) + �

; Ts)

+DMF (i; j); 1 � i; j � N; (5.9)

where �f and �s are ratios that determine the weighting of distance e�ect from dif-

ferent modality, � is a small constant to prevent division by zero, and Tf and Ts are

two thresholds that are used in face tracks/speaker segments independent clustering.

The detailed integrated clustering procedure is shown as follows.

1. Starting withM (0) speaker segments, N (0) face tracks, distance matrixDMS(0),

DMF (0), and correlation matrix SFC(0). Set i = 0.

2. Compute the augmented distance matrix: DMS 0(i) and DMF 0(i).

3. Merge speaker segment/face track pairs with minimum augment distance if they

are less than certain thresholds.

4. Set i = i + 1, and update distance matrix DMS(i), DMF (i), and SFC(i).

5. If no merge happens, then stop, otherwise, go to the second step.
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The integrated clustering method is more reliable than independent cluster-

ing method, since it introduces the correlation information between speaker segments

and face tracks. For example, suppose there are two speaker segments of the same

person, one with clean speech, one with light background noise, then the speaker

alone clustering may fail to merge these two segments. If we know that the two face

tracks that shown in these segments are very similar, we are still con�dent to merge

these two segment of speakers.

5.4.3 Major Cast Detection and Ordering

After clustering, each speaker segment corresponds to one speaker, and each

face track corresponds to one face. We need to further determine the major casts by

linking the faces to corresponding speakers. Then, an importance score is assigned

to each major cast, so that a list of sorted major casts is extracted.

Mapping of faces to speakers is entirely dependent on the speaker face corre-

lation matrix. The value of speaker face correlation reects both the temporal (time

span) and the spatial (face size) importance of the major cast. In the following al-

gorithm, we do the speaker-face mapping and major cast ordering at the same time.

Suppose after integrated speaker and face clustering, we getM di�erent speakers and

N di�erent faces, and an M �N SFC matrix. The algorithm is,

1. Set i = 0.

2. Find an entry in the SFC matrix with maximum SFC value, denote the row

and column indices of this entry by si and fi, respectively.

3. Assign the speaker corresponding to row si and the face corresponding to column

fi to major cast i.

4. Remove row si and column fi in SFC.

5. Set i = i + 1.
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6. Go to step 2 unless the maximum value in SFC is smaller than a threshold.

This algorithm produces a list of major cast with corresponding correlation

values, which are used as temporal-spatial importance scores.

5.5 Major Cast Presentation System

We develop a java applet for major cast based video presentation system,

which is shown in Figure 5.7. The playback of video is controlled by Java Media

Framework [82]. The panel on the left side shows the video, and the right panel

displays the list of major casts in an intuitive and user friendly way. Speech segments

of di�erent major casts are painted in di�erent colors, and the legend of color is plot

on the top. Major casts are presented row by row. For each major cast, we present

the face image on the left, then a vertical bar representing the importance score, and

�nally a time streamline identifying the occurrences of speech. By this way, the user

may easily get the impression of who are the major casts, and where do they appear

in the entire video. The user can directly browse all of certain major cast's video by

clicking on the face images, or some speci�c portion of one major cast's appearance

by clicking on the blocks in speech time line, so that only corresponding video clips

are played.

5.6 Simulation Results and Discussion

The experimental data consists of 8 half-hour news broadcasts collected from

NBC Nightly News o� the air in 2000. The audio track is sampled at 16 KHz with

resolution 16 bits per sample. The visual track is digitized at 10 frames per second,

with size 240�180. We use 4 broadcasts for training and the rest are used for testing,

denoted as sequence test1, test2, test3, and test4. The acquired data is manually

segmented, tagged as clean speech or non-clean speech. Speaker identi�cation in
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Figure 5.7: Major cast presentation.

clean speech segments and frontal view face identi�cation for each visual shot are

also annotated. These labels are used as ground truth to train the required models

and measure the performance of proposed algorithms.

For clean speech detection, we use 14 clip based audio features, and bench-

mark di�erent classi�cation mechanisms: neural network, Gaussian Mixture Model,

and Support Vector Machine classi�ers, each with various parameter settings. The

features are normalized such that they have the same deviation. All the results re-

ported in this section are raw error rate, by which, we refer to the error rate calculated

from the initial classi�cation results performed on each clip without any smoothing

techniques.

Table 5.1 shows the error rates of the neural network classi�ers. From the

table, we know that di�erent numbers of hidden neurons give quite consistent results.

The best performance is achieved with 6 hidden neurons.

Table 5.2 shows the results of GMM classi�ers with di�erent number of

mixtures. Note that, during the training, we set the minimum covariance of each

feature to 0:001. While GMMs with more mixtures can approximate the feature
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Test Data Number of Hidden Neurons

5 6 7 8 9 10

test1 5.3 4.7 6.5 6.5 5.5 6.0

test2 5.4 6.1 6.8 6.3 5.8 6.2

test3 7.1 6.9 6.8 6.4 6.9 7.7

test4 5.7 5.1 6.3 6.2 6.1 7.0

Average 5.9 5.7 6.6 6.4 6.1 6.7

Table 5.1: Error rates of Neural Network classi�er. (unit: %)

distribution more accurately, it also require more data to train reliable models. GMM

with 2 mixtures gives the best result in our study. The reason of worse performance

for more mixtures may due to the limited number of training data.

Test Data Number of mixture

2 4 8 16

test1 4.8 4.8 5.9 6.0

test2 6.6 6.3 5.8 7.1

test3 8.0 8.5 8.0 9.0

test4 5.3 5.7 6.3 7.4

Average 6.2 6.3 6.5 7.4

Table 5.2: Error rates of GMM classi�er. (unit: %)

Table 5.3 presents the classi�cation results for SVM classi�ers. Four kernel

functions are tested, they are dot product, 2nd, and 3rd order polynomials, and radial

basis function. The  coeÆcient used in RBF is set to 0:5. Best performance occurs

when dot product is used as the kernel function. This indicates that the two types

of audio events are well separable in the raw feature space. Compared to the neural

network and GMM classi�ers, SVM shows slightly better performance.

Overall the three types of classi�ers give comparable performances, all of

which are reasonably good. Considering the light computation load of GMM approach

compared with the other two, we choose to use GMM classi�er with 2 mixtures in

this task.

Table 5.4 gives the performance of speaker/visual segmentation. In speaker
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Test Data Kernel Type

Dot 2nd Poly 3rd Poly RBF

test1 4.4 5.1 5.0 5.5

test2 5.1 5.1 5.2 4.8

test3 6.7 6.9 7.1 6.8

test4 4.6 4.1 4.4 4.4

Average 5.2 5.3 5.4 5.4

Table 5.3: Error rates of SVM classi�ers. (unit: %)

segmentation, we set the length of window to 3 seconds. If the detected speaker

boundary is within 2 seconds away from the real boundary, we count it as a correct

one, otherwise, a falsely detected one. In visual shot extraction, we set K to 6 frames,

which covers a half second span. We require that the correct visual shot boundary

should be within 5 frames away from the true boundary. Visual shot segmentation

results are almost perfect, with average false detection rate and missing rate around

1%. The audio segmentation performance is a little bit worse, which may due to the

following two reasons. First, we intentionally set the detection thresholds low since

we do not want to miss the real speaker boundaries. If the real speaker boundaries

are missed, there are multiple speakers in a single segment, and the trained speaker

model is meaningless. Second, some of the speaker segments of the same person

have di�erent background sound and di�erent speaking styles. For example, the

same reporter may speak under di�erent environments to cover the entire story, and

the anchor person may abruptly change his/her tone to emphasize one story from the

others. We still label them as the same person in ground truth even these segments are

acoustically di�erent. Both reasons contribute to a relatively high false detection rate.

Note that the falsely separated segments may be grouped together in the clustering

step. When real speaker boundaries are missed in one segment, the ground truth is

annotated to be the dominant speaker with longest duration.

Table 5.5 shows the results of speaker clustering based on speaker segment

distance matrix. The second row shows the total number of speaker segments, and
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Test Data test1 test2 test3 test4

Correctly Detected Speaker Segments 75 75 73 89

Falsely Detected Speaker Segments 12 11 8 11

Missed Speaker Segments 3 2 2 1

Correctly Detected Visual Shots 476 467 393 476

Falsely Detected Visual Shots 4 5 3 4

Missed Visual Shots 7 5 4 6

Table 5.4: Audio/visual segmentation results.

the third row gives the number of di�erent speakers manually labeled. Normally, in

one test sequence, anchor person has more than 10 segments, reporters have about

5 segments, and most of the persons in live report only have single segment. The

forth row counts how many speakers are split into di�erent clusters. If one speaker

is distributed into N clusters, then this speaker contributes N � 1 in the �nal count.

The last row measures how many di�erent speakers are mixed in one cluster, where,

for each cluster, the number of di�erent speakers minus one is counted. During the

clustering, we intentionally tune the thresholds such that fewer di�erent speakers are

mixed in the same clusters, which leads to higher speaker split rate. Other reasons for

more speaker splits include the accumulated inuence from previous stages: the error

in clean speech and non clean speech classi�cation, as well as the speaker segmentation

error. The �rst kind of error may not �lter out speech with noisy or music background,

and the second one may mix di�erent speakers in one segment, as well as over-segment

speakers which produces many short segments. All these situations deteriorate the

reliability of speaker models, and further inuence the �nal clustering results. By

observing the clustering results in detail, we �nd out that the e�ect of speaker splits

is not serious, since many of split speaker segments are short, about 3 to 5 seconds.

Considering that the average duration of anchor person or reporter segments is more

than 20 seconds, the inuence of split segments is tolerable.

Figure 5.8 shows some face detection results on still images based on the

20�26 average face template shown in Figure 5.4 (b). The detected faces are marked
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Test Data test1 test2 test3 test4

Total speaker segments 87 86 81 100

True di�erent speakers 34 41 36 42

Speaker splits 29 23 23 29

Speaker mixes 5 6 2 2

Table 5.5: Speaker clustering results based on audio information.

by white rectangles. It takes a Pentium II-333 MHz machine about 2 seconds to detect

faces in an image of size 180 � 240, which is much faster than the neural network

based approach.

(a) 4 color images (180x240): (b) 1 grayscale image (358x600):

Figure 5.8: Face detection results of still images.

Figure 5.9 shows some face tracking results from sequence test1. In the �rst

stage, faces are successfully detected using average face template from frame 90 to

107, and from frame 118 to 126. the faces between frames 108 and 117 are detected

by face tracking algorithm. In the �gure, we show some of the detected faces in the

forward tracking procedure. From the �gure, we know the reason they fail in the

�rst stage is that the faces are slant. Since in frame 118, the two face tracks overlap

spatially, they are merged.

Table 5.6 gives the results of face tracking and clustering based on face

distance matrix. The second row is the number of correctly detected face tracks, the
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Figure 5.9: Face tracking within a shot.

Test data test1 test2 test3 test4

Correctly detected face tracks 30 18 21 23

Falsely detected face tracks 4 6 5 5

Missed face tracks 3 4 2 3

Face splits 2 3 2 5

Face mixes 0 0 1 4

Table 5.6: Face tracking and clustering results based on visual information.

third row lists the number of falsely detected face tracks, and the forth row shows

the missed ones. The reason for both false detection and missing is due to the face

detection errors because of lighting, glass reection, and etc. The last two rows are

performance measurements for face track clustering, similarly de�ned as those in

Table 5.5. Falsely detected face tracks are manually labeled as distinct faces while

computing the numbers in the last two rows. Normally, anchor person shows up

about 10 times, reporters show up various times from once to three times. From the

table, we can see that most of di�erent faces are separated into di�erent clusters, and

the number of face mixes is relatively low.

Using integrated speaker face clustering method provides slightly better re-

sults. Table 5.7 shows the results of integrated clustering approach. Compared with

Table 5.5 and Table 5.6, we can see that the speaker segment clustering results of

test1, test2, and test3 are improved, and the face track clustering results of test1

and test4 are improved. Although the improvement is not large, the results are quite

encouraging since they show that the integrated approach is feasible and helpful. The

integrated clustering mechanism largely depends on the synchronization of person's
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Test data test1 test2 test3 test4

Speaker splits 29 23 23 30

Speaker mixes 2 5 1 2

Face splits 1 1 3 2

Face mixes 0 2 1 5

Table 5.7: Integrated speaker face clustering results.

speech and visual occurrence. In news broadcast, when reporters deliver the story,

very often, they do not show up on the screen since the customer can hear the speech

and want to see more about the live scene. On the other hand, anchor person's au-

dio and visual appearances are well synchronized, and the improvement of integrated

clustering approach is mainly from those speaker segments and face tracks of anchor

person.

For the four test sequences, we detect 8, 9, 6, and 8 major casts respectively.

Among all these characters, the most important ones are consistently the anchor

persons, followed by di�erent reporters and interviewers. Figure 5.10 shows the face

images of the eight major casts detected in test1 in the order of their importance

values. The top major cast is the anchor person: Tom Brokaw. The third, the forth

and the last major casts are news reporters, and the rest are interviewers. The reason

why some reporters earn low importance scores is that they just occasionally show

up during the reporting. It is obvious that this list gives a meaningful guidance for

the content understanding.

1 2 3 4 5 6 7 8

Figure 5.10: Faces of major casts detected in test1.
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5.7 Summary

This chapter proposes a new approach to detect major casts in video based

on both audio and visual information and develops a major cast based video browsing

system. Several techniques are addressed to detect the major casts. 1) Video segmen-

tation: The clean speech chunk is segmented based on speaker changes, and the visual

track is segmented into smaller shots, within which the content is homogeneous. Au-

dio and visual segmentation approaches are designed based on corresponding feature

sets and criteria. 2) Face detection and tracking: A new template matching based face

detection algorithm is proposed, which is basically an iterative dynamic programming

procedure. Face detection algorithm is designed to �nd out front view faces, and the

face tracking algorithm can update the face templates adaptively to follow the change

of faces within each visual shot. 3) Speaker and face clustering: Speaker segments

and face tracks are clustered such that the same person's audio/visual appearances

can be grouped together. Besides clustering speaker segments and face tracks based

on audio/visual information independently, we propose a new integrated approach to

simultaneously cluster both speaker segments and face tracks, where the temporal

correlations among them are also utilized. 4) Major cast extraction: The major casts

are chosen based on face and speaker correlation values, and they are sorted based on

the importance scores determined by their temporal/spatial volumes. A major cast

based video browsing system is developed, which provides an intuitive interface for

the user to digest the theme of the video and skim the content eÆciently.
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Chapter 6

Conclusions and Possible Future Works

This thesis has conducted various research related to multimedia content

analysis. In this chapter, we �rst summarize our contributions, and then suggest

some possible future works.

6.1 Summary of Major Contributions

Inspired by the two observations described in chapter 1: integration of mul-

tiple modalities and content analysis at multiple levels, the major contributions of

this thesis are investigating them and proposing feasible and eÆcient solutions for

multimedia content analysis.

At perceptual level, we solve the problem of detecting di�erent video events

in broadcast news. A set of audio and visual features are exploited, and their dis-

crimination capabilities are studied. Several classi�cation schemes are tested, and all

of them give reasonably good results. While the proposed solution is appliable for de-

tecting various categories of multimedia events, di�erent combinations of audio/visual

feature sets and classi�ers may be suitable for speci�c tasks.

At conceptual level, there is more diversity in the detailed approaches, in-

cluding the choice of target semantic objects, processing algorithmwithin each modal-

ity, and integration method for multiple modalities. Individually, we propose feasible
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algorithms for three applications. In news broadcast browsing system, we propose an

integrated approach to adaptively detect unknown anchor person. The novelty is that

it not only combines visual and audio information but also integrates model based

and unsupervised approaches. Semantically meaningful news storys are extracted

based on both audio and text information, whose boundaries are more accurate than

those generated by text alone approach. The system provides a table-of-content for

headline news stories and multimedia summary for each news program and each story,

which help the user browse the data more eÆciently. Part of the algorithms developed

in this system are integrated in the Digital Video Library system at AT&T Labs -

Research.

We propose a new approach for content based audio indexing and query.

The audio signal is segmented into homogeneous events whose features are charac-

terized using GMMs. To measure the dissimilarity between two audio events, a new

distance metric framework is proposed to compute the di�erence between correspond-

ing GMMs. Both audio clustering and audio querying are based on this new metric.

Due to the succinct representation of audio events and eÆciency of event compari-

son mechanism, the proposed method is especially useful for middle and large size

database.

Major cast detection system is another conceptual level multimedia content

analysis application that integrates both audio (speaker) and visual (face) informa-

tion. Within this system, a new template matching based face detection algorithm

is proposed, which �nds the best warping functions between the test region and the

template using an iterative dynamic programming procedure. Although the face de-

tection algorithm is designed to �nd front view faces, the face tracking algorithm can

update the face templates adaptively to follow the change of faces within each visual

shot. We also propose an integrated approach to simultaneously cluster both speaker

segments and face tracks, where the temporal correlations among them are also uti-

lized. Based on face and speaker correlation values, major casts are chosen and they
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are sorted by their temporal/spatial presence. The user may digest the theme of the

video and skim the content eÆciently by the help of the major cast list.

Our experimental results from the previous chapters show that (1) integrat-

ing data from di�erent media can achieve what a single medium approach can not,

thereby attaining better performance, (2) abstracting multimedia data into seman-

tically meaningful units can signi�cantly improves the e�ectiveness in browsing, (3)

deriving well de�ned semantics from data makes it possible to form a table of content

as well as content based representations for di�erent semantics that further enhance

the quality of data retrieval, allowing users to go through large amounts of multimedia

data with convenience, eÆciency, and con�dence.

6.2 Possible Future Work

There are a number of possible extensions and applications for the work

presented in this thesis. Following are some suggestions.

First, it is possible to extract other e�ective audio and visual features for

perceptual level content indexing. Some of the developed audio features including the

Energy Ratio in Subbands are designed for broad bandwidth audio with sampling rate

no less than 16K Hz. If the same features are applied in narrow band audio, they

need to be modi�ed accordingly. Feature space analysis is also a very interesting task.

By studying the distribution of features from di�erent events, we can measure the

discrimination capability of each feature, and come up with the optimal feature set

of lower dimension. Besides Karhunen Loeve Transform and Multiple Discriminant

Analysis, we can also measure the capability of each feature using information theory.

One example is to test the joint entropy and mutual information among di�erent

events based on certain set of features. The feature set that gives higher joint entropy

and lower mutual information among events should be good one.

Second, in news story extraction, we provide a group of keywords for each
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story, such that stories can be indexed and retrieved. It is more helpful to archive and

retrieve the stories if categories are assigned to them, e.g. politics, sports, domestic

or international news. The categories may not be mutually exclusive, which means

that one story can be tagged with di�erent categories. How to accurately classify

story based on statistics of text streams has been a hot research area for quite long,

and it is also a possible future work of this thesis.

Third, the content based audio query system is currently tested on news

broadcast data only, and the size of database is relatively small. Since the proposed

approach is a general one, we can try on other types of data, e.g. music and songs.

With the size of database growing, the proposed query processing engine may not

work eÆciently since we need to compare the query with all events in the database.

One possible work is to introduce structure in the database, for example, a binary

tree structure, and code the audio events by the tree nodes. In such a way, the

computation load of query processing engine is not in the linear order of the database

size, but logarithmic.

Forth, while the distance metric for mixture type PDFs is proposed to mea-

sure the di�erence between audio events, it can also be used in many other applica-

tions, e.g. speech and speaker recognition. In speaker recognition, models of target

speakers are built o�-line. It is obvious that o�-line model may not be accurate for

on-line data, since the speaking conditions are di�erent. If we use GMM to model

the speaker, the proposed metric can be used to measure di�erence between o�-line

model and on-line model trained with new data, and further update the o�-line model

accordingly. In speech recognition, continuous Hidden Markov Model is widely used,

where the observation PDFs of di�erent states are normally modeled by GMM. The

proposed method can measure the di�erence of states within the HMM, and opti-

mize HMM structure by merging similar states. Considering the huge market of

speech/speaker recognition applications, this work will be a worthy topic to study.

Fifth, although the major cast detection algorithm is tested on news broad-
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cast data in our simulation, it can be extended to other kinds of data, e.g. video

conference and movies. In video conference, the audio and video are well synchro-

nized, which means the person showing in the screen is also the person who is talking.

This will make the integrated speaker and face clustering algorithm work well. The

structure of the content is also relatively simple. The challenge is that the quality of

both audio and visual signals may not be perfect due to the performance of digitiza-

tion equipment and signal compression mechanism as well as the capacity of network.

Noisy audio source will deteriorate speaker segmentation and modeling accuracy, and

low quality visual frames will challenge the face detection and tracking algorithm.

On the other hand, to analyze movies, we can always �nd high quality data, but the

diÆculty is how to cope with the complex and diverse structures. Also the audio and

visual channels of movies are not always well synchronized, speech is spontaneous

and short, characters are shot at various views, and etc. There is no doubt that the

extension of major cast detection is meaningful. It is also a hard problem.

Finally, in current study, the integration of multiple modalities are pretty

much application dependent. How to utilize the information from di�erent media such

that they help or compliment each other at the maximum extent is a very interesting

topic. A general framework for combining multiple cues for di�erent applications is

very necessary and useful. This also requires future research.
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