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ABSTRACT

Image Segmentation Using Subspace Representation and Sparse

Decomposition

by

Shervin Minaee

Advisor: Prof. Yao Wang, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Computer Science)

May 2018

Image foreground extraction is a classical problem in image processing and

vision, with a large range of applications. In this dissertation, we focus on the ex-

traction of text and graphics in mixed-content images, and design novel approaches

for various aspects of this problem.

We first propose a sparse decomposition framework, which models the back-

ground by a subspace containing smooth basis vectors, and foreground as a sparse

and connected component. We then formulate an optimization framework to solve

this problem, by adding suitable regularizations to the cost function to promote

the desired characteristics of each component. We present two techniques to solve
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the proposed optimization problem, one based on alternating direction method

of multipliers (ADMM), and the other one based on robust regression. Promis-

ing results are obtained for screen content image segmentation using the proposed

algorithm.

We then propose a robust subspace learning algorithm for the representation

of the background component using training images that could contain both back-

ground and foreground components, as well as noise. With the learnt subspace

for the background, we can further improve the segmentation results, compared to

using a fixed subspace.

Lastly, we investigate a different class of signal/image decomposition problem,

where only one signal component is active at each signal element. In this case,

besides estimating each component, we need to find their supports, which can

be specified by a binary mask. We propose a mixed-integer programming prob-

lem, that jointly estimates the two components and their supports through an

alternating optimization scheme. We show the application of this algorithm on

various problems, including image segmentation, video motion segmentation, and

also separation of text from textured images.
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Chapter 1

Introduction

Image segmentation is a classical problem in image processing and computer

vision, which deals with partitioning the image into multiple similar regions. De-

spite its long history, it is still not a fully-solved problem, due to the variation of

images and segmentation objective. There are a wide range sub-categories of image

segmentation, including semantic segmentation, instance-aware semantic segmen-

tation, foreground segmentation in videos, depth segmentation, and foreground

segmentation in still images. This work develops various algorithms for foreground

segmentation in screen content and mixed-content images, where the foreground

usually refers to the text and graphics of the image, and multiple aspects of this

problem are studied. We start from sparsity based image segmentation algorithms,

and then present a robust subspace learning algorithm to model the background

component, and finally present an algorithm for masked signal decomposition.
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1.1 Motivation

With the new categories of images such as screen content images, new tech-

niques and modifications to previous algorithms are needed to process them. Screen

content images refer to images appearing on the display screens of electronic devices

such as computers and smart phones. These images have similar characteristics

as mixed content documents (such as a magazine page). They often contain two

layers, a pictorial smooth background and a foreground consisting of text and line

graphics. They show different characteristics from photographic images, such as

sharp edges, and having less distinct colors in each region. For example coding

these images with traditional transform based coding algorithm, such as JPEG

[1] and HEVC intra frame coding [2], may not be the best way for compressing

these images, mainly because of the sharp discontinuities in the foreground. In

these cases, segmenting the image into two layers and coding them separately may

be more efficient. Also because of different characteristics in the content of these

images from photographic images, traditional image segmentation techniques may

not work very well.

There have been some previous works for segmentation of mixed-content im-

ages, such as hierarchical k-means clustering in DjVu [3], and shape primitive

extraction and coding (SPEC) [4], but these works are mainly designed for images

where the background is very simple and do not have a lot of variations and they

usually do not work well when the background has a large color dynamic range,

or there are regions in background with similar colors to foreground. We propose

different algorithms for segmentation of screen content and mixed-content images,

by carefully addressing the problems and limitation of previous works.
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1.2 Contribution

This thesis focuses on developing segmentation methods that can overcome the

challenges of screen content and mixed content image segmentation and a suitable

subspace learning scheme to improve the results. More specifically, the following

aims are pursued:

• Developing a sparse decomposition algorithm for segmenting the foreground

in screen content images, by modeling the background as a smooth compo-

nent and foreground as a sparse and connected component. Suitable regular-

ization terms are added to the optimization framework to impose the desired

properties on each component.

• Developing a probabilistic algorithm for foreground segmentation using ro-

bust estimation. RANSAC algorithm [6] is proposed for sampling pixels from

image and building a model representation of the background, and treating

the outliers of background model as foreground region. This algorithm is

guaranteed to find the outliers (foreground pixels in image segmentation)

with an arbitrary high probability.

• Developing a subspace learning algorithm for modeling the underlying signal

and image in the presence of structured outliers and noise, using an alternat-

ing optimization algorithm for solving this problem, which iterates between

learning the subspace and finding the outliers. This algorithm is very effec-

tive for many of the real-world situations where acquiring clean signal/image

is not possible, as it automatically detects the outliers and performs the

subspace learning on the clean part of the signal.
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• Proposing a novel signal decomposition algorithm for the case where different

components are overlaid on top of each other, i.e. the value of each signal

element is coming from one and only one of its components. In this case,

to separate signal components, we need to find a binary mask which shows

the support of the corresponding component. We propose a mixed integer

programming problem which jointly estimates both components and finds

their supports. We also propose masked robust principal component analysis

(Masked-RPCA) algorithm that performs sparse and low-rank decomposition

under overlaid model. This is inspired by our masked signal decomposition

framework, and can be thought as the extension of that framework for 1D

signals, to 2D signals.

1.3 Outline

This thesis is organized as follows:

In Chapter 2, we discuss about two novel foreground segmentation algorithms,

which we developed for screen content images, one using sparse decomposition and

the other one using robust regression. The core idea of these two approaches is that

the background component of screen content images can be modeled with a smooth

subspace representation. We also provide the details of the optimization approach

for solving the sparse decomposition problem. To demonstrate the performance of

these algorithms, we prepared and manually labeled a dataset of over three hundred

screen content image blocks, and evaluated the performance of these models on

that dataset and compared with previous works.

In Chapter 3, we present the robust subspace learning approach, which is able
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to learn a smooth subspace representation for modeling the background layer in

the presence of structured outliers and noise. This algorithm can not only be used

for image segmentation, but it can also be used for subspace learning for any signal,

which is heavily corrupted with outliers and noise. We also study the application

of this algorithm for text extraction in images with complicated background and

provide the experimental results.

In Chapter 4, a new signal decomposition algorithm is proposed for the case

where the signal components are overlaid on top of each other, rather than simple

addition. In this case, beside estimating each signal component, we also need to

estimate its support. We propose an optimization framework, which can jointly

estimate both signal components and their supports. We show that this scheme

could significantly improve the segmentation results for text over textures. We

also show the application of this algorithm for motion segmentation in videos, and

also 1D signal decomposition. We then discuss about the extension of ”Robust

Principal Component Analysis (RPCA)” [45], to masked-RPCA, for doing sparse

and low-rank decomposition under overlaid model.

Finally we conclude this thesis in Chapter 5, and discuss future research direc-

tions along the above topics.
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Chapter 2

The Proposed Foreground

Segmentation Algorithms

Image segmentation is the process of assigning a label to each image pixel, in a

way that pixels with the same label have a similar property, such as similar color,

or depth, or belonging to the same object. One specific case of image segmenta-

tion is the foreground-background separation, which is to segment an image into

2 layers. Given an image of size N ×M , there are 2NM possible foreground seg-

mentation results. Foreground segmentation could deal with images or videos as

input. We mainly focus on foreground segmentation in still images in this work,

which could refer to segmenting an object of interest (such as the case in medical

image segmentation), or segmenting the texts and graphics from mixed content

images. It is worth mentioning that foreground segmentation from video usually

has a slight different objective from the image counterpart, which is to segment

the moving objects from the background.

Foreground segmentation from still images has many applications in image
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compression [7]-[9], text extraction [10]-[11], biometrics recognition [13]-[15], and

medical image segmentation [16]-[17].

In this chapter, we first give an overview of some of the popular algorithms

for foreground segmentation, such as algorithms based on k-means clustering [3],

sparse and low-rank decomposition [18], and shape primitive extraction and cod-

ing (SPEC) [4], and discuss some of their difficulties in dealing with foreground

segmentation in complicated images. We then study the background modeling

in the mixed-content images, and propose two algorithms to perform foreground

segmentation.

The proposed methods make use of the fact that the background in each block

is usually smoothly varying and can be modeled well by a linear combination of

a few smoothly varying basis functions, while the foreground text and graphics

create sharp discontinuity. The proposed algorithms separate the background and

foreground pixels by trying to fit background pixel values in the block into a smooth

function using two different schemes. One is based on robust regression [19], where

the inlier pixels will be considered as background, while remaining outlier pixels

will be considered foreground. The second approach uses a sparse decomposition

framework where the background and foreground layers are modeled with smooth

and sparse components respectively.

The proposed methods can be used in different applications such as text ex-

traction, separate coding of background and foreground for compression of screen

content, and medical image segmentation.
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2.1 Related Works

Different algorithms have been proposed in the past for foreground-background

segmentation in mixed content document images and screen-content video frames

such as hierarchical k-means clustering in DjVu [3] and shape primitive extraction

and coding (SPEC) [4], sparse and low-rank decomposition [18]. Also in [10], and

algorithm is proposed for text extraction in screen content images called scale and

orientation invariant text segmentation.

The hierarchical k-means clustering method proposed in DjVu applies the k-

means clustering algorithm with k=2 on blocks in multi-resolution. It first applies

the k-means clustering algorithm on large blocks to obtain foreground and back-

ground colors and then uses them as the initial foreground and background colors

for the smaller blocks in the next stage. It also applies some post-processing at the

end to refine the results. This algorithm has difficulty in segmenting regions where

background and foreground color intensities overlap and it is hard to determine

whether a pixel belongs to the background or foreground just based on its intensity

value.

In the shape primitive extraction and coding (SPEC) method, which was de-

veloped for segmentation of screen content, a two-step segmentation algorithm is

proposed. In the first step the algorithm classifies each block of size 16 × 16 into

either pictorial block or text/graphics based on the number of colors. If the num-

ber of colors is more than a threshold, 32, the block will be classified into pictorial

block, otherwise to text/graphics. In the second step, the algorithm refines the

segmentation result of pictorial blocks, by extracting shape primitives (horizontal

line, vertical line or a rectangle with the same color) and then comparing the size

and color of the shape primitives with some threshold. Because blocks contain-
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ing smoothly varying background over a narrow range can also have a small color

number, it is hard to find a fixed color number threshold that can robustly sep-

arate pictorial blocks and text/graphics blocks. Furthermore, text and graphics

in screen content images typically have some variation in their colors, even in the

absence of sub-pixel rendering. These challenges limit the effectiveness of SPEC.

In sparse and low-rank decomposition the image is assumed to consist of a

low rank component and a sparse component, and low-rank decomposition is used

to separate the low rank component from the sparse component. Because the

smooth backgrounds in screen content images may not always have low rank and

the foreground may happen to have low rank patterns (e.g. horizontal and vertical

lines), applying such decomposition and assuming the low rank component is the

background and the sparse component is the foreground may not always yield

satisfactory results.

The above problems with prior approaches motivate us to design a segmenta-

tion algorithm that does not rely solely on the pixel intensity but rather exploits

the smoothness of the background region, and the sparsity and connectivity of

foreground. In other words, instead of looking at the intensities of individual pix-

els and deciding whether each pixel should belong to background or foreground,

we first look at the smoothness of a group of pixels and then decide whether each

pixel should belong to background or foreground.
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2.2 Background Modeling for Foreground

Separation

One core idea of this work lies in the fact that if an image block only con-

tains background pixels, it should be well represented with a few smooth basis

functions. By well representation we mean that the approximated value at a pixel

with the smooth functions should have an error less than a desired threshold at

every pixel. Whereas if the image has some foreground pixels overlaid on top of

a smooth background, those foreground pixels cannot be well represented using

the smooth representation. Since the foreground pixels cannot be modeled with

this smooth representation they would usually have a large distortion by using this

model. Therefore the background segmentation task simplifies into finding the set

of inlier pixels, which can be approximated well using this smooth model. Now

some questions arise here:

1. What is a good class of smooth models that can represent the background

layer accurately and compactly?

2. How can we derive the background model parameters such that they are not

affected by foreground pixels, especially if we have many foreground pixels?

For the first question, we divide each image into non-overlapping blocks of

size N × N , and represent each image block, denoted by F (x, y), with a smooth

model as a linear combination of a set of two dimensional smooth functions as∑K
k=1 αkPk(x, y). Here low frequency two-dimensional DCT basis functions are

used as Pk(x, y), and the reason why DCT basis are used and how the number K

is chosen is explained at the end of this section. The 2-D DCT function is defined
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as Eq. (2.1):

Pu,v(x, y) = βuβvcos((2x+ 1)πu/2N)cos((2y + 1)πv/2N) (2.1)

where u and v denote the frequency indices of the basis and βu and βv are nor-

malization factors and x and y denote spatial coordinate of the image pixel. We

order all the possible basis functions in the conventional zig-zag order in the (u,v)

plane, and choose the first K basis functions.

The second question is kind of a chicken and egg problem: To find the model

parameters we need to know which pixel belongs to the background and to know

which pixel belongs to background we need to know what the model parameters

are. One simple way is to define some cost function, which measures the goodness

of fit between the original pixel intensities and the ones predicted by the smooth

model, and then minimize the cost function. If we use the `p-norm of the fitting

error (p can be 0, 1, or 2), the problem can be written as:

{α∗1, ..., α∗K} = arg min
α1,...,αK

∑
x,y

|F (x, y)−
K∑
k=1

αkPk(x, y)|p (2.2)

We can also look at the 1D version of the above optimization problem by con-

verting the 2D blocks of size N × N into a vector of length N2, denoted by f ,

by concatenating the columns and denoting
∑K

k=1 αkPk(x, y) as Pα where P is

a matrix of size N2 ×K in which the k-th column corresponds to the vectorized

version of Pk(x, y) and, α = [α1, ..., αK ]T. Then the problem can be formulated

as:

α∗ = argmin
α
‖f − Pα‖p (2.3)
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If we use the `2-norm (i.e. p = 2) for the cost function, the problem is simply the

least squares fitting problem and is very easy to solve. In fact it has a closed-form

solution as below:

α∗ = argmin
α
‖f − Pα‖2 ⇒ α = (P TP )−1P Tf (2.4)

But this formulation has a problem that the model parameters, α, can be adversely

affected by foreground pixels. Especially in least-square fitting (LSF), by squaring

the residuals, the larger residues will get larger weights in determining the model

parameters. We propose two approaches for deriving the model parameters, which

are more robust than LSF, in the following sections.

Now we explain why DCT basis functions are used to model the background

layer. To find a good set of bases for background, we first applied Karhunen-Loeve

transform [20] to a training set of smooth background images, and the derived bases

turn out to be very similar to 2D DCT and 2D orthonormal polynomials. Therefore

we compared these two sets of basis functions, the DCT basis and the orthonormal

polynomials, which are known to be efficient for smooth image representation. The

two dimensional DCT basis are outer-products of 1D DCT basis, and are well

known to be very efficient for representing natural images.

To derive 2D orthonormal polynomials over an image block of size N × N ,

we start with the N 1D vectors obtained by evaluating the simple polynomials

fn(x) = xn, at x = {1, 2, ..., N}, for n = 0, 1, .., N − 1 and orthonormalize them

using Gram-Schmidt process to get N orthonormal bases. After deriving the 1D

polynomial bases, we construct 2D orthonormal polynomial bases using the outer-

product of 1D bases.
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To compare DCT and orthonormal polynomial bases, we collected many smooth

background blocks of size 64× 64 from several images and tried to represent those

blocks with the first K polynomials and DCT basis functions in zigzag order.

Because each block contains only smooth background pixels, we can simply apply

least squares fitting to derive the model coefficients using Eq (2). Then we use

the resulting model to predict pixels’ intensities and find the mean squared error

(MSE) for each block. The reconstruction RMSEs (root MSE) as a function of the

number of used bases, K, for both DCT and polynomials are shown in Figure 2.1.

As we can see DCT has slightly smaller RMSE, so it is preferred over orthonormal

polynomials.

Figure 2.1: Background reconstruction RMSE vs. the number of bases.

It is worth to note that for more complicated background patterns, one could

use the hybrid linear models [21], [22] to represent the background using a union
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of subspaces. But for screen content images, the background can usually be well-

represented by a few low frequency DCT bases.

2.3 First Approach: Robust Regression Based

Segmentation

Robust regression is a form of regression analysis, which is developed to over-

come some limitations of traditional algorithms [19]. The performance of most of

the traditional regression algorithms can be significantly affected if the assump-

tions about underlying data-generation process are violated and they are highly

sensitive to the presence of outliers. The outlier can be thought as any data-point

or observation which does not follow the same pattern as the rest of observations.

The robust regression algorithms are designed to find the right model for a dataset

even in the presence of outliers. They basically try to remove the outliers from

dataset and use the inliers for model prediction.

RANSAC [6] is a popular robust regression algorithm. It is an iterative ap-

proach that performs the parameter estimation by minimizing the number of out-

liers (which can be thought as minimizing the `0-norm). RANSAC repeats two

iterative procedures to find a model for a set of data. In the first step, it takes a

subset of the data and derives the parameters of the model only using that subset.

The cardinality of this subset is the smallest sufficient number to determine the

model parameters. In the second step, it tests the model derived from the first

step against the entire dataset to see how many samples can be modeled consis-

tently. A sample will be considered as an outlier if it has a fitting error larger

than a threshold that defines the maximum allowed deviation. RANSAC repeats
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the procedure a fixed number of times and at the end, it chooses the model with

the largest consensus set (the set of inliers) as the optimum model. There is an

analogy between our segmentation framework and model fitting in RANSAC. We

can think of foreground pixels as outliers for the smooth model representing the

background. Therefore RANSAC can be used to perform foreground segmentation

task.

The proposed RANSAC algorithm for foreground/background segmentation of

a block of size N ×N is as follows:

1. Select a subset of K randomly chosen pixels. Let us denote this subset by

S = {(xl, yl), l = 1, 2, . . . , K}.

2. Fit the model
∑K

k=1 αkPk(x, y) to the pixels (xl, yl) ∈ S and find the αk’s.

This is done by solving the set of K linear equations
∑

k αkPk(xl, yl) =

F (xl, yl), l = 1, 2, . . . , K.

3. Test all N2 pixels F (x, y) in the block against the fitted model. Those pixels

that can be predicted with an error less than εin will be considered as the

inliers.

4. Save the consensus set of the current iteration if it has a larger size than the

largest consensus set identified so far.

5. If the inlier ratio, which is the ratio of inlier pixels to the total number of

pixels, is more than 95%, stop the algorithm.

6. Repeat this procedure up to Miter times.

After this procedure is finished, the pixels in the largest consensus set will be

considered as inliers or equivalently background. The final result of RANSAC can
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be refined by refitting over all inliers once more and finding all pixels with error

less than εin. To boost the speed of the RANSAC algorithm, we stop once we

found a consensus set which has an inlier ratio more than 0.95.

2.4 Second Approach: Sparse Decomposition

Sparse representation has been used for various applications in recent years,

including face recognition, super-resolution, morphological component analysis,

denosing, image restoration and sparse coding [23]-[30]. In this work, we explored

the application of sparse decomposition for image segmentation. As we mentioned

earlier, the smooth background regions can be well represented with a few smooth

basis functions, whereas the high-frequency component of the image belonging to

the foreground, cannot be represented with this smooth model. But using the fact

that foreground pixels occupy a relatively small percentage of the images we can

model the foreground with a sparse component overlaid on background. Therefore

it is fairly natural to think of mixed content image as a superposition of two

components, one smooth and the other one sparse, as shown below:

F (x, y) =
K∑
k=1

αkPk(x, y) + S(x, y) (2.5)

where
∑K

i=1 αiPi(x, y) and S(x, y) correspond to the smooth background region

and foreground pixels respectively. Therefore we can use sparse decomposition

techniques to separate these two components. After decomposition, those pixels

with large value in the S component will be considered as foreground. We will

denote this algorithm as ”SD”, for notation brevity.
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To have a more compact notation, we will look at the 1D version of this problem.

Denoting the 1D version of S(x, y) by s, Eq. (2.5) can be written as:

f = Pα + s (2.6)

Now to perform image segmentation, we need to impose some prior knowledge

about background and foreground to our optimization problem. Since we do not

know in advance how many basis functions to include for the background part, we

allow the model to choose from a large set of bases that we think are sufficient to

represent the most ”complex” background, while minimizing coefficient `0 norm

to avoid overfitting of the smooth model on the foreground pixels. Because if we

do not restrict the parameters, we may end up with a situation that even some of

the foreground pixels are represented with this model (imagine the case that we

use a complete set of bases for background representation). Therefore the number

of nonzero components of α should be small (i.e. ‖α‖0 should be small). On the

other hand we expect the majority of the pixels in each block to belong to the

background component, therefore the number of nonzero components of s should

be small. And the last but not the least one is that foreground pixels typically

form connected components in an image, therefore we can add a regularization

term which promotes the connectivity of foreground pixels. Here we used total

variation of the foreground component to penalize isolated points in foreground.

Putting all of these priors together we will get the following optimization problem:

minimize
s,α

‖α‖0 + λ1‖s‖0 + λ2TV (s)

subject to f = Pα + s

(2.7)
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where λ1 and λ2 are some constants which need to be tuned. For the first two

terms since `0 is not convex, we use its approximated `1 version to have a convex

problem. For the total variation we can use either the isotropic or the anisotropic

version of 2D total variation [31]. To make our optimization problem simpler, we

have used the anisotropic version in this algorithm, which is defined as:

TV (s) =
∑
i,j

|Si+1,j − Si,j|+ |Si,j+1 − Si,j| (2.8)

After converting the 2D blocks into 1D vector, we can denote the total variation

as below:

TV (s) = ‖Dxs‖1 + ‖Dys‖1 = ‖Ds‖1 (2.9)

where D = [D′x, D
′
y]
′. Then we will get the following problem:

minimize
s,α

‖α‖1 + λ1‖s‖1 + λ2‖Ds‖1

subject to Pα + s = f

(2.10)

From the constraint in the above problem, we get s = f − Pα and then we derive

the following unconstrained problem:

min
α
‖α‖1 + λ1‖f − Pα‖1 + λ2‖Df −DPα‖1 (2.11)

This problem can be solved with different approaches, such as alternating direc-

tion method of multipliers (ADMM) [32], majorization minimization [33], proximal

algorithm [34] and iteratively reweighted least squares minimization [35]. Here we

present the formulation using ADMM algorithm.
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2.4.1 ADMM for solving L1 optimization

ADMM is a variant of the augmented Lagrangian method that uses the partial

update for dual variable. It has been widely used in recent years, since it works for

more general classes of problems than some other methods such as gradient descent

(for example it works for cases where the objective function is not differentiable).

To solve Eq. (2.11) with ADMM, we introduce the auxiliary variable y, z and x

and convert the original problem into the following form:

minimize
α,y,z,x

‖y‖1 + λ1‖z‖1 + λ2‖x‖1

subject to y = α

z = f − Pα

x = Df −DPα

(2.12)

Then the augmented Lagrangian for the above problem can be formed as:

Lρ1,ρ2,ρ3(α, y, z, x) = ‖y‖1 + λ1‖z‖1 + λ2‖x‖1 + ut1(y − α) + ut2(z + Pα− f)+

ut3(x+DPα−Df) +
ρ1
2
‖y − α‖22 +

ρ2
2
‖z + Pα− f‖22 +

ρ3
2
‖x+DPα−Df‖22

(2.13)

where u1, u2 and u3 denote the dual variables. Then, we can find the update rule of

each variable by setting the gradient of the objective function w.r.t. to the primal

variables to zero and using dual descent for dual variables. The detailed variable

updates are shown in Algorithm 1.
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Algorithm 1 pseudo-code for ADMM updates of problem in Eq. (2.13)

1: for k=1:kmax do
2: αk+1 = argmin

α
Lρ1:3(α, y

k, zk, xk, uk1, u
k
2, u

k
3) = A−1

[
uk1 − P tuk2 − P tDtuk3 +

ρ1y
k + ρ2P

t(f − zk) + ρ3P
tDt(Df − xk)

]
3: yk+1 = argmin

y
Lρ1:3(α

k+1, y, zk, xk, uk1, u
k
2, u

k
3) = Soft(αk − 1

ρ1
uk1,

1
ρ1

)

4: zk+1 = argmin
z

Lρ1:3(α
k+1, yk+1, z, xk, uk1, u

k
2, u

k
3) = Soft(f−Pαk+1− 1

ρ2
uk2,

λ1
ρ2

)

5: xk+1 = argmin
x

Lρ1:3(α
k+1, yk+1, zk+1, x, uk1, u

k
2, u

k
3) = Soft(Df − DPαk+1 −

1
ρ3
uk3,

λ2
ρ3

)

6: uk+1
1 = uk1 + ρ1(y

k+1 − αk+1)

7: uk+1
2 = uk2 + ρ2(z

k+1 + Pαk+1 − f)

8: uk+1
3 = uk3 + ρ3(x

k+1 +DPαk+1 −Df)

9: end for

Where A = (ρ3P
tDtDP + ρ2P

tP + ρ1I)

Here Soft(., λ) denotes the soft-thresholding operator applied elementwise and

is defined as:

Soft(x, λ) = sign(x) max(|x| − λ, 0) (2.14)

The setting for the parameters ρ1:3 and the regularization weights λ1:3 are explained

in section IV.

After finding the values of α, we can find the sparse component as s = f −Pα.

Then those pixels with values less than an inlier threshold εin in s will be considered

as foreground.

To show the advantage of minimizing `1 over `2, and also sparse decomposi-

tion over both `1 and `2 minimization approaches, we provide the segmentation

result using least square fitting (LSF), least absolute deviation fitting (LAD) [36],
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and also sparse decomposition (SD) framework for a sample image consists of

foreground texts overlaid on a constant background. The original image and the

segmentation results using LSF, LAD and SD are shown in Figure 2.2.

Figure 2.2: The original image (first row), the segmented foreground using least
square fitting (second row), least absolute deviation (third row) and sparse decom-
position (last row).

The reconstructed smooth model by these algorithms are shown in Figure 2.3.

All methods used 10 DCT basis for representing the background and the same

inlier threshold of 10 is used here.

Figure 2.3: The reconstructed background layer using least square fitting (top
image), least absolute deviation (middle image) and sparse decomposition (bottom
image)

As we can see, the smooth model derived by LSF is largely affected by the
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foreground pixels. The ideal smooth model should have the same color as actual

background (here gray), but because of the existence of many text pixels with

white color the LSF solution tries to find a trade-off between fitting the texts and

fitting the actual background, which results in inaccurate representation of either

background or foreground in the regions around text. Therefore the regions around

texts will have error larger than the inlier threshold and be falsely considered as

the foreground pixels. The smooth model produced by the LAD approach was less

affected by the foreground pixels than the LSF solution, because it minimizes the `1

norm of the fitting error s. However, in blocks where there is a larger percentage of

foreground pixels (bottom middle and right regions), LAD solution is still adversely

affected by the foreground pixels. The SD approach yielded accurate solution in

this example, because it considers the `1 norm of the fitting coefficient, α, and the

TV norm of s, in addition to the `1 norm of s. Although the LAD solution leads to

smaller `1 norm of the fitting error, it also leads to a much larger `1 norm of α as

well. By minimizing all three terms, the SD solution obtains a background model

that uses predominantly only the DC basis, which represented the background

accurately.

To confirm that the SD solution indeed has a smaller `1 norm of α, we show

below the derived α values using each scheme in (2.15). As we can see the derived

α by SD has much smaller `0 and `1 norm than the other two.

αLSF = (7097,−359, 19,−882, 177,−561, 863, 953, 113,−554)

αLAD = (5985,−599, 201,−859,−13,−96, 365, 39, 464,−411)

αSD = (4735,−1, 0,−4, 0,−1, 0, 0, 0, 1)

(2.15)

Both of the proposed segmentation algorithms performs very well on majority
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of mixed content images, but for blocks that can be easily segmented with other

methods, RANSAC/SD may be an overkill. Therefore, we propose a segmentation

algorithm that has different modes in the next Section.

2.5 Overall Segmentation Algorithms

We propose a segmentation algorithm that mainly depends on RANSAC/SD

but it first checks if a block can be segmented using some simpler approaches

and it goes to RANSAC/SD only if the block cannot be segmented using those

approaches. These simple cases belong to one of these groups: pure background

block, smoothly varying background only and text/graphic overlaid on constant

background.

Pure background blocks are those in which all pixels have similar intensities.

These kind of blocks are common in screen content images. These blocks can be

detected by looking at the standard deviation or maximum absolute deviation of

pixels’ intensities. If the standard deviation is less than some threshold we declare

that block as pure background.

Smoothly varying background only is a block in which the intensity variation

over all pixels can be modeled well by a smooth function. Therefore we try to fit

K DCT basis to all pixels using least square fitting. If all pixels of that block can

be represented with an error less than a predefined threshold, εin, we declare it as

smooth background.

The last group of simple cases is text/graphic overlaid on constant background.

The images of this category usually have zero variance (or very small variances)

inside each connected component. These images usually have a limited number of
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different colors in each block (usually less than 10) and the intensities in different

parts are very different. We calculate the percentage of each different color in that

block and the one with the highest percentage will be chosen as background and

the other ones as foreground.

When a block does not satisfy any of the above conditions, RANSAC/SD will

be applied to separate the background and the foreground. If the segmentation is

correct, the ratio of background pixels over the total number of pixels should be

fairly large (greater than at least half ). When the ratio is small, the background

of the block may be too complex to be presented by the adopted smooth func-

tion model. This may also happen when the block sits at the intersection of two

smooth backgrounds. To overcome these problems, we apply the proposed method

recursively using a quadtree structure. When the inlier ratio of the current block

is less than ε2, we divide it into 4 smaller blocks and apply the proposed algorithm

on each smaller block, until the smallest block size is reached.

The overall segmentation algorithm is summarized as follows:

1. Starting with block sizeN = 64, if the standard deviation of pixels’ intensities

is less than ε1 (i.e. pixels in the block have very similar color intensity), then

declare the entire block as background. If not, go to the next step;

2. Perform least square fitting using all pixels. If all pixels can be predicted

with an error less than εin, declare the entire block as background. If not, go

to the next step;

3. If the number of different colors (in terms of the luminance value) is less than

T1 and the intensity range is above R, declare the block as text/graphics over

a constant background and find the background as the color in that block
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with the highest percentage of pixels. If not, go to the next step;

4. Use RANSAC/SD to separate background and foreground using the lumi-

nance component only. Verify that the corresponding chrominance compo-

nents of background pixels can also be fitted using K basis functions with an

error less than εin. If some of them cannot be fitted with this error, remove

them from inliers set. If the percentage of inliers is more than a threshold ε2

or N is equal to 8, the inlier pixels are selected as background. If not go to

the next step;

5. Decompose the current block of size N×N into 4 smaller blocks of size N
2
×N

2

and run the segmentation algorithm for all of them. Repeat until N = 8.

To show the advantage of quad-tree decomposition, we provide an example of

the segmentation map without and with quad-tree decomposition in Figure 2.4.

As we can see, using quadtree decomposition we get much better result compared

to the case with no decomposition. When we do not allow a 64 × 64 block to

be further divided, only a small percentage of pixels can be represented well by

a smooth function, leaving many pixels as foreground. It is worth mentioning

that the gray region on the top of the image is considered as foreground in the

segmentation result without using quadtree decomposition. This is because the

first row of 64× 64 blocks contain two smooth background regions with relatively

equal size.
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Figure 2.4: Segmentation result for a sample image, middle and right images denote
foreground map without and with quad-tree decomposition using the RANSAC as
the core algorithm.

2.6 Experimental Results

To enable rigorous evaluation of different algorithms, we have generated an

annotated dataset consisting of 328 image blocks of size 64 × 64, extracted from

sample frames from HEVC test sequences for screen content coding [37]. The

ground truth foregrounds for these images are extracted manually by the author

and then refined independently by another expert. This dataset is publicly avail-

able at [38].

Table 2.1 summarizes the parameter choices in the proposed algorithms. The

largest block size is chosen to be N=64, which is the same as the largest CU

size in HEVC standard. The thresholds used for preprocessing (steps 1-3) should

be chosen conservatively to avoid segmentation errors. In our simulations, we

have chosen them as ε1 = 3, T1 = 10 and R = 50, which achieved a good trade

off between computation speed and segmentation accuracy. For the RANSAC

algorithm, the maximum number of iteration is chosen to be 200. For the sparse

decomposition algorithm, the weight parameters in the objective function are tuned

by testing on a validation set and are set to be λ1 = 10 and λ2 = 4. The ADMM



27

algorithm described in Algorithm 1 is implemented in MATLAB, which the code

available in [38]. The number of iteration for ADMM is chosen to be 50 and the

parameter ρ1, ρ2 and ρ3 are all set to 1 as suggested in [39].

Table 2.1: Parameters of our implementation
Parameter description Notation Value
Maximum block size N 64
Inlier distortion threshold εin 10
Background standard deviation threshold ε1 3
Qaud-tree decomposition threshold ε2 0.5
Max number of colors for text over constant back-
ground

T1 10

Min intensity range for text over constant back-
ground

R 50

Sparsity weight in SD algorithm λ1 10
Total variation weight in SD algorithm λ2 4

To find the number of DCT basis functions, K, and inlier threshold, εin, for

RANSAC and sparse decomposition, we did a grid search over pairs of these pa-

rameters, in the range of 6 to 10 for K and 5 to 15 for εin, on some training images,

and then chose the one which achieved the best result in terms of average F1-score.

The parameter values that resulted in the best F1-score on our training images are

shown in Table 2.2.

Table 2.2: The chosen values for the inlier threshold and number of bases

Segmentation Algorithm LAD RANSAC SD
Inlier threshold 10 10 10
Number of bases 6 10 10

Before showing the segmentation result of the proposed algorithms on the test

images, we illustrate how the segmentation result varies by changing different pa-

rameters in RANSAC algorithm. The sparse decomposition algorithm would also

have the same behavior.
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To evaluate the effect of the distortion threshold, εin, for inlier pixels in the

final segmentation result, we show the foreground map derived by several different

thresholds in Figure 2.5. As we can see by increasing the threshold more and more

pixels are considered as background.

Figure 2.5: Segmentation results of the RANSAC method by varying the inlier
threshold εin. The foreground maps from left to right and top to bottom are
obtained with εin setting to 5, 10, 25, 35, and 45, respectively.

To assess the effect of the number of basis, K, in the final segmentation result,

we show the foreground map derived by several different number of basis functions

using the RANSAC method in Figure 2.6.

To illustrate the smoothness of the background layer and its suitability for

being coded with transform-based coding, the filled background layer of a sample

image is presented in Figure 2.7. The background holes (those pixels that belong

to foreground layers) are filled by the predicted value using the smooth model,

which is obtained using the least squares fitting to the detected background pixels.

As we can see the background layer is very smooth and does not have any sharp
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Figure 2.6: Segmentation results of the RANSAC method using different number
of basis functions. The foreground maps from left to right and top to bottom are
obtained with 2, 5, 10, 15, and 20 basis functions, respectively.

edges.

We compare the proposed algorithms with hierarchical k-means clustering used

in DjVu, SPEC, least square fitting, and LAD algorithms. For SPEC, we have

adapted the color number threshold and the shape primitive size threshold from

the default value given in [4] when necessary to give more satisfactory result.

Furthermore, for blocks classified as text/graphics based on the color number,

we segment the most frequent color and any similar color to it (i.e. colors whose

distance from most frequent color is less than 10 in luminance) in the current block

as background and the rest as foreground. We have also provided a comparison

with least square fitting algorithm result, so that the reader can see the benefit of

minimizing the `0 and `1 norm over minimizing the `2 norm.

To provide a numerical comparison between the proposed scheme and previous

approaches, we have calculated the average precision and recall and F1 score (also
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Figure 2.7: The reconstructed background of an image

known as F-measure) [40] achieved by different segmentation algorithms over this

dataset. The precision and recall are defined as:

Precision =
TP

TP+FP
, Recall =

TP

TP+FN
, (2.16)

where TP,FP and FN denote true positive, false positive and false negative re-

spectively. In our evaluation, we treat the foreground pixels as positive. A pixel

that is correctly identified as foreground (compared to the manual segmentation)

is considered true positive. The same holds for false negative and false positive.

The balanced F1 score is defined as the harmonic mean of precision and recall, i.e.

F1 = 2
Precision×Recall
Precision+Recall

(2.17)

The average precision, recall and F1 scores by different algorithms are given in

Table 2.3. As can be seen, the two proposed schemes achieve much higher preci-

sion and recall than the DjVu and SPEC algorithms, and also provide noticeable

gain over our prior LAD approach. Among the two proposed methods, sparse
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decomposition based algorithm achieved high precision, but lower recall than the

RANSAC algorithm.

Table 2.3: Segmentation accuracies of different algorithms
Segmentation Algorithm Precision Recall F1 score
SPEC [4] 50% 64% 56%
DjVu [3] 64% 69% 66%
Least square fitting 79% 60% 68%
Least Absolute Deviation [36] 90.5% 87% 88.7%
RANSAC based segmentation 91% 90% 90.4%
Sparse Decomposition Algorithm 94% 87.2% 90.5%

The results for 5 test images (each consisting of multiple 64x64 blocks) are

shown in Figure 2.8. Each test image is a small part of a frame from a HEVC SCC

test sequence.

It can be seen that in all cases the proposed algorithms give superior perfor-

mance over DjVu and SPEC, and slightly better than our prior LAD approach in

some images. Note that our dataset mainly consists of challenging images where

the background and foreground have overlapping color ranges. For simpler cases

where the background has a narrow color range that is quite different from the

foreground, both DjVu and the proposed methods will work well. On the other

hand, SPEC does not work well when the background is fairly homogeneous within

a block and the foreground text/lines have varying colors.

It can be seen that in all cases the proposed algorithms give superior perfor-

mance over DjVu and SPEC, and slightly better than our prior LAD approach in

some images. Note that our dataset mainly consists of challenging images where

the background and foreground have overlapping color ranges. For simpler cases

where the background has a narrow color range that is quite different from the

foreground, both DjVu and the proposed methods will work well. On the other
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hand, SPEC does not work well when the background is fairly homogeneous within

a block and the foreground text/lines have varying colors.

In terms of complexity, it took 20, 506 and 962 ms on average for a block of

64 × 64 to be segmented using RANSAC, LAD and sparse decomposition based

segmentation algorithms (with the pre-processing steps) using MATLAB 2015 on

a laptop with Windows 10 and Core i5 CPU running at 2.6GHz.

2.7 Conclusion

In this chapter, we proposed two novel segmentation algorithms for separating

the foreground text and graphics from smooth background. The background is

defined as the smooth component of the image that can be well modeled by a set

of low frequency DCT basis functions and the foreground refers to those pixels

that cannot be modeled with this smooth representation. One of the proposed

algorithms uses robust regression technique to fit a smooth function to an image

block and detect the outliers. The outliers are considered as the foreground pixels.

Here RANSAC algorithm is used to solve this problem. The second algorithm

uses sparse decomposition techniques to separate the smooth background from the

sparse foreground layer. Total variation of the foreground component is also added

to the cost function to enforce the foreground pixels to be connected. Instead

of applying the proposed algorithms to every block, which are computationally

demanding, we first check whether the block satisfies several conditions and can

be segmented using simple methods. We further propose to apply the algorithm

recursively using quad-tree decomposition, starting with larger block sizes. A block

is split only if RANSAC or sparse decomposition cannot find sufficient inliers in
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this block. These algorithms are tested on several test images and compared with

three other well-known algorithms for background/foreground separation and the

proposed algorithms show significantly better performance for blocks where the

background and foreground pixels have overlapping intensities.
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Figure 2.8: Segmentation result for selected test images. The images in the first and
second rows are the original and ground truth segmentation images. The images
in the third, fourth, fifth and the sixth rows are the foreground maps obtained
by shape primitive extraction and coding, hierarchical clustering in DjVu, least
square fitting, and least absolute deviation fitting approaches. The images in the
seventh and eighth rows include the results by the proposed RANSAC and sparse
decomposition algorithms respectively.
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Chapter 3

Robust Subspace Learning

Subspace learning is an important problem, which has many applications in

image and video processing. It can be used to find a low-dimensional representation

of signals and images. But in many applications, the desired signal is heavily

distorted by outliers and noise, which negatively affect the learned subspace. In this

work, we present a novel algorithm for learning a subspace for signal representation,

in the presence of structured outliers and noise. The proposed algorithm tries

to jointly detect the outliers and learn the subspace for images. We present an

alternating optimization algorithm for solving this problem, which iterates between

learning the subspace and finding the outliers. We also show the applications of

this algorithm in image foreground segmentation. It is shown that by learning

the subspace representation for background, better performance can be achieved

compared to the case where a pre-designed subspace is used.

In Section 3.1. we talk about some background on subspace learning . We then

present the proposed method in Section 3.2. Section 3.3 provides the experimental

results for the proposed algorithm, and its application for image segmentation.
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3.1 Background and Relevant Works

Many of the signal and image processing problems can be posed as the prob-

lem of learning a low dimensional linear or multi-linear model. Algorithms for

learning linear models can be seen as a special case of subspace fitting. Many of

these algorithms are based on least squares estimation techniques, such as princi-

pal component analysis (PCA) [41], and linear discriminant analysis (LDA) [42].

But in general, training data may contain undesirable artifacts due to occlusion,

illumination changes, overlaying component (such as foreground texts and graph-

ics on top of smooth background image). These artifacts can be seen as outliers

for the desired signal. As it is known from statistical analysis, algorithms based

on least square fitting fail to find the underlying representation of the signal in

the presence of outliers [43]. Different algorithms have been proposed for robust

subspace learning to handle outliers in the past, such as the work by Torre [44],

where he suggested an algorithm based on robust M-estimator for subspace learn-

ing. Robust principal component analysis [45] is another approach to handle the

outliers. In [46], Lerman et al proposed an approach for robust linear model fitting

by parameterizing linear subspace using orthogonal projectors. There have also

been many works for online subspace learning/tracking for video background sub-

traction, such as GRASTA [47], which uses a robust `1-norm cost function in order

to estimate and track non-stationary subspaces when the streaming data vectors

are corrupted with outliers, and t-GRASTA [48], which simultaneously estimate a

decomposition of a collection of images into a low-rank subspace, and sparse part,

and a transformation such as rotation or translation of the image.

In this work, we present an algorithm for subspace learning from a set of im-

ages, in the presence of structured outliers and noise. We assume sparsity and
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connectivity priors on outliers that suits many of the image processing applica-

tions. As a simple example we can think of smooth images overlaid with texts and

graphics foreground, or face images with occlusion (as outliers). To promote the

connectivity of the outlier component, the group-sparsity of outlier pixels is added

to the cost function. We also impose the smoothness prior on the learned subspace

representation, by penalizing the gradient of the representation. We then propose

an algorithm based on the sparse decomposition framework for subspace learning.

This algorithm jointly detects the outlier pixels and learn the low-dimensional

subspace for underlying image representation.

We then present its application for background-foreground segmentation in still

images, and show that it achieves better performance than previous algorithms.

We compare our algorithm with some of the prior approaches, including sparse

and low-rank decomposition, and group sparsity based segmentation using DCT

bases. The proposed algorithm has applications in text extraction, medical image

analysis, and image decomposition [49]-[51].

Figure 3.1 shows a comparison between the foreground mask derived from the

proposed segmentation algorithm and hierarchical clustering for a sample image.

Figure 3.1: The left, middle and right images denote the original image, segmented
foreground by hierarchical k-means and the proposed algorithm respectively.
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3.2 Problem Formulation

Despite the high-dimensionality of images (and other kind of signals), many

of them have a low-dimensional representation. For some category of images, this

representation may be a very complex manifold which is not simple to find, but for

many of the smooth images this low-dimensional representation can be assumed

to be a subspace. Therefore each signal x ∈ RN can be efficiently represented:

x ' Pα (3.1)

where P ∈ RN×k and k � N , and α denotes the representation coefficient in the

subspace.

There have been many approaches in the past to learn P efficiently, such as PCA

and robust-PCA. But in many scenarios, the desired signal can be heavily distorted

with outliers and noise, and those distorted pixels should not be taken into account

in subspace learning process, since they are assumed to not lie on the desired signal

subspace. Therefore a more realistic model for the distorted signals should be as:

x = Pα + s+ ε (3.2)

where s and ε denote the outlier and noise components respectively. Here we

propose an algorithm to learn a subspace, P , from a training set of Nd samples xi,

by minimizing the noise energy (‖εi‖22 = ‖xi−Pαi−si‖22), and some regualrization
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term on each component, as shown in Eq. (3.3):

min
P,αi,si

Nd∑
i=1

1

2
‖xi − Pαi − si‖22 + λ1φ(Pαi) + λ2ψ(si)

s.t. P tP = I, si ≥ 0

(3.3)

where φ(.) and ψ(.) denote suitable regularization terms on the first and second

components, promoting our prior knowledge about them. Here we assume the

underlying image component is smooth, therefore it should have a small gradient.

And for the outlier, we assume it is sparse and also connected. Hence φ(Pαi) =

‖∇Pαi‖22, and ψ(s) = ‖s‖1 + β
∑

m ‖sgm‖2, where gm shows the m-th group in the

outlier (the pixels within each group are supposed to be connected).

Putting all these together, we will get the following optimization problem:

min
P,αi,si

Nd∑
i=1

1

2
‖xi − Pαi − si‖22 + λ1‖∇Pαi‖22 + λ2‖si‖1 + λ3

∑
m

‖si,gm‖2

s.t. P tP = I, si ≥ 0

(3.4)

Here by si ≥ 0 we mean all elements of the vector si should be non-negative. Note

that ‖∇Pαi‖22 denotes the spatial gradient, which can be written as:

‖∇Pαi‖22 = ‖DxPαi‖22 + ‖DyPαi‖22 = ‖DPαi‖22 (3.5)

where Dx and Dy denote the horizontal and vertical derivative matrix operators,

and D = [Dt
x, D

t
y]
t.

The optimization problem in Eq. (3.4) can be solved using alternating opti-

mization over αi, si and P . In the following part, we present the update rule for



40

each variable by setting the gradient of cost function w.r.t that variable to zero.

The update step for αi would be:

α∗i = argmin
αi

{1

2
‖xi − Pαi − si‖22 +

λ1
2
‖DPαi‖22 = Fα(αi)} ⇒

∇αi
Fα(α∗i ) = 0⇒ P t(Pα∗i + si − xi) + λ1P

tDtDPα∗i = 0⇒

α∗i = (P tP + λ1P
tDtDP )−1P t(xi − si)

(3.6)

The update step for the m-th group of the variable si is as follows:

si,gm = argmin
si

{1

2
‖(xi − Pαi)gm − si,gm‖22 + λ2‖si,gm‖1+

λ3‖si,gm‖2 = Fs(si,gm)} s.t. si,gm ≥ 0

⇒ ∇si,gm
Fs(si,gm) = 0⇒ si,gm + (Pαi − xi)gm + λ2sign(si,gm)

+ λ3
si,gm
‖si,gm‖2

= 0⇒ si,gm + λ3
si,gm
‖si,gm‖2

= (xi − Pαi)gm − λ21

⇒ si,gm = block-soft((xi − Pαi)gm − λ21, λ3)

(3.7)

Note that, because of the constraint si,gm ≥ 0, we can approximate sign(si,gm) = 1,

and then project the si,gm from soft-thresholding result onto si,gm ≥ 0, by setting

its negative elements to 0. The block-soft(.) [52] is defined as Eq. (3.8):

block-soft(y, t) = max(1− t

‖y‖2
, 0) y (3.8)

For the subspace update, we first ignore the orthonormality constraint (P tP = I),

and update the subspace column by column, and then use Gram-Schmidt algorithm

[53] to orthonormalize the columns. If we denote the j-th column of P by pj, its
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update can be derived as:

P = argmin
P

{
∑
i

1

2
‖xi − Pαi − si‖22 + λ1‖DPαi‖22} ⇒

pj = argmin
pj

{
∑
i

1

2
‖(xi −

∑
k 6=j

pkαi(k)− si)− pjαi(j)‖22+

λ1‖D
∑
k 6=j

pkαi(k) +Dpjαi(j)‖22 =
∑
i

1

2
‖ηi,j − pjαi(j)‖22+

λ1‖γi,j +Dpjαi(j)‖22 = Fp(pj)} ⇒ ∇pjFp(p
∗
j) = 0⇒∑

i

αi(j)
(
αi(j)pj − ηi,j

)
+ λ1αi(j)D

t
(
αi(j)Dpj + γi,j

)
= 0⇒

(∑
i

α2
i (j)

)
(I + λ1D

tD)pj =
∑
i

(
αi(j)ηi,j − λ1αi(j)Dtγi,j

)
= βj

⇒ pj = (I + λ1D
tD)−1βj/

(∑
i

α2
i (j)

)

(3.9)

where ηi,j = xi− si−
∑

k 6=j pkαi(k), and γi,j = D
∑

k 6=j pkαi(k). After updating all

columns of P , we apply Gram-Schmidt algorithm to project the learnt subspace

onto P tP = I. Note that orthonormalization should be done at each step of

alternating optimization. It is worth to mention that for some applications the

non-negativity assumption for the structured outlier may not be valid, so in those

cases we will not have the si ≥ 0 constraint. In that case, the problem can be

solved in a similar manner, but we need to introduce an auxiliary variable s = z,

to be able to get a simple update for each variable.

looking at (3.2) it seems very similar to our image segmentation framework

based on sparse decomposition, which is discussed in previous chapter. Therefore

we study the application of subspace learning for the foreground separation prob-

lem, and show that it can bring further gain in segmentation results by learning

a suitable subspace for background modeling. Here we consider foreground seg-
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mentation based on the optimization problem in Eq. (3.10). Notice that we use

group-sparsity to promote foreground connectivity in this formulation, to have a

consistent optimization framework with our proposed subspace learning algorithm.

min
α,s

1

2
‖x− Pα− s‖22 + λ1‖DPα‖22 + λ2‖s‖1 + λ3

∑
m

‖sgm‖2

s.t. s ≥ 0

(3.10)

3.3 Experimental Results

To evaluate the performance of our algorithm, we trained the proposed frame-

work on image patches extracted from some of the images of the screen content

image segmentation dataset provided in [36]. Before showing the results, we report

the weight parameters in our optimization. We used λ1 = 0.5, λ2 = 1 and λ3 = 2,

which are tuned by testing on a validation set. We provide the results for subspace

learning and image segmentation in the following sections.

3.3.1 The Learned Subspace

We extracted around 8,000 overlapping patches of size 32x32, with stride of

5 from a subset of these images and used them for learning the subspace, and

learned two subspaces, one 64 dimensional subspace (which means 64 basis images

of size 32x32), and the other one 256 dimensional. The learned atoms of each of

these subspaces are shown in Figure 3.2. As we can see the learned atoms contain

different edge and texture patterns, which is reasonable for image representation.

The right value of subspace dimension highly depends to the application. For

image segmentation problem studied in this paper, we found that using only first



43

20 atoms performs well on image patches of 32x32.

Figure 3.2: The learned basis images for the 64, and 256 dimensional subspace, for

32x32 image blocks
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3.3.2 Applications in Image Segmentation

After learning the subspace, we use this representation for foreground segmen-

tation in still images, as explained in Section 3.2. The segmentation results in this

section are derived by using a 20 dimensional subspace for background modeling.

We use the same model as the one in Eq. (3.10) for decomposition of an image into

background and foreground, and λi’s are set to the same value as mentioned be-

fore. We then evaluate the performance of this algorithm on the remaining images

from screen content image segmentation dataset [38], and some other images that

includes text over textures, and compare the results with two other algorithms;

sparse and low-rank decomposition [18], and group-sparsity based segmentation

using DCT basis [52]. For sparse and low rank decomposition, we apply the fast-

RPCA algorithm [18] on the image blocks, and threshold the sparse component

to find the foreground location. For low-rank decomposition, we have used the

MATLAB implementation provided by Stephen Becker at [54].

To provide a numerical comparison, we report the average precision, recall and

F1 score achieved by different algorithms over this dataset, in Table 3.1.

Table 3.1: Comparison of accuracy of different algorithms

Segmentation Algorithm Precision Recall F1 score

Low-rank Decomposition [18] 78% 86.5% 82.1%

Group-sparsity with DCT Bases 92.2% 86% 89%

The proposed algorithm 93% 86% 89.3%

As it can be seen, the proposed scheme achieves better overall performance

than low-rank decomposition. Compared to group-sparsity using DCT Bases, the
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proposed formulation has slightly better performance.

To see the visual quality of the segmentation, the results for 3 test images (each

consisting of multiple 64×64 blocks) are shown in Figure 3.3.

Figure 3.3: Segmentation result for the selected test images. The images in the
first to fourth rows denote the original image, and the foreground map by sparse
and low-rank decomposition, group-sparisty with DCT bases, and the proposed
algorithm respectively.

It can be seen that, there are noticeable improvement for the segmentation

results over low-rank decomposition. For background with very smooth patterns,

low frequency DCT bases are a effective subspace, and therefore, we do not see

improvement with the learnt bases. But for more complex background such as
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that in the middle column, the learnt subspace can provide improvement. In

general, the improvement depends on whether the background can be represented

well by the chosen fixed bases or not. Also, if we do the subspace learning directly

on the image you are trying to segment, (that is, we do subspace learning and

segmentation jointly), we may be able to gain even more.

3.4 Conclusion

In this chapter, we proposed a subspace learning algorithm for a set of smooth

signals in the presence of structured outliers and noise. The outliers are assumed

to be sparse and connected, and suitable regularization terms are added to the op-

timization framework to promote this properties. We then solve the optimization

problem by alternatively updating the model parameters, and the subspace. We

also show the application of this framework for background-foreground segmenta-

tion in still images, where the foreground can be thought as the outliers in our

model, and achieve better results than the previous algorithms for background/-

foreground separation.



47

Chapter 4

Masked Signal Decomposition

Signal decomposition is a classical problem in signal processing, which aims

to separate an observed signal into two or more components each with its own

property. Usually each component is described by its own subspace or dictionary.

Extensive research has been done for the case where the components are additive,

but in real world applications, the components are often non-additive. For example,

an image may consist of a foreground object overlaid on a background, where each

pixel either belongs to the foreground or the background. In such a situation,

to separate signal components, we need to find a binary mask which shows the

location of each component. Therefore it requires to solve a binary optimization

problem. Since most of the binary optimization problems are intractable, we relax

this problem to the approximated continuous problem, and solve it by alternating

optimization technique. We show the application of the proposed algorithm for

three applications: separation of text from background in images, separation of

moving objects from a background undergoing global camera motion in videos,

separation of sinusoidal and spike components in one dimensional signals. We
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demonstrate in each case that considering the non-additive nature of the problem

can lead to significant improvement [55].

In the remaining parts, we first go over some of the relevant works in Section 4.1.

We then presents the problem formulation in Section 4.2. Section 4.3 shows the

application of this approach for motion segmentation. The experimental results,

and the applications are provided in Section 4.4 and the chapter is concluded in

Section 4.5.

4.1 Background and Relevant Works

Signal decomposition is an important problem in signal processing and has a

wide range of applications. Image segmentation, sparse and low-rank decomposi-

tion, and audio source separation [56]-[58] are some of the applications of signal

decomposition. Perhaps, Fourier transform [59] is one of the earliest work on signal

decomposition where the goal is to decompose a signal into different frequencies.

Wavelet and multi-resolution decomposition are also another big group of methods

which are designed for signal decomposition in both time and frequency domain

[60]-[62]. In the more recent works, there have been many works on sparsity based

signal decomposition. In [63], the authors proposed a sparse representation based

method for blind source sparation. In [64], Starck et al proposed an image de-

composition approach using both sparsity and variational approach. The same

approach has been used for morphological component analysis by the Elad et al

[65]. In the more recent works, there have been many works on low-rank decom-

position, where in the simplest case the goal is to decompose a signal into two

components, one being low rank, another being sparse. Usually the nuclear and `1
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norms [66] are used to promote low-rankness and sparsity respectively. To name

some of the promising works along this direction, in [45], Candes et al proposed

a low-rank decomposition for matrix completion. In [67], Peng et al proposed a

sparse and low-rank decomposition approach with application for robust image

alignment. A similar approach has been proposed for transform invariant low-rank

textures [68]. This approach has also been used for background subtraction in

videos [69].

In this work, we try to extend the signal decomposition problem for all the

above applications, to the overlaid model, which is instead of multiple components

contributing to a signal element at some point, one and only one of them are

contributing at each element.

4.2 The Proposed Framework

Most of the prior approaches for signal decomposition consider additive model,

i.e. the signal components are added in a mathematical sense to generate the

overall signal. In the case of two components, this can be described by:

x = x1 + x2 (4.1)

Here x denotes a vector in RN . Assuming we have some prior knowledge about

each component, we can form an optimization problem as in Eq. (4.2) to solve the

signal decomposition problem. Here φk(·) is the regularization term that encodes
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the prior knowledge about the corresponding signal component.

min
wk,xk

2∑
k=1

φk(xk), s.t.
2∑

k=1

xk = x (4.2)

In this work, we investigate a different class of signal decomposition, where the

signal components are overlaid on top of each other, rather than simply added. In

other word, at each signal element only one of the signal components contributes

to the observed signal x. We can formulate this as:

x =
2∑

k=1

wk ◦ xk s.t. wk ∈ {0, 1}N ,
2∑

k=1

wk = 1 (4.3)

where ◦ denotes the element-wise product [70], and wk’s are the binary masks,

where at each element one and only one of the wk’s is 1, and the rest are zero. The

constraint
∑2

k=1wk = 1 results in w1 = 1−w2. In our work, we assume that each

component can be represented with a known subspace/dictionary.

If these components have different characteristics, it would be possible to sep-

arate them to some extent. One possible way is to form an optimization problem

as below:

min
wk,xk

φ1(x1, w1) + φ2(x2, w2)

s.t. wk ∈ {0, 1}n, w2 = 1− w1,
2∑

k=1

wk ◦ xk = x

(4.4)

where φk encodes our prior knowledge about each component and its corresponding

mask.

One prior knowledge that we assume is that each component xk can be well
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represented using some proper dictionary/subsbase Pk, and get:

x = (1− w) ◦ (P1α1) + w ◦ (P2α2) (4.5)

where Pk is N ×Mk matrix, where each column denotes one of the basis func-

tions from the corresponding subspace/dictionary, and Mk is the number of basis

functions for component k.

Note that, in an alternative notation, Eq. (4.5) can be written as:

x = (I −W )P1α1 +WP2α2 (4.6)

where W = diag(w) is a diagonal matrix with the vector w on its main diagonal.

If a diagonal element is 1, the corresponding element belongs to component 2,

otherwise to component 1.

The decomposition problem in Eq. (4.6) is a highly ill-posed problem. There-

fore we need to impose some prior on each component, and also on w to be able to

perform this decomposition. We assume that each component has a sparse repre-

sentation with respect to its own subspace, but not with respect to the other one.

We also assume that the second component is sparse and connected. This would

be the case, for example, if the second component corresponds to text overlaid over

a background image; or a moving object over a stationary background in a video.

To promote sparsity of the second component, we add the `0 norm of w to the

cost function (note that w corresponds to the support of the second component).

To promote connectivity, we can either add the group sparsity or total variation

of w to the cost function. Here we use total variation. The main reason is that

for group sparsity, it is not very clear what is the best way to define groups, as
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the foreground pixels could be connected in any arbitrary direction, whereas total

variation can deal with this arbitrary connectivity more easily.

We can incorporate all these priors in an optimization problem as shown below:

min
w,α1,α2

1

2
‖x− (1− w) ◦ P1α1 − w ◦ P2α2‖22 + λ1‖w‖0 + λ2TV(w)

s.t. w ∈ {0, 1}N , ‖α1‖0 ≤ K1, ‖α2‖0 ≤ K2

(4.7)

Total variation of an image can be defined as Eq. (4.8):

TV (w) = ‖Dxw‖1 + ‖Dyw‖1 = ‖Dw‖1 (4.8)

where Dx and Dy are the horizontal and vertical difference operator matrices, and

D = [D′x, D
′
y]
′.

The problem in Eq. (4.7) involves multiple variables, and is not tractable,

both because of the ‖w‖0 term in the cost function and also the binary nature of

w. We relax these conditions to be able to solve this problem in an alternating

optimization approach. We replace the ‖w‖0 in the cost function with ‖w‖1, and

also relax the w ∈ {0, 1}N condition to w ∈ [0, 1]N (which is known as linear

relaxation in the mixed integer programming). Then we will get the following

optimization problem:

min
w,α1,α2

1

2
‖x− (1− w) ◦ P1α1 − w ◦ P2α2‖22 + λ1‖w‖1 + λ2‖Dw‖1

s.t. w ∈ [0, 1]N , ‖α1‖0 ≤ K1, ‖α2‖0 ≤ K2

(4.9)

This problem can be solved with different approaches, such as majorization

minimization, alternating direction method, and random sampling approach.
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To solve the optimization problem in Eq. (4.9) with augmented Lagrangian

algorithm, we first introduce two auxiliary random variables as shown in Eq. (4.10):

min
w,α1,α2

1

2
‖x− (1− w) ◦ P1α1 − w ◦ P2α2‖22 + λ1‖y‖1 + λ2‖z‖1

s.t. w ∈ [0, 1]N , y = w, z = Dw, ‖α1‖0 ≤ K1, ‖α2‖0 ≤ K2

(4.10)

We then form the augmented Lagrangian as below:

L(α1, α2, w, y, z, u1, u2) =
1

2
‖x− (1− w) ◦ P1α1 − w ◦ P2α2‖22 + λ1‖y‖1 + λ2‖z‖1

+ut1(w − y) + ut2(Dw − z) +
ρ1
2
‖w − y‖22 +

ρ2
2
‖Dw − z‖22

s.t. w ∈ [0, 1]N , ‖α1‖0 ≤ K1, ‖α2‖0 ≤ K2

(4.11)

where u1 and u2 denote the dual variables. Now we can solve this problem by

minimizing the Augmented Lagrangian w.r.t. to primal variables (α1, α2, w, y and

z) and using dual ascent for dual variables (u1, u2). For updating the variables

α1 and α2, we first ignore the constraints and take the derivative of L w.r.t. them

and set it to zero. Then we project the solution on the constraint ‖αi‖0 ≤ Ki by

keeping the Ki largest components. Since the cost function is symmetric in α1 and

α2, we only show the solution for α2 here. The solution for α1 is very similar.

α2 = argmin
α2

L(α1, α2, w, y, z, u1, u2) =

argmin
α2

‖x− (1− w) ◦ P1α1 − w ◦ P2α2‖22 =

argmin
α2

‖x− (I −W )P1α1 −WP2α2‖22 ⇒

∇α2L = 0⇒ P t2W
t
(
WP2α2 + (I −W )P1α1 − x

)
= 0

⇒ α2 = (P t2W
tWP2)

−1P t2W
t(x− (I −W )P1α1)

(4.12)
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We then keep the K2 largest components of the above α2, which is denoted by:

α∗2 = Πtop−K2(α2).

We now show the optimization with respect to w. We solve this optimization

by first ignoring the constraint, and then projecting the optimal solution of the

cost function onto the feasible set (w ∈ [0, 1]n). It basically follows the same

methodology, we just need to notice that diag(w)P2α2 is the same as diag(P2α2)w.

Therefore we will get the following optimization for w:

w = argmin
w

1

2
‖x− diag(P1α1)(1− w)− diag(P2α2)w‖22

+ut1(w − y) + ut2(Dw − z) +
ρ1
2
‖w − y‖22 +

ρ2
2
‖Dw − z‖22

(4.13)

We can rewrite this problem as:

w = argmin
w

1

2
‖h− Cw‖22 +

ρ1
2
‖w − y‖22 +

ρ2
2
‖Dw − z‖22 + ut1(w − y) + ut2(Dw − z)

(4.14)

where C = diag(P2α2) − diag(P1α1) = diag(P2α2 − P1α1), and h = x − P1α1. If

we take the derivative w.r.t. w and set it to zero we will get:

Ct(Cw − h) + ρ1(w − y) + ρ2D
t(Dw − z) + u1 +Dtu2 = 0⇒

(CtC + ρ2D
tD + ρ1I)w = Cth+ ρ1y + ρ2D

tz − u1 −Dtu2 ⇒

w = M−1w (Cth+ ρ1y + ρ2D
tz − u1 −Dtu2)

(4.15)

where Mw = (CtC + ρ2D
tD + ρ1I). After finding w using the above equation,

we need to project them on the set w ∈ [0, 1]n, which basically maps any negative

number to 0, and any number larger than 1 to 1. Denoting the projection operator



55

by Π[0,1], the optimization solution of the w step would be:

w = Π[0,1]

(
M−1w (Cth+ ρ1y + ρ2D

tz − u1 −Dtu2)) (4.16)

The optimization w.r.t. y and z are quite simple, as they result in a soft-

thresholding solution [71]. The overall algorithm is summarized in Algorithm 2.

Algorithm 2 pseudo-code for variable updates of problem in Eq. (4.11)

1: Given a block of size NxN, represented by a vector x, and the subspace matrices
P1 and P2, and preset values for parameters ρ1, ρ2, Tmax, initialize the loss value
with L(0) = 1, and:

2: for j=1:Tmax do

3: αj+1
1 = (P t

1W
t
∗W∗P1)

−1P t
1W

t
∗(x−WP2α

j
2)

4: αj+1
2 = (P t

2W
tWP2)

−1P t
2W

t(x− (I −W )P1α
j+1
1 )

5: wj+1 = Π[0,1]

(
M−1

w (Cthj+1 + ρ1y
j + ρ2D

tzj − uj1 −Dtuj2)

6: yj+1 = soft(wj+1 +
uj1
ρ1
, λ1/ρ1)

7: zj+1 = soft(Dwj+1 +
uj2
ρ2
, λ2/ρ2)

8: uj+1
1 = uj1 + ρ1(w

j+1 − yj+1)

9: uj+1
2 = uj2 + ρ2(Dw

j+1 − zj+1)

10: if |L(j)−L(j−1)|
L(j−1) ≤ 10−6

11: skip the for loop

12: end if

13: end for

Where C = diag(P2α2 − P1α1), h = x− P1α1,W = diag(w), W∗ = I −W
and Mw = (CtC + ρ2D

tD + ρ1I)

Where soft(x, λ) denotes the soft-thresholding operator applied element-wise

and defined as in Eq. (2.14).
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4.3 Extension to Masked-RPCA

Sparse and low-rank decomposition is a popular problem, with many applica-

tions in signal and image processing, such as matrix completion, motion segmen-

tation, moving object detection, system identification, and optics [72]-[77]. In the

simplest case, this problem can be formulated as Eq. (4.17):

min
L,S

rank(L) + λ1‖S‖0

s.t. X = L+ S

(4.17)

where L and S denote the low-rank and sparse components of the signal X. This

problem is clearly ill-posed. There have been many studies to find under what

conditions this decomposition is possible, such as the work in [45] Usually the

nuclear and `1 norms are used to promote low-rankness and sparsity respectively

[66].

Extensive research has been done for the case where the components are added

together, but in many of the real world applications, the components are not

added, but overlaid on top of each other. In this work, we consider slightly dif-

ferent approach toward sparse and low-rank decomposition, where we assume the

two components are super-imposed on top of each other (instead of simply being

added). In this way, at each the (i, j)-th element of X, comes only from one of

the components. Therefore besides deriving the sparse and low-rank component

we need to find their supports. Assuming W ∈ {0, 1}NxM denotes the support of

S, we can write this overlaid signal summation as:

X = (1−W ) ◦ L+W ◦ S (4.18)
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where ◦ denotes the element-wise product.

By assuming some prior on each component, we will be able to jointly find each

component and estimate the binary mask W using an optimization problem as:

min
L,S,W

φ(L) + λ1ψ(S) + λ2γ(W )

s.t. W ∈ {0, 1}NxM, X = (1−W ) ◦ L+W ◦ S
(4.19)

where φ(.), ψ(.), γ(.) encodes our prior knowledge about sparse and low-rank

components and the binary mask respectively. The exact choice of these functions

depends on the application. Here we study this problem for the case where L

and S are low-rank and sparse, and the binary mask is connected along each row

(which in video foreground segmentation, promotes the same position to belong

to the foreground in multiple frames). Using these priors we will get the following

optimization problem:

min
L,S,W

rank(L) + λ1‖S‖0 + λ2‖W‖2,1

s.t. W ∈ {0, 1}NxM, X = (1−W ) ◦ L+W ◦ S
(4.20)

where ‖.‖2,1 is the sum of `2 norm of each row, and is defined as:

‖W‖2,1 =
∑
i

√∑
j

w2
i,j (4.21)

The problem in Eq (5) is not tractable because of multiple issues. First, since

W is binary matrix, to estimate its elements we need to solve a combinatorial

problem. We relax this issue to get a more tractable problem by approximating

W ’s element as a continuous variable W ∈ [0, 1]NxM. Second issue is that the
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rank(.) is not a convex function. We address this issue by approximating rank

with the nuclear norm [78] which is defined as ‖L‖∗ =
∑

i σi(L). The last issue

originates from having `0 term in the cost function. We approximate `0 norm with

its convex approximation, `1 norm, to overcome this issue. Then we will get the

following optimization problem:

min
L,S,W

‖L‖∗ + λ1‖S‖1 + λ2‖W‖2,1

s.t. W ∈ [0, 1]NxM, X = (1−W ) ◦ L+W ◦ S
(4.22)

Note that since the variables W and L (also S) are coupled in (7), we cannot

use methods such as ADMM [32] to solve this problem. Here we propose an al-

gorithm based on linearized-ADMM to solved this optimization [79], which works

by alternating over variables and each time approximating the cost function with

the first order Taylor series expansions. Before diving into the details of the pro-

posed optimization framework, let us first briefly introduce the linearized ADMM

approach.

4.3.1 Linearized ADMM

Many machine learning and signal processing problems can be formulated as

linearly constrained convex programs, which could be efficiently solved by the

alternating direction method (ADM) [32]. However, usually the subproblems in

ADM are easily solvable only when the linear mappings in the constraints are

identities, or the variable are decoupled. To address this issue, Lin[79] proposed

a technique, which linearizes the quadratic penalty term and adds a proximal

term when solving the sub- problems. To have better idea, consider the following
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problem:

min
x,y

f(x) + g(y)

s.t. Ax+By = C

(4.23)

where x and y could be vectors, or matrices. In alternating direction method

(ADM), this problem can be solved by forming the augmented Lagrangian multi-

plier as below:

L (x, y, u) = f(x) + g(y)+ < Ax+By − C, u > + ρ/2‖Ax+By − C‖2 (4.24)

where u is the Lagrange multiplier, ¡.,.¿ is the inner product operator, and ρ is

the penalty term. Then ADM optimizes this problem by alternating minimizing

L (x, y, u) w.r.t. x and y, as below:

xk+1 = argmin
x

L (x, yk, uk) = f(x) +
ρ

2
‖Ax+Byk − C + uk/ρ‖2

yk+1 = argmin
y

L (xk+1, y, uk) = g(y) +
ρ

2
‖Axk+1 +By − C + uk/ρ‖2

uk+1 = uk + ρ(Axk+1 +Byk+1 − C)

(4.25)

For many cases where f and g are vector (or matrix) norms, and A and B are

identity (or diagonal), the x and y sub-problems have closed-form solution. But

for some cases, such as for general A and B there is no closed-form solution for

primal sub-problems, and each one of them should be solved iteratively which is

not desired.

One could introduce auxiliary variables, and introduce more constraint, which

increases the memory requirements. A more efficient approach is to linearize the

quadratic terms in the x and y iterations, and add a proximal term at xk and yk
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as below:

xk+1 = argmin
x

f(x) + ρ < AT (Axk +Byk − C + uk/ρ), x− xk > +
ρρA

2
‖x− xk‖2

= argmin
x

f(x) +
ρρA

2
‖x− xk +AT (uk/ρ+Axk +Byk − C)/ρA‖2

yk+1 = argmin
y

g(y) + ρ < BT (Axk+1 +Byk − C + uk/ρ), y − yk > +
ρρB

2
‖y − yk‖2

= argmin
y

g(y) +
ρρB

2
‖y − yk +BT (uk/ρ+Axk+1 +Byk − C)/ρB‖2

uk+1 = uk + ρ(Axk+1 +Byk+1 − C)

(4.26)

We can use the same idea to solve the masked-RPCA problem in Eq. (4.22).

4.3.2 The Proposed Optimization Framework

To solve the optimization problem in Eq. (4.22) we first form the Augmented

Lagrangian function as:

L (L, S,W,U) = ‖L‖∗ + λ1‖S‖1+

λ2‖W‖2,1+ < U,X − (1−W ) ◦ L+W ◦ S > +
ρ

2
‖X − (1−W ) ◦ L+W ◦ S‖22

s.t. W ∈ [0, 1]NxM

(4.27)

where U is a matrix of the same size as X, and ρ is the penalty term. The

augmented Lagrangian function can be written in a more compact way as below:

L (L, S,W,U) = ‖L‖∗ + λ1‖S‖1 + λ2‖W‖2,1 +
ρ

2
‖X − (1−W ) ◦ L−W ◦ S + U/ρ‖22

s.t. W ∈ [0, 1]NxM

(4.28)

We then solve this problem by linearized-ADM approach explained above. This
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would lead to the following sub-problems:

Lk+1 = argmin
L

‖L‖∗+ < ρ
(
(1−Wk) ◦ Lk +Wk ◦ Sk −X − Uk/ρ

)
◦ (1−Wk), L− Lk >

+
ρρL

2
‖L− Lk‖2F = argmin

L

(
‖L‖∗ +

ρρL
2
‖L−Ak‖2F

)
Sk+1 = argmin

S
‖S‖1+ < ρ

(
(1−Wk) ◦ Lk+1 +Wk ◦ Sk −X − Uk/ρ

)
◦Wk, S − Sk >

+
ρρS

2
‖S − Sk‖2F = argmin

S

(
‖S‖1 +

ρρS
2
‖S −Bk‖2F

)
Wk+1 = argmin

W
‖W‖2,1+ < ρ

(
(L− S) ◦Wk − L+X + U/ρ

)
◦ (L− S), W −Wk >

+
ρρW

2
‖W −Wk‖2F = argmin

W

(
‖W‖2,1 +

ρρW
2
‖W − Ck‖2F

)
Uk+1 = Uk + ρ (X − (1−WK+1) ◦ LK+1 −WK+1 ◦ SK+1)

(4.29)

where:

Ak = LK +
1

ρL

(
(1−Wk) ◦ Lk +Wk ◦ Sk −X − Uk/ρ

)
◦ (1−Wk)

Bk = Sk +
1

ρS

(
(1−Wk) ◦ Lk+1 +Wk ◦ Sk −X − Uk/ρ

)
◦Wk

Ck = Wk +
1

ρW

(
(L− S) ◦Wk − L+X + U/ρ

)
◦ (L− S)

(4.30)

The solution for the first step, L, can be found using singular value thresholding

[80] as below:

L = argmin
L

‖L‖∗ + +
ρρL
2
‖L− Ak‖2F ⇒ L = D1/ρρL

(
Ak
)

(4.31)

where Dτ (Y ) refers to singular value thresholding of Y = UΣV T , and is defined

as:

Dt(Y ) = USτ (Σ)V T

Sτ (Σ)ii = max(Σii − τ, 0)

(4.32)

The solution for the second step, S, is straightforward, and it leads to the
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following soft-thresholding operator [71]:

S = argmin
S

‖S‖1 + +
ρρS
2
‖S −Bk‖2F ⇒ S = Soft1/ρρS

(
Bk

)
(4.33)

We now show the optimization with respect to W . We solve this optimization

by first ignoring the constraint, and then projecting the optimal solution of the

cost function onto the feasible set (w ∈ [0, 1]n). Let us denote the i-th row of W

as wi, then the update rule of wi can be found as:

wi = argmin
wi

‖wi‖2 +
ρρW

2
‖wi − ck,i‖2F ⇒ wi = block-soft( ck,i,

1

ρρW
) (4.34)

where block-soft(.) [52] is defined as:

block-soft(x;λ) = max(0, 1− λ/‖x‖2) x

After deriving wi using the above equation, we need to project it onto the set

w ∈ [0, 1]n, which basically maps any negative number to 0, and any number larger

than 1 to 1. If we show the projection operator by Π[0,1], then the optimization

solution of the w step would be:

wi = Π[0,1]

(
block-soft( ck,i,

1

ρρW
)
)

(4.35)

Note that at the end, we need to have binary values for Wi,js, as they show the

support of the second component. After the algorithm is converged, we threshold

theWi,j to get a binary value. The threshold value can be derived by evaluating this

scheme on a set of validation data. One can also think of them as some membership
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probability for both components, which in that case we can skip thresholding. The

overall algorithm is summarized in Algorithm 3.

Algorithm 3 Update Rule for Problem in Eq. (4.28)

1: for k=1:Kmax do

2: Lk+1 = D1/ρρL

(
Ak
)

3: Sk+1 = Soft1/ρρS
(
Bk

)
4: for i=1:M do

5: wk+1
i = Π[0,1]

(
block-soft( ck,i,

1
ρρW

)
)

6: end for

7: Uk+1 = Uk + ρ (X − (1−WK+1) ◦ LK+1 −WK+1 ◦ SK+1)

8: end for

Output: The components L, S, and binary mask W . Where:

Ak = LK + 1
ρL

(
(1−Wk) ◦ Lk +Wk ◦ Sk −X − Uk/ρ

)
◦ (1−Wk)

Bk = Sk + 1
ρS

(
(1−Wk) ◦ Lk+1 +Wk ◦ Sk −X − Uk/ρ

)
◦Wk.

Ck = Wk + 1
ρW

(
(L− S) ◦Wk − L+X + U/ρ

)
◦ (L− S)

The main goal of this section is to show that the extension of many of the

traditional signal decomposition problems to the overlaid model (such as RPCA),

can be solved with a relatively similar algorithm, without too much overhead.

Therefore, we skip presenting the experimental results for the Masked-RPCA in

this Chapter, as RPCA is not the main focus of this thesis.

4.4 Application for Robust Motion Segmenta-

tion

One potential application of the proposed formulation is for moving object

detection under global camera motion in a video, or essentially segmentation of a
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motion field into regions with global motion and object motions, respectively.

Suppose we use the homography mapping (also known as perspective mapping)

to model the camera motion, where each pixel in the new frame is related to its

position in the previous frame as shown in Eq. (4.36):

xnew =
a1 + a2x+ a3y

1 + a7x+ a8y

ynew =
a4 + a5x+ a6y

1 + a7x+ a8y

(4.36)

Let u = xnew − x and v = xnew − x, we can rewrite the above equation as:

(x+ u)(1 + a7x+ a8y) = (a1 + a2x+ a3y)

(y + v)(1 + a7x+ a8y) = (a4 + a5x+ a6y)

(4.37)

For each pixel (x, y) and its motion vector (u, v), we will get two equations for the

homograph parameters a = [a1, ..., a8]
T , that can be written as below:

1 x y 0 0 0 −x(x+ u) −y(x+ u)

0 0 0 1 x y −x(y + v) −y(y + v)

 a =

x+ u

y + v

 (4.38)

Using the equations at all pixels, we will get a matrix equation as:

Pa = b (4.39)

Suppose u(x, y) and v(x, y) are derived using a chosen optical flow estimation

algorithm. Then the goal is to find the global motion parameters and the set of

pixels which do not follow the global motion. Note that here, P will not be the

same for different video frames, as it depends on the optical flow (which could be

different for different frames). Assuming there are some outliers (corresponding to
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moving objects) in the video, we can use the model b = (1−w)◦Pa+w ◦s, where

w denotes the outlier pixels, and s denotes the new location for the outlier pixels.

If the outlier pixels belong to a single object with a consistent local motion, we

can model s as s = P2a2. However, in general, the outlier pixels may correspond

to multiple foreground objects with different motions or different subregions of

a single object (e.g. different parts of a human body) with different motions.

Therefore, we do not want to model s with a single parameterized motion. Rather

we will directly solve for s with a sparsity constraint. These considerations lead to

the following optimization problem:

min
w,a,s

1

2
‖b− (1− w) ◦ Pa− w ◦ s‖22 + λ1‖s‖1 + λ2‖w‖1 + λ3‖Dw‖1

s.t w ∈ [0, 1]n
(4.40)

Note that b, P and s in Eq. (4.40) have two parts, one corresponding to the

horizontal direction, and another part corresponding to vertical direction (denoted

with subscripts x and y respectively). Therefore we can re-write this problem as:

min
w,a,s

1

2
‖bx − (1− w) ◦ Pxa− w ◦ sx‖22 + λ1‖sx‖1 + λ1‖sy‖1

1

2
‖by − (1− w) ◦ Pya− w ◦ sy‖22 + λ2‖w‖1 + λ3‖Dw‖1

s.t w ∈ [0, 1]n

(4.41)

This problem can be solved with ADMM. After solving this problem we will

get the mask for the moving objects. Note that this approach works for other

global motion models such as the affine mapping. In the extended version of this

algorithm, we can directly work on a volume of τ frames to use the temporal

information for mask extraction. In that case, the mask w would be a 3D tensor.

In the experimental result section, we provide the result of motion segmentation
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using the proposed algorithm.

4.5 Experimental Results

In this section we provide the experimental study on the application of the

proposed algorithm for 1D signals decomposition, image segmentation, and also

motion segmentation. For each application, different sets of parameters are used,

which are tuned on a validation data from the same task.

4.5.1 1D signal decomposition

To illustrate the power of the proposed algorithm for non-additive decomposi-

tion, we first experiment with a toy example using 1D signals. We generate two

1D signals, each 256 dimensional, using different subspaces. The first signal is

generated from a 10-dimensional sinusoid subspace, and the second component is

generated from a 10-dimensional Hadamard subspace. We then generate a random

binary mask with the same size as the signal, and added these two components

using the mask as: x = (1 − w) ◦ x1 + w ◦ x2. The goal is to separate these two

components, and estimate the binary mask. The signal components and binary

mask for one example are shown in Figure 4.1.

We then use the proposed model to estimate each signal component and extract

the binary mask, and compare it with the signal decomposition under additive

model. By additive model we mean the following optimization problem:

min
α1,α2

1

2
‖x− P1α1 − P2α2‖22 + λ1‖P2α2‖1 + λ2TV (P2α2)

s.t. ‖α1‖0 ≤ k1, ‖α2‖0 ≤ k2

(4.42)
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Figure 4.1: The binary mask, and signal components

We need to mention that for the above additive model, the binary mask is de-

rived by thresholding the values of the second component (we adaptively chose the

threshold values such that it yields the best visual results). The estimated signal

components and binary mask by each algorithm, for two examples are shown in

Figure 4.2. In our experiment, the weight parameters for the regularization terms

in Eq. (4.42) are chosen to be λ1 = 0.3 and λ2 = 10. The number of iterations

for alternating optimization algorithm is chosen to be 20. As it can be seen the

proposed algorithm achieves much better result than the additive signal model.

This is as expected, because the additive model could try to model some parts of

the second component with the first subspace and vice versa.
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Figure 4.2: The 1D signal decomposition results for two examples. The figures

in the first column denotes the original binary mask, first and second signal com-

ponents respectively. The second and third columns denote the estimated binary

mask and signal components using the proposed algorithm and the additive model

signal decomposition, respectively.
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4.5.2 Application in Text/Graphic Segmentation From Im-

ages

Next we test the potential of the proposed algorithm for the text and graphic

segmentation from images. We perform segmentation on two different sets of im-

ages. The first one is on a dataset of screen content images, which consist of 332

image blocks of size 64x64, extracted from sample frames of HEVC test sequences

for screen content coding [37], [81]. The second set of images are generated man-

ually by adding text on top of other images.

We apply our algorithm on blocks of 64x64 pixels. We first convert each block

into a vector of dimension 4096, and then apply the proposed algorithm. For the

smooth background we use low-frequency DCT basis with k1 = 40, and for the

second component we use Hadamard basis with k2 = 8. The weight parameters for

the regularization terms are chosen to be λ1 = 10 and λ2 = 0.2, which are tuned by

testing on a separate validation set of more than 50 patches. The number of iter-

ations for alternating optimization algorithm is chosen to be 10. We compare the

proposed algorithm with four previous algorithms: hierarchical k-means clustering

in DjVu [3], SPEC [4], least absolute deviation fitting (LAD) [36], and sparsity

based signal decomposition [82]-[83].

The results for 4 test images (each consisting of multiple 64x64 blocks) are

shown in Figure 4.3.
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Figure 4.3: Segmentation result for selected test images for screen content image

compression. The images in the first row denotes the original images. And the

images in the second, third, fourth, fifth and the sixth rows denote the extracted

foreground maps by shape primitive extraction and coding, hierarchical k-means

clustering, least absolute deviation fitting, sparse decomposition, and the proposed

algorithm respectively.
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It can be seen that the proposed algorithm gives superior performance over

DjVu and SPEC in all cases. There are also noticeable improvement over our prior

works on LAD and sparse decomposition based image segmentation. For example,

in the left part of the second image (around the letters AUT), and in the left part

of the first image next to the image border, where the LAD algorithm detects

some part of background as foreground. We would like to note that, this dataset

mainly consists of challenging images where the background and foreground have

overlapping color ranges. For simpler cases where the background has a narrow

color range that is quite different from the foreground, both DjVu and least absolute

deviation fitting will work well.

In another experiment, we manually added text on top of an image, and tried

to extract them using the proposed algorithm. Figure 4.4 shows the comparison

between the proposed algorithm and the previous approaches. For this part we also

provide the results derived by the method of sparse and low-rank decomposition

[18], using the MATLAB implementation provided in [54]. Essentially this method

assumes the background image block is low rank and the text part is sparse. To

derive the foreground map using this approach, we threshold the absolute value

of the sparse component after decomposition. For all images, we see that the

proposed method yields significantly better text segmentation.
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Figure 4.4: Segmentation result for the text over texture images. The images in the

first row denotes the original images. And the images in the second, third, fourth

and the fifth rows denote the foreground map by hierarchical k-means clustering

[3], sparse and low-rank decomposition [18], sparse decomposition [82], and the

proposed algorithm respectively.

We also provide the average precision, recall and F1 score achieved by differ-

ent algorithms for the above sample images. The average precision, recall and F1

score by different algorithms are given in Table 4.1. As it can be seen, the pro-
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posed scheme achieves much higher precision and recall than hierarchical k-means

clustering and sparse decomposition approach. We did not provide the results by

SPEC [4] algorithm for these images, since the derived segmentation masks for

these test images using SPEC was not satisfactory.

Table 4.1: Comparison of accuracy of different algorithms for text image segmen-
tation for images in Figure 4.4

Segmentation Algorithm Precision Recall F1 score
Hierarchical Clustering [3] 66.5% 92% 77.2%
Sparse and Low-rank [18] 54% 62.8% 57.7%
Sparse Dec. with TV [82] 71% 91.7% 80%
The proposed algorithm 95% 92.5% 93.7%

4.5.3 Application for Motion Segmentation

In this section, we demonstrate the application of the proposed algorithm for

motion based object segmentation in video. We assume the video undergoes a

global camera motion (modeled by a homography mapping) as well as localized

object motion (modeled by a sparse component). The optical flow field between

two frames can thus being modeled by a masked decomposition of the global motion

and object motion.

To extract the optical flow, we use the optical flow implementation in [84], [85].

We then use the formulation in Eq. (4.40), with λ1 = 1, λ2 = 0.8 and λ3 = 0.5,

to find both the global motion parameters and the object mask w. Note that

the estimated w from Eq. (4.40) is a continuous mask where each element is in

[0,1], and we threshold these values to derive the binary mask for foreground. We

compare our work with the simple least squares fitting method where we fit the

homography model to the whole optical flow by solving the optimization problem
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in Eq. (4.43), and detect foreground pixels by thresholding the fitting error image.

min
a

1

2
‖bx − Pxa‖22 +

1

2
‖by − Pya‖22 (4.43)

The motion segmentation results using the proposed algorithm, and the com-

parison with the least squares fitting for two videos are provided in Figure 4.5. As

we can see the proposed algorithm achieves better segmentation compared to the

baseline. We would like to note that, this is a preliminary study to show the mo-

tion segmentation as one of the potential applications of this work, and the result

could be much improved by using more accurate optical flow extraction scheme.

4.5.4 Binarization at each step vs. at the end

As mentioned earlier, the original masked decomposition problem requires the

solution of a binary optimization problem. To make it a tractable problem, we

approximate the binary variables with continuous variables in [0, 1] (called lin-

ear relaxation), and binarize them after solving the relaxed optimization problem.

There are two ways to do this binarization: The first approach solves the opti-

mization problem in Eq. (4.9), and binarizes the variables w at the very end; The

second approach binarizes the variables w after each update of w in algorithm 2.

We have tested both these approaches for some of the test images, and provided

the results in Figure 4.6. As we can see, doing the binarization at the very end

works better for all images. Results presented previously in Secs. A-C are all

obtained with the first approach.
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Figure 4.5: Motion segmentation result for Stefan (on the left) and Coastguard (on
the right) videos. The images in the first row denote two consecutive frames from
Stefan and Coastguard test video. The images in the second row denote the global
motion estimation error and its corresponding binary mask. The images in the
last row denote the continuous and the binary motion masks using the proposed
algorithm.

4.5.5 Robustness to Initialization

In this section we present the stability of the algorithm with respect to the

initialization of w. One way to evaluate the stability of the optimization algorithm

and its convergence, is to evaluate the effect of initialization in the final results.

If the final result does not depend much on the initialized values, it shows the

robustness of the algorithm. To make sure the proposed algorithm is robust to the

initialization, we provide the segmentation results for a test images, with 5 different

initializations in Figure 4.7. The first one is to initialize the w values with all zeros.
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Figure 4.6: Segmentation result of the proposed method with different binarization
methods. The images in the first row denotes the original images. And the images
in the second and third rows show the foreground maps by binarization at the end
of each iteration, and at the the very end respectively.

The second one is to initialize them with the constant value of 0.5. The third one

is to initialize them with Gaussian random variable with mean and variance equal

to 0.5 and 0.1 respectively (and clipping the values to between 0 and 1). The

fourth one is to initialize them with uniform distribution in [0,1]. And the last

scheme is to perform least squares fitting using P1 only as the basis, and consider

the pixels with large fitting error as foreground. It is worth mentioning that the

number of iterations in our optimization is set to 10, which is not very large to

make the effect of initialization disappear. As we can see the segmentation results

with different initialization schemes are roughly similar, showing the robustness of

this algorithm.
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Figure 4.7: Segmentation result for different initialization schemes. The second,
third, fourth, fifth and sixth images denote the segmentation results by all-zeros
initialization, constant value of 0.5, zero-mean unit variance Gaussian, uniform
distribution in [0,1], and error based initialization respectively.

4.5.6 Convergence Analysis

The optimization problem in Eq. (4.7) is a mixed integer programming prob-

lem, and is very difficult to solve directly. In this work, we solve a relaxed con-

strained optimization problem defined in Eq. (4.9), and then binarize the resulting

mask image. The relaxed problem is still a bi-convex problem as it involves bi-linear

terms of the unknown variables (product of w and α). We solve this problem itera-

tively using the ADMM method. We provide experimental convergence analysis by
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looking at the reduction in the loss (Eq. (4.9)) at successive iterations. Specifically

we look at the absolute relative loss reduction, calculated as |L
(k+1)−L(k)|
L(k) over dif-

ferent iterations, where L(k) denotes the loss function value at k-th iteration. The

experimental convergence analysis for 4 sample images are shown in Figure 4.8.

Figure 4.8: The relative loss reduction for four images.

As we can see from this figure, the loss reduction keeps decreasing until it

converges to zero typically under 10 iterations. This is why we set the maximum

iteration number to 10 for the experimental results shown earlier. In terms of

computational time, it takes around 2 seconds to solve this optimization for an
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image block of size 64x64, using MATLAB 2015 on a Laptop with core i-5 CPU

running at 2.2 GHz. This can be order of magnitudes faster by running it on a

more powerful machine and possibly on GPU.

4.5.7 Choice of Subspaces

As we can see from the optimization problem in Eq. (4.9), we assume that

the subspaces/dictionaries are known beforehand. It is obvious that the choice

of P1 and P2 significantly affects the overall performance of the proposed signal

decomposition framework. Choice of P1 and P2 largely depends on the applica-

tions. One could choose these subspaces by the prior knowledge in the underlying

applications. For example as shown in the experimental result section, for sepa-

ration of smooth background from foreground text and graphics, DCT [86] and

Hadamard subspaces [87] are suitable for background and foreground components

respectively. Figure 4.9 shows a comparison between segmentation results using

low-frequency DCT subspace for both background and foreground, and DCT sub-

space for background and Hadamard subspace for foreground. As we can see using

Hadamard bases for foreground yields better results.

4.6 Conclusion

In this chapter we looked at signal decomposition problem under overlaid ad-

dition, where the signal values at each point comes from one and only one of

the components (in contrast with the traditional signal decomposition case, which

assumes a given signal is the sum of all signal components). This problem is for-

mulated in an optimization framework, and an algorithm based on the augmented
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Figure 4.9: The left, middle and right images denote the original image, the fore-
ground maps by using DCT bases for both background and foreground, and using
DCT bases for background and Hadamard for foreground respectively.

Lagrangian method is proposed to solve it. Suitable regularization terms are added

to the cost function to promote desired structure of each component. We evaluate

the performance of this scheme for different applications, including 1D signal de-

composition, text extraction from images, and moving object detection in video.

We also provide a comparison of this algorithm with some of the previous signal

decomposition techniques on image segmentation task. As the future work, we

want to use subspace/dictionary learning algorithms to learn the subspaces for our

application. There are many algorithms available for subspace/dictionary learning

[88]-[92]. The ideal subspace for each component should be such that, this com-

ponent can be efficiently (with small error and sparse representation) represented

in that subspace, but the other component cannot be. In case where it is possible

to access training data which only consist of individual components, one could use

transform learning methods (such as the KLT [20] or K-SVD algorithm [90]) on a

large training set, to derive P1 and P2 separately. The more challenging problem

is when we do not have access to the training data of one component only. In that

case, one could use a training set of super-imposed signals, and use an optimiza-
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tion framework that simultaneously performs masked decomposition and subspace

learning.
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Chapter 5

Conclusions and Future Work

In this thesis, we sought means to improve the quality of foreground segmen-

tation algorithms for screen content as well as mixed-content images.

5.1 Summary of Main Contribution

In this thesis, we looked at different aspects of foreground segmentation prob-

lem, and proposed several solutions to solve them.

In Chapter 2, we proposed two novel foreground segmentation algorithms, that

are developed for screen content images, one based on sparse decomposition and

the other one using robust regression. We modeled the background and foreground

parts of the image as a smooth and sparse components respectively. We proposed

to use a subspace representation to model the background. We then formulated

this foreground segmentation problem as a sparse decomposition problem, and

proposed an optimization algorithm based on ADMM to solve this problem. To

show the performance of these algorithms, we applied them on a dataset of screen

content image segmentation, and achieved significantly better performance than
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previous works.

In Chapter 3, we studied the problem of robust subspace learning for modeling

the background layer in the presence of structured outliers and noise. We proposed

a new subspace learning algorithm which can learn the subspace representation

of the underlying signal in case it is heavily corrupted with outliers and noise.

We showed the application of this algorithm for text extraction in images with

complicated backgrounds and achieved promising results.

In Chapter 4, we presented a very novel perspective for a new class of sig-

nal decomposition problems, specifically the case where the signal components are

overlaid on top of each other, rather than simple addition. In this case, beside

estimating each signal component, we also need to estimate their supports. We

proposed an optimization framework which can jointly estimate signal components

and their supports. We showed that this scheme could significantly improve the

segmentation results for text over textures. We also discussed about the extension

of ”Robust Principal Component Analysis (RPCA)” [45], to masked-RPCA, for

doing sparse and low-rank decomposition under overlaid model. Through experi-

mental studies, we showed the application of this algorithm for motion segmenta-

tion in videos, and also one-dimensional signal decomposition.

In Chapter 5, we briefly discussed an end-to-end deep learning framework,

which can directly segment the foreground through a convolutional auto-encoder.

We show that after training, this model is able to perform the segmentation much

faster than previous methods, because it no longer needs to solve an optimization

to segment the foreground.
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5.2 Future Research

5.2.1 Simultaneous Learning of Multiple Subspaces

In Chapter 4, we discussed overlaid signal decomposition, where the signal

components are assumed to be well-represented with suitable subspaces as x =

(I −W )P1α1 +WP2α2. Here we assumed the subspaces for different components

are known in advance. However, there could be many cases where suitable sub-

spaces are not known, and it would be interesting to simultaneously learn these

subspaces from a set of mixed signals. There are many works that jointly learn

subspace/dictionary representation for signals with different class labels [93]-[94],

but they assume that each signal only belongs to one class, whereas here we deal

with the case where each signal contains multiple components (different classes).

With suitable priors on each subspace and component, it is possible to jointly learn

a suitable subspace representation of different components, and separate them.

5.2.2 Using an End-to-End Framework for Foreground

Segmentation Using Deep Learning

We can also use a deep learning approach to directly segment an image us-

ing a convolutional encoder-decoder architecture. Similar architectures have been

used for various image segmentation tasks [95]-[97], but not specifically for mixed-

content image segmentation. We can add suitable regularization terms to the loss

function that encourages the foreground mask to be sparse and connected (as Eq.

(4.9)). For example, the `1-norm and total variation of the output mask can be

added to promote the sparsity and connectivity respectively. Instead of convolu-
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tional auto-encoder on patch level, we can also use a recurrent neural network,

which at each time predicts the foreground mask of a given patch, and uses that

as the hidden state (memory) for segmentation mask of future patches.
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