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ABSTRACT

APPLICATION LAYER SYSTEM DESIGN FOR
REAL-TIME VIDEO COMMUNICATIONS

by

Eymen Kurdoglu

Advisors: Yao Wang, Ph.D. & Yong Liu, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

May 2017

Given that the world is becoming ever more connected each day, real-time video

communications is an avenue of technology with untapped potential that can bring the

human beings ever closer. The main objective of this thesis is to improve the state-of-

the-art in the field of real-time video communications with respect to the end-users’

quality of experience, through application layer system design, which jointly considers

the video and the networking components.

We first focus on designing peer-to-peer multi-party video conferencing systems,

where the users with different uplink-downlink capacities send their videos using mul-

ticast trees. One way to deal with user bandwidth heterogeneity is employing layered

video coding, generating multiple layers with different rates, whereas an alternative

is partitioning the receivers of each source and disseminating a different non-layered

video version within each group. Here, we aim to maximize the average received video

quality for both systems under uplink-downlink capacity constraints, while constrain-
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ing the number of hops the packets traverse to two. We first show any multicast tree

is equivalent to a collection of 1-hop and 2-hop trees, under user uplink-downlink

capacity constraints. This reveals that the packet overlay hop count can be limited

to two without sacrificing the achievable rate performance. Assuming a fine granular-

ity scalable stream that can be truncated at any rate, we propose an algorithm that

solves for the number of video layers, layer rates and distribution trees for the layered

system. For the partitioned simulcast system, we develop an algorithm to determine

the receiver partitions along with the video rate and the distribution trees for each

group. Through numerical comparison, we show that the partitioned simulcast sys-

tem achieves the same average receiving quality as the ideal layered system without

any coding overhead, and better quality than the layered system with a coding over-

head of only 10% for the 4-user systems simulated. The two systems perform similarly

for the 6-user case if the layered coding overhead is 10%, and partitioned simulcast

achieves higher received quality when the layered coding overhead is beyond 10%.

Next, we study interactive video calls between two users, where at least one of

the users is connected over a cellular network. It is known that cellular links present

highly-varying network bandwidth and packet delays. If the sending rate of the video

call exceeds the available bandwidth, the video frames may be excessively delayed,

destroying the interactivity of the video call. Here, we present Rebera, a cross-

layer design of proactive congestion control, video encoding and rate adaptation,

to maximize the video transmission rate while keeping the one-way frame delays

sufficiently low. Rebera actively measures the available bandwidth in real time by

employing the video frames as packet trains. Using an online linear adaptive filter,

Rebera makes a history-based prediction of the future capacity, and determines a bit

budget for the video rate adaptation. Rebera uses the hierarchical-P video encoding

structure to provide error resilience and to ease rate adaptation, while maintaining low

encoding complexity and delay. Furthermore, Rebera decides in real time whether

to send or discard an encoded frame, according to the budget, thereby preventing

self-congestion and minimizing the packet delays. Our experiments with real cellular

link traces show that Rebera can, on average, deliver higher bandwidth utilization

and shorter packet delays than Apple’s FaceTime.

Finally, we consider video calls affected by bursty packet losses, where forward er-

ror correction (FEC) is applied on a per-frame basis due to tight delay constraints. In

this scenario, both the encoding (eFR) and the decoded (dFR) frame rates are crucial;
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a high eFR at low bitrates leads to larger quantization stepsizes (QS), smaller frames,

hence suboptimal FEC, while a low eFR at high bitrates diminishes the perceptual

quality. Coincidently, damaged frames and others predicted from them are typically

discarded at receiver, reducing dFR. To mitigate frame losses, hierarchical-P coding

(hPP) can be used, but at the cost of lower coding efficiency than IPP..I coding (IPP),

which itself is prone to abrupt freezing in case of loss. Here, we study the received

video call quality maximization for both hPP and IPP by jointly optimizing eFR,

QS and the FEC redundancy rates, under the sending bitrate constraint. Employing

Q-STAR, a perceptual quality model that depends on QS and average dFR, along

with R-STAR, a bitrate model that depends on eFR and QS, we cast the problem as a

combinatorial optimization problem, and employ exhaustive search and hill climbing

methods to solve explicitly for the eFR and the video bitrate. We also use a greedy

FEC packet distribution algorithm to determine the FEC redundancy rate for each

frame. We then show that, for iid losses, (i) the FEC bitrate ratio is an affine function

of the packet loss rate, (ii) the bitrate range where low eFR is preferred gets wider

for higher packet loss rates, (iii) layers are protected more evenly at higher bitrates,

and (iv) IPP, while achieving higher Q-STAR scores, is prone to abrupt freezing that

is not considered by the Q-STAR model. For bursty losses, we show that (i) layer

redundancies are much higher, rising with the mean burst length and reaching up to

80%, (ii) hPP achieves higher Q-STAR scores than IPP in case of longer bursts, and

(iii) the mean and the variance of decoded frame distances are significantly smaller

with hPP.
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Chapter 1

Introduction

It should be no surprise to us that the example given for the meaning of “real time”

in the New Oxford English dictionary, is about “watching events unfold in real time

on TV”. This phrase, being synonymous with “experiencing without any observable

delay”, is almost entirely used in the context of telecommunications. Indeed, delay-

free visual and acoustic telecommunication is arguably the most fundamental form

of direct interactive communication for human beings, and hence, creating real-time

telecommunication machines that allow two or more people, who are spatially apart,

to see and hear each other has been the goal of many inventors and engineers since

the telephone was patented in 1876. Today, we all reap the combined benefits of the

efforts that have been made for over a century; communication in real time through

audio and video has become a reality, and has gone on to become an integral part of

our daily lives in the last decade.

Be that as it may, there is very likely room for improvement for such systems.

The means of real-time communication that are used today are far from perfect. It

is a common experience for many people to have started a video call with an uneasy

“can you hear/see me?” question. The visual signal on our displays are sometimes

choppy, full of artifacts, or the latency so high that it becomes meaningless to continue

the video call. In this dissertation, the main goal is to investigate the means and

methods to improve the quality of experience for the users of such real-time video

communication systems, from an application layer point of view. In other words, we

will examine particular methods given the type or speed of the communication media

on which the connection is established, or given the capabilities of the visual sensors

that enable us to obtain the video in the first place. In the upcoming sections, we

1



INTRODUCTION 2

first describe the state-of-the-art, along with the preliminaries. Then, we address the

challenges of such systems, and briefly mention our contributions as to how these

challenges can be met.

1.1 Background

Modern multimedia communication systems operate over packet-switched networks.

Therefore, each component of such a system manipulates digital data, while sitting

on a particular layer of the network stack [1]. While the components in any given

layer of the network stack, be it the physical layer, the link layer, the network layer,

the transport layer, or the application layer, can be tailored to better facilitate the

multimedia communication, we are concerned only with those that are either on the

application layer directly, or on those that can be considered on both the transport

and application layers.

The functionality and therefore the design of multimedia communication systems

is determined by the set of end-users. Depending on whether they create and/or

consume the multimedia data, the end-users can be sources, sinks, or both. A typical

source (sink) consists of video and audio encoders (decoders) at the application layer,

packet transmitters (receivers) at the transport layer, and data queues in-between

the layers. Among these, video coding and video transmission are considerably more

challenging to design, compared to their audio counterparts, due to their intense com-

putation and bitrate requirements. Consequently, almost all of the research efforts on

multimedia communications in the last two decades have been concentrated on the

more interesting video aspects. Following a similar approach, only video communica-

tions is considered in this dissertation.

The research that has been done so far in this field can be categorized in terms

of the latency requirement of the underlying application. On the one hand, video-

on-demand (VoD) and live video streaming systems have relatively relaxed latency

requirements, on the order of tens of seconds and a few seconds, respectively. On the

other hand, real-time video delivery requires delays of at most a few hundred millisec-

onds [2]. This is especially challenging in the case of interactive video applications,

such as video calling and video conferencing, since the latency that a particular end-

user experiences with another is the round trip time (RTT) of the connection between

the corresponding parties. In this dissertation, by video calling, we will refer to an
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interactive, real-time video communication between two end-users on the Internet,

while video conferencing or multi-party video conferencing will refer to a collection

of video calling sessions between more than two end-users.

1.2 Challenges and Contributions

In this section, we go through the main challenges of real-time video delivery for video

calling and video conferencing, and state the contributions of this dissertation for each

challenge described. We start with video conferencing in the first part, that is, we

consider a high-level design approach for peer-to-peer video conferencing. In doing so,

our aim is to study the inter-play between the choice of the video coder, i.e., layered

encoding or non-layered encoding, and the distribution method for the particular type

of video, which amounts to determining the overlay network connections built at the

application layer. Then, in the second part, we focus on video calling between two

users, and identify two main design challenges as (i) how to adapt the sending bitrate

of the source dynamically by predicting the amount of available network bandwidth

in the immediate future, and (ii) given the total sending bitrate, how to maximize the

video quality in the presence of packet losses, by jointly optimizing video encoding

and FEC parameters. We address the first problem within the challenging context of

cellular networks, and present a simple and effective method to estimate the available

network bandwidth and adapt the sending bitrate. Next, we turn our attention to

the second problem, and show how the problem of providing packet loss resiliency is

coupled with the maximization of video quality. After solving the combinatorial op-

timization problem that follows, we compare the solutions regarding two mainstream

video coding structures and present a discussion of our results.

1.2.1 High Level Design of P2P-MPVC Systems

Advances in broadband and video encoding technologies have enabled multi-party

video conferencing (MPVC) applications, such as [3], [4], and [5], to flourish on the

Internet. Most existing MPVC solutions are server-centric [6], such as [7] [8] [9]. These

products may prove costly to the end-user and/or ignore the geographic location of

users in the same conference; video streams of users located far from the servers

may traverse long-delay paths, even if there is no transcoding delay involved or low-
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delay selective forwarding units (SFUs) are employed [10]. Another delivery solution

for MPVC is peer-to-peer (P2P), where users send their data to each other directly.

P2P-MPVC, where multiple users multicast voice and video with intense bandwidth

requirements in real-time, has to deal with the inherent heterogeneity of users in

the same conference, in terms of uplink/downlink capacity, computation and energy

supply. The prior P2P-MPVC solutions proposed in [11] [12] [13] [14] [15] have

been shown to achieve low delay by exploiting user locality and high rate in face of

user uplink capacity heterogeneity. However, in a typical MPVC scenario, each user

downloads multiple streams, so the downlink may potentially become a bottleneck

for some users, even if their downlink capacity is higher than their uplink capacity.

To deal with the user downlink capacity heterogeneity, one solution is layered coding,

where each source encodes multiple video layers using layered video coding techniques,

e.g. SVC [16], and receivers with higher downlink capacity can download more layers

to receive better video quality. An alternative solution is partitioned simulcasting,

where receivers are partitioned into groups, with receivers in each group having similar

downlink capacities, and receiving the same video that is encoded using single-layer

video coding techniques, e.g. AVC [17]. In this solution, each source sends multiple

single-layer videos at different rates to different groups. For P2P-MPVC, layered

coding and partitioned simulcasting enable different P2P sharing opportunities. With

partitioned simulcast, only receivers watching the same version can share video with

each other; while with layered coding, users receiving different sets of video layers can

still share their common layers, leading to a higher P2P sharing efficiency. However,

the flexibility of layered coding comes at the price of non-negligible rate overhead, that

is, to achieve the same perceptual quality, layered coding has to use higher bitrate1

than non-layered coding [16]. Because of this rate overhead, the higher rates that can

be delivered to the receivers by the layered system do not necessarily lead to higher

perceptual quality.

In this dissertation, we study the achievable average video quality in P2P-MPVC

through layered coding and partitioned simulcast systems. We consider only the

optimal rate allocation problem under node capacity constraints and assume rate-

quality relations of the layered and single-layer coders. Design of a real system that

must explicitly consider packet loss and delay, is beyond our scope in this particular

1However, layered coding offers additional error resilience against packet losses, which, when
factored in, generally leads to bitrate gains.
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study. Our main contributions are summarized as the following:

(1) We cast the problem of finding the optimal video flow configuration in P2P-

MPVC as a tree packing problem in a complete graph where the only bottlenecks are

incoming and outgoing capacity limitations on the nodes. We then show that, in this

setting, any multicast distribution tree can be replaced by a collection of 1-hop and 2-

hop trees, which substantially reduces the number of trees we have to consider in the

tree construction for either layered or partitioned simulcast system. This result also

reveals that, even when we use only 1-hop and 2-hop trees to limit the transmission

delay, we can achieve the same video rates as when we can use any distribution trees.

(2) For layered coding, we develop a layer assignment heuristic, which determines,

for each receiver, the layers received from each source. After describing the trees used

to deliver each assigned layer, we solve for the optimal tree rates and consequently

layer rates that maximize the average video quality among all users, and show that

although the tree rates are not unique, the optimal layer rates are unique. Finally we

develop an algorithm to refine the tree rates, to favor 1-hop trees to decrease potential

delay and jitter.

(3) We study the optimal receiver partitioning problem, which determines the receiver

partitions for all sources, and the rates of the single-layer videos distributed in each

receiver group, to maximize the average video quality. Instead of performing an

exhaustive search over all partitions, we propose a fast heuristic algorithm that finds

the partitions for each source and determines the group rates for each source.

(4) We compare the performances of both systems through numerical simulations. In

our simulations, the proposed layered system achieves the best video rates, whereas

our partitioned simulcast heuristic can also achieve close-to-optimal video rates when

the number of users is small (3 or 4). Finally, due to the bitrate overhead of the SVC

encoder, the partitioned simulcast system outperforms the layered system in terms of

the achieved video quality in both the 4-user and 6-user cases, even when the layered

coding overhead is as low as 10%. Partitioned simulcast system performs similarly

as the layered system at 10% rate overhead in the 6-user case. We note that, the

proposed layered system formulation requires a scalable coder that can generate a

successively refinable bitstream that can be divided into any number of layers at any

rates.
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1.2.2 Bandwidth Estimation & Video Adaptation for Video

Calls over Cellular Networks

Despite their popularity in wired and Wi-Fi networks, video calling applications, such

as [3], [4], and [18], have not found much use over cellular networks. The fundamental

challenge of delivering real-time video over cellular networks is to simultaneously

achieve high-bitrate and low-delay video transmission on highly volatile cellular links

with rapidly-changing available bandwidth (ABW). On a cellular link, increasing the

sending bitrate beyond what is made available by the PHY and MAC layers leads to

self-congestion, and intolerable packet delays, hence frame delays. Excessively delayed

frames will have to be treated as lost. On the other hand, a conservative sending

bitrate clearly leads to the under-utilization of the cellular channel and consequently

a lower video quality than what is possible.

The tight design space calls for a joint application and transport cross-layer de-

sign, involving real-time video encoding bitrate control, sending bitrate adjustment,

and error control. Ideally, the transmitted video bitrate should closely track the

ABW on the cellular links. However, the traditional reactive congestion control algo-

rithms [19, 20], which adjust the sending bitrate based on packet loss and/or packet

delay information, are too slow to adapt to the changes in the ABW, leading to either

bandwidth under-utilization or significant packet delays [21]. It is more preferable to

design proactive congestion control algorithms that calculate the sending bitrate based

on cellular link ABW forecasts. Meanwhile, for video adaptation, video encoder can

adjust various video encoding parameters, so that the resulting video bitrate matches

the target sending bitrate determined by the congestion control algorithm. However,

accurate rate control is very challenging for low-delay encoding, and significant rate

mismatch is often present with the state-of-the-art video encoders. In addition, what

makes the problem even more challenging is that the lost and late packets can ren-

der not only their corresponding frames, but also other frames that are predicted

from their frames non-decodable at the receiver. The encoder and the transport layer

should be designed to be error resilient so that lost and late packets have minimal

impact on the decoded video.

In this dissertation, we propose a new real-time video delivery system, Rebera,

designed for cellular networks, where we aim to maximize the sending rate of the

video source and error resilience, while keeping the one-way frame delays sufficiently
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small. Our system consists of a proactive congestion controller, a temporal layered

encoder, and a dynamic frame selection module. Our proactive congestion controller

uses the video frames themselves to actively measure the current ABW in real-time,

and then employs the well-known linear adaptive filtering methods [22] to predict

the future capacity, based on the past and present capacity measurements. For basic

error resilience, we resort to layered encoding, which enables unequal error protection

(UEP). However spatial and quality layering incurs significant encoding complexity

and coding efficiency loss, making them unattractive for practical deployment. Thus

we consider only temporal layering, which provides a certain level of error resilience

even without using explicit UEP. To minimize the delays for real-time delivery, we

use hierarchical-P coding (hPP) structure [23] for temporal layering. To address

the rate control inaccuracy of the encoder, we propose a dynamic frame selection

algorithm for hierarchical-P, where the goal is to select in real-time which encoded

frames to send, subject to a budget determined by the predicted capacity value.

Our frame selection algorithm takes into account quality implications of the layers,

decoding dependencies between the frames, and the smoothness of frame inter-arrivals

to maximize the delivered video quality under the said budget. We have implemented

the complete system, called “Rebera” for real-time bandwidth estimation and rate

adaptation, to evaluate its performance and compare it with Apple’s FaceTime video

call application. Our implementation relies on the x264 real-time H.264 video encoder

[24], which we have modified to produce a hierarchical-P stream. As a result, we can

directly control the encoded video rate according to the measured capacity. Thanks

to the combination of all these components we have mentioned, Rebera is able to

achieve higher bandwidth utilization and lower frame delays than FaceTime. In this

study, we do not consider UEP among the temporal layers and the error resilience

aspect of the system.

1.2.3 Perceptual Quality Maximization and Packet Loss Re-

siliency through Joint Optimization of Video Encoding

and FEC Parameters

Another fundamental challenge in real-time video delivery, aside from simultaneously

achieving high-bitrate and low-delay transmission, is to provide resiliency against

packet losses that degrade the perceptual quality of the video displayed at the receiver
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side. Traditionally, packet loss resiliency is provided through a combination of layered

video coding, forward error correction (FEC), and automatic repeat request (ARQ)

at the sender side, along with error concealment techniques at the receiver side. ARQ

introduces an additional round-trip delay in case of lost packets, and is therefore

unsuitable due to the stringent delay requirement of real-time video delivery. This

requirement also restricts the video data, i.e., frame, group of pictures (GoP), or intra-

period, on which block-code based FEC can be applied, since the decoding cannot

be completed without receiving sufficient number of source packets. For video calls,

applying FEC with each frame removes the additional FEC decoding delays, since

each frame can be encoded and decoded individually. However, the efficiency of block

FEC codes is reduced when the block length is small. This is typically the case if

the encoder does not reduce the frame rate at low target bitrates, resulting in frames

that have only limited number of packets.

As indicated, adjusting the encoding frame rate (eFR) based on the sending bi-

trate (SBR) enables efficient frame-level FEC. More broadly, choosing the temporal

resolution (eFR), amplitude resolution (quantization stepsize), and the spatial reso-

lution (picture size), denoted jointly by STAR in [25], under an SBR constraint, is

another challenge closely coupled with FEC. Different STAR combinations, each of

which achieves the same video bitrate, leads to different video qualities for different

video contents. In [26], it was shown that significant quality gains can be achieved by

picking the STAR that maximizes the perceptual quality at a given SBR. In the pres-

ence of packet losses, however, FEC provides loss resiliency at the cost of additional

bits, which limits the spatial and amplitude resolutions that can be achieved.

For error concealment, a simple technique, called frame-copying [27], is prevalent

in industry applications [28]. This technique freezes the last correctly decoded frame

on screen in case of a damaged frame due to missing packets, until another frame

that can be decoded without errors. This is because missing packets typically affect

a large region on the frame, and any error propagates to the following frames over

extended regions due to the use of motion-compensated temporal prediction. Due

to frame-copying error concealment, the decoded frame rate (dFR) is generally lower

than eFR, ultimately impacting the received video quality. Frame-copying may also

cause severe video freezes if the underlying coding structure is IPP...I (IPP). The

use of temporal layering achieved through hierarchical-P coding (hPP) [23], mitigates

the effect of packet losses and frame freezes, with minimal additional complexity.
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However, layered coding presents additional coding overhead compared to non-layered

coding achieved through the more typical IPP...I coding (IPP).

Consequently, it is crucial to study the delicate interplay between the FEC, STAR,

and different encoding methods for real-time video delivery. In this dissertation,

we study the perceptual video quality maximization for video calls that are subject

to varying bandwidths and packet losses, by jointly optimizing FEC, eFR and the

quantization stepsize (QS), using either hPP or IPP coding. We consider a constant

picture size to reduce the problem complexity. We assume that the congestion control

module periodically predicts the end-to-end available bandwidth in the network, and

that the video frame delays are minimized as long as the SBR does not exceed the

available bandwidth [29] [21] [30]. Similar to the previous studies, the sender allocates

a fraction of the SBR for encoding the video, while the remaining bitrate is used for

FEC that protects the compressed video stream through redundancy. Block codes

are applied on each individual frame, with potentially different code rates. At the

receiver side, we assume that the frame-copying error concealment is used. We utilize

the Q-STAR model in [25] to evaluate the decoded video quality, which represents

the perceptual quality as a function of dFR and QS. When certain encoded frames

are not decodable due to packet losses that cannot be recovered by FEC decoding, we

simply approximate the decodable frame rate by the number of decodable frames per

second. This is a reasonable assumption under the hPP structure and our unequal

error protection strategy, to be detailed in Sections 4.2 and 4.3, which generally yields

evenly spaced decoded frames. We also leverage the R-STAR model proposed in [31],

which relates the video rate with the eFR and QS, in our formulation. With the rate

model, the QS can be written as a function of the video rate and eFR. Therefore, we

can parameterize the encoding parameters by eFR and video rate. We assume the

total sending rate for each intra-period is given. For each intra period, we cast the

problem of optimizing eFR, the video bitrate, and the FEC redundancy rate for each

frame as a combinatorial optimization problem, and solve it through a combination

of exhaustive search and hill-climbing methods. We also propose a greedy algorithm

that solves for the suboptimal redundancy rate for each frame under a given total

FEC bitrate constraint. Our evaluations show that, for independent and identically

distributed (iid) packet losses with up to 20% loss, the optimal FEC redundancy

ratio can be approximated with an affine function of the packet loss rate, and the

quality drop compared with the lossless case is at most 35% even when the packet
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loss rate is 20%. Meanwhile, the bitrate range, in which low eFR is preferred, gets

wider for higher packet loss rates, where the encoding frame rate of 15 Hz is selected

over 30 Hz for SBR values up to 1.3 Mbps when the packet loss rate is 20%. We note

that, IPP achieves higher Q-STAR scores, but is prone to abrupt freezing that is not

considered by the Q-STAR model. Through simulations, we show that hPP provides

significantly more regular frame intervals than IPP at small SBRs. For bursty packet

losses, our evaluations indicate that the FEC redundancy ratios increase up to 80%

for I-frames, when the average burst length is close to the average block length. In

this case, hPP is able to deliver higher Q-STAR scores than IPP in a large SBR range,

along with smaller mean and variance of decoded frame distances.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, we study the high-

level design of P2P-MPVC systems, by presenting first a general formulation for the

multicast flow configuration problem, and then narrowing down the formulations for

P2P-MPVC, followed by the solutions for the layered distribution and the partitioned

simulcast, and the numerical evaluations. In Chapter 3, we turn our attention to two-

party video calling, where we study the congestion control problem in the context of

cellular networks. We present a novel method to measure the current available band-

width, which we use to estimate the future available bandwidth and adapt the sending

bitrate at the sender side. We also introduce, for hierarchical-P coding structures, a

method to decide in real time whether to send or discard an encoded frame, according

to the budget, thereby preventing self-congestion and minimizing the packet delays.

The chapter is concluded with extensive emulation evaluations comparing the pro-

posed system with Apple’s FaceTime, along with experiments performed in the wild.

In Chapter 4, we optimize the video encoding and FEC parameters given the sending

bitrate, so as to maximize the perceptual quality at the receiver side, in the presence

of packet losses. We show that achieving packet loss resiliency and choosing video

encoding parameters given the sending bitrate and the packet loss model parameters

are closely connected, and present an optimization problem formulation that aims to

maximize the Q-STAR metric introduced earlier. Using this formulation, we com-

pare the performance of two prevalent video coding structures used throughout the

industry. The dissertation is concluded in Chapter 5.



Chapter 2

P2P-MPVC: Layered Distribution

vs. Partitioned Simulcast

This chapter is organized as follows. We briefly discuss the related work on P2P-

MPVC in Section 2.1. General formulation for P2P-MPVC and our two-hop opti-

mality result are presented in Section 2.2. The layered system design is presented in

Section 2.3, where we discuss proposed solutions for layer assignment, optimal tree

rate and layer rate allocation, and an algorithm to assign tree rates to favor 1-hop

trees. In Section 2.4, we first study the optimal partitioning problem with non-layered

video coding. We then present a fast heuristic partition algorithm that determines

both the partition for each source and the video rate for each receiver group. Nu-

merical simulation results comparing layered coding with partitioned simulcasting are

reported in Section 2.5.

2.1 Prior Work

Video distribution in P2P networks have been extensively studied in the past, espe-

cially in the context of streaming in [32] [33] [34], among many others. For P2P-MPVC

systems, the problem of optimal flow configuration has largely been explored under

the assumption that only the uplink capacity of the peers present a bottleneck. The

paper in [11] presents the optimality result for a special set of trees consisting of at

most two hops, often called the Mutualcast trees in the literature, in a single-rate and

single-source setting. In [12], this work is extended to include the multi-source case

and distributed algorithms are presented to find optimal trees and video rates. The

11
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same authors then make a further extension in [13], where a multi-rate solution is

considered with only layered video in uplink-constrained P2P networks without any

downlink capacity constraints. The work in [14] investigates a resource sharing solu-

tion among different MPVC swarms leading to a higher multiplexing gain. In [15],

the solution is once again extended to consider bandwidth and delay constraints on

underlay links inside the network, where the distribution trees with excessive delays

are not used, incurring some rate loss. Almost all of the prior studies assume P2P-

MPVC systems are constrained by peer uplink only, and focus on video distribution

design without considering the impact of scalable video coding overhead.

In contrast, we consider the problem of optimal flow configuration in a multi-

source, multi-rate video conferencing scenario in a P2P network with both uplink and

downlink capacity constraints, which is a more realistic characterization of today’s

networks. As a result, previous application layer flow design solutions are rendered

either inapplicable or inefficient. We obtain new formulations regarding the dissemi-

nation of source videos with layered and single-layer coding, in order to consider the

impact of achievable rate-quality relation by practical video coders.

2.2 Problem Statement and Multicast Trees

2.2.1 General Tree Packing Formulation for P2P-MPVC

We examine a P2P-MPVC scenario, where each user sends its own video to all other

users through an overlay P2P network. The overlay is represented by a complete,

directed graph G = (N,E), where N is the set of users, E is the set of directed links,

and n , |N | is the number of users in the conference (Fig. 2.1). We assume that n is

small, and as a result, each user can maintain n− 1 video connections with the rest

of the peers1 at any given time. We further assume that only the user uplink and

downlink capacities create bottlenecks in the network, bounding the incoming and

outgoing flows of a node. For user i ∈ N , uplink and downlink capacities are denoted

by Ui and Di, respectively. We also assume D1 ≤ · · · ≤ Dn without loss of generality.

Each user concurrently hosts an application layer multicast session to distribute its

own video to all others. In other words, the receiver set Ri for node i is N \ {i},
where \ is the set difference operator.

1We use the terms users, nodes, peers and participants interchangeably.
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Figure 2.1: A P2P-MPVC overlay example with n = 6 (left), an example multicast
tree T (dashed bold) with sT = 1, VT = {1, 2, 3, 4, 5, 6} (right)

In P2P-MPVC, portions of user i’s video stream are distributed via a number

of directed multicast trees, which are rooted at user i and include, in general, a

subset of its receiver set Ri. Different video packets from user i may be routed

along different trees, where nodes on the trees replicate the packets and send them

to their downstream nodes. Let us now denote the source node of a multicast tree t

by st, its receiver set by Vt, and the packet flow rate along t by xt. Then, the total

communication rate rij from user i to user j equals the sum of the rates of trees that

are rooted at node i and include node j,

rij =
∑

t: st=ij∈Vt

xt. (2.1)

Therefore, for the set T of all multicast trees in G and an arbitrary concave utility

function f that measures the video quality at rate r, a general application layer flow

configuration problem can be formulated as a tree-packing problem

max
xt≥0
∀t∈T

∑

i∈N

∑

j∈Ri

f (rij) subject to (2.2)

∑

t∈T : i∈Vt

ki,t xt ≤ Ui, ∀i ∈ N (2.3a)

∑

∀i : j∈Ri

rij ≤ Dj, ∀j ∈ N, (2.3b)
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where rij, given in Eq. (2.1), is the rate of node i’s video that node j receives, and ki,t

is the number of outgoing branches at node i on tree t. The constraints in Eqs. (2.3a)

and (2.3b) are uplink and downlink capacity constraints for each node, respectively.

For simplicity, we assume that the videos from all participants in a conference have

similar characteristics and use f(r) to represent the video quality-bitrate relation for

each user. The downside of this tree-packing formulation is that, |T |, the number of

trees that we need to consider, is very large.

Before proceeding to the next subsection, note that the following constraints al-

ways hold for any multicast tree set chosen in any P2P-MPVC system.

∑

(i,j)

rij ≤
∑

m

Um (2.4a)

∑

i

rij ≤ Dj and max
j

(rij) ≤ Ui, ∀j ∈ N (2.4b)

(2.4a) simply states that the total data delivery rate in the network cannot be larger

than the total upload bandwidth in the network. On the other hand, (2.4b) indicates

that, the total receiving rate of a node, or the highest data rate it can transmit, cannot

be larger than its downlink and uplink capacities, respectively. The region defined by

these constraints presents, in general, a loose upper bound on the achievable video

rates.

2.2.2 Optimal Multicast Trees

A crucial design problem for P2P-MPVC is to determine which trees should be con-

sidered in Problem (2.2). It was shown in [12] that employing the two types of 1-hop

and 2-hop trees introduced in [11] is sufficient to maximize the throughput and the

utility in a P2P-MPVC scenario without helper nodes, under the assumption that the

network is only uplink-limited. Hereafter, we call such trees Mutualcast (MC) trees.

MC trees employed by user i consist of a single 1-hop tree that reaches all j ∈ Ri and

|Ri| 2-hop trees, each passing through a particular j ∈ Ri and then branching to the

rest (Fig. 2.2). In such an uplink-limited setting, all receivers of a source receive the

source video at the same rate.

However, to the best of our knowledge, there is no optimality result for any trees

in an uplink- and downlink-limited network. At this point, we present the following
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Figure 2.2: MC trees of user 1 to distribute its video to R1 = {2, 3, 4, 5, 6}: 1 1-hop
tree (upper left) and 5(=|R1|) 2-hop trees.

theorem, which shows that any given tree with flow f can be replaced by MC trees

covering the same node set as before.

Theorem 1 In a directed, complete graph where the nodes have incoming and out-

going capacity constraints, a multicast tree t with root s, receiver set V with |V | > 1,

and edge set E can be replaced by 1-hop and 2-hop MC trees that are rooted at s and

include V , such that the aggregate download and upload rate of each node in all the

MC trees are exactly the same as in the original tree t.

Proof 1 Let the flow along t be equal to x. We denote the number of outgoing

branches at node j by kj, therefore node j is a leaf iff kj = 0. Clearly, the total

outgoing flow of j is kjx. Then, for each node j 6= s with kj > 0, build a 2-hop MC

tree rooted at s and going through j with a flow of kjx/(|V |− 1) and a 1-hop MC tree

with a flow of (ks−1)x/(|V |−1). We are done if we can show that the total incoming

and outgoing flows for each node is the same as before. Each node is now receiving

r =
x

|V | − 1

(
ks − 1 +

∑

j∈V

kj

)
(2.5)

=
x

|V | − 1
(ks − 1 + |V | − ks) (2.6)

= x (2.7)

(2.6) follows because for a tree, we have ks+
∑

j∈V kj = |E| = |V |. In this new config-

uration, it is easy to see that the total outgoing and incoming flows of node j are still
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equal to kjx and x, respectively. Therefore, the same amounts of upload and download

capacities are consumed and hence the equivalency with the old configuration.

An illustration of the tree construction is given in Figure 2.3. As we can replace

any tree with a combination of MC trees covering the same node set, we need merely

consider MC trees covering different node sets. We emphasize this with a remark.

Remark 1 In a directed, complete graph where the nodes have incoming and outgoing

capacity constraints, any feasible flow configuration achieved by a tree can also be

achieved by a combination of 1-hop and 2-hop MC trees that cover the same nodes

as the original tree. Thus, to find an optimal set of multicast trees, it is sufficient

to consider only MC trees. This means that we can bound the one-way overlay hop

count by 2 without losing rate optimality.
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6"5"4"3"2"

5"

3" 6"4"2"

1"

2"

4" 6"5"3"

1"

k2$=$1$
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2"

1"

5"

4"3"

6"

k3$=$0$ k4$=$0$

k6$=$0$

k1$=$2$

V$
rate = x

|V | = 5

= x/4

rate3 =
k2

|V | � 1
x

1

2 3

rate2 =
k5

|V | � 1
x

= x/2

rate1 =
k1 � 1

|V | � 1
x

= x/4
X

i

ratei = x

Figure 2.3: Any node’s uplink/downlink capacity used in the multicast tree shown
in the left diagram of Fig. 2.1 (shown on left here) is the same as the summation of
the uplink/downlink capacities used in 1-hop (upper right) and 2-hop (lower right) MC
trees. In both cases, each node in N receives a packet flow with rate x in total. Green
nodes are leaves, blue nodes have at least one outgoing link, red node is the source.

2.3 Design of The Layered System

Layered video encoding [16] produces a bitstream that comprises a hierarchy of sub-

streams, or layers, that allow the bitstream to be decoded partially, starting from
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the base layer and followed by the enhancement layers. Decoding more layers results

in improved fidelity. Therefore, the users may receive the same video sequence at

different rates and quality levels, depending on the layers received and decoded. With

respect to single-layer coding, the cost of this flexibility of layered encoders is the

coding overhead2, which is the additional video rate needed to achieve the same quality

as a non-layered coder.

In this section, we look into the problem of layered video distribution in P2P-

MPVC with upload and download constraints. We first describe the multicast tree

sets to be employed. Afterwards, we formulate the optimal flow configuration problem

as a tree-packing problem with continuous rates, replacing f(r) in (2.2) with the

achievable video quality curve QLV (r) of the layered coder. Note that, in practice,

the QLV (r) curve of the SVC encoder depends on the base layer rate, the number

of layers and the desirable rates of each enhancement layer, which are all supposed

to be found through the design of the layered system. To circumvent this problem,

instead of generating a layered stream with a finite number of layers, we assume

that a coder can generate a fine granularity scalable stream that can be truncated

at any rate. We recognize that this is not feasible in practice, but analysis based on

this idealistic assumption obtains performance upper bound for layered coding and

provides important insight for our comparison study.

2.3.1 Layer Assignment Heuristic

According to Remark 1, we do not have to consider every multicast tree in G in our

formulation. Instead, we can classify them according to their roots and the nodes

they cover, since all trees with the same root and covering the same node set, can

be replaced with the same collection of MC trees. Further, all nodes in a given tree

receive the same video data at the same rate. Thus, for a layered video stream,

the different node sets that shall be covered by the multicast trees, correspond to

the receiver sets of different video layers. Denote the set of users that receive layer

l of user i’s video by S
(i)
l , usually referred to as subscribers of the lth layer in the

literature. Due to layered coding hierarchy, S
(i)
l have to be nested, since the users

must receive all the layers up to l − 1 in order to decode the lth layer. As a result,

all receivers subscribe to the first (base) layer. Thus, for user i’s video stream, we

2However, in terms of the total number of bits generated to obtain a multi-rate stream, layered
encoding has a coding gain.



CHAPTER 2. BANDWIDTH HETEROGENEITY IN P2P-MPVC SYSTEMS 18

have S
(i)
Li
⊂ S

(i)
Li−1 ⊂ · · · ⊂ S

(i)
1 = Ri, where Li is the number of video layers that

user i generates. We do not assume that Li is given, nor that it is bounded by

source capabilities or user preferences. Rather, Li is only bounded by the number

of receivers Ri and will be determined with the following subscriber determination

heuristic. First, we have S
(i)
1 = Ri. Then, we remove the node(s) with the smallest

total download capacity. The remaining nodes make up S
(i)
2 , i.e., they are receivers of

layer 2. We proceed in this fashion until every node is removed. With this heuristic,

the number of layers for source i equals |Ri|, iff all receivers have different downlink

capacities.

2.3.2 Tree Construction for Layer Distribution

Next, for every video layer l in every user i’s video stream, we build a set of MC trees

to distribute that layer to its subscribers. Specifically, we construct a single 1-hop

tree and |S(i)
l | 2-hop trees, all rooted at i. Each 2-hop tree passes through a particular

subscriber j ∈ S
(i)
l and branches to the rest of the subscribers, with a rate of xijl.

Similarly, the rate of the 1-hop tree is denoted by xiil. So, if zil is the rate of layer l

of user i’s video, we have

zil = xiil +
∑

j∈S(i)
l

xijl. (2.8)

Eq. (2.8) indicates that, layer l of user i’s video is distributed to the subscribers not

via a single tree, but |S(i)
l |+1 trees in general, allowing the users to share their upload

bandwidth with others, thereby maximizing the network utility in the optimal flow

configuration. Finally, the upload bandwidth bil that user i requires to drive its own

layer l distribution trees is

bil = |S(i)
l |xiil +

∑
j∈S(i)

l

xijl (2.9)

=
(
|S(i)
l | − 1

)
xiil + zil. (2.10)

The terms on the right hand side of Eq. (2.9) is the upload capacity consumed by

driving the 1-hop and 2-hop trees. Eq. (2.10) follows simply from Eq. (2.8) and

Eq. (2.9). It is noteworthy that the first term on the right hand side of (2.10) is the

allocated bandwidth for the 1-hop MC tree for this layer, which would be zero in a

server-centric MPVC system.
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2.3.3 Determining the Optimal Layer Rates

Now that the layers are assigned, and the corresponding MC trees that we shall

use are determined for each layer and source, we are finally ready to formulate the

multi-source, multi-rate flow optimization problem for layered videos, analogous to

(2.2)-(2.3), where the optimization is performed over all tree rates {xijl}:

max
xijl≥0

∑

i∈N

∑

j∈Ri

QLV (rij) subject to (2.11)

Li∑

l=1

bil +
∑

j 6=i

∑

l: i∈S(j)
l

(
|S(j)
l | − 1

)
xjil ≤ Ui (2.12a)

∑

j 6=i

rji ≤ Di, ∀i ∈ N (2.12b)

rij =
∑

l: j∈S(i)
l

zil, ∀(i, j), i 6= j (2.12c)

The objective function QLV in (2.11) is a non-decreasing, concave function of rij.

(2.12a) and (2.12b) are uplink and downlink capacity constraints similar to (2.3a)

and (2.3b), whereas (2.12c) expresses the video rate rij as the summation of layer

rates received by user j, similar to (2.1). Particularly, (2.12a) follows since a video

source can allocate part of its upload bandwidth to relay its own video layers and

part of it for helping the other sources for which itself is a receiver. The feasible

region defined by inequalities (2.12a)-(2.12c), (2.8) and (2.10) is a convex polytope

in tree variables. Note that, one can show that the achievable video rate region is

also convex by introducing rij in the inequalities using Eq. (2.1), and projecting

the polytope onto the {rij} space, where the projection must also be convex as the

projection operation preserves convexity. As a result, the optimization problem in

(2.11)-(2.12) is a non-strictly concave optimization problem in the tree rate variables

and the maximizer tree rates are not unique. However, if there exists an interval I

such that QLV is strictly concave in I and the optimal video rates {r∗ij} lie in I, then

they are unique; hence, the layer rates {zik} are also unique. Centralized solution

techniques for such concave optimization problems have been well-understood [35]

and thus, any one of these solution methods can be employed to find a solution.
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2.3.4 Refining the Multicast Trees

After solving for one set of optimal tree rates in (2.11)-(2.12) that achieves the op-

timal video rates {r∗ij} maximizing the average quality, we determine another set of

tree rates {x∗ijk} that also achieves {r∗ij} and favors 1-hop trees instead of 2-hop trees.

This is simply because packets distributed via 1-hop trees suffer less end-to-end delay.

Further, the number of trees considered is O(n3) in the worst case; however, employ-

ing a large number of multicast trees could lead to increased jitter in a practical

implementation. In Algorithm 1, we present a method to find tree rates that favor

1-hop trees over 2-hop trees, while satisfying the constraints, and achieving the given

video rates {rij}. The algorithm terminates if the given video rates are not feasible.

Note that this algorithm is meant to be used only after the optimal video rates are

known by solving (2.11)-(2.12). The main idea behind this algorithm is to maximize

the rates of 1-hop trees greedily, starting from the base layer. For each peer i, given

the layer rates {zik}, we calculate the maximum rate that a 1-hop tree can handle

subject to
Li∑

k=1

bik =

Li∑

k=1

[(∣∣∣S(i)
k

∣∣∣− 1
)
xiik + zik

]
≤ Ui. (2.13)

After this step, there exists at least one peer that still has excess upload capacity,

otherwise the given video rates are infeasible, as we would have
∑

(i,j) rij >
∑

i∈N Ui.

Then, in order to fill the remaining rate gaps, 2-hop trees are constructed that pass

through the peers with excess upload capacities. Rates of 2-hop trees are proportional

to the upload capacities of the peers that they pass through.

2.4 Design of The Partitioned Simulcast System

Non-layered encoding [17] produces a bitstream that does not have a layer hierarchy.

Although layered coding allows us to generate a flexible stream that offers variable

qualities depending on the rate, the cost of such flexibility is an increased bitrate to

achieve a certain quality. Coding overhead of layered encoding motivates the use of

non-layered video in MPVC systems.

Clearly, multicasting the same non-layered video to all receivers is suboptimal,

starving the receivers with higher download capacities. In order to obtain a multi-

rate solution, one method is simulcasting : user i can simultaneously encode its video
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Algorithm 1 Determination of the MC tree rates

1: for all n ∈ N do . Begin 1-hop tree rates
2: for l = 1→ Ln do
3: if Un − |S(n)

l |znl ≥
∑Ln

k=l+1 znk then xnnl = znl
4: else
5: xnnl =

Un−
∑Ln
k=l znk

|S(n)
l |−1

6: if xnnl = 0 then
7: xink = 0 for all k > l and break
8: end if
9: end if

10: Un ← Un − |S(n)
l |xnnl

11: end for
12: end for . 1-hop tree rates determined
13: for all n ∈ N do . Begin 2-hop tree rates
14: for all l : xnnl 6= znl do
15: xnml = Um∑

k∈N Uk
(znl − xnnl)

16: end for
17: end for . 2-hop tree rates determined

at |Ri| different bitrates, and send the generated streams to each receiver, matching

their download capacities. The drawback of this method in terms of bandwidth is

that the source may not have sufficient upload capacity to send out many different

streams in the first place. Instead of generating a single-layer bitstream for each

receiver, we propose partitioning the receivers into a smaller number of groups, where

the source generates a bitstream for each group, separately. Within each group, the

receivers can then share their video.

2.4.1 Optimal Group Rates for Given Partition Collection

Given a user i, let us partition its receiver set Ri into Ki distinct sets, or groups, such

that the group with index k is denoted by G
(i)
k . By definition, G

(i)
k ∩ G

(i)
k′ = ∅ for

k 6= k′. Also, we use Pi = {G(i)
k , 1 ≤ k ≤ Ki} to describe the partition itself, where⋃

kG
(i)
k = Ri. The idea is that, each user j in a given group G

(i)
k receives user i’s video

at the same group rate g
(i)
k = rij, but the users in different groups may have different

rates. Hence, the users with higher download capacities can receive more, resulting

in a higher average video quality. Given a partition collection P = {Pi : i ∈ N},
we have Ki single-rate multicast problems for each source i, for which it was shown
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in [11] that 1-hop and 2-hop MC trees covering the nodes in G
(i)
k are optimal. Then,

our problem is to maximize the average video quality by optimizing the amount of

uplink capacity of each user j ∈ G(i)
k to video session i. Once this allocation is done,

we can find the rates of the said 1-hop and 2-hop MC trees as shown in [11]. We can

now formulate the multi-source, multi-rate video quality maximization problem with

receiver partitioning using non-layered coding as,

max
uij ,b

(i)
k ,g

(i)
k ≥0

∑

i∈N

Ki∑

k=1

|G(i)
k |QNL(g

(i)
k ) subject to (2.14)

g
(i)
k ≤ b

(i)
k , ∀i ∈ N, 1 ≤ k ≤ Ki (2.15a)

|G(i)
k |g

(i)
k ≤ b

(i)
k +

∑

j∈G(i)
k

uji, ∀i ∈ N,∀k (2.15b)

Ki∑

k=1

b
(i)
k +

∑

j 6=i

uij ≤ Ui, ∀i ∈ N (2.15c)

∑

j: i∈G(j)
k

g
(j)
k ≤ Di, ∀i ∈ N. (2.15d)

Again, the objective function QNL in (2.14) is a non-decreasing, concave function of

the video rate. Here, b
(i)
k and uij denote the portions of the uplink capacity of user i

that is allocated to G
(i)
k , for which user i is the source; and to G

(j)
k , for which i ∈ G(j)

k ,

respectively. (2.15a) follows since the group rate cannot be higher than the allocated

source upload capacity, whereas (2.15b) follows directly from [11]. Evidently, (2.15c)

and (2.15d) are the uplink and downlink capacity constraints. Once again the feasible

region defined by (2.15) is convex. Hence, the formulated problem above is a non-

strictly concave optimization problem with linear constraints. Similar to (2.11), it has

a unique solution in the group rates g
(i)∗
k , assuming the optimal solution lies where

QNL is strictly concave, whereas u∗ij and b
(i)∗
k are not unique. The number of variables,

which depends on P , is O(n2) in the worst case. For any optimal {u∗ij, b(i)∗k }, the MC

tree rates are determined as

x∗ij =
1

|G(i)
k | − 1

u∗ji, x∗ii =
1

|G(i)
k |

(b
(i)∗
k −

∑

j∈G(i)
k

x∗ij) (2.16)
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where xij and xii are the rates of the 2-hop multicast tree rooted at node i and passing

through node j ∈ G(i)
k and the 1-hop tree rooted at node i and branching out to all

receivers in the group.

The difficulty with the optimal partitioned simulcast systems in P2P-MPVC is

that we do not readily know the optimal P ∗. For n users, the number of different

P ’s we can have is given by (Bn−1)
n, where Bm is the mth Bell number, equal to

the number of ways we can partition a set with m elements. Therefore, exhaustively

searching among all possible partition collections is hopeless even for a small number

of users3. In order to overcome this difficulty, we now propose a simple heuristic

algorithm to find a suitable collection of receiver partitions, as well as the group rates

that can be achieved.

2.4.2 Heuristic Algorithm for Partitioning

The main idea behind the heuristic is to look for the best partition P ∗i in each

video session i by assuming that the values of the uplink capacity allocation vari-

ables {u∗ij, b(i)∗k } in the optimal partition collection can be approximated through the

solution of a much simpler problem. We start our analysis by considering the video

session hosted by user i. If we were given the optimal values {u∗ji, b(i)∗k } of the up-

load capacities allocated by user j to video session i for each j ∈ Ri, along with the

optimal value b
(i)∗
k of the upload capacity allocated by the user i to drive its receiver

group k, finding P ∗i would be possible with a search in the set of all partitions of Ri,

only. In other words, for each partition candidate Pi, user i would have Ki single-

source, single-rate multicast sessions, where the group rate, or the multicast capacity

for group k is known from [11] to be equal to

g
(i)∗
k = min(b

(i)∗
k ,

b
(i)∗
k +

∑
j∈G(i)

k
u∗ji

|G(i)
k |

), (2.17)

leading to an average video quality of
∑

k |G
(i)
k |QNL(g

(i)∗
k ). However, since we have

no such information, we approximate u∗ji through the solution of

max
rij≥0

∑

i∈N

∑

j 6=i

QNL(rij), (2.18)

3For n = 5, 759375 choices, for n = 6, 1.97× 1010 choices
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subject to the constraints in (2.4). The solution of (2.18)-(2.4) gives a loose quality

upper bound for any non-layered video distribution scheme under the given upload

and download constraints, as it does not consider whether or not the video rates can

be achieved by any distribution tree. Note that the maximizer {rij}, which we denote

by {rBij}, can be easily found with a water-filling algorithm: each source sends out

equal flows to each receiver, while gradually increasing the flows at the same pace,

until either all peers are downlink-saturated or there is no more upload bandwidth.

Once we obtain {rBij}, we can express the total upload bandwidth consumed for

multicasting user i’s video as Mi ,
∑

j∈Ri r
B
ij . Note that the benefit of using 2-hop

multicast trees is that the user i can still sustain a video session even if Ui < Mi, by

exploiting other users with abundant upload bandwidths. In this case, the additional

bandwidth provided to user i’s video session would simply be Mi − Ui. On the other

hand, if Mi < Ui, then Ui −Mi would be the additional bandwidth provided by user

i to other video sessions.

We can see that the difference between Mi and Ui indicates whether user i requires

or provides additional bandwidth in the optimal solution of (2.18)-(2.4). Hereafter,

we classify the users as ε-peers and α-peers, depending on whether they require or

provide the additional bandwidth. Note that if there exists an ε-peer, there must also

exist an α-peer, otherwise we would have
∑

i∈N Ui <
∑

(i,j) r
B
ij .

Let us now go back to approximating u∗ji. We should first note that u∗ji should be

non-zero only if i = j or if j is an α-peer and i is an ε-peer, since an ε-peer cannot

provide additional bandwidth, while an α-peer does not require it. Then, for such

an (α, ε) user pair, we approximate u∗ji by ũ∗ji, assuming that the α-peer j provides

additional bandwidth to ε-peer i in proportion to the total bandwidth it can provide:

ũ∗ji =





min(Uj,Mj), if j = i

(Mi − Ui) Uj−Mj∑
k:α

Uk−Mk
, if j : α and i : ε

0, otherwise.

(2.19)

Note that we have uii ,
∑

k b
(i)
k , and that b

(i)
k is still undetermined. The way we

finalize our heuristic is to approximate the optimal downlink capacity d̃∗ji allocated

by user j to video session i, so that we can solve for the optimal b
(i)
k and g

(i)
k given
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ũ∗ji and d̃∗ji. This final approximation is given as

d̃∗ji =
Dj

n− 1
. (2.20)

Finally, we can search for the best receiver partition at each session, where we consider

only the ordered partitions with respect to the downlink capacities. Here, a receiver

partition Pi = {G(i)
k , 1 ≤ k ≤ Ki} is ordered with respect to the downlink capacities

if we have Dm ≤ Dm′ for all m ∈ G
(i)
k , m′ ∈ G

(i)
k′ and k < k′. Each user i starts

the search with the partition Pi = {Ri} that includes all the receivers, and employs

steepest-ascent search to find a local maximum by examining, at each step, all ordered

partitions containing one more group. To evaluate an examined Pi, peer i solves for

the maximum average session quality that can be achieved given the allocated upload

and download capacities {ũ∗ji, d̃∗ji} and the receiver partition Pi, by the following

optimization problem.

max
g
(i)
k ,b

(i)
k ≥0

Q(Pi) =

Ki∑

k=1

|G(i)
k |QNL(g

(i)
k ) subject to (2.21)

g
(i)
k ≤ b

(i)
k , 1 ≤ k ≤ Ki (2.22a)

|G(i)
k |g

(i)
k ≤





b
(i)
k +

∑
j∈G(i)

k

ũ∗ji if |G(i)
k | > 1

b
(i)
k if |G(i)

k | = 1

(2.22b)

Ki∑

k=1

b
(i)
k ≤ ũ∗ii (2.22c)

g
(i)
k ≤ min

j∈G(i)
k

(d̃∗ji) (2.22d)

Here, (2.22a) and (2.22b) are due to [11], while (2.22c) follows from the upload band-

width allocated by user i to its own session. (2.22d) states that the group rate cannot

be larger than the minimum allocated downlink capacity to the group. After examin-

ing each neighbor, we pick the the one with the highest average session quality Q(Pi)

as the new local maximum candidate. The algorithm stops when there is no neigh-

boring partition that yields a higher average session quality. Finally, the optimal tree
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rates can be found similar to (2.16).

Algorithm 2 Receiver partitioning heuristic (PH)

1: Find the solution {r∗ij} of (2.18)-(2.4) . Initialization
2: Calculate Mi − Ui for each i ∈ N
3: Approximate {u∗ij, d∗ij} through {ũ∗ij, d̃∗ij}
4: for all i ∈ N do . Distributed phase
5: P

(best)
i ← {Ri}, Q(best)

i ← Q({Ri})
6: repeat
7: P

(current)
i ← P

(best)
i , Q(current)

i ← Q(best)
i

8: for all Pi ∈ neighbors(P
(current)
i ) do

9: Find the solution of (2.21)-(2.22)

10: if Q(Pi) > Q(P
(current)
i ) then

11: P
(best)
i ← Pi, Q(best)

i ← Q(Pi)
12: end if
13: end for
14: until P

(current)
i = P

(best)
i

15: end for

2.5 Simulation Results

In this section, we numerically evaluate the capacity regions achievable through the

layered and partitioned simulcast systems, respectively. In our simulations, we con-

sider the layered video distribution scheme, given as the solution of (2.11)-(2.12)

in Section 2.3, the partitioned simulcast system using optimal receiver partitioning,

found by exhaustive search among all possible partition collections maximizing the

solution of (2.14)-(2.15) in Section 2.4.1, the partitioned simulcast system using the

fast heuristic algorithm presented in Algorithm 2 in Section 2.4.2, and the theoretical

upper bound for both rate and quality, given as the solution of (2.18)-(2.4), along

with the simulcast and the single-rate multicast schemes. Note that, simulcast is a

special case of partitioned simulcast, where each receiver constitutes a group by itself.

On the other hand, for multi-source single-rate multicasting, we consider the solution

of [12] with the addition of the downlink constraints.

In our simulations, we first assume that the ratio of a peer’s download capacity to

its upload capacity is the same for all peers in the video conference, that is, w = Di/Ui,

for all i ∈ N . We will show results obtained with different w ratios, showing the
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performance trend as the system becomes less limited by the downlink capacity. In

all our simulations, we assume the network is static within the time needed to perform

the rate optimization.

2.5.1 Assumptions about Video Coding

The proposed layered system requires a layered coder that can generate a successively

refinable bitstream that covers a large rate range and that can be divided into any

number of layers at any desired rate determined by the rate allocation algorithm

for the layered system. Unfortunately, with the current state of the art in scalable

coding, no practical layered coders can accomplish this efficiently. For our numerical

simulation of the layered system, we use the JSVM software for SVC encoding and

operate it with a configuration that generates many thin layers with a very low base

layer rate and a very high maximum rate, so that any desirable rate determined by

the optimal rate allocation algorithm is within the range between the base layer rate

and the maximum rate. Specifically, we use the combined spatio-temporal scalability

option with 5 temporal layers (at frame rates 1.875, 3.75, 7.5, 15, and 30 Hz), 3

spatial layers (at frame sizes QCIF, CIF, and 4CIF), and 4 quantization levels (at

QP values 40, 36, 32, 28). The layers are ordered to achieve the maximum quality

improvement for each additional layer [26] based on the quality and rate models

described in [25] and [31], respectively. We further assume that any rate between

two successive discrete rates associated with two successive layers is achievable, and

generate a continuous QLV (r) curve by interpolating the achievable (Q, r) pairs. In

practice, such rate points can be possibly realized by taking partial bits from the

higher layer.

For the simulation of the partitioned simulcast system, we use the JM reference

software for AVC [36]. For a given rate, the optimal spatial, temporal and amplitude

resolutions are chosen to maximize the perceptual quality also using the methodology

described in [26].

As shown in [26], the subjective quality vs. rate relation of both AVC and SVC

coders can be modeled by

Q(r) =
1− e−κ( r

rmax
)
0.55

1− e−κ , (2.23)
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where r is the received video rate, rmax is the video rate at the highest spatial,

temporal, and amplitude resolutions considered, and κ is a parameter that depends

on the video characteristics and layer configuration. In video conferences, users’

video sequences are likely to have similar features, therefore we associate the same

Q(r) function with each user. As an example, we take the “Crew” video sequence,

which shows people with body motions that somewhat resemble typical motions in a

conference session. The corresponding Q(r) curves for both AVC and SVC encodings

using the above configuration can be seen in Figure 2.4a, where the quality-rate

model has the following parameters: κSVC = 3.121, κAVC = 3.4, rAVC
max = 2969 Kbps

and rSVC
max = 3515 Kbps. As shown on Fig. 2.4b, the layered coder, denoted by “SVC

32% OH” incurs up to 35% rate overhead, with an average overhead of 32% using the

BD-rate gain methodology of [37]. We should note that, generally, the layered coder

incurs more coding overhead when the base layer rate is low and the number of layers

is high.

When the bandwidth heterogeneity is relatively low so that the target video rate

range is relatively small, it is possible to use a small number of appropriately chosen

layers to generate an SVC stream with significantly lower redundancy. For example,

when using only 2 spatial (CIF and 4CIF) and 5 temporal layers (1.875, 3.75, 7.5,

15 and 30 Hz) and not using amplitude scalability with a fixed QP=28, we found

that the resulting SVC stream has less than 5% coding overhead with an achievable

rate range of 120 Kbps - 2.25 Mbps. Finally, temporal scalability does not incur rate

overhead (as the AVC coder also applies the same hierarchical temporal prediction

structure in our simulations), but it only provides a limited number of rate points.

In order to evaluate the impact of the rate overhead of layered coding on the

system performance, we also generate two hypothetical quality-rate functions with

κHYP,20 = 3.3, rHYP,20
max = 3450 Kbps and κHYP,10 = 3.35, rHYP,10

max = 3200 Kbps, which

lead to average-maximum rate overhead pairs of (20.7%, 21.9%) and (9.9%, 10.4%),

respectively (Fig. 2.4). To the best of our knowledge, 20% bitrate overhead is an

optimistic target in HD scalable video coding that is accepted by the industry, espe-

cially with more than 2 layers and over a large rate range. In the past, an overhead of

10% was reported for an SVC encoder with two spatial/quality layers, obtained by a

complicated joint mode decision algorithm across layers [38]. With more layers, larger

coding overhead is expected. Therefore, 10% overhead for fine granularity scalable

coding is even a more optimistic assumption.
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Figure 2.4: Quality vs. rate curves of the Crew sequence encoded according to AVC
and SVC standards (left), additional bitrate (percentage) required by SVC to achieve
the same subjective quality as AVC (right).

An alternative way to generate a fine-granularity scalable bit stream is using

MPEG4-FGS [39]. However, MPEG4-FGS can provide fine granularity only in am-

plitude resolution for a fixed spatial and temporal resolution. Therefore, it can provide

fine granularity scalability only over a small rate range. Furthermore, it has a much

higher rate overhead than SVC.

2.5.2 Simulations

4-user Video Conferencing Simulations

We first examine an MPVC scenario with n = 4 users under different bandwidth

heterogeneity conditions, focusing on the impact of the heterogeneity on the average

video rates and qualities achieved in the system. Since the size of the conference is

small, we are able to include the result of the optimal receiver partitioning scheme (ob-

tained by exhaustive search) in our comparison. The results on the top and bottom of

Fig. 2.5 are obtained for relatively more ({0.5, 2, 4, 5.5}Mbps) and less heterogeneous

({1.5, 3, 3, 4.5} Mbps) user upload capacities, respectively. In all figures, the horizon-

tal axis is the download/upload ratio, w, which characterizes the degree of asymmetry

between the upload and downlink bandwidths, and the averaging is performed over

all source-receiver pairs in the video conference. Our findings are as follows.

(a) The average video quality and rate both increase with the downlink capacities
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under both heterogeneity conditions. As the downlinks cease to be the bandwidth

bottleneck, our solutions converge to the uplink-limited-only solution in [12]. Par-

ticularly, when w is large, the video rates achieved by the layered system and the

partitioning heuristic are equal. In this case, the enhancement layer trees are as-

signed zero rate and the video from each source is transmitted at a single rate.

(b) Due to the coding overhead, even the layered system with only 10% overhead

achieves lower average video quality than partitioned simulcast, despite the fact that

it delivers the highest video rates. We also consider layered video distribution without

any coding overhead, which results in the best quality and rates.

(c) The optimal receiver partitioning with non-layered video distribution achieves

almost the same rate and hence, almost the same quality, as the layered video dis-

tribution without coding overhead. This result shows that, in MPVC systems where

the downlinks and uplinks may both present bottlenecks, we can obtain a multi-rate

solution by using optimal receiver partitioning and non-layered video without any sig-

nificant performance loss in terms of the average video quality, compared even with

an ideal layered video distribution scheme with no overhead.

(d) The proposed heuristic partition algorithm yields an average video quality and

rate that are very close to those obtained by optimal partitioning.

(e) Even when we do not allow more than 2 receiver groups per source, our heuristic

still achieves a better received average video quality than the layered video distribu-

tion with 20% overhead, and is still competitive with the layered video distribution

with 10% overhead in terms of the achieved quality for w ≤ 1.3. For higher w values,

our heuristic with at most 2 receiver groups per source outperforms the layered dis-

tribution with only 10% overhead, as well.

(f) Simulcast and single-rate distribution schemes perform poorly in face of higher

heterogeneity. For simulcast, this is because there is no bandwidth sharing between

the users. For the single-rate scheme, all peers, except for the one with the minimum

download capacity, are starved. As expected, as the users become more homogeneous,

the performance of the single-rate and simulcast schemes become more competitive.

(g) Comparing the top and bottom figures, we can see that for any w, the achieved

quality and rate are both at least as high or higher for less user bandwidth hetero-

geneity, regardless of the distribution scheme, which underlines the difficulty caused

by bandwidth heterogeneity.

To further analyze the performances of the layered video distribution (LV), non-
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rLV 1 2 3 4

1 0 500 500 500

2 167 0 1750 2000

3 167 750 0 3000

4 167 750 1750 0

rPH 1 2 3 4

1 0 500 500 500

2 167 0 1333 1333

3 167 746 0 2994

4 167 752 2149 0

rSC 1 2 3 4

1 0 147 176 176

2 147 0 926 927

3 176 927 0 2832

4 176 926 2832 0

rSR 1 2 3 4

1 0 500 500 500

2 167 0 167 167

3 167 167 0 167

4 167 167 167 0

Table 2.1: Video rates for the layered video distribution (LV), non-layered video
distribution through the partitioning heuristic (PH), simulcast (SC) and single-rate
(SR) schemes, with w = 1. Rows and columns represent source and receiver indices,
respectively, all in Kbps.

layered video distribution through the partitioning heuristic (PH), simulcast (SC)

and single-rate (SR) schemes, we present the video rates achieved by each scheme

in Tables 2.1 and 2.2, where the results for the more heterogeneous scenario are

examined for w = 1 and w = 2, respectively. For w = 2, we can see that, although

the average received rate per user are all 1 Mbps except for the single-rate solution

(see upper right plot in Fig. 2.5), the achieved qualities are quiet different. Also, for

the partitioning heuristic, the α-peers are users 3 and 4, which only use 1-hop trees

(equivalent to simulcasting), while the ε-peers are users 1 and 2, which have 1 and 2

receiver groups, respectively.

6-user Video Conferencing Simulations

Next, we investigate a set of larger video conferences with n = 6 peers. As a result,

we do not consider the optimal partitioning scheme due to its complexity. We assume

that the end-users can be categorized into 4 different user classes with respect to their

upload bandwidth. The considered upload capacities for these different classes are

0.5, 1, 5 and 10 Mbps, representing a typical range of uplink capacities for average

WiFi, mid- and high-speed DSL and cable services [40]. We randomly pick users out
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rLV 1 2 3 4

1 0 500 500 500

2 333 0 1583 1583

3 333 1583 0 1583

4 333 1583 1587 0

rPH 1 2 3 4

1 0 500 500 500

2 333 0 1580 1580

3 333 1333 0 1836

4 333 1333 1837 0

rSC 1 2 3 4

1 0 166 167 167

2 277 0 862 862

3 344 1779 0 1877

4 379 2055 2986 0

rSR 1 2 3 4

1 0 500 500 500

2 333 0 333 333

3 333 333 0 333

4 333 333 333 0

Table 2.2: Video rates for the layered video distribution (LV), non-layered video
distribution through the partitioning heuristic (PH), simulcast (SC) and single-rate
(SR) schemes, with w = 2. Rows and columns represent source and receiver indices,
respectively, all in Kbps.

of these classes with a uniform distribution and generate the average quality curves

for 0.1 ≤ w ≤ 5. For each w, the results are obtained by averaging over 100 randomly

selected bandwidth profiles with 6 peers. Figure 2.6 depicts how the average quality,

rate and the number of layers/groups per source changes with respect to w. Our

observations are as follows.

(a) In terms of the achieved quality, the proposed partition heuristic achieves a better

performance than the layered system with 20% overhead and a similar performance

as the layered system with 10% overhead, even though the average video rate of the

heuristic falls below the upper bound, as seen from the upper right plot in Fig. 2.6.

The quality of the layered system with 30% overhead is even lower than the quality

achieved by the partition heuristic that limits the number of groups to 2.

(b) It is noteworthy that the quality achieved by the partition heuristic falls below

that of the layered system with 10% overhead for 0.7 ≤ w ≤ 3. This is mainly

because the users with relatively higher uplink capacities in the conference (α-peers)

are placed in the same group as their downlink capacities are also the highest, due to

the fixed w assumption. Therefore, the bandwidth sharing between the α-peers and

the ε-peers in the conference is reduced, leading to a decrease in the average quality in

the conference. This effect becomes negligible as the downlink capacities get higher,
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as the optimal partitioning choice tends to Pi = {Ri} for any source i. For small w

values, the described disadvantage in terms of the achieved rates is effectively masked

by the coding overhead. In other words, both the layered system and the partitioned

simulcast system fail to deliver high rates because of the small downlink capacities.

(c) We examine the average number of different video versions or layers created per

source, for partitioned simulcast and layered systems, respectively. In the lower right

plot in Fig. 2.6, we see that, for each scheme, the number of layers or versions

generated decreases with the increasing downlink capacities, tending towards 1 (a

single group or layer) for the uplink-limited-only regime. Note that, for the layered

system, the number of layers assigned by the layer assignment heuristic is always

n− 1, but the optimal solution may use less layers, by assigning zero rates to higher

layers. Also, in the 6-user scenario simulated, because there are only 4 bandwidth

profiles, there are at most 3 different layers or groups. Nonetheless, for each w value,

the number of different versions generated per source with the partitioning heuristic

is always less than the number of layers used by the layered system.

Heterogeneous Uplink/Downlink Ratios

We also consider a P2P-MPVC scenario with 6 users, where the downlink/uplink

ratios differ among the users. The considered uplink and downlink capacities are

{0.5, 0.5, 0.5, 0.5, 1, 5} Mbps and {0.5, 1, 1.5, 2, 4, 4} Mbps, respectively. We will only

examine the solutions of the layered video distribution with 20% overhead and the

partitioned simulcast heuristic. The average video qualities achieved in the confer-

ence are Q̄LV = 0.561 and Q̄PH = 0.594 for layered system with 20% overhead and

partitioned simulcast methods, whereas the video rates achieved by both systems are

shown in Fig. 2.7. As can be seen from the achieved video rates, both the proposed

layered and partitioned simulcast systems are able to cope with the additional down-

link/uplink ratio heterogeneity in the conference. Again, in this case, the two systems

achieved quite similar performance, with the partitioning system slightly better. This

is consistent with the results we obtained for the 6-user scenario when all users have

the same downlink/uplink ratio and there are at most 4 different bandwidth pro-

files among the 6 users. Note that even though all 6 users have different downlink

capacities, the heuristic partitioning algorithm used only 2 groups for Sources 1 to 4.
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Figure 2.5: Average video quality (left) and rate (right) curves with user uplink
capacities {0.5, 2, 4, 5.5}Mbps (top) and {1.5, 3, 3, 4.5}Mbps (bottom). Note that the
curves for “Max Bound”, “SVC w/o OH” and “Optimal Partitions” overlap on the
quality plots, and the curves for “Max Bound”, and all SVC cases overlap on the rate
plots.
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Chapter 3

Real-Time Bandwidth Estimation

and Rate Adaptation for Video

Calls over Cellular Networks

This chapter is organized as follows. We briefly discuss the related work on available

bandwidth measurement and congestion control in Section 3.1. The overview of

the proposed end-to-end system are presented in Section 3.2. The sending bitrate

control design is presented in Section 3.3, where we discuss the available bandwidth

measurement, future available bandwidth prediction and the determination of the

next sending bitrate. In Section 3.4, we first study how to select the frames to send

when the encoded video bitrate exceeds the sending bitrate determined. We then

cover how to update the bit budget and the priority among the frames. Numerical

simulation and emulation results comparing Rebera and FaceTime are reported in

Section 3.5.

3.1 Related Work

Rate adaptation is a key problem for video transmission over best-effort networks.

Most of the previous studies focus on one-way streaming of live or recorded video,

where a few seconds of video buffering at the receiver can be tolerated. Due to

buffering, a temporary mismatch between the video rate and the ABW does not

directly impact the video playback, as long as the buffer does not drain out. The

37
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recent industry trend here is Dynamic Adaptive Streaming over HTTP (DASH) [41].

Various rate adaptation algorithms have recently been proposed [42–45], and some of

them were specifically designed for wireless networks, e.g. [46,47].

To the contrary, video call involves two-way real-time video streaming. To facili-

tate live interaction, video call does not have the luxury of seconds of video buffering.

Consequently, mismatch between the selected video rate and the ABW will directly

translate into quality degradation of video playback, such as long video frame delays,

delay jitters and video freezes. Thus, for a video call, real-time bandwidth estima-

tion and video rate adaptation are more challenging, compared with one-way video

streaming.

Sending rate determination, or congestion control, has been an active area of re-

search for decades. Window-based congestion control algorithms are the dominant

form of congestion control on the Internet, which reactively adjust the window size,

and hence the sending rate according to a congestion signal. TCP variants such

as Tahoe and New Reno [48] use packet losses, while Vegas [49], FAST [50] and

Compound [51] react to packet round trip times. However, the additive-increase

multiplicative-decrease (AIMD) probing method used in TCP, along with the re-

transmission of every single lost packet in these protocols renders them less desirable

for interactive video calls. TFRC [52] and TCP Cubic [53] control the sending rate

with smaller variations, however, their delay performances deteriorate in the face of

fast ABW variations. As a result, rate-based congestion control protocols are dom-

inantly used in commercial video call applications, such as Microsoft Skype, Google

Hangouts and Apple FaceTime. Nonetheless, these protocols also behave reactively

when adjusting the sending rate, and therefore suffer from the same self-congestion

problem over highly volatile links. Authors of [21] proposed a proactive congestion

control scheme for realtime video delivery in cellular networks. They model cellu-

lar links as single-server queues emptied out by a doubly-stochastic service process.

For the ABW estimation, we, unlike [21], assume no particular time-evolution model

for the link capacity. Furthermore, [21] focused only on congestion control without

considering video adaptation.

Adapting the video rate in real-time according to the sending rate determined is

crucial for a low-delay video application. This task is usually handled at the video

encoder only. However, if the rate control is not accurate and the encoded video rate

exceeds the rate constraint, sending every encoded frame will cause self-congestion.
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Figure 3.1: Cellular links between the mobile devices and their respective base stations
are in red.

This problem can be alleviated if the video stream has temporal layering, by allowing

the sender to prioritize from lower to higher layers, until the sending rate stays just

below the rate constraint. However, on-the-fly decision of discarding a higher-layer

frame that was encoded before the more important lower-layer frames is not trivial,

since the sizes of the upcoming encoded frames are yet unknown. To the best of our

knowledge, there is no published work addressing this problem.

3.2 Proposed System Overview

We examine a real-time video delivery scenario between a sender and a receiver, where

at least one user is connected to a cellular network (Fig. 3.1). We denote the source

device by S, the destination device by D, and the corresponding base stations by BS

and BD, respectively. We call the directed path from S to D the forward path, and

the directed path from D to S in the reverse direction the backward path. We assume

that the in-network directed path (BS, BD) that connect the base stations has higher

ABW, and constant queuing and propagation delay. Therefore, the overall ABW

along the forward path (S,BS, BD, D) is equal to the minimum of the bandwidths

along the cellular uplink (S,BS) and cellular downlink (BD, D).

According to the queuing model of [21], all packets destined to or sent from a

given mobile device that is connected to a base station are queued up in isolated

buffers, which are located on the mobile device for the uplink and in the base station

for the downlink. These buffers are not shared by any other flow to or from other

users; that is, there is no cross-traffic in these queues. The backlogged packets leave

their respective buffers once they are successfully transmitted over the link. Thus,

how fast these buffers are emptied out directly reflects the capacity of the cellular
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links, and consequently the end-to-end ABW.

As for the video stream, we assume that the sender uses a layered encoder so

that it can easily adjust the sending rate by adjusting the number of video layers

transmitted. Layered coding also enables unequal error protection; i.e., a basic level

of quality can be guaranteed with high likelihood by providing more protection to the

base layer. We consider only temporal layering to keep the encoding complexity and

overhead at a minimum. In order to minimize the encoding delay, we further assume

that the hierarchical-P structure (Fig. 3.5) is used to achieve temporal scalability.

Starting with the highest temporal layer, the frames can be discarded to reduce the

video rate. In the example shown in Fig. 3.5, each Group of Picture (GoP) consists

of 4 frames, which leads to three temporal layers (TLs). We assume that the encoder

inserts an I-frame every N frames, and we denote the time duration covering all N

frames from an I-frame up to but excluding the next I-frame by an “intra-period.”

Then, the time duration T for an intra-period is equal to N/f , where f is the frame

rate of the captured video.

We can now summarize the operation of the proposed system. Since rate control

is usually performed once per intra-period in conventional video encoders, we predict

the average ABW for each new intra-period. The prediction is based on the average

ABWs for the past intra-periods, which are measured by the receiver and fed back

to the sender. Specifically, the receiver periodically measures the ABW using the

video frames that arrived within the last T -second window, and then feeds the result

back to the sender. The window slides forward every ∆ seconds. In order to have as

fresh feedback messages as possible, we have ∆ � T . The sender, in turn, records

the most recent measurement, and updates its value with the arrival of each new

measurement. Then, at the beginning of the next intra-period k, the value of the

most recent measurement is taken as the ABW c̃k−1 measured during the last intra-

period k − 1. This value is input to an adaptive linear prediction filter, which then

updates its prediction ĉk regarding the ABW during the new intra-period k using the

past bandwidth values c̃k−1, . . . , c̃k−M . Using this prediction, the sender calculates

the bit budget bk, which is the maximum number of bits that the sender is allowed

to send during this intra-period so that all the data that have been sent arrive at the

receiver until the end of the intra-period with a high probability. The components of

our design can be seen in Fig. 3.2.
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Figure 3.2: Proposed Rebera real-time video delivery system for cellular networks

3.3 Sending Rate Control

3.3.1 Measuring the Available Bandwidth

Packet pair/train methods [54] are well-known active capacity measurement schemes

for finding the minimum capacity along a network path. The performance of these

methods improve if there is no cross-traffic on the links, making them suitable to

measure the cellular link capacity according to our model. In our system, we propose

measuring the average ABW c(t1, t2) actively at the destination, using the video

frames received in (t1, t2] as packet trains. Using the video frames as packet trains

enables us to directly exploit the video data flow for capacity measurements and to

avoid sending additional measurement traffic. Specifically, at the sender side, we first

packetize each frame regardless of its size into p ≥ 2 packets, and then send them

together in a burst. The resulting instantaneous sending rate is likely to be higher

than the instantaneous capacity of the link. As a result, packets queue up in the

bottleneck; i.e. the base station buffer for the downlink or the cellular device buffer

for the uplink, where they are transmitted one by one. Then, at the receiver side,

we take capacity measurements {mn}, where the sample mn is obtained by using the

arriving video frame n as a packet train. Let us denote the inter-arrival time between

packet i − 1 and i by ai, and the size of the packet i by zi. Then, we can calculate

the capacity sampled by frame n as the following (Fig. 3.3)

mn ,
z2 + · · ·+ zp
a2 + · · ·+ ap

,
Zn
An

. (3.1)
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Figure 3.3: An illustration of the sizes and the inter-arrival times of the packets that
make up a packet train at the receiver side.

For any time period (t1, t2], we can estimate the average capacity c(t1, t2) over this

time simply by

c̃(t1, t2) =

∑
n∈N Zn∑
n∈N An

, (3.2)

where N is the set of all frames that arrived in (t1, t2]. Note that Eq. (3.2) is

equivalent to taking a weighted average of all the capacity samples in {mn}, where

the sample mn is weighted in proportion to its measurement duration An with weight

wn = An/
∑

n∈N An. Having completed the average capacity measurement regarding

(t1, t2], the receiver prepares a small feedback packet and sends it back to the source.

Note that we are ultimately interested in measuring the ABW ck during (Tk, Tk+1],

where Tk denotes the start of the intra-period k. However, since the sender and

receiver have different clock times in general, the receiver cannot know when exactly

an intra-period starts. Furthermore, the feedback packets are subject to time-varying

delays in the network. In short, we cannot guarantee that the feedback packets will

arrive at the sender on time for predicting the capacity of the next intra period.

To address this issue, the receiver measures the average capacity within the last

T seconds every ∆ seconds, where ∆ � T , through a sliding window mechanism

(Fig. 3.4). Each of these measurements are immediately sent back to the sender.

Specifically, a measurement generated at time t is the average capacity in (t − T, t],
while the next measurement that is generated at t + ∆ is the average bandwidth in

(t − T + ∆, t + ∆]. The sender then uses the latest feedback received before Tk to

predict the ABW in the next intra-period (Tk, Tk+1]. Lastly, assuming we keep the

sending rate below the capacity, our measurement accuracy depends on the difference

between the sending rate and the capacity of the link. If the sending rate equals, or
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Figure 3.4: Sliding window of instantaneous bandwidth measurements, of length T
seconds and sliding every ∆ seconds.

by any chance, exceeds the capacity, we would have very high measurement accuracy,

but this may lead to saturated links and long queueing delays, which are detrimental

to video call quality.

Robustness against bursts

It is known that the cellular links occasionally experience channel outages that may

last for up to several seconds, during which the capacity essentially drops to zero,

and the packets in transit are backlogged in the respective buffers. As a result, the

sender should stop sending any more packets as soon as an outage is detected. When

the outage ends, all the packets queued up in the buffer are usually transmitted

and arrive at the receiver as a burst. If the receiver uses these packets for capacity

measurement, the burst rate, which is on the order of several Mbps, can severely

disrupt the learning process of the predictor. In order to protect our system against

these bursty measurements, we simply detect them through the sample measurement

duration An. In our system, we consider a measurement bursty if An < 10 ms. Bursty

measurements are simply discarded.

3.3.2 Predicting the Available Bandwidth

History-based forecast is a popular method for prediction [55], where the past mea-

surement values are used to determine an estimate of the future. In this study, we per-

form linear prediction for history-based forecast. In particular, we chose a well-known

online linear adaptive filter called the Recursive Least Squares (RLS) [22]. With each

new capacity measurement regarding the last intra-period, RLS recursively updates
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M number of filter taps

λ forgetting factor parameter

θ initializer parameter for P

w(k) filter tap vector of length M

P (k) inverse of empirical autocorrelation matrix, M ×M
g(k) gain vector of length M

c̃k measured capacity

c(k) vector of M most recently measured capacity values

εk a priori prediction error

Table 3.1: Notation regarding the RLS predictor

its filter taps of length M , and makes a prediction for the capacity during the next

intra-period. One of the advantages of the RLS algorithm is that it does not require

a model for its input signal, and performs minimum least-squares regression [56].

Furthermore, it can adapt to the time-varying signal statistics through its forgetting

factor λ, which serves to exponentially discount the weight of the past observations,

without any need for a time-evolution model for the system. The notation regarding

the RLS algorithm are summarized in Table 3.1.

The periodic prediction procedure is as follows. At t = Tk+1, which is the end

of the intra-period k, the most recent capacity measurement received by the sender

is taken as c̃k, that is, the average ABW during the intra-period k. Then, the gain

vector g(k) and the a priori prediction error εk are calculated, which are then used

to update the filter tap vector w(k). At this point, the linear prediction for ck+1 is

simply

ĉk+1 = wT (k)c(k). (3.3)

The step concludes by updating the inverse of the empirical autocorrelation matrix

of the measured capacities. The overall procedure is summarized in Algorithm 3.

3.3.3 Determining the Sending Rate

Our ultimate goal is to ensure that all the frames sent during an intra-period finish

their transmission before the start of the next one. In other words, we aim to have
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Algorithm 3 Recursive Least Squares

1: P (0) = θ−1I,w(0) = 0, c(k) = 0 . Initialization
2: for all intra-period k ≥ 1 do

3: g(k) = λ−1P (k−1)c(k−1)
1+λ−1cT (k−1)P (k−1)c(k−1)

4: εk = c̃k −wT (k − 1)c(k − 1)
5: w(k) = w(k − 1) + εkg(k)
6: P (k) = λ−1[P (k − 1)− g(k)cT (k − 1)P (k − 1)]
7: ĉk+1 = wT (k)c(k)
8: end for

each I-frame encounter empty buffers with high probability. Let us denote our sending

rate in the intra-period k + 1 by rk+1. We determine rk+1 such that the probability

to exceed the capacity ck+1 is low; that is,

Pr(ck+1 < rk+1) = δ, (3.4)

where δ is a small tolerance parameter that characterizes our tolerance to frequent

ABW overshoots. Let εk+1 denote the ratio of the actual capacity to the prediction

obtained from the RLS algorithm, i.e, εk+1 = ck+1/ĉk+1. Then, we can rewrite Eq.

(3.4) as

Pr (εk+1ĉk+1 < rk+1) = Pr (εk+1 < uk+1) = δ, (3.5)

where uk+1 , rk+1/ĉk+1 is referred to as safety coefficient. This means that, for a

given δ value, rk+1 should be set by scaling the prediction ĉk+1 by uk+1, the δ-quantile

of εk+1. In Rebera, we set δ = 0.05, and calculate the running 5-percentile of εk+1

with a moving window [57].

Handling backlogged and lost packets

Note that, keeping the sending rate below the ABW cannot be guaranteed, even with

the safety margin uk, leading to occasional packet backlogs. If we do not consider

the backlogged packets while determining the sending rate, the total number of bytes

backlogged in the buffers accumulate in time. In order to address this issue, the

sender, through information fed back by the receiver, estimates the number qk of

bytes still in the buffers at the end of the intra-period k, by subtracting the total

number of bytes received at the receiver from the total number of bytes sent so far.

However, in case of packet losses, qk would keep growing in time, since lost packets
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never arrive at the receiver. In order to account for the losses, we assume that the

packets arrive at the destination in the order of their sequence numbers. To detect

the number of lost bytes, we insert in each packet header the total number of bytes

sent so far. Then, upon receiving a new packet, the receiver simply subtracts the

number of bytes it has received so far from this number. The result is the number of

bytes lost, which is fed back to the sender, along with the number of bytes received.

The sender then determines qk by taking the difference between the total number

of bytes sent and the total number of bytes received and lost. Out-of-order packet

deliveries will introduce only temporary errors to our estimates: after the delayed

packets arrive at the receiver, our algorithm will automatically correct these errors

in the next estimate. Combining all, we set the bit budget bk+1 for the intra-period

k + 1 as

bk+1 = (ĉk+1 × uk+1)T − qk, (3.6)

where T is the intra-period duration. This way, we expect the network not only can

finish the transmission of all video frames in intra-period k+ 1, but also can clean up

the currently backlogged packets qk by the end of intra-period k + 1.

GoP GoP

I0

P1

P2

P3

P4

P5 P7

I8
P6

time

Intra-period

Figure 3.5: hPP prediction with N = 8. Blue arrows indicate the prediction direc-
tions. Here, G = 4, TL(1)={I0, P4}; TL(2)={P2, P6}; TL(3)={P1, P3, P5, P7}.

3.4 Real-Time Frame Selection for hPP Video

Video rate control is crucial for real-time applications over networks with time-varying

bandwidth. However, accurate rate control is very challenging, especially in the very

low-delay scenarios, where look-ahead and multi-pass encoding are not suitable. In

spite of the extensive research in this area [58], significant mismatch between the

target and actual bitrate over an intra-period can still occur [58]. In case of rate
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mismatch, if the video is coded with the IPP structure, all remaining frames will

have to be discarded once the target budget for an intra-period is used up. When

this happens early in the intra-period, the receiver experiences a relatively long freeze.

To remedy this problem, we propose to use a temporal layered encoder with the

hierarchical-P coding structure, so that the sending rate can be adjusted by skipping

the higher layer frames, without incurring additional encoding delay or complexity.

Figure 3.5 shows an example prediction structure for the hierarchical-P encoding,

which yields three temporal layers. We propose a frame selection scheme that either

discards or sends each encoded frame, subject to the given bit budget bk and frame

dependencies. We assume that the video encoder runs its own rate control algorithm,

but may not meet the bit budget per intra-period accurately. When the encoded

bitrate exceeds the budget, an encoded frame may be dropped by the frame selection

scheme so that the actual sending rate never exceeds the predicted bandwidth for an

intra-period. The benefit of using the hierarchical-P structure is that the delivered

video has more evenly-spread frames, whereas the IPP structure can lead to a very

jittery video when some frames are dropped. With the frame selection module outside

the encoder, the encoder rate control can be less conservative. This, in turn, can lead

to higher bandwidth utilization.

3.4.1 Dynamic Frame Selection

Frame selection is ultimately about allocating the budget for more important (lower

layer) frames. Higher layer frames can be sent only if there is available bit budget

after sending the lower layer frames. However, to minimize the delays, the decision to

either send or discard a given frame must be made right after it is encoded, without

knowing future frame sizes. For example, in Fig. 3.5, we cannot wait to see if we can

send P4 first, followed by P2 and then P1. Rather, we have to determine whether

we send P1 as soon as P1 arrives. If the future frames from lower layers are large,

sending frames from a current higher layer may preclude the sending of upcoming

lower layer frames. On the other hand, dropping frames from higher layers when the

future lower layer frames are small would underutilize the ABW.

Given an intra-period, let us label each frame with its appearance order, and

denote the size and the temporal layer of the frame n by sn and `n, respectively. Our

goal is to decide, for each encoded frame n, to either send or discard it, such that the
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total number of frames sent at the end of the intra-period is maximized, while the

mean and the variance of the time gap between the selected frames are kept small.

We start our frame selection procedure by estimating frame size for each temporal

layer, in order to make decisions considering the future frames. We then continue

by ordering the frames in this intra-period based on their layer numbers, starting

with the lowest layer, since the higher layer frames cannot be decoded with the lower

layers. We denote this priority order by an ordered list π. For each newly arriving

frame n, we trim π into πn by excluding the past frames for which a decision has

already been made, and the future frames that cannot be decoded at the receiver

due to the previously discarded frames. πn is basically the priority order among

the eligible frames left. Next, we update the frame size estimations, as well as our

estimation for the remaining bit budget. Then, we create a set En of frames that we

expect to send according to our frame size and the remaining bit budget estimations,

by greedily picking frames starting from the first frame in πn. We stop picking the

frames when the total estimated size of the frames picked reaches the estimated bit

budget. Finally, if frame n is in the set En, we send it; otherwise it is discarded.

For frame size estimation, we assume that the frame sizes in the same temporal

layer will be similar. Therefore, we keep a frame size estimate ŝ` for each layer `.

In this study, we use an exponentially weighted moving average (EWMA) filter with

parameter γ for estimating the size of future frames in layer l using the actual sizes

of the past coded frames in this layer. Note that for the base layer, we apply the

above method only to the successive P-frames as the I-frame size is much larger than

P-frames. We do not need to estimate the I-frame size, since we always send the

I-frames. The overall algorithm is summarized in Algorithm 4.

3.4.2 Bit Budget Update

The bit budget bk is the estimation of the total number of bits that the sender can

transmit during the intra-period k without causing buffer build-up. Here, we assume

that, at any time t since the start of the intra-period, t
T
bk bits can be transmitted on

average, with a mean rate of bk/T . Thus, if the sender sends less than this amount,

the unused bandwidth is wasted. In order to account for these missed transmission
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opportunities, we update the remaining bit budget at each step n by

b̂k(n) = bk −max
(
Sn,

n

N
bk

)
, (3.7)

where Sn is the total number of bits sent before selecting frame n. Without updating

the budget, the sender may end up sending large frames close to the end of the intra-

period, which would then backlog in the buffer, and potentially delay all the packets

in the next intra-period.

3.4.3 Frame Priority Order

In the frame priority list π, placing frame i before frame j means we allocate our

bit budget to send frame i first, and that frame j is sent only if there is sufficient

bandwidth budget to do so, after we have decided to send all the frames placed before

frame j. Accordingly, lower layer frames have higher priority than the higher layer

frames, which depend on the former. Within the base layer, the frames are ranked

in their encoding order, as they follow the IPP coding structure. However, within

an enhancement layer, any order of frames is decodable, since the frames from lower

layers are picked before. Now, if the layer l frames are prioritized sequentially from

the beginning, budget depletion results in a lower frame rate until the intra-period

ends. On the other hand, if the frames are prioritized starting from the end, we may

miss the transmission opportunities for the earlier frames, if the latter frames turn

out smaller. Therefore, we pick the frames in multiple steps, alternating the direction

in each step to strike a balance. Starting with the list of frames in the appearance

order, we divide the list into two equal-sized lists at each step. We then pick the last

frame from each smaller list, following the direction at that step.

3.5 Simulations and Experiments

3.5.1 Forecasting via Adaptive Filtering

We start our evaluations by motivating the use of the RLS linear adaptive filter

for capacity prediction. We compare the prediction performance of the RLS with

the simple and popular EWMA predictor [55]. In our experience, the filter length

and the forgetting factor parameters do not significantly affect the prediction errors
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Algorithm 4 Dynamic Frame Selection

1: S0 = 0, π0 = π, intra-period k, bit budget bk
2: for all frames n = {0, . . . , N − 1} do
3: ŝj ← γsn + (1− γ)ŝj, for each frame j ∈ `n
4: b̂k(n) = bk −max(Sn,

n
N
bk)

5: Create En from πn, based on ŝ and b̂k(n)
6: if n ∈ En then
7: Sn+1 = Sn + sn and send frame n
8: else
9: πn+1 = πn − {frames depending on n}

10: end if
11: πn+1 = πn − n
12: end for

Mean (kbps) Std (kbps) Coeff. of Var. Outage %

Trace 1 176 115 0.654 2.0

Trace 2 388 165 0.425 0.5

Trace 3 634 262 0.413 0.0

Trace 4 735 264 0.359 0.2

Trace 5 937 356 0.379 1.2

Trace 6 1055 501 0.475 0.1

Table 3.2: Statistics of traces used in the experiments.

provided that we choose M < 10 and λ > 0.99. Therefore, we have selected M = 5,

λ = 0.999, θ = 0.001 and fixed this configuration for the rest of the evaluations. We

collected six real cellular link capacity traces (Fig. 3.9) following the methodology

in [21], over T-Mobile 3G and HSPA networks, during different times of the day and

in different campus locations. Each of these is 1066 seconds long and their statistics

can be found in Table 3.2. As expected, the capacity traces are very dynamic, posing

significant challenge to capacity estimation.

Over these traces, in Matlab, we perform time-series forecasting using RLS with

parameters mentioned above, and the EWMA filter, where the smoothing parameter

α is varied from 0 to 1. We assume that we know the past capacity values exactly.

The results can be seen in Table 3.3, where “Best” and “Worst” represent the mini-
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RLS αBest Best αWorst Worst

Trace 1 53 0.55 55 0.05 87

Trace 2 88 0.7 90 0.05 120

Trace 3 158 0.55 157 0.05 209

Trace 4 186 0.4 178 0.05 211

Trace 5 250 0.2 235 1 293

Trace 6 244 0.4 242 0.05 291

Table 3.3: Comparing the prediction error RMS of the RLS predictor with those of
the best and worst EWMA predictors with corresponding parameters. RLS, Best and
Worst columns are in Kbps.

mum and maximum prediction error root-mean square (RMS) values obtained with

EWMA with different smoothing parameters, respectively. We see that for all traces,

prediction performance of RLS is very close to that of the best EWMA predictor, if

not better, as it adapts to the statistics of the time series.

3.5.2 Dynamic Frame Selection Simulations

Next, we compare the performance of our dynamic frame selection (DFS) algorithm

against the layer-push (LP) and frame-push (FP) algorithms. LP also estimates the

frame size in each temporal layer using the same approach as in DFS, but then decides

on the highest layer lmax that may be sent. In other words, only the frames from layers

up to lmax are eligible for sending. Among these frames, following the encoding order,

the algorithm sends as many frames as possible until the bit budget is exhausted. FP,

on the other hand, does not consider layer information and sends as many frames as

possible following their encoding order, until the bit budget is exhausted.

For each algorithm, we evaluate the total number of frames sent, the mean and

the standard deviation of the resulting frame intervals, and finally the fraction of

the unused bit budget. Here, a frame interval represents the temporal distance be-

tween a pair of consecutive frames that have been selected to be sent. The frame

interval statistics are calculated using the fraction of time each interval lasts as the

probability to observe that interval. We use the JM encoder [36] to encode the video
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sequence “Crew” [59] with a hierarchical-P structure having three temporal layers

(GoP length=4) and intra-period of 32 frames. We used a fixed quantization pa-

rameter (QP) of 36, yielding the average bitrate of 415 kbps when all frames are

included. The resulting video sequence has a frame rate of 30 fps and comprises 9

intra-periods, with an intra-period of T = 32/30 seconds. For the proposed algorithm,

we used γ = 0.75, which was found to perform the best, and the frame priority order

is π = (0, 4, 8, 12, 16, 20, 24, 28, 30, 14, 6, 22, 26, 18, 10, 2, 31, 15, 7, 23, 27, 19, 11,

3, 1, 5, 9, 13, 17, 21, 25, 29). In these simulations, we assume that the bit budget bk

is constant for each intra-period k of the video and we want to compare the perfor-

mances of the algorithms described above under different bk values, from 10 kB to 80

kB. In Fig. 3.6, we see that FP sends the most frames by sending as many frames

as possible. However, it also has the largest mean frame interval and the largest

frame interval variation, making the displayed video jittery. On the other hand, the

LP algorithm sends the lowest number of frames but also with lower mean frame

interval and frame interval variance. The proposed DFS algorithm achieves a good

compromise between sending more frames, consequently utilizing ABW more closely,

and reducing the frame distance variation. In fact, DFS outperforms both methods in

terms of the mean and standard deviation of the frame intervals, while sending almost

as many frames as the FP. Finally, the plot in the upper right shows the fraction of

the unused bandwidth for each method, where we see that the performance of DFS

is very similar to FP, whereas LP is not as efficient.

3.5.3 Evaluation on the Testbed

For system evaluation, we developed a testbed to compare Rebera with popular video

call applications. On this testbed (Fig. 3.7), S and D are the source and destination

end-points running the video call application under test, while the nodes CS and

CD are cellular link emulators running the CellSim software [21], respectively. The

emulators are connected to each other through the campus network, and to their

respective end-points via Ethernet. For cellular link emulation, we use the uplink

and downlink capacity traces collected (Table 3.2). For evaluation, we report the

ABW utilization, the 95-percentile one-way packet delays, and the 95-percentile one-

way frame delays as the performance metrics. In order to calculate the bandwidth

utilization, we count how many bytes were sent out by the video call application
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Figure 3.6: Comparison of DFS with FP and LP; number of frames sent (upper-
left), unused budget (upper-right), mean and standard deviation of the frame intervals
(lower-left and lower-right). Encoding frame rate is 30 Hz, thus frame-time is 1/30 sec.
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under test and compare it with the minimum of the capacities of the sender link and

the receiver link. The one-way end-to-end delays are collected by different means: in

Rebera experiments, for each packet that made it to the receiver, the receiver sends

an acknowledgement packet back to the sender over an ethernet cable on which there

is no other traffic (Fig. 3.7). As a result, the measured round-trip times are almost

equal to the one-way delays, enabling us to measure the delay for each individual

packet and frame. In FaceTime experiments, we used Wireshark to sniff the packets

on the emulator hosts. We also note that FaceTime sends voice packets even after the

voice is muted, at a constant rate of 32 kbps. Rebera, on the other hand, does not

send audio. In order to compensate for this in the bandwidth utilization calculations,

we subtract 32 kbps from the sending rate achieved by Rebera. In each test, we loop

the video sequence “Crew”, which is more challenging in terms of the video rate than

“Akiyo” and somewhat captures hand/arm movements present in video calls.

Rebera is able to encode the video in real-time thanks to the open source x264

video encoder [24]. This allows us to change the video rate according to the predicted

ABW, for each new intra-period, using x264’s rate control module. We have mod-

ified x264’s code, so that the encoded video has a hierarchical-P coding structure,

by changing the reference frames used before encoding each frame according to the

H.264/AVC standard. Specifically, in our modification, the GoP length is set to 4,

giving rise to 3 temporal layers. In all our experiments in the lab, the minimum and

maximum encoding rates were set as 200 kbps and 3 Mbps, respectively. The video

and RLS parameters used are the same as in Sections 3.5.2 and 3.5.1. Specifically,

the encoding frame rate is 30 Hz, and the intra-period length T is 32 frames, or 1.066

seconds. The initial sending rate is set to 120 kbps. In each experiment, we evaluate

the sending rate over consecutive periods of T seconds. Please note that FaceTime

may not be using a constant intra-period, let alone the same intra-period T as Re-

bera. Furthermore, FaceTime’s sending rate is, in general, the sum of FEC and the

video data rates. In order to feed the same looped test video into FaceTime, we used

the ManyCam [60] virtual webcam on Mac OS 10.10.41.

Evaluation with Piecewise Constant Bandwidth

In this experiment, we use a piecewise constant bandwidth trace, with steps of 100

kbps lasting 100 seconds, between 300 and 600 kbps. We set the packet loss rate to

1Detailed explanations can be found online at [61].
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Figure 3.7: Illustration of the testbed. Purple arrows indicate the flow direction of
the video, whereas the acks follow the green arrow from D to S.

zero. In Fig. 3.8, we can see Rebera’s (i) measured bandwidth, (ii) rate reduction due

to the estimated number of backlogged bits, (iii) overall budget and (iv) the sending

rate, along with FaceTime’s sending rate. On average, the bandwidth utilization of

Rebera is 86.21%, while FaceTime achieves a utilization of 78.78%. Moreover, we can

observe that, Rebera is able to measure the current bandwidth very accurately, and

thus react to the changes in the bandwidth rapidly.

Evaluation with Cellular Capacity Traces

In this set of experiments, we use cellular bandwidth traces (Fig. 3.9) to emulate

the cellular links. Each experiment lasts for 1000 intra-periods. We first present the

results involving a single cellular link along the end-to-end path. Specifically, we start

by examining the particular scenario where the sender is connected through a cellular

network, and traces 5 and 6 were used to emulate the forward and backward end-to-

end ABW, respectively. The receiver is assumed to have a wired connection. In the

top plot of Fig. 3.10, we present Rebera’s and FaceTime’s sending rates over time.

Here, Rebera achieves a forward bandwidth utilization of 75.6%, while FaceTime’s

utilization is 65.2%. Furthermore, 95-percentile packet and frame delays are observed

to be 204 and 232 ms for Rebera, and 307 and 380 ms for FaceTime. The empirical

packet and frame delay CDFs for both systems can be seen in Fig. 3.11.

Similarly, we employ traces 2, 3, 4 and 5 as the forward, and traces 1 and 6 for

the backward end-to-end ABW. Results are summarized as bandwidth utilization,

95-percentile packet and frame delay tuples in Tables 3.4. We can see that in all
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Figure 3.9: Traces used in the experiments. Vertical axis: capacity (Mbps), horizontal
axis: intra-period index. Traces 2, 3, 4 and 5 are used as forward capacities, 1 and 6
are used as backward capacities.
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Figure 3.10: Video sending rates of Rebera and FaceTime (top) over a single cellular
link with traces 5 & 6 as the forward & backward capacities, respectively. We present
the one-way end-to-end frame delays of Rebera (middle) and FaceTime (bottom), where
the horizontal axis represents the sending time of each frame. The avg. ABW utilization
and 95-perc. packet and frame delay are in the bottom Table 3.4, row 4.

experiments, Rebera achieves a higher utilization of the forward ABW with shorter

delays. Averaged over these experiments, Rebera provides 20.5% higher bandwidth

utilization compared to FaceTime, and a reduction of 122 ms and 102 ms in the 95-

percentile packet and frame queueing delays, respectively. When a more challenging

backward capacity (trace 1 in Table 3.4) is used for the backward path, the informa-

tion fed back to the sender side undergo a longer delay for both Rebera and FaceTime,

decreasing the ABW utilization of both systems. FaceTime’s delay performance also

degrades, whereas Rebera is still able to provide similar delays.

Next, we consider the double-link scenarios, where both users are connected over

different cellular links. We first assume there exists three different cellular connec-

tions, which we denote by A, B and C, where the uplink and downlink ABW pairs

for each connection are given as traces 5 and 6, traces 3 and 4, and traces 1 and 2,

respectively. In other words, connection A provides the highest mean ABW, while

the connection C provides the lowest. We evaluate all six cases for which the sender

and the receiver have different connections. The results can be seen in Table 3.5.
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Figure 3.11: Empirical packet (left) and frame (right) delay CDFs of Rebera and
FaceTime, where forward and backward bandwidths were emulated via traces 5 and 6,
respectively.

Fwd Cap. Rebera(%,ms,ms) FaceTime(%,ms,ms)

Trace 2 68.8, 402, 402 58.1, 447, 415

Trace 3 63.8, 338, 334 32.7, 631, 528

Trace 4 73.5, 177, 201 63.0, 383, 392

Trace 5 71.8, 216, 243 58.7, 317, 341

Average 69.5, 283, 295 53.1, 444, 419

Fwd. Cap. Rebera(%,ms,ms) FaceTime(%,ms,ms)

Trace 2 69.5, 381, 394 59.2, 426, 406

Trace 3 66.4, 307, 313 61.9, 341, 349

Trace 4 76.1, 168, 189 70.6, 276, 307

Trace 5 75.6, 204, 232 65.2, 307, 380

Average 71.9, 265, 282 64.2, 337, 360

Table 3.4: Evaluation over single cellular link, using trace 1 (top) and trace 6 (bottom)
as the backward capacity. Reported values are bandwidth utilization percentage, 95-
perc. packet delay, and 95-perc. frame delay, respectively.
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Rebera(%,ms,ms) FaceTime(%,ms,ms)

A to B 60.5, 300, 312 47.9, 529, 508

B to A 58.1, 483, 498 48.5, 485, 483

A to C 59.9, 432, 442 44.0, 588, 518

C to A 61.3, 1066, 1019 43.3, 1278, 851

B to C 61.2, 416, 419 28.2, 1180, 996

C to B 59.5, 804, 809 44.0, 3230, 1090

Average 60.1, 583, 583 42.6, 1215, 741

Table 3.5: Evaluation when both users are connected over different cellular networks.
Reported values are bandwidth utilization percentage, 95-perc. packet delay, and 95-
perc. frame delay, respectively.

In all scenarios, Rebera provides a significantly higher ABW utilization, while still

delivering shorter packet and frame delays on average and in most cases.

Lastly, we extend our comparison of Rebera and FaceTime for double-link scenar-

ios, using capacity traces in [21] that have been gathered from three different cellular

operators in the US. In Fig. 3.12, we present two emulation experiments, each of

which demonstrates the sending bitrates of Rebera and FaceTime, along with the

end-to-end ABW. We can see that, Rebera’s sending rate is below the capacity, and

above the sending rate of FaceTime in each one. The results for all possible cellular

trace combinations, merged with the previous results in Table 3.5, can be seen in Fig.

3.13. On average, Rebera provides 23% more ABW utilization, with 2 sec. reduction

in the 95-percentile frame delays.

Effect of the Tolerance Parameter

Next, we investigate the effect of the tolerance parameter δ in Section 3.3.3 on Rebera.

We vary δ from 0.05 up to 0.5, and record the utilization and 95-percentile packet

delays in Table 3.6. Having a larger δ value means the system is willing to tolerate

more frequent capacity overshoots, and hence more frequent large packet and frame

delays, in exchange for higher bandwidth utilization, which could be the case for video

applications with less stringent delay requirements.
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Figure 3.12: Example double-link emulations with cellular capacity traces with uplink
/ downlink traces: Verizon 3G / AT&T (top), T-Mobile / AT&T (bottom)

Figure 3.13: All double-link evaluation results. Each point labeled “x-y” in the plane
represents an emulation experiment with uplink trace x and downlink trace y.
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δ 0.05 0.1 0.2 0.5

ABW utilization (%) 66.4 69.6 72.7 75.36

95-perc. packet delay (ms) 307 354 371 486

95-perc. frame delay (ms) 313 367 403 516

Table 3.6: Effect of the tolerance parameter on Rebera over single cellular link.
Forward-backward capacity: traces 3-6

Rebera Bahavior in Presence of Packet Loss

The purpose of this evaluation is to demonstrate that Rebera can still track the link

capacity in the presence of packet loss. Note that additional studies are needed to

investigate the error resilience provided by the temporal layering, and how to further

improve it through unequal error protection. To examine the performance of Rebera

in presence of packet loss, we employ CellSim to introduce random iid losses. We

tested Rebera when the packet loss rate is 5% and 10%, and the results are given in

Table 3.7. Although not significantly, the ABW utilization drops with the loss rate,

as there are fewer packets crossing the links. Furthermore, the delays experienced by

the received frames reduce, since there is less backlog in the buffers.

Packet loss rate 0% 5% 10%

ABW utilization (%) 66.4 63.4 61.1

95-perc. packet delay (ms) 307 281 286

Table 3.7: Effect of the packet losses on Rebera over single cellular link. Forward-
backward capacities: traces 3-6

3.5.4 Evaluation over Cellular Networks

Finally, we evaluate Rebera over a real cellular network. The setup we used for this

experiment can be seen in Fig. 3.14. Here, a mobile device (Motorola Nexus 6) is

tethered to the sender host via USB, acting as a modem. The sender is stationary

during the experiments, which last for 10 minutes. The receiver host is inside the

campus network, and has a public IP address. The experiment was done over the
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Figure 3.14: Setup for experiments in-the-wild

T-Mobile network, using LTE and HSPA on December 4, 2015 at 6 PM. In Fig.

3.15, we can see that, in the HSPA uplink, which provides an average ABW of 1.055

Mbps, the outages may last as long as 20 seconds. On the other hand, LTE provides

an almost outage-free uplink channel, with an average ABW of 5.95 Mbps. Table

3.8 summarizes the experiment results. Note that during the experiment over LTE,

Rebera’s maximum encoding rate is set as 10 Mbps. This change serves as a means to

utilize the ABW better, and is not necessary for Rebera’s operation. The empirical

packet delay distributions for Rebera using either access technology is given in Fig.

3.16.

Rebera HSPA LTE

average sending rate (Mbps) 0.81 5.17

95-perc. packet delay (ms) 221 105

95-perc. frame delay (ms) 298 137

Table 3.8: Rebera’s performance over T-Mobile with HSPA and LTE technologies
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Figure 3.16: One-way packet and frame delay CDFs of Rebera over LTE and HSPA



Chapter 4

Perceptual Quality Maximization

and Packet Loss Resiliency through

Joint Optimization of Video

Encoding and FEC Parameters

This chapter is organized as follows. We briefly discuss the related work on packet

loss resiliency and video quality maximization in Section 4.1. The overview of the

end-to-end system and the perceptual quality maximization problem are presented

in Section 4.2. The means to determine the frame-level FEC redundancy rates is

presented in Section 4.3, where we cast the combinatorial optimization problem and

discuss the solution heuristics to be used in the case of independent and bursty packet

losses. Extensive numerical evaluations under a range of sending bitrate constraints

and different packet loss parameters are reported in Section 4.4, along with compar-

isons between the hierarchical-P and the IPP...P coding structures.

4.1 Related Work

Video transmission over unreliable networks requires both source and FEC coding,

in general. Since infinite-length source or FEC coding blocks are not realizable, the

separation principle [62], which states that the source and channel coding can be

designed independently, cannot be used without performance loss in real-time video

64
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delivery applications. As a remedy, joint source-channel coding (JSCC), aiming to

minimize the end-to-end source distortion, has been studied extensively for video

delivery over lossy links or networks. Many papers, such as [63] and [64], focus on

applying FEC on the PHY layer, assuming a particular network structure, while oth-

ers focus on general end-to-end scenarios. Much of the existing work on this problem

differs in (i) the video coding methods considered, (ii) the video distortion or quality

metrics used, (iii) the total amount of video distortion caused by the unrecoverable

packet losses, and (iv) the video data unit over which the chosen metric is estimated,

and on which the FEC is applied. Traditionally, when layered video is considered,

each layer is assumed to reduce the total MSE distortion by a certain amount that is

known [65], or estimated [66, 67]. The additional distortion due to packet losses are

mostly considered to be additive [66], however the nonlinear effect of bursty losses

have been considered in [68]. In [69], a decision-tree-based subjective quality model

is developed, without considering the optimization of the video encoding parameters,

including eFR. From the delay perspective, the existing studies mostly do not address

the delay requirement of video calls, as the FEC is traditionally applied on a fraction

of a single or multiple consecutive GoPs [70,71], where the receiver must wait for the

entire GoP or sub-GoP to recover a frame, leading to either unacceptable delays or

distortions. A few papers [72,73] explored frame-level FEC strategies by maximizing

the expected number of decoded frames under a total FEC bitrate constraint and

assuming IPP coding structure. To the best of our knowledge, no prior work has

studied frame-level FEC for hPP, nor studied the gains achieved by adapting the

frame rate and FEC together.

4.2 Maximizing the Received Perceptual Quality

We consider a video call scenario between a source S and a destination D over an

unreliable network, in which packets may get lost. The directed paths from S to D
and D to S are called the forward and the backward paths, respectively. We assume

that the available bandwidth on the forward path is predicted by a congestion control

module at the sender, and based on this prediction, a safe maximum sending rate is

determined to ensure low queuing delay1. We further assume that the packet loss

1The design of such a sending bitrate control mechanism (congestion control) that ensures low
frame delays has been studied in Chapter 3.
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events on the forward path are correlated in general. Similar to the previous work,

we use the Gilbert model to describe the packet loss process on the end-to-end path.

The arrival state of each packet, that is, whether it is lost or not, is represented by

0 or 1 in a discrete-time binary Markov chain, respectively. The corresponding state

transition probabilities are

Pr(0|1) = ξ0|1 Pr(1|0) = ξ1|0.

Then, the mean packet loss rate ε and the mean burst length λ are

ε =
ξ0|1

ξ0|1 + ξ1|0
λ =

1

ξ1|0
.

In this study, we consider only temporal layering to keep the layered encoding

complexity and overhead at a minimum. Our goal is to explore the performance of

both temporal-layered and non-temporal-layered encoding for video calls over lossy

networks. We assume that the encoder inserts an I-frame every T seconds, which

is called an intra-period. We employ the IPP structure in Fig. 4.1 for non-layered

encoding, and the hPP structure in Fig. 4.2 for layered encoding with L ≥ 1 temporal

layers (TLs), where G = 2L−1 is the length of a group of pictures (GoP). Note that,

hPP reduces to IPP for L = 1. The number N of encoded frames that belong to a

given intra-period is equal to T · fe, where fe denotes the eFR in that intra-period.

Next, frame-level FEC is applied to protect the compressed video stream. The

sender packetizes frame i of a given intra-period into ki = dzi/Be network packets,

where zi is the size of the frame i and B is the maximum payload size. Then,

Reed-Solomon coding [74] is applied across all packets of each individual frame i, by

creating mi redundancy packets based on ki source packets. The redundancy rate for

frame i is then ri = mi/(ki + mi). By applying FEC across the packets of a single

frame, instead of across packets belonging to multiple frames, we avoid further FEC

decoding delay at the receiver.

When FEC fails and the current frame cannot be recovered, it is discarded along

with its descendants in the dependency tree. In the meantime, the last decoded frame

is frozen on the screen. This error concealment technique results in irregular distances

between displayed frames that are free of artifacts, as opposed to regular intervals

between displayed frames with noticeable artifacts that grow towards the end of the
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Figure 4.1: IPP prediction with N = 8. Blue arrows indicate the prediction directions.
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Figure 4.2: hPP prediction with N = 8. Blue arrows indicate the prediction direc-
tions. Here, G = 4, TL(1)={I0, P4}; TL(2)={P2, P6}; TL(3)={P1, P3, P5, P7}.

intra-period. Such frame-distance irregularity is less severe in hPP, since a playback

freeze due to a frame loss in a temporal enhancement layer only lasts until the next

lower-layer frame is decoded, providing higher resilience. For example, in Figure 4.2,

if I0 and P1 are decoded and P2 suffers an unrecoverable packet loss, P2 and P3 are

both discarded, regardless of whether P3 arrives or not. If P4 arrives, we can decode

it from I0. In this case, P1, which has been kept on screen until now, will be replaced

by P4. However, the same frame loss will make all subsequent frames P2-P7 non-

decodable in Figure 4.1. Note that this error resilience is obtained at non-negligible

expense of coding efficiency.

To measure the quality of the video displayed at the receiver, we use the perceptual

quality model in [25]. According to this model, the perceptual quality of a decoded

video sequence can be written as a function of the spatial, temporal and the amplitude

resolution of the video. Then, keeping the spatial resolution constant, we have

Q(q, fd) = NQQ(q) · NQT(fd)

=
1− e−αq

qmin
q

1− e−αq · 1− e−αf
(

fd
fmax

)0.63
1− e−αf

(4.1)
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where q is the QS and fd is the dFR, whereas αq and αf are parameters that depend

on the video characteristics, and qmin and fmax are minimum QS and the maximum

frame rate values considered, for which Q(qmin, fmax) = 1.

We can now summarize the operation of the proposed video call system. Since

the video bitrate control is usually performed once per intra-period in conventional

video encoders, we assume that the congestion control module determines the SBR

RS every intra-period [29]. In the meantime, packet loss process is monitored by

the receiver, which keeps an estimate of the packet loss parameters and periodically

feeds them back to the sender over the backward path D − S. When there is no

packet loss, we have fd = fe, therefore the sender optimizes q and fe such that the

perceptual quality Q is maximized, under the sending rate constraint [26]. However,

in the presence of random packet losses, fd is a random variable that depends on the

vector m = [m1, . . . ,mN ]T of the number of redundant FEC packets for each frame,

frame size vector k = [k1, . . . , kN ]T , number L of temporal layers and finally the eFR

fe. Then, given the estimated loss parameters ξ0|1 and ξ1|0, along with the sending

bitrate RS, the sender is tasked with optimizing q, fe and m, so as to maximize the

mean perceptual quality E(Q) , Q of the decoded video for each new intra-period

by solving the following problem.

max
q,fe,m

Q = NQQ(q) · NQT(fd(q, fe,m))

s.t. R(q, fe) +
B

T

N∑

i=1

mi ≤ RS

q > 0, mi ∈ N, fe ∈ F

(4.2)

Here, F is the set of frame rates considered, and R(q, fe) is the bitrate of the encoded

video, which is estimated by the rate model in [31] as follows.

R(q, fe) = Rmax

(
qmin

q

)βq ( fe
fmax

)βf
(4.3)

Problem (4.2) is a mixed integer programming problem, and is hard to solve in general.

Since F is a small set, optimizing fe via exhaustive search in F is feasible. Then, for

a particular value of fe, the task is to optimize q and m. Note that, even though q

is continuous, the resulting frame size vectors {k} are discrete due to packetization.

To predict distinct frame size vectors systematically, we assume that the frames in
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the same temporal layer have equal sizes, and develop a mean frame size prediction

ẑl per temporal layer l that depends on the target bitrate R linearly, given the eFR

fe, as well as the video contents. Accordingly, we choose to replace the optimization

variable q with the video bitrate R, using Eq. (4.3). Next, we perform a hill climbing

search in video bitrates R ≤ RS, however without using a predetermined step-size.

Instead, we consider R ≤ RS that result in distinct frame size vectors, which are

estimated by the aforementioned model for a (fe, R) tuple. In a bitrate interval

(R0, R1] that maps to the same prediction k̂ = dẑ/Be, the highest bitrate R1 leads

to the maximum perceptual quality. The hill-climbing search is carried out over such

suprema, starting from RS and decreasing (line 8). At each step of hill climbing,

NQQ (q(fe, R)) is easily calculated from Eqs. (4.1) and (4.3) using the current R and

the given fe. Then, all that remains is to determine the FEC allocation vector m

subject to the first constraint in Eq. (4.2) to maximize NQT(fd(q, fe,m)). The entire

procedure is summarized in Alg. 5. Note that, m is determined from its previous

value for speed-up (line 11). In the next section, we will focus on this procedure, that

is, how NQT can be maximized.

Algorithm 5 Frame Rate and Video Bitrate Opt.

1: Inputs: ε, λ, RS, L, F , T , B, αq, αf , βq, βf , fmax, qmin, Rmax

2: Outputs: f ∗e , R∗, m∗

3: Q∗ ← 0
4: for all fe ∈ F do . Exhaustive search
5: N ← T × fe, R← RS, Q← 0, m← 0, k← 0
6: do . Hill-climbing begins
7: Qmax ← Q, Rbest ← R, mbest ←m
8: R← max

0≤R′≤R
R′ s.t. k̂(R′) 6= k . Next R

9: k← k̂(R) . Corresponding k
10: M ← b(RS −R)T/Bc −∑N

i=1mi

11:
(
m,NQT

)
←greedyFEC(M,k,m, L)

12: Q← NQQ(q(fe, R))× NQT
13: while Q > Qmax and R > 0
14: if Qmax > Q∗ then
15: f ∗e ← fe, R

∗ ← Rbest, m
∗ ←mbest

16: end if
17: end for
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4.3 Determining the Frame-Level FEC Rates

Given the video bitrate R, we can create at most M = b(RS − R)T/Bc FEC redun-

dancy packets of size B to protect the frames in the intra-period. Let di denote the

Bernoulli random variable that assumes the value 1 if the frame i is decoded at the

receiver and 0 otherwise, and let I be the indicator function. Then, the total number

of decoded frames is given by D =
∑N

i=1 Idi=1, and we can write

0 ≤ fd =
D

T
≤ fe =

N

T
.

Ideally, we would like to optimize the FEC packet distribution m, such that NQT(fd)

is maximized.

max
m

NQT =
N∑

n=0

Pr(D = n)NQT(
n

T
)

subject to
N∑

i=1

mi ≤M and 0 ≤ mi

(4.4)

Problem (4.4) aims to find the best way to distribute M redundancy packets on N

frames, where the search space is C(M + N − 1,M). Therefore, exhaustive search

becomes infeasible even for small values of M . As a solution, we propose to use a

greedy hill-climbing algorithm. We begin by assuming that only a single FEC packet

is given, and increment the number of available FEC packets by one at each step.

Next, we search among all the frames to determine which one should be protected

with the newly added FEC packet. In other words, at step n ≤M , we search among

the neighbors of the best solution m∗ found so far, where a neighbor m′ of a vector

m has the same components except for m′j = mj + 1. We can speed up this process

by skipping the frames in the same layer for which the (ki,mi) tuple has already been

evaluated. For each neighbor, we calculate a score; NQT in case of iid packet losses or

fd for Markovian packet losses, and then pick the neighbor that leads to the highest

value as the new solution candidate. The reason for the choice of a different search

space for the Markovian packet losses is the additional computational complexity.

The algorithm, which is summarized in Alg. 6, terminates in O(NM) iterations.

Next, we show how to calculate NQT and fd for iid and Markovian packet losses,

respectively.
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Algorithm 6 greedyFEC - FEC packet distribution

1: Inputs: M , k, m, L
2: Outputs: m, NQT
3: m∗ ←m, NQT∗ ← NQT(m∗) . initial solution
4: while M > 0 do . distribute M FEC packets
5: h←m∗

6: for 1 ≤ i ≤ N do . over N frames
7: m← h and mi ← hi + 1
8: if NQT(m) > NQT∗ then
9: NQT∗ ← NQT(m)

10: m∗ ←m
11: end if
12: end for
13: M ←M − 1
14: end while

4.3.1 Independent, Identically Distributed Packet Losses

Our goal in this section is to calculate NQT, given the FEC packet distribution m

and that the packet losses are iid. From Eq. (4.4), this calculation is straight-forward

once the probability distribution PD(n) of the number D of decoded frames is known,

for each n ∈ {0, 1, . . . , N}. In turn, Pr(D = n) can only be calculated by considering

all possible decoding patterns in the intra-period that result in the decoding of exactly

n frames. Note that, each of these decoding patterns corresponds to a particular sub-

tree of the frame dependency tree T , having n nodes, and with the I-frame as the

root node.

When the packet losses are independent Bernoulli events with probability ε, frame

arrivals are also independent, but with non-identical distributions due to the unequal

error protection. Let ai denote the Bernoulli random variable taking on the value

1 if the encoded frame i successfully arrives at the receiver. Note that di and ai

are different events, since an arriving frame cannot be decoded without its reference

frame. Then, the arrival probability for frame i is

Pr(ai = 1) =

mi∑

j=0

(
ki +mi

j

)
εj(1− ε)ki+mi−j,

that is, the probability of having at most mi packet losses for frame i. Now, let Ti be

the sub-tree of the coding structure T , with its root as frame i. Furthermore, let Pi
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be the reference frame from which frame i is predicted, and Ci be the set of frames

predicted from frame i. Then, if Di denotes the number of decoded frames in Ti given

that Pi is decoded, the distribution of Di can be written recursively as follows.

Pr(Di = n) =





Pr(ai = 0) n = 0

Pr(ai = 1) Pr(
∑
j∈Ci

Dj = n− 1), n > 0
(4.5)

Since the frame arrivals are independent due to iid packet losses, and there is no

decoding dependency across Tj for j ∈ Ci, the distribution on the right hand side of

Eq. (4.5) can be computed via convolution of the distributions of Dj, j ∈ Ci. If frame

i belongs to the highest temporal layer L, we have Pr(Di = n) = Pr(ai = n). Finally,

since D = D1 by definition, Pr(D = n) can be found recursively from Eq. (4.5) and

taking convolutions, as summarized in Alg. 7.

Algorithm 7 calcPMF (for iid loss)

1: Inputs: Frame index i,Pr(aj = 1) for 1 ≤ j ≤ N
2: Output: PDi
3: if i ∈ TL(L) then . Highest layer
4: PDi = [Pr(ai = 0),Pr(ai = 1)]
5: else . Lower layer
6: c = 0
7: for all j predicted from i do
8: if c = 0 then c = calcPMF(j)
9: else c = c ∗ calcPMF(j) . convolution

10: end if
11: end for
12: PDi = [Pr(ai = 0),Pr(ai = 1)× c]
13: end if

4.3.2 Markovian Packet Losses

When the packet losses are Markovian and hence bursty, the frame arrivals become

dependent, preventing us from using Alg. 7 to determine the end-to-end perceptual

quality. Instead, we have to go through each possible frame decoding pattern, and

calculate the corresponding probability of occurrence. As mentioned in Sec. 4.3.1,

this is equivalent to enumerating all sub-trees of the frame dependency tree T with the
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I-frame as the root node, and becomes computationally cumbersome 2 for practical

values of N and L. We circumvent this problem by maximizing the mean number of

decoded frames fd instead of NQT. We have

fd =
E(D)

T
=

1

T

N∑

i=1

E(Idi=1) =
1

T

N∑

i=1

Pr(di = 1). (4.6)

Then, the decoding probability for frame i can be expanded as the multiplication of

conditional arrival probabilities.

Pr(di = 1) =
∏

j∈Ai

Pr(aj = 1|au = 1,∀u ∈ Aj) ,
∏

j∈Ai

p(j) (4.7)

Here, Ai is the set of ancestors of frame i in the coding structure. The conditional

frame arrival probability p(j) can be expanded [75] by further conditioning on the

arrival state of frame j’s first packet, which, in turn, depends on the arrival state of

its reference frame’s last packet. Towards this end, let a
(n)
j denote the arrival state

of the nth packet that belongs to frame j. In particular, we consider the conditional

probability ps(j) that the frame j arrives and the arrival state of its last packet is

s, given that all the ancestors of frame j have arrived. Then, ps(j) is given by the

following.

ps(j) = π0(j)Imj−2+s≥0
∑mj−2+s

`=0
Ls(`, kj +mj − 2)

+ π1(j)

mj−1+s∑

`=0

Rs(kj +mj − 2− `, kj +mj − 2). (4.8)

In Eq. (4.8), we first condition on a
(1)
j using the probability πs(j).

πs(j) = Pr(a
(1)
j = s | au = 1,∀u ∈ Aj) (4.9)

Additionally, Rs(u, v) and Ls(u, v) denote the probabilities that there will be ex-

actly u received or lost packets in the next v ≥ u packets, which are then followed by

a packet in state s, given that the first packet is received or lost, respectively. The

upper-triangle matrices R0, R1, L0 and L1 can be pre-computed easily via memoiza-

2When N = 32, there are 2.015×106 and 3.187× 106 sub-trees for L = 3 and L = 4, respectively.



CHAPTER 4. QUALITY MAXIMIZATION & PACKET LOSS RESILIENCY 74

tion [75], starting from the base case (0, 0). The final step is to calculate πs(j). It

holds that 

π0(j)

π1(j)


 =




1− ξ1|0 ξ0|1

ξ1|0 1− ξ0|1




κ+1 

p0(Pj)

p1(Pj)


 , (4.10)

where κ is the number of packets between the reference frame Pj’s last packet and

frame j’s first. Starting from frame 1 up to frame N , we can calculate ps(j) for all

frame 1 ≤ j ≤ N using Eqs. (4.8), (4.9) and (4.10). Then, p(j) is simply given by

p(j) = p0(j) + p1(j).

4.4 Evaluations

In this section, we evaluate the performance of the proposed system. We present

the maximized mean end-to-end Q-STAR value Q and the maximizer eFR fe and

the FEC redundancy rate r , 1 − R/RS determined by our scheme for different

video sequences, subject to iid and bursty packet losses, considering both hPP and

IPP structures. In each evaluation, 10-second-long video sequences “Crew”, “City”,

“Harbour” and “Soccer” are tested [59], while RS is varied from 100 kbps to 1.6

Mbps with 30 kbps stepsizes. Due to space constraints, we present only the results

obtained with “Harbour” and “City” in most cases, please see [76] for all results. For

hPP, we also examine the mean FEC redundancy rate r(l) within layer l, given by

r(l) , 1
nl

∑
i∈TL(l) ri, where nl is the number P-frames that belong to layer l in the

intra-period. Clearly, 1 +
∑L

l=1 nl = N .

Encoder settings

We use the x264 encoder with “High” profile, “very fast” preset and tuned for “zero

latency” [77], and choose its one-pass ABR rate control algorithm, suitable for ultra-

low delay scenarios. For each video, the picture resolution is 4CIF, and the frame

rate is selected from F = {15 Hz, 30 Hz}. To generate a particular hPP structure, we

modified the x264 encoder by altering the reference frames used before each frame

encoding [76] according to the H.264/AVC standard [78]. In our modification, the

GoP length is set to G = 4, leading to L = 3 temporal layers as shown in Fig.

4.2. QP-cascading is performed during encoding. An I-frame is inserted every T =
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αq αf βhPPq βhPPf βIPPq βIPPf qmin

Crew 4.51 3.09 1.061 0.707 1.064 0.662 22.271

City 7.25 4.10 1.142 0.471 1.247 0.449 18.206

Harbour 9.65 2.83 1.320 0.584 1.461 0.489 34.301

Soccer 9.31 2.23 1.194 0.598 1.196 0.579 20.019

Table 4.1: QSTAR and RSTAR parameters for IPP and hPP with 3 TLs. x264
settings: “High” profile, “very fast” preset, “zero latency” tuning. fmax = 30 Hz.

16/15 seconds, meaning there are N = 32 and N = 16 frames in an intra-period for

fe = 30 Hz and fe = 15 Hz, respectively. To generate an IPP structure, x264 is used

without any modification.

Q-STAR and R-STAR parameters

As described above, we have fmax = 30 Hz and Rmax = 1.6 Mbps. The Q-STAR

parameters αq and αf are taken from [25]. To derive the R-STAR parameters βq

and βf for either IPP or hPP, we encode each video sequence with the corresponding

encoder at target bitrates varied from 100 kbps to 1.6 Mbps with 30 kbps stepsizes,

at each fe ∈ F . At each target bitrate, the average QP in each frame is obtained and

converted3 to QS, which are then averaged over all frames to determine the mean q.

Using these q values, the actual video bitrates R and the fe used, we derive βq and

βf via curve-fitting with respect to Eq. 4.3. Finally, the parameter qmin, which is

used to evaluate both IPP and hPP for fair comparison, corresponds to the minimal

QS obtained with the IPP structure at R = Rmax and fe = 30 Hz. Parameter values

are listed in Table 4.1. The corresponding Q(R) curves for both hPP and IPP can

be seen in Fig. 4.3.

Modeling the Frame Sizes

As mentioned in Section 4.2, we develop a model for the average frame size ẑ(l, R) in

each temporal layer l, which depends on the encoding bitrate R. Towards this end,

we make use of the encoded video sequences described above. At each target bitrate

R, we normalize the size zi of each P-frame i with respect to the size z0 of the I-frame

3In H.264, QP = 4 + 6 log2(q).
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Figure 4.3: Normalized Q-STAR perceptual quality models of video sequences with
respect to the bitrate, using IPP (bold) and hPP (dashed) structures.

within the same intra-period, and find the average normalized frame size z̃(l, R) in

each temporal layer l over the full duration of the video. The mean and the coefficient

of variation of z̃(l, R) in each layer l over the target bitrate range R ∈ [100, 1600] kbps

is given in Table 4.2. We can see that, for each video sequence, the normalized mean

frame size z̃(l) in layer l shows little variation with the target bitrate, which means

that it can be modeled independent of R.

Next in Fig. 4.4, we plot z̃(l) against the temporal prediction distance τl within

each layer l. By examining the general trend of how z̃(l) changes with the temporal

prediction distance τl, we propose the following model.

z̃(l) = 1− e−θτηl (4.11)

The parameters θ and η can be found by curve-fitting in Figure 4.4. Once the nor-

malized mean frame size z̃(l) is predicted, we can estimate the actual size ẑ(l, R) of a

layer-l P-frame at a particular bitrate R by distributing the total number of bits RT

in the intra-period among the frames proportional to z̃(l).

ẑ(l, R) = RT
z̃(l)

1 +
∑L

l=1 nlz̃(l)
(4.12)
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fe = 30 Hz TL(1) TL(2) TL(3)

Crew 0.559 / 0.037 0.451 / 0.035 0.361 / 0.031

City 0.444 / 0.063 0.382 / 0.057 0.299 / 0.057

Harbour 0.462 / 0.079 0.402 / 0.100 0.300 / 0.111

Soccer 0.508 / 0.101 0.426 / 0.109 0.326 / 0.098

fe = 15 Hz TL(1) TL(2) TL(3)

Crew 0.815 / 0.030 0.733 / 0.025 0.611 / 0.028

City 0.670 / 0.049 0.594 / 0.061 0.508 / 0.057

Harbour 0.730 / 0.036 0.641 / 0.023 0.543 / 0.026

Soccer 0.802 / 0.029 0.733 / 0.039 0.549 / 0.061

Table 4.2: Mean / Coefficients of Variation of z̃(l) for l ∈ {1, 2, 3}, over R ∈ [100, 1600]
kbps
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Figure 4.4: Normalized mean frame sizes (circles) and the corresponding fits (bold and
dashed lines) with respect to the temporal distance to their reference frames. L = 3 and
for fe = 15, τ1 = 266.6 ms, while for fe = 30, τ1 = 133.3 ms. We have τ1 = 2τ2 = 4τ3.
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The frame sizes in units of packets is given by k̂(l, R) = dẑ(l, R)/Be. In our evalua-

tions, the payload size was chosen to be B = 200 bytes.

4.4.1 Evaluations for iid Packet Losses

We begin our evaluations with iid losses, for which we set ξ0|1 + ξ1|0 = 1. Packet loss

rate ε is varied from 0.05 to 0.2.

Using the hPP structure

In Fig. 4.5, the Q-STAR scores QhPP that are achieved with the hPP structure are

shown for each video. We see that QhPP drops further as ε increases. The relative

Q-STAR scores normalized with respect to the lossless case are shown in Fig. 4.6,

where the largest percentage-wise quality drop happens at low SBR values. For a

given video sequence and the packet loss rate ε, the FEC redundancy rate rhPP(ε)

is roughly independent of RS (Fig. 4.7), and only fluctuates due to the discrete

nature of the problem that arises due to packetization. For Harbour, when RS ≥ 790

kbps, FEC ensures that the QhPP is at least 96% of what could be achieved without

packet losses (Fig. 4.6), since the perceptual quality model for this sequence is largely

insensitive to increases in QS, but sensitive to decreases in dFR. As a result, rhPP is

higher for Harbour, trading off the less important amplitude resolution with the more

important end-to-end temporal resolution.

From Table 4.3, we observe that the SBR range, on which the preferred eFR is 15

Hz instead of 30 Hz, gets wider as the packet losses get more severe. For Harbour,

eFR jumps to 30 Hz at 300 kbps or less; whereas for Crew, it happens after 820

kbps, since the perceptual quality model for Crew is less sensitive to dFR. In Fig.

4.9, we show how the layer redundancy rates r(l) change with RS for each layer l.

The redundancy rates of higher layers are smaller in general, indicating unequal error

protection. However, as RS rises, the redundancy rate for each layer converges on the

FEC redundancy rate rhPP(ε).

Finally, we plot the FEC redundancy rate r against the packet loss rate ε in Fig.

4.8. We see that r can be modeled as an affine function of ε, for both hPP and IPP

structures:

r(ε) = a · ε+ b (4.13)

The corresponding model parameters for Eq. (4.13) that are obtained by fitting to
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Figure 4.5: Q-STAR scores achieved for iid packet losses, using hPP with 3 TLs.

our evaluation results are given in Table 4.4. A similar affine model has also been

observed in [79] for Skype [3], where it was found that rSkype = aSkype · ε + bSkype =

4.5ε + 15. Skype’s offset parameter bSkype is close to our findings in Table 4.4; still,

its multiplicative constant aSkype is much higher, suggesting a room for improvement.

Using the IPP structure

IPP provides higher bitrate efficiency compared to hPP (Fig. 4.3), but lacks the

resiliency offered by temporal layering. In terms of the achieved Q-STAR scores, we

have QIPP > QhPP for all scenarios in Fig. 4.10. Further inspection reveals that the

IPP structure delivers similar dFR as hPP, but at the cost of more FEC bits, i.e.,

rIPP > rhPP (Fig. 4.8). Especially at low video bitrates, IPP can have smaller QS

due to hPP’s relatively high coding overhead, and thus achieves higher Q.

It may appear that the IPP structure outperforms hPP from the Q-STAR metric

perspective. However, it is worth noting that, whenever a frame is lost, the rest of the

frames in the intra-period is rendered undecodable in the IPP structure, leading to

prolonged frame freezing, whereas the hPP structure is able to continue the stream
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Figure 4.6: Relative Q-STAR scores (%) with respect to the lossless case for iid packet
losses, using hPP with 3 TLs.
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Figure 4.8: FEC redundancy rates (%) for iid packet losses. (hPP with 3 TLs)

hPP ε = 0 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

Crew 0.82 1 1.09 1.18 1.3

City 0.46 0.52 0.55 0.58 0.61

Harbour 0.13 0.16 0.22 0.22 0.25

Soccer 0.31 0.4 0.46 0.52 0.55

IPP ε = 0 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

Crew 0.67 0.94 1.03 1.12 1.21

City 0.37 0.55 0.64 0.7 0.73

Harbour ≤0.1 0.16 0.22 0.25 0.28

Soccer 0.22 0.4 0.46 0.49 0.55

Table 4.3: Sending bitrate (Mbps) at which preferred fe jumps from 15 Hz to 30 Hz,
for iid packet losses. hPP with 3 TLs.
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ahPP bhPP aIPP bIPP

Crew 1.534 6.417 1.288 13.540

City 1.272 9.178 1.207 17.276

Harbour 1.274 15.689 1.320 22.339

Soccer 1.371 10.936 1.294 18.170

Table 4.4: Affine model parameters of the FEC redundancy rate for iid losses
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Figure 4.9: Layer redundancy rates (%) for iid packet losses and using hPP structure
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sequences (see left).

with the lower layer frames if the lost frame belongs to enhancement layers. To

test this claim, we conduct 105 simulations for each (RS, ε) pair and for each coding

structure, and we determine4 the sample mean µ̂τ and the sample standard deviation

σ̂τ of the time-averaged temporal distance τ between the decoded frames for both IPP

and hPP. We define τ , for a particular frame decoding pattern, as the weighted average

of inter-frame distances, with weights equal to the time fraction that a particular

inter-frame distance is observed. As an example, in Fig. 4.1, if P5, P6 and P7

were discarded, then the observed frame distance would be 1 unit in the first half

of the intra-period, and 4 units in the rest, assuming the next I-frame is decoded.

In this case, the time-averaged frame distance is τ = 0.5 · 1 + 0.5 · 4 = 2.5 units.

4µx and σx denote the mean and the standard deviation of the random variable x, respectively.
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Figure 4.10: Q-STAR reduction (%) relative to IPP, 1−QhPP/QIPP. For iid losses.

Among distinct frame decoding patterns with the same number of decoded frames, τ

is minimized by having minimal frame distance variation.

The differences in the sample mean µ̂IPP
τ −µ̂hPP

τ and the sample standard deviation

σ̂IPP
τ − σ̂hPP

τ in milliseconds can be seen in Figures 4.11 and 4.12. We can observe that,

hPP presents smaller mean and variance in the frame intervals at sending bitrates up

to 750 kbps; in other words, the decoded frames can be displayed with more regular

intervals in this bitrate range. Ultimately, we conjecture that taking advantage of

the temporal layering in hPP is advantageous for small sending bitrates. However, as

the sending bitrate grows larger, FEC can be applied more efficiently, and temporal

layering loses its edge for protection.

4.4.2 Evaluations for Bursty Packet Losses

For bursty packet losses, we focus on the effects of the average burst length λ at a

constant packet loss rate. We set ε = 0.1 and try λ = {2, 5, 10, 50}. To investigate

the layer redundancies better and make a clear comparison between IPP and hPP,
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Figure 4.11: Diff. of mean frame intervals τ IPP − τhPP (msec) for iid packet losses
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Figure 4.12: Diff. of std. of frame intervals σIPPτ − σhPPτ (msec) for iid packet losses
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we use a constant fe = 15 Hz in all our evaluations.

Using the hPP structure

Figure 4.13 shows that the achieved Q-STAR scores QhPP drop further as the average

burst length λ increases. Unlike the case of iid losses, FEC redundancy rate rhPP

varies across the SBR range in Figure 4.145. Particularly, when λ = 50 packets, rhPP

is much smaller for average block lengths up to 25 packets (RS ≤ 600 kbps). Clearly,

frame losses that occur due to a burst of packet losses are particularly severe when the

bursts are long and the FEC code blocks are short. In such cases, preventing frame

losses, given that there is a packet loss, may require quite large FEC redundancy

rates, leaving low bitrate for encoding the video. On the other hand, keeping ε

constant and increasing λ also increases the average number of consecutive packet

arrivals, which equals 1/ξ0|1. This means that the probability that there is a packet

loss within an intra-period diminishes, as the average burst length λ gets larger and

the sending bitrate RS gets smaller. As a consequence, the optimal FEC redundancy

rate rhPP is small for high λ and low RS values, but grows with RS, until the average

block length surpasses λ. At this point, our scheme starts to use FEC redundancy

rates that are roughly proportional to the average burst length.

Lastly, Figures 4.15 and 4.16 show that the gap between the layer redundancies

r(l) get narrower with increasing SBR, and wider with longer bursts. Specifically

in Fig. 4.16, we plot the layer redundancies against the average burst length for

RS = 1600 kbps. We can see that the FEC redundancies for the less important

enhancement layers diminish with the growing burst length. When the bursts are

sufficiently long, only the base layer is protected with FEC, and the redundancies

reach as high as 80%.

Using the IPP structure

Figure 4.17 shows that, when the packet losses are bursty, the IPP structure loses its

advantage if the average burst length is close to the average block length. In the same

figure, the horizontal axis is replaced again with the average FEC code block length

in packets. When the FEC blocks are significantly shorter compared to the average

5In the horizontal axis of this plot, we replaced SBR with the avg. FEC code block length that is
proportional to SBR, where each FEC block corresponds to a frame due to frame-level FEC coding.
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Figure 4.13: Q-STAR scores achieved for bursty packet losses with ε = 0.1, using
hPP with 3 TLs and fe = 15 Hz.
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Figure 4.14: FEC redundancy rates (%) for bursty packet losses with ε = 0.1, using
hPP with 3 TLs. Avg. FEC block size is calculated for each RS , with B = 200 Bytes.
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Figure 4.15: Layer redundancy rates (%) for bursty packet losses and using hPP
structure with 3 TLs, showing I-frame (blue), TL(1) (red), TL(2) (yellow), and TL(3)
(purple). Horizontal axis is SBR (Mbps). Columns correspond to different λ values
(top), rows correspond to different video sequences (left).

burst length, many frames are likely to get lost. In this case, neither IPP nor hPP is

particularly effective at preventing the frame losses, and IPP gains the upper hand

due to the high coding overhead of hPP at low bitrates. As the average block length

grows, hPP provides higher dFR than IPP, and thus achieves higher Q-STAR scores

despite its coding overhead. This is because, if a frame gets lost, all other frames in

the IPP structure are lost as well, while the hPP structure can pick up from the next

GoP at the latest, as long as no base layer frame is lost. This hints at a disadvantage

of the IPP structure when burst length is close to the average frame size. If the block

length is further increased well beyond the burst length, the difference between IPP

and hPP in terms of the delivered dFR decreases. This, coupled with the diminishing

coding overhead of hPP at high bitrates, results in similar Q-STAR scores in the high

SBR regime.

Similar to before, we conduct 105 simulations for each (RS, λ) pair and for each

coding structure, to compare the decoded frame distance statistics. We can observe

from Figures 4.18 and 4.19 that, hPP presents significantly smaller mean and variance

in the frame intervals in the whole SBR range. Ultimately, we conjecture that using

the hPP structure is advantageous when the average FEC block length is greater than

the average burst length.
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Figure 4.16: Layer redundancy rates (%) for bursty packet losses at RS = 1600 kbps
(avg. FEC block size = 67 packets) and using hPP structure with 3 TLs.
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Figure 4.17: Q-STAR reduction (%) relative to IPP, 1−QhPP/QIPP. For bursty losses
with ε = 0.1. Avg. block size is calculated for each RS , with B = 200 Bytes.
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Figure 4.18: Difference of mean frame intervals τ IPP − τhPP (msec) with IPP and
hPP for bursty losses with ε = 0.1, 105 simulations.
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Figure 4.19: Difference of standard deviations of frame intervals σIPPτ − σhPPτ (msec)
with IPP and hPP for bursty losses with ε = 0.1, 105 simulations.



Chapter 5

Conclusions and Future Work

In this thesis, we sought means to improve the quality of experience for the users

of real-time video communication systems. Towards this goal, we have identified

problems regarding multi-party video conferencing and video calling, and proposed

solution methods that are in the application layer.

In Chapter 2, we tackled P2P-MPVC systems, in which, using layered coding is

the “go-to” method to deal with peer bandwidth heterogeneity, due to its scalability,

reduced complexity with respect to simulcast, and error resiliency. However, it is

also well known that layered coders incur bitrate overheads. Alternatively, one can

partition receivers of the same source to multiple groups and distribute single-layer

video in each one, at the computation cost of multiple encodings. In this study, we

have investigated the problem of rate allocation and multicast tree construction in

P2P-MPVC systems for the layered and partitioned simulcast systems, under both

uplink and downlink capacity constraints, and assuming no packet loss. We have

shown that any distribution tree can be reduced to a collection of 1-hop and 2-hop

trees, allowing us to consider only such trees in the search for multicast distribu-

tion trees, without losing optimality, while constraining the delay to at most 2 hops.

Leveraging on this, we have designed a layer assignment heuristic and then deter-

mined the corresponding optimal rates for the layered system, assuming the coder

can generate a fine granularity scalable stream that can be divided into any number

of layers. For the partitioned simulcast approach, we have formulated the optimal

receiver partitioning problem and proposed a simple partitioning algorithm that also

determines the group rates for each source. Our simulations show that the video rates

in both systems are very close to the theoretical bounds, and the quality performance

90
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of the partitioned simulcast system is competitive with the “ideal” layered system

with no rate overhead in the 4-user case, and is better than the the layered system

even if the overhead is only 10% in the 4-user case and 20% in the 6-user case. With

6 users, the partitioning system provides similar performance as the layered system

with 10% overhead. Recognizing the significant complexity associated with the multi-

ple encodings required by the partitioned simulcast system, we further evaluated the

achievable performance by the partitioned simulcast system when only two receiver

groups are allowed. We found that the average received video quality achieved by

the partitioned simulcast system with only two groups is quite similar to, and even

better than that of the layered system with 10% overhead in the 4-user case and with

20% overhead in the 6-user case. The proposed design of the layered system assumes

the quality-rate function of the layered coder is known over the entire rate range, and

uses this knowledge to determine the optimal layer rates. In practice, the quality-rate

function of a layered coder depends on the desired rates of each layer. To circumvent

this chicken-and-egg problem, in our simulations, we generate a bitstream with many

thin layers, starting with a very low base layer rate. Such a fine-granularity scalable

coder unfortunately has a large rate overhead, limiting the performance of the layered

system severely. One possible way to improve the layered system is by considering a

layered coder with a limited number of layers (equal or less than the maximum num-

ber of receivers) and using a quality-rate function that depends on the rates of all

layers. This will however make the solution of optimal layer rate allocation problem

much harder, as the optimization problem will no longer be convex. However, heuris-

tic algorithms may be developed to yield approximate solutions. Lastly, the analysis

we presented here ignores packet losses, which can severely impact both systems’

performance. A real system must explicitly consider how to handle packet losses for

either design. We studied the maximization of the received perceptual quality in the

presence of packet losses in Chapter 4, the solution of which can be used to extend

this chapter’s analysis, by refining the achievable quality-rate curves for given packet

loss parameters.

In Chapter 3, we have studied video calling over cellular networks, where adapta-

tion to fast-changing network bandwidth and packet delay is of utmost importance.

In this chapter, we proposed a new real-time video delivery system, Rebera, designed

for cellular networks. Rebera’s proactive congestion controller uses the video frames

to actively measure the capacity of cellular links, and through these measurements
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makes a safe forecast for future capacity values, using the well-known adaptive filter-

ing techniques. Through its dynamic frame selection module designed for temporal

layered streams, Rebera ensures that its video sending rate never violates the forecast

by discarding higher layer frames, thereby preventing self-congestion, and reducing

the packet and consequently the frame delays. Our experiments showed that Rebera

is able to deliver higher bandwidth utilization and shorter packet and frame delays

compared with Apple’s FaceTime on average.

In Chapter 4, we have investigated the packet loss resiliency and video quality

maximization problems for video calls. Real-time video delivery is prone to packet

losses in the network. Achieving minimal latency and satisfactory QoE for such ap-

plications under high packet loss rate and long loss burst scenarios requires a joint

optimization of video coding methods applied, video resolutions used, and frame-level

FEC code rates within individual video frames. In this study, leveraging on prior stud-

ies, we have used a perceptual video quality model, Q-STAR, that accounts for the

effect of QS and the decoded frame rate separately, where dFR is simply approxi-

mated by the number of decodable frames per second. We explored methods to find

the encoding frame rate, the optimal video bitrate, and the optimal FEC redundancy

rate for each frame, by explicitly considering trade-offs between choosing different

encoding frame rates and mean QS values that achieve a target video bitrate. We

further considered two predictive encoding structures, namely the hierarchical-P and

the more traditional IPP...P. Hierarchical-P enables temporal layering, which enables

correct decoding of future frames in case an enhancement layer frame is lost, however,

suffers from the coding overhead. IPP...P, on the other hand, presents no overhead,

but cannot recover from frame losses until the next intra-period and therefore intro-

duces relatively long frame freezes when used together with the frame-copying error

concealment method. Considering the finite-length FEC blocks, we formulated the

quality maximization problem as a combinatorial optimization, and solved it using a

combination of exhaustive search, hill-climbing and greedy methods. We have shown

that, in case of iid losses up to 20%, the optimal FEC bitrate percentage can be ap-

proximated as an affine function of the packet loss rate. Furthermore, IPP structure

achieves higher Q-STAR scores at all sending rates. This, however, does not neces-

sarily mean that the actual perceptual quality with IPP is higher, because the IPP

structure is more likely to lead to uneven frame intervals, reflected by longer mean

frame intervals and higher variance of frame intervals at low sending rates. In case of
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bursty Markovian losses, we show that the IPP structure loses its edge that it gained

through its higher video coding efficiency, and hPP is favored when the average FEC

block size is greater than the average burst length. Our work can be improved by

carrying out a series of extensive subjective video quality tests, the results of which

can be used to extend the Q-STAR model so that the precise effect of irregular frame

arrivals on the perceived video quality can be established. Furthermore, one can

potentially design an online algorithm that determines the encoding frame rate, the

target video bitrate and the FEC redundancies, provided that the Q-STAR and R-

STAR model parameters are estimated in an online fashion, possibly from certain

features in the raw video, as has been done in [25].
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