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Directly decoding speech from human cortical activity enables neuroprosthetic appli-
cations. An accurate auditory decoding model also facilitates neuroscientific research for
dynamic brain mechanisms through model interpretation. This work aims to decode speech
from human brain activities recorded by electrocorticography (ECoG) devices implanted
in the human cortex. The main challenge in developing such decoding models lies in the
scarcity of training data. We demonstrate that models designed with domain knowledge
of speech perception and production can decode high-quality speech with limited training
data. The interpretation of corresponding models corroborates established neuroscience
theories and provides evidence for novel neuroscientific phenomena. Our earlier effort
focuses on decoding perceived speech from neural activity in the superior temporal gyrus
(STG) cortex. We show that acceptable decoding results are achievable even with a small
amount of training data, and the trained decoder reflects the phoneme selectivity of STG.
In the second approach, we further improve the stimuli decoding performance by intro-
ducing a transfer learning method with a pre-trained GAN using a large corpus of speech
data to produce spectrograms from an abstract representation space. We then transfer it to
a bigger network with an encoder attached before, which maps the neural signal to the rep-
resentation space. By visualizing the attention mask embedded in the encoder, we observe
brain dynamics that are consistent with findings from neuroscience studies investigating dy-
namics in the superior temporal gyrus (STG), precentral gyrus (motor), and inferior frontal
gyrus (IFG). Our recent approach focuses on speech production, and we develop a novel
deep learning architecture that translates neural signals to an interpretable representational
space that can directly synthesize speech. By using either causal or anti-causal temporal
convolution, we can disentangle feedforward vs. feedback processing. Unlike prevailing
neuroscientific models for speech production, we find a mixed cortical architecture wherein
the frontal cortex processes both feedforward and feedback information in tandem across
precentral and inferior frontal sites.
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Chapter 1

Introduction

1.1 Overview and motivation

Our understanding of speech processing in the human cortex has come a long way in
the past century. Cardinal among human high order functions is the ability to perceive and
understand, as well as to plan and execute complex speech sequences which carry semantic
and linguistic meaning [11,43]. One approach to studying different cortical regions’ activity
during speech processing is to reconstruct the perceived or produced speech from intracranial
Electrocorticographic (ECoG) recordings. In addition to a finer scope study of the speech
cortical networks, a better understanding of speech processing can help the development of
better brain-computer-interface (BCI) systems to help patients with neurological conditions

that lead to loss of verbal communication.

1.2 History and previous research

Towards decoding speech perception, linear models have been utilized to quantitatively
demonstrate STG cortical representations [61]. Although the intelligibility of the recovered
speech is limited, this approach provides a means to study how the STG area reacts to speech
stimulus. Compared to speech stimulus decoding, speech production decoding for neural
speech prosthesis is generally a more challenging problem. The advances in modern deep

neural networks have brought new trust towards higher quality neural decoding for produced



speech. Both convolutional neural networks (CNN) and recurrent neural networks (RNN)
have being adapted towards this goal. Akbari et al. [2] trained a feedforward neural network
to map the neural responses into vocoder parameter space for decoding the speech with a
vocoder. Densely connected 3D convolutional network has been adapted to decode speech
spectrogram directly [4,38]. RNN has shown promising performance towards intelligible
produced speech decoding from motor cortex by introducing articulatory trajectory as an
intermediate representation [5]. In addition, natural language processing (NLP) models
have also played an essential role in decoding text from brain activity. Inspired by natural
language translation, Makin et al. [55] employed LSTM to translate text directly from the
neural signal. NLP has also been used to model the transition probability of decoded words
when reconstructing text sentences from brain [58].

Many existing studies have shown promising decoding performance towards speech neu-
ral prosthetics. However, the invasive nature of ECoG impedes convenient large-scale neural
data collection. Thus, the obtained training data is generally limited compared to the com-
mon practice of deep learning applications (such as classification on ImageNet with 14
million images). Also, despite the good quality of the decoded results, few existing works
systematically study the speech decoding network as a tool for interpreting speech cortical
networks.

We focus our research on novel speech neural decoding frameworks with higher data

efficiency and better interpretability to tackle the challenges mentioned above.

1.3 Contributions

Our goal in this work is to leverage deep learning models to decode intelligible audio
stimuli from ECoG recordings of the cortical regions, including superiortemporal, inferi-
orfrontal, precentral, and postcentral gyri. One major challenge that limits the success of
deep learning methods is the scarcity of training data. In this study, we tackle this challeng-
ing problem from two different perspectives. We propose a network structure containing an
ECoG decoder followed by a generator (Sec. 3.1 and Fig. 3.1). The ECoG decoder performs

feature extraction and maps the ECoG signal to a representation space (Sec. 3.3). The



generator predicts realistic spectrograms from the representation space (Sec. 3.2).

For the first approach, we show that a proposed deep network inspired by WaveNet,
trained with limited available data, can reconstruct speech stimuli from STG intracra-
nial recordings. We further investigate the impulse response of the fitted model for each
recording electrode and observe phoneme level temporospectral tuning properties in some
recorded areas. This discovery is consistent with previous studies implicating the poste-
rior STG (pSTG) in speech phonetic speech representation. It provides detailed acoustic
features that specific electrode sites possibly extract during speech recognition.

For the second approach, the generator is a full capacity convolutional neural net-
work. We choose to encourage an independent and identically distributed (i.i.d.) standard
Gaussian distribution for the representation vector to pre-train the generator without prior
knowledge of the distribution of the ECoG decoder output. To address the shortage of
ECoG and speech stimuli pairs, we propose a training scheme that trains the generator
using a large corpus of natural speech data. Additionally, we introduce a regularization
term for the fine-tuning loss function that encourages the ECoG decoder’s output to fol-
low the desired distribution and helps the network increase generalization. By introducing
an attention mechanism in the ECoG decoder, we can reveal the activation of different
cortical regions during speech perception. Our results show state-of-the-art decoding of
English word stimuli from the cortical areas, including STG. Additionally, the visualization
of the attention mechanism reveals brain regions’ dynamics that are consistent with prior
neuroscientific findings.

For the third approach, we propose a novel speech synthesizer as the generator
to reconstruct a speech spectrogram from a set of interpretable speech parameters. The
speech synthesizer is constructed by several parameter-free signal processing equations so
that it dramatically reduces the network capacity; thus entire framework is less prone
to over-fit. Also, the speech parameter space we chose is biologically plausible so that
the mapping from the brain signal to the intermediate representation is efficient. This
further reduces the number of trainable parameters needed and increases the training data
efficiency. We demonstrate state-of-the-art performance for decoding produced speech. By

learning neural network architectures that apply either casual, anticausal (or both) spatial-



temporal convolutions, we can analyze the overall feedforward and feedback contributions,
respectively, and elucidate the temporal receptive fields of recruited cortical regions. Our
analyses reveal a surprisingly mixed architecture of causal and anticausal processing across
the cortex while achieving speech decoding performance on-par or better than previously
reported. We also leverage the proposed framework to decode perceived speech and yield
accurate performance.

Although the focus of this study is on speech decoding from recorded ECoG signals, the
philosophy of intermediate representation design is general. It can be of interest in other

applications with limited training data.

1.4 Organization of the thesis

This dissertation is organized as follows: Part I (Chapter 2 - Chapter 4) will introduce
details of model design for leveraging limited training data. Part II (Chapter 6 - Chapter
8) will introduce how we interpret the decoding models that either confirm discoveries of
previous neuroscience studies or reveal new cortical phenomena during speech processing.

Finally, Chapter 9 will summarize our contributions and the plan for future works.



PART 1

Decoding Speech from Human Cortex



Chapter 2

SpecWaveNet: Wavenet Model for Stimuli

Decoding

This chapter explores the performance of a very straightforward speech neural decoding
solution: applying generic (convolutional) neural network designs and training the network
end-to-end. We show that a deep network inspired by WaveNet, trained with limited
available data, can reconstruct speech stimuli from STG intracranial recordings. We further
investigate the impulse response of the fitted model for each recording electrode and observe
phoneme level temporospectral tuning properties in some recorded areas. This discovery is
consistent with previous studies implicating the posterior STG (pSTG) in speech phonetic
speech representation. It provides detailed acoustic features that specific electrode sites

possibly extract during speech recognition.

2.1 SpecWaveNet Structure

With the constraint of a small dataset on which trained models are easily overfitted, a
trade-off between expressive power and generalization performance must be considered. To
achieve the same representation power, the model with higher parameter efficiency should
have fewer trainable parameters and, thus, less likely to overfit.

Based on the above consideration, we modified the WaveNet model, the state-of-art

model for waveform generation, to recover speech spectrograms from recorded ECoG re-



sponses. The original WaveNet takes noise samples as input and sequentially generates
random-meaning audio. If trained on the natural speech dataset, the model can pro-
duce real sounding speech. It has shown success in many audio generation applications
[20, 59, 63,68, 74]. Here, we modified Wavenet to a regression model that takes time series

ECoG signal input and outputs the spectrogram of speech.

Residual Block

Residual Connection
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+ 1 — ]
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Figure 2.1: SpecWavenet structure.

Initial
ECoG—"{ conv

The structure of WaveNet is illustrated in Figure 2.1. The model is based on a 1d
convolution that filters along the time axis. The multiple electrodes of ECoG and frequency
bands of the spectrogram are treated as channels. After the initial convolutional layer, the
model is constructed with several residual blocks. In each block, a gated unit is used
as nonlinear activation to model the possible modulation effect of certain input temporal
patterns on the output of the speech spectrogram. The signal then passes two branches of
1x1 convolution. The first branch is added to the input of the block as the residual. The
second branch of all blocks are skipped and summed at the final post-processing layers that
convert the extracted ECoG representation to the final spectrogram output.

Dilated convolution in the gated units contributes the most to capturing spectro-temporal
patterns. This convolution has a larger perspective field than its filter length by skipping
input values with steps of a certain dilation rate. Convolution with a larger dilation rate
has a larger perspective field with the same filter length. By stacking residual blocks with
dilated convolution layers of exponentially increasing dilation rate, the WaveNet can cover
a large range of temporal samples with the number of parameters approximately equal to

the logarithm of the temporal range. This significantly improves the parameter efficiency



in terms of temporal coverage. Meanwhile, exponentially increasing dilation rate extracts a
multi-scale representation of the ECoG signal. The summation of skip-connections from the
residual blocks allows each block to only process residual information of a certain scale. Skip
connections and residual connections improve parameter efficiency by incrementally decom-
posing the model to process multi-scale information. Batch normalization and dropout are

included between each convolutional layer to prevent the model from overfitting.

2.2 Experimental Performance of SpecWaveNet

2.2.1 Data Acquisition

The brain activities were obtained from two patients with epilepsy and undergoing
neurosurgery with an ECoG recording device [23]. The ECoG arrays have 8 by 8 electrodes
with inter-electrode spacing of 4mm and sampling rate of 3051 Hz. Electrode arrays were
implanted to cover the posterior lateral surface of the superior temporal gyrus. ECoG signals
were recorded simultaneously when subjects were participating in short tasks within five
minutes. During the task, both subjects were instructed to listen to speech audio (24 kHz
sampling rate) of 50 different English words recorded by a native English female speaker.
The first subject (S1) passively listened to each word. The same 50 words were repeated
three times in different pseudo-random order. The second subject (S2) participated in two
tasks with the same stimuli as S1. The subject was required to repeat the words they
heard during the first task and translate the perceived words to Spanish during the second
task. Each word was played twice for both tasks thus four ECoG signal examples of hearing
the same word were recorded for S2. For the current work, only the response during the
“listening” period is used to reconstruct the stimuli speech.

After synchronizing the speech waveform with ECoG signal by lagging speech with 168
ms behind, the speech spectrogram was generated by applying a 128 band-pass filter bank
on the waveform. Center frequencies of filters are logarithmically spaced from 180-7000 Hz
and have a bandwidth of 1/12 octave. The spectrogram is then subsampled to 32 bands in
frequency and 100 Hz in time. ECoG signals were preprocessed with high gamma band-pass

filter (70-150 Hz). The envelope of the filtered signal was then extracted by a Hilbert Huang



transform and downsampled to 100 Hz to match the sampling rate of the spectrogram.

2.2.2 Spectrogram Reconstruction

For spectrogram reconstruction, we used a WaveNet with 10 residual blocks. Convolu-
tion with a filter width of 2 is used for dilated convolutions of each residual block. With
the exponentially increasing dilation rate, the network covers 1240 ms temporal perspective
field.

We also implemented linear convolution (equivalent to linear regression) and ResNet [37]
as benchmark models. One-layer linear convolution has previously been used for correlating
pSTG cortex responses and speech stimuli and for decoding speech from ECoG signals [61].
ResNet is widely used in various machine learning based audio signal processing tasks [39,48,
62,75]. Linear convolution and ResNet are designed to have the same temporal perspective
field width (1240ms) as the WaveNet. The linear convolution model uses one-layer of 1d
convolution without activation function to transform ECoG signal with 64 channels to
speech spectrogram with 32 channels. The ResNet model contains 8 residual blocks with
filter length 4 and feature number 32. These settings are also optimized by hyper-parameter

search.
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Figure 2.2: Reconstruction samples of (a) linear convolution, (b) Resnet, and (¢) WaveNet.

We separate the datasets into training and testing set for k-fold (k=3 for S1 and k=4
for S2) cross-validation. Each partition contains 50 individual words in the testing set. The

quantitative evaluation is based on the averaged testing result for each cross-validation.
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linear conv | ResNet | SpecWaveNet
MSE | 0.86 0.79 0.68
CC 0.57 0.61 0.65

Table 2.1: Quantitive evaluation of SpecWavenet for S1 dataset

linear conv | ResNet | SpecWaveNet
MSE | 0.71 0.70 0.69
CC 0.69 0.70 0.71

Table 2.2: Quantitive evaluation of SpecWavenet for S2 dataset

The datasets were segmented into short sequences of 1000 ms with overlapping 10 ms. Note
that each word lasts around 400 ms and the spacing between words is about 1000 ms. Some
of the short sequences contain only a single word, others have a partial word, and some
contain only the silent period. 17k training sequences for S1 dataset and 26k for S2 dataset
are included in each cross-validation partition. Despite a large number of segments, the
actual words contained in the training set are limited (50 words, each repeated twice for S1
and 50 words, each repeated 3 times for S2).

Both mean squared error (MSE) and correlation coefficient (CC) are used as metrics
to evaluate each method. CC is calculated based on the averaged correlation coefficient
of all 32 spectrogram frequency channels. Table 2.1 and 2.2 report the testing result for
subjects S1 and S2. Overall, WaveNet achieved the highest CC and lowest MSE for both
datasets and deep models (WaveNet and ResNet) performed better than the linear con-
volution network. The number of trainable parameters for WaveNet, ResNet, and linear
convolution was 509K, 132K, and 204K respectively. The fact that WaveNet obtained
better results with more parameters suggests that the proposed WaveNet structure has a
richer expressive power while having a better generalization capability with limited training
data. Figure 2.2 illustrates reconstructed samples of each model. Linear convolution leads
to over-smoothed spectrograms and fails to recover detailed spectral features. ResNet, on
the contrary, has over-sharpened results and suffers from artificial spectro-temporal aliasing
that causes discontinuity across time.

Even though the spectrograms of recovered and original words can be visually similar,

to decode the word waveform intelligibly and correctly requires more precise reconstruction
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of the complex acoustic features, such as Formant frequencies and fast spectro-temporal
fluctuation. We inverted the decoded spectrogram to a waveform using an iterative convex
projection approach [7] for qualitative evaluation. We have found that, although the words
in the testing set have already appeared in the training set, the ECoG recordings for the
repeated words are quite different. There is no significant higher correlation between ECoG
recordings of the same repeated words than of different words. Without sufficient data to
uncover the complex non-linear relationship between ECoG signal and speech spectrogram,
intelligible reconstruction of all speech stimuli is not expected. Nevertheless, several de-
coded words from WaveNet (“waldo”, “yich” and “pave”) are definitely intelligible. Even
though some of the reconstructed spectrograms by ResNet looked quite similar to those by
WaveNet, the reconstructed speech by ResNet is much less intelligible. The intelligible re-
construction further validates better expressive power and generalization ability of WaveNet

than benchmark models.



Chapter 3

Stimuli Decoding with Generative Transfer

Learning

3.1 Transfer-GAN: a generative network transfer learning

framework for spectrogram decoding

In our preliminary experiments (Chapter 2), we discovered that it is nearly impossible
to directly reconstruct intelligible word with complex speech structure from ECoG signal
with limited number of data pairs. On the other hand, there are plenty of natural speech
data that allows one to discriminate “fake” from “real” speech. One naive solution is
to use a GAN loss while training a network to map the ECoG signal to the Speech signal.
However, this is still limited by the number of paired ECOG and speech data. To circumvent
this challenge, we propose the transfer-GAN framework, an innovative transfer learning
approach for generative network.

The transfer-GAN framework (Fig. 3.1) contains an ECoG decoder that maps an ECoG
signal to a representation space with a prescribed distribution, followed by a generator that
generates a spectrogram from the representation vector (output of the ECoG decoder). Fi-
nally, the spectrogram is converted to the sound waveform using another network (vocoder).
Both the generator and the vocoder can be pre-trained using any large corpus of speech
data. To encourage realist spectrograms generation, a GAN loss is applied during generator

pre-training. Then, the ECoG decoder and the generator can be refined together using the

12
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paired data. This approach not only allows us to efficiently exploit the prior information
about real speech spectrograms and waveforms, but also prevents the mode collapse problem
often associated with small training data [65].

In the following, we will introduce the structure of the generator and the ECoG decoder,
the transfer learning approach to fine-tune the ECoG decoder and generator together, as

well as the vocoder used to reconstruct waveforms.

ECoG
— (3 [ .
Decoder > Generatorr— Vocoder -N‘*

A

L !
ECoG recordings representation y Waveform
vector Spectrogram

Figure 3.1: Overview of the transfer-GAN framework.

3.2 Generator Network Structure

The limitation of the ECoG and speech training pairs is tackled by using a generator
network which is pre-trained on a larger corpus dataset. The generator takes a representa-
tion vector z and generates a spectrogram of a spoken word. The structure of the generator
network is shown in Fig. 3.2. Here, we introduce a structure inspired by WaveNet [74]
which has been shown to successfully generate waveforms. The efficiency of WaveNet is
that it encodes the input with multiple temporal scales. Convolutions with different di-
lation rates allow filters to span small to large temporal durations without increasing the
number of parameters. We show that a similar structure is also suitable for generating
speech spectrograms.

First, the generator projects the input vector into temporal domain with a fully con-
nected layer and reshaping. Then, several WaveNet residual blocks follow the initial con-
volution layer. In each block, signal is processed with a gated unit with certain temporal
filtering scale controlled by a dilation rate. The output of each gated unit flows into two
paths of 1x1 convolution with temporal filter width of 1. One path is further fed into the
next residual block with another temporal scale and deeper feature extraction, while the

other path (skip convolution) contributes to the final spectrogram generation by adding the
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features to the sub-network.
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Figure 3.2: Overview of the generator network. Total K = 5 residual blocks are used.
The BN, DO, and 1 x 1 in the figure denote batch normalization, dropout, and temporal
convolution with filter width 1, respectively.

96 x 32
1x1 ~Spectrogram

96 x 512

Generator Pre-training. For pre-training the generator network, we use random
vectors Z with an i.i.d. standard Gaussian distribution as the input and try to predict real
spectrograms. In addition to common practice in training GAN networks, the sampling

from 1.i.d. Gaussian distribution is used here since

e the posterior distribution of the ECoG decoder output is not known ahead of time and
a common output/input distribution should be agreed for the ECoG decoder /generator

to follow.

e Gaussian distribution has the largest entropy among all sources with the same variance

and hence maximizes the representation capacity of the representation space [14].

We use a Wasserstein Generative Adversarial Network (wGAN) [6] scheme to help with
generator pre-training. The wGAN has been proved to be a stable variation in GAN family
and has shown success for image and audio generation [1,6,17,64,81].

Wasserstein Generative Adversarial Network. wGAN [6] uses the Wasserstein
distance (w-distance) to measure the distance between real and generated data distributions.
Compared with the Jensen—Shannon (JS) distance used in previous GAN structure, w-
distance is continuous and differentiable with respect to the distributions. Although the
computation of such distances is not trivial, a critic network is used in wGAN to estimate

the w-distance.
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Figure 3.3: Samples from real and generated spectrogram on big corpus English word
dataset.

During training, generator learns to produce “fake” spectrograms that look like the
“real” spectrograms, ¥, from input vector Z by minimizing the estimated w-distance pro-
vided by the critic network. The critic network C(y, ) takes “real” spectrograms randomly
sampled from the training data, y, and the “fake” spectrograms ¢ as inputs and learns to
update the measured w-distance between y and g. The generator and critic network are
trained alternatively. In our experiments, we use ResNet [37] as our critic network and
set the input vector dimension to 64. Figure 3.3 show some generated spectrogram after

generator pretraining. The generation looks very realistic.

3.3 ECoG decoder Network Structure

The ECoG decoder in our framework serves as a feature extractor that maps the ECoG
signals to a representation vector z. We use a ResNet [37] as the backbone of the ECoG
decoder. Fig. 3.4 demonstrates the structure of the ECoG decoder. In the beginning layers,
only temporal filtering along the signal from each electrode is used because the ECoG signal
has less correlations between electrodes than across time. Along with the last temporal
residual block, an attention gated unit is applied that allows the network to focus only on
more significant electrodes at each time step. This not only helps to improve the network
accuracy by ignoring the uninformative electrodes with low signal-to-noise ratio (SNR), but
also provides a way to analyze the dynamics of each cortical area. We discovered that the
evolution of the visualized attention mask over time follows prior neuroscientific findings of
the brain dynamics (see Sec. 7.2).

After extracting temporal features for several layers, the later parts of the ECoG de-
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coder further extract spatiotemporal features with residual blocks using 3D convolution.
At the output layer, instead of embedding to latent vector z directly, we use the “repa-
rameterization trick” [52] to encourage the generated vector z to follow the desired i.i.d.
Gaussian distribution as the input to the pre-trained generator. This also regularizes the
ECoG decoder during fine-tuning, which in turn results in better generalization with small

amount of training data.
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Figure 3.4: Overview of the ECoG decoder network. Initial convolution layers only per-
forms temporal filtering within each channel (corresponding to signal from one electrode).
Attention mechanism helps with the feature extraction and interpretability of the results.

3.4 Fine-tuning the ECoG decoder and the Generator To-

gether

In our transfer-GAN framework, once the generator is pre-trained, we then transfer it
to the overall network by fine-tuning it together with the ECoG decoder. To encourage the
output distribution of the ECoG decoder to follow an i.i.d. standard Gaussian distribution,
we want to minimize the Kullback—Leibler (KL) divergence between the two distributions.
Let x denote a segment of ECoG signal input to the ECoG decoder. Following the “reparam-
eterization trick” introduced in the variational auto-ECoG decoder (VAE) [52], the output
of ECoG decoder uses two separate fully connected layers to estimate mean, p(x) € RY,
and variance, o(z) € R?, vectors. The representation vector z is then constructed to follow
a Gaussian distribution N (p(z),%(x)) (where ¥(z) = diag (0*(x))) by rescaling an i.i.d.
standard Gaussian random vector (i.e. z = p(x) + o(z) o n, where n ~ N(0,I)).

KL divergence between ECoG decoder output distribution p(z) and generator input
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distribution p(Z) during pre-training is

KL(p(2)|p(2)) = KL(N (u(x),% () [N (0,1))

N

d
> (4 () + 0} (z) — log o} () — 1)
=1

To jointly train the ECoG decoder and refine the generator, we minimize a loss function
that is a weighted sum of the mean squared error (MSE) between reconstructed §(z) and

the ground truth spectrogram y and the KL divergence term:

loss = (y,9(x)) + AKL (p (2) [p (2)) (3.2)

where ) is a hyper-parameter and is set to 0.1 in our experiment.

3.5 Reconstruction of Audible Waveform

To transform the predicted spectrogram back to an acoustic waveform, we adapt a
WaveNet vocoder model [74] to reconstruct waveforms of good quality. The WaveNet
vocoder takes spectrogram as its input and learns the mapping between the spectrogram
and the corresponding speech waveform. We pre-train the vocoder on large corpus datasets.
Once the ECoG decoder and generator are fine-tuned, we then fine-tune the vocoder sep-
arately with pairs of the stimuli waveforms and the corresponding predicted spectrograms

in the training set.

3.6 Experimental Performance of Transfer-GAN

3.6.1 Dataset Acquisition and Preprocessing

We collected datasets of three different electrode density and coverage: A higher density
dataset (HD) with 2 subjects and 4 mm inner-electrode spacing; A lower density dataset
(LD) with 12 subjects and 10 mm spacing; A hybrid density dataset (HB) with 2 subjects

and overall 10 mm spacing with particular regions inserted by 5 mm spacing sub-grid
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electrodes. The STG region is sampled for all subjects, and other cortical regions (including
Broca’s area and motor cortex) are also sampled in LD and HB data. Fig. 3.5 illustrates grid
placement examples for the three datasets. During the task, all subjects were instructed
to listen to speech audio of 50 different English words/pseudo-words recorded by a native
English female speaker. The 50 words are repeated 2-4 times depending on the dataset.
One subject in the HD dataset passively listened to each word while all other subjects are
required to reproduce each word after listening.

The ground truth speech spectrograms were generated from waveforms by applying a
32 band-pass filter bank. Filters with bandwidth of of 1/12 octave and center frequencies
spaced logarithmically from 180-7000 Hz were used. The spectrograms are then down-
sampled 125 Hz in time [25]. ECoG signals were preprocessed with high gamma band-pass
filter (70-150 Hz). The envelope of the filtered signal was then extracted by a Hilbert Huang
transform and downsampled to 125 Hz to match the sampling rate of the spectrogram. Silent
period of 250ms before each stimuli is used as reference . We normalize the signal from each

electrode by the mean and standard deviation of the reference period.

Figure 3.5: Examples of electrode grid of HD, LD and HB datasets. Electrodes within the
cropped regions are included in the input to the network. For HD dataset, this covers mostly
the STG area. For LD and HB datasets, the motor and Broca’s areas are also covered. In
all cases, the input covers a 8x8 grid. Some subjects have missing or bad electrodes in the
area chosen. For simplicity, we assumed the signals are all zero in those locations.

3.6.2 Stimuli Reconstruction

The generator has 5 residual blocks with dilation rate of {1,2,4,8, 16} and filter size
2 to cover 62 ms temporal perceptive field. The ECoG decoder network covers 51 ms
temporal field. Adam optimizer [51] is used to fit models with hyper-parameters as following;:

generator pre-training (Ir = 1074, 81 = 0, 32 = 0.9), ECoG decoder-generator fine-tuning
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(Ir = 1073, B1 = 0.9, B2 = 0.999), vocoder pre-training (Ir = 1073, f; = 0.9, fo =
0.999), and vocoder fine-tuning (Ir = 107*, 31 = 0.9, B2 = 0.999). We use a corpus of
spoken English words from the Shtooka project [69] to pre-train the generator. It contains
4876 individual words pronounced by a female speaker. For pre-training the vocoder, a
combination of dataset is used. It includes Shtooka project [69] and LJ speech dataset [47],
which contains 24 hours speech waveforms of English sentences in female voice.

During fine-tuning, we separate the dataset into testing and training sets. For each
subject, 50 unique words are used for testing, and the rest of the samples (each word
appeared 1 to 3 times depending on the subject) are used for training. An individual model
is trained and tested for each subject. For reconstructing the stimuli, only the perception
period ECoG signal is used, which begins at the stimulus onset and runs up to 419 ms -791
ms. During fine-tuning, for data augmentation purpose, we randomly pick a sliding window
of 768ms from a combination of the perception period and the corresponding silent period
for each sampled word. As shown in Fig. 4, signals from a 8x8 grid are used as the input.

We compare our transfer-GAN framework with a spectrogram based WaveNet (SpecWaveNet)
[79], which has shown good reconstruction and outperformed linear models and residual net-
work based approaches. To allow for a fair comparison, the number of parameters for the
ECoG decoder and generator is the same as that of SpecWaveNet. We also compared with
the linear regression model decoding accuracy reported by Pasley et al [61]. Table 3.1
compares the averaged mean squared error (MSE) and correlation coefficient (CC) on our
dataset. The transfer-GAN has better performance by a large margin on all three datasets
in terms of both MSE and CC metrics. Fig. 3.6 compares samples of reconstructed spec-
trograms on the testing set of HD and HB datasets for transfer-GAN and SpecWaveNet
methods. The results show our proposed approach captures spectrogram dynamics more
accurately. The consonants (short segment of high frequency components in the figures)
are important for intelligible reconstruction but they can be easily overlooked by decoding
models due to their low energy. Our method provides better consonant reconstruction com-
pared to the SpecWaveNet. Some audio examples of the decoded waveforms are provided

herel.

"https://wp.nyu.edu/videolab/ecog_demo/
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Figure 3.6: Decoding results on each one of HD and HB testing set. GT and SW denote
ground truth and SpecWaveNet, respectively.

MSE (&sd) / CC (£sd)

transfer-GAN

SpecWaveNet

linear model

HD | 0.58(0.09) / 0.69(0.05) | 0.68(0.08) / 0.61(0.05) | - / 0.41(0.03)
HB | 0.53(0.03) / 0.72(0.01) | 0.64(0.01) / 0.66(0.02) | - / -
LD | 0.73(0.14) / 0.60(0.04) | 0.79(0.15) / 0.54(0.05) | - / 0.3(0.05)

Table 3.1: Quantitive comparison between transfer-GAN (proposed), SpecWaveNet [79],
and linear model [61] in MSE (lower is better) and CC (higher is better) on test data. “-”
refers to number not reported.

3.6.3 Production Reconstruction

Besides decoding stimuli from neural data, we also investigated decoding produced
speech with transfer-GAN framework following aforementioned network architecture and
training strategy. Figure 3.7 reports the decoded samples. Compared with decoded spec-
trogram illustrated in figure 3.6, the decoded production spectrogram are more blurry and
the resulted waveform are not as intelligible compared to the stimuli ones. In terms of
objective metrics, the decoded production has averaged MSE 0.673 and CC 0.59 while
decoding stimuli achieves 0.53 MSE and 0.72 CC. Both objective metrics and perceptual
quality imply that decoding production is a more complicated task than decoding stimuli

within Transfer-GAN framework.
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Chapter 4

Stimuli Decoding from Non-grid Electrodes

Inputs

In the previous chapter, we introduced a neural decoding framework that is able to
project grid ECoG signals to spectrogram/waveform. In real applications, the electrode
nodes are usually not in a grid shape. For example, there may be missing electrodes in
the grid. One possible solution is to pad zeros or interpolate for the missing electrodes,
but this may still lead to sub-optimal results. In many other cases, the electrodes array is
constructed with non-grid placed stripes. In these cases, it is difficult to use convolution in
the spatial dimension.

Motivated by the previous literature on attention based networks [76,77,80], we pro-
pose an attention based network to solve the non-grid input problem. In attention based
networks, such as non-local networks and graph attention networks (GAT) input are ag-
gregated according to the signal values instead of grid neighbors, thus naturally bypass the
difficulty of convolution on non-grid data. In the following sections, we will first introduce
the attentional building blocks and the positional encoding used in the encoder. Then the

overall encoder structure will be described in section 4.3.

22
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4.1 Spatial-temporal Separable Conv-Attention Layer

The input to the attention block is a set of feature sequences, x = {71 (t), Z2(t), ...,
Zn(t)}, Zi(t) € R, where 0 < t < T, N is the number of nodes and F is the number
of features in each node. The layer generates a new set of node feature sequences, z =
{Z1(t), Z2(t), ..., Zn (D)}, Zi(t) € RE, as its output.

For such a spatial-temporal signal, we can apply the attention mechanism on both
dimension. Or we can apply attention to spatial dimension only and perform convolution on
the temporal axis. During experiments, we discover that the attention on both temporal and
spatial is not very stable. So we propose a separable convolution-attention block described
as following;:

We first obtain the query, key and value for attention via convolution on the temporal

axis of x. For Vi € [1, N],

@ (t) = ConvlD(Z;i(t), ©) (4.1)
ki(t) = ConvlD(Z;(t), ®) (4.2)
7i(t) = ConviD(Z(t), G) (4.3)

where ®, ® and G are the temporal convolution kernel shared among nodes.
From query ¢;(t) and key Ei(t), we want to obtain a static attention matrix for each
time step for stability purpose. To this end, a max-pooling layer is applied on ¢;(¢) and

k;(t) along temporal dimension,

g = max(q;(t)|0 <t <T) (4.4)

ki = max(ki(t)|0 < t < T) (4.5)
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Then the attention coefficient between ith and jth node oy; is calculated by:

eij = LeakyReLU(WIg; || k;]) (4.6)
Qg5 = softmax(eij) (47)
exp(eij) (
= 4.8)
ngN exp(€ij)

where || represents concatenation operation, W represents weights of a fully connected layer.
The obtained attention coefficient is used as summation weights to aggregate features

of different node of value 9(t):

Ti(t) = ReLU | > (1) (4.9)

J<N
To allow more expressive power, we follow similar multi-head attention as introduced
in [76,77]. Namely, K sets of independent attention coefficients and values are generated
to form K different sets of features follow the transformation of Equation 4.9. These fea-
tures are then concatenated and followed by nonlinear transformation for sufficient feature

combinations.

K
T(t) = || ReLU [ > ok (¢) (4.10)
k=1 J<N
K
= || ReLU Zaijonle(fj(t)) (4.11)
k=1 J<N
7i(t) = LeakyReLU(P%,) (4.12)

where Z; is input feature vector of j-th electrode of shape T' x 1 x F. We also follow a
similar residual design in the non-local network. The output of the convolution-attention

block then becomes:

5() = 700 + 5 (1) (4.13)
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Figure 4.1: Structure of Conv-Att block. The input and output of the block are in shape
of T x N x F (time x nodes x feature). The block operates temporal and spatial/node di-
mensions with convolution and attention separately. The attention coefficient computation
is augmented with MNI positional encoding to achieve more expressive power.

4.2 MNI Positional Encoding

Despite that the attention based encoder has the benefit of processing non-grid ECoG
signals, we notice that the attention based encoder is out-performed by the convolution
based encoder with grid ECoG input. The similar phenomenon has also been discovered
in [8] where 2D convolution ResNet achieve higher accuracy than non-local network in image
classification tasks. Experiments in [8,67] show positional encoding on Euclidean space is
able to improve attention based network performance. Inspired by this work, we propose a
positional encoding approach on non-grid ECoG input.

Existing positional encoding method in attention based network usually requires the
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encoded position on an Euclidean grid. To overcome this restriction, we introduce a posi-
tional encoding approach based on MNI coordinate of the electrodes. The MNI template
is a 3D brain template proposed by Montreal Neurological Institute [18] that allows MRI
scan of the individual brain to transform to. With a fixed origin on the template, The MNI
coordinate of the electrodes can be defined from the corresponding 3D coordinate of the
electrodes after the MNI mapping.

For the purpose of encoding position information, we first use a mapping layer that
transfers the MNI coordinate to a representation feature of a higher dimension. The MNI

feature ¥; € RY for the ith electrode is
p; = LeakyReLU(UGg) (4.14)

where the transformation matrix U € R¥*3 is shared among all electrodes and ¢; is the
MNT coordinate.

Equiped with the above MNI feature, the attention coefficient computation in section
4.1 can be augmented by concatenating MNI features with query and key. Specifically,

Equation 4.6 is modified as:
¢ij = LeakyReLU(W(g; || &; || 7; || (5 — 7)) (4.15)

the concatenation of p; and p; —p; make use information of both the absolute position and
relative position. p; allows the network to be aware of the actual brain area of electrode i to
perform potentially different functions accordingly. And p; —p; provides spatial relationship
between electrode 7 j.

Figure 4.1 demonstrates how MNI positional encoding augmented Convolution-Attention
block works with tensor inputs. To illustrate more clearly how tensor dimensions are ma-
nipulated, we refer spatial dimension of query and key with different notations, N and N’.

In practice query and key has same amount of nodes, namely N = N’.
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4.3 Attention Based Encoder

In this section, we will introduce the attention based encoder that maps non-grid ECoG
neural signals to the representation vector z as is described in Chapter 3. Figure 4.2
illustrates the structure of attention based encoder. After several temporal convolution
and residual blocks on temporal dimension with temporal down-sampling, two convolution-
attention blocks follow. The conv-attention blocks combine features crossing in both tem-
poral and spatial (electrode nodes specifically) dimensions. The MNI features fed to the

blocks are obtained by another 1 x 1 convolution mapping layer with MNI coordinates as

input.
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Figure 4.2: Overview structure of the attention based ECoG decoder network.

Similar to spatial convolution networks that usually perform spatial downsampling, we
allow the network to pool among electrode nodes. This is achieved by inserting a gPool
layer between the two conv-attention blocks. The gPool method was first introduced in [30]
to solve the problem of nodes pooling in graph neural networks. We adapt the method to
take input of non-grid sequential signals. By average pooling, a temporal collapsed version
of the last layer output is fed to a gPool layer. Within the gPool layer, a node selection
array is generated. We use such array to index the selected electrode nodes for both ECoG
and MNTI features after pooling.

The rest layers of the decoder follow the same design of the later parts of the encoder

introduced in Chapter 3 to generate a representation vector z.
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4.4 Experimental Performance of attention based encoder

In order to generate spectrograms and waveforms from the ECoG inputs, we substitute
the encoder layers of the decoding framework introduced in chapter 3. The pretraining/
fintuning of the generator and the entire decoder follow the same strategy and hyperparam-
eters. To test the performance of the proposed attention based encoder, we preliminary use
one of the patient data from the Hybrid dataset as is described in section 3.6.1 for training
and testing. The hybrid electrode nodes have overall 10 mm spacing with particular regions
inserted by 5 mm spacing sub-grid electrodes.

The convolutional encoder of the previous chapter pad zeros for the “missing” electrodes
in the grid region. For the attention based encoder, we just treat all electrodes as input
nodes to the encoder and ignore the “missing” electrodes. The rest steps of preprocessing
follow the same methods introduced in section 3.6.1.

For the subject we test on, 50 words are used as training samples and the rest 50 words
as test samples. Figure 4.3 illustrate some reconstructed samples from the decoding network

with attention based encoder.

Figure 4.3: Reconstructed samples from the decoding network with attention based encoder.
Upper row: ground truth spectrogram, lower row: reconstructed spectrogram

Table 4.1 compares convolutional and attention based encoder performance quantitively.
The results show very close-up performance between convolutional and attention based
encoder with partially grid input. It is reassuring that the proposed attention based model
achieves similar performance as convolution based model. This encourages the usage of

attention based model on entirely non-grid data where convolution on space is difficult to
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MSE/ CC

Convolutional decoder

attention based decoder

HB [ 0.50/ 0.72

0.50/ 0.71

Table 4.1: Quantitive comparison between convolutional and attention based decoder for

spectrogram reconstruction.

In the future works, we are going to further test the performance of attention based

model on other hybrid and non-grid data.



Chapter 5

Generate Produced Speech with Differen-

tiable Speech Synthesizer

In Chapter 3, the nature of generator training limits the ECoG decoder to output a fixed
length vector. This makes decoding speech with variable length difficult. Also, generating
a fixed length vector without physical meaning is less interpretable In this chapter, we solve
this issue by introducing a novel neural decoding framework that is constructed with a

differentiable speech synthesizer.

5.1 Speech decoding framework

The backbone of our neural decoding framework is constructed by an ECoG decoder
and a speech synthesizer (Fig. 5.1a). During testing, from the high gamma components of
the ECoG signal, the ECoG decoder generates a set of speech parameters that drive a differ-
entiable speech synthesizer to generate speech spectrograms (and corresponding waveforms
by Griffin-Lim algorithm [33] ). During training, besides being trained to math with the
speech synthesizer to output spectrograms matching the target spectrograms, the ECoG
decoder is also trained to match its output with a set of reference speech parameters. This
reference matching training strategy provides a more direct gradient to the ECoG decoder
so that it converges faster and is less prone to overfit.

The reference speech parameters are derived from a pre-trained speech encoder. During

30
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pre-training, the speech encoder and the speech synthesizer fulfill an auto-encoding task (i.e.,
mapping the input spectrogram to the speech parameters and back to the spectrogram) (Fig.
5.1b). When such speech-to-speech reconstruction is accurate, the parameters generated by
the speech encoder should provide physically meaningful speech parameters. Since the pre-
training is unsupervised and the subject speech audio data is easy to collect, obtaining the
reference speech parameters is not laborious. Note that the speech-to-speech autoencoder
and the reference parameters are only used for the training of the ECoG decoder. Once the
ECoG decoder is trained, the trained decoder and the speech synthesizer can be used to

convert ECoG signals to speech, without the need for the reference parameters.

e ECoG Decoder. The decoder maps the ECoG signals to a set of speech parameters
(describing both the voiced and unvoiced components) which are then synthesized to
speech spectrograms (Fig. 5.1). The ECoG decoder architecture is based on recent
advances in convolutional neural networks leveraging the ResNet approach [37]. We
construct a modified ResNet model with nine layers which treats the cortical input
as a spatiotemporal three-dimensional tensor (two dimensions for the electrode array
and one for time). The decoder is trained such that its output parameters match
the reference parameters derived from a speech encoder (which is learnt separately in
an unsupervised manner). Furthermore, our approach ensures that the speech spec-
trogram derived from these parameters, and constructed by the speech synthesizer,
matches with the actual speech spectrogram. We use this approach rather than an
end-to-end training as it is more data-efficient and allows us to train on a small set of

samples for each patient.

e Speech Parameters. Our speech representation is motivated by the vocoders used
for low-bit-rate speech compression dating back to the 1980’s. We model speech signals
as a mixing between voiced and unvoiced components, with the voiced component
described by a source-filter model (dynamically filter harmonic signals) [21] and the
unvoiced component generated by white noise broadband filtering. In addition to the
mixing parameter, our representation includes speech formant information (frequency,

bandwidth, etc) and loudness (i.e., energy of speech). See Fig 5 for details.
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e Synthesizer. Rather than training our speech synthesizer we use a set of signal
processing equations (such as harmonic oscillation, noise generation, filtering, etc.) to
synthesize the spectrogram from the speech parameters. By limiting the number of
speech parameters and using differentiable signal processing equations, we are able
to train the ECoG decoder with a limited amount of training data. In addition,
we are able to augment training by using a direct guidance approach where speech
parameters (output of the decoder) are matched to the reference parameters derived
from the actual speech (see Speech Encoder). This matching process (i.e., “match”
in Fig. 5.1) allows for an accurate estimation of speech parameters and decoded
spectrograms based on the ECoG signals. It is noteworthy that the equations we
use are differentiable which allows for backpropagation from the spectrogram to the

actual learning of the decoder.

e Speech Encoder. The speech encoder is pre-trained using an independent unsuper-
vised approach prior to the ECoG decoder training. The encoder is trained to generate
a set of speech parameters from a given spectrogram, from which the aforementioned
speech synthesizer can reproduce the spectrogram. This pre-trained encoder gener-
ates reference speech parameters from actual speech signals, used for the training of
the ECoG decoder. The unsupervised process can be easily used to train the speech
encoder from any set of speech signals including patient specific speech. Importantly,
this process constrains the speech parameter space to optimize our decoding learn-
ing and the parameters can directly drive a speech synthesizer based on differential

equations.

In the rest of this section, we will first introduce the structure of the speech synthesizer
(Fig. 5.1e). Then we will describe the ECoG decoder (Fig. 5.1c¢) and Speech encoder (Fig.
5.1d).
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Figure 5.1: Structure of the decoding framework. (a) the overview of the overall net-
work architecture. An auto-encoder structure (b) is used to pretrain the speech encoder
by training a speech encoder to generate proper speech parameters that can reconstruct
input spectrograms through the speech synthesizer. (c¢) The ECoG decoder is a modified
three-dimensional residual network. After an initial temporal convolutional layer and eight
residual blocks (constructed by three-dimensional convolution layers), multiple convolu-
tional layers (each has temporal kernel size of 1) generate speech parameters separately. (d)
The speech encoder in (a) is constructed by a convolutional network, with three convolu-
tional layers backbone and the same multihead output structure as in (c). (e) Illustrates
the processes within the speech synthesizer. The harmonics (in voice pathway) and white
noise (unvoice pathway) are generated and filtered (multiplication in spectrogram domain)
by voice and unvoice filters, respectively. The filtered results are then weighted averaged

according to a mixing parameter and then amplified by the loudness parameter.
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5.1.1 Differentiable speech synthesizer

In traditional vocoder, speech is generated by switching between voiced content and
unvoiced content. Each content comes from an autoregressive system driven by a certain
excitation signal that is either a harmonic signal or a white noise signal [16]. Inspired by
such a process, we construct our speech synthesizer shown in Fig. 5.1(e). It consists of
two pathways. The wvoice pathway generates a voiced component by driving a harmonic
excitation with time varying fundamental frequency (i.e., pitch) f¢ through a voice filter
consisting of N formant filters, each described by a center frequency f! and an amplitude
at,i = 1,2,..,N. The unvoice pathway generates an unvoiced component by driving a
white noise through an unvoice filter described a center frequency f., bandwidth bf, and
amplitude a!, (in addition to the N formant filters for the voice pathway). These two
components are adaptively combined with a time-varying mixing factor of, controlling the
relative contribution between voiced sounds (for sonorant phonemes including vowels and
nasals) and unvoiced sounds (for voiceless plosives and fricatives such as /p/, /s/). The
voiced plosives and fricatives (such as /b/, /z/) can be generated as a combination of
voiced and unvoiced components. Finally, the combined signal is amplified by a loudness
parameter L;. In our study, we used N = 6 formants. The synthesizer is driven by a
total of 18 time-varying speech parameters, including the fundamental (or pitch) frequency
1§, the mixing factor between the two pathways af, the 12 parameters for the voice filter
(ff,al) and the 3 parameters for the unvoice filter f!, bl al,, and the loudness L'. Given
the parameter values at each time sample, the synthesizer can generate a spectrogram
sample. The spectrogram is a differentiable function of the speech parameters so that we
can back-propagate the gradient of the training loss in terms of the predicted spectrogram
to the speech parameters, which can then be backpropagated to either the speech encoder
or the ECoG decoder parameters. Specifically, let the V!(f) represent the spectrogram of
the voicing component, U'(f) that of the unvoicing component, and o' € [0,1] the mixing
factor. The combined spectrogram can be written as S*(f) = o'VI(f) + (1 — o )U(f). (1)
Finally, the synthesized speech spectrogram is S’t( f) = Lto S'(f), where L! is the loudness

that modulates the signal cross time.
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Formant filters in the voice pathway The filter in the voice pathway consists of
multiple formant filters, corresponding to the multiple formants associated with vowels.
The formant filter shape over frequency, which is related to the resonance property of the
vocal tract, is closely related to the timbre of speakers’ voice [46]. We have found that a
predefined analytic form such as generalized Gaussian cannot cover all feasible filter shapes

Instead, we learn a speaker-dependent prototype filter for each formant based on the
speaker’s natural speech. We represent the prototype filter (G;(f) for the i-th formant as
a piecewise linear function, linearly interpolated from g[m],m = 1...M, the amplitudes of
the filter at M uniformly sampled frequencies up to firae- We restrict the resulting filter
G;(f) to be unimodal (with a single peak of value 1) by properly constraining g[m]. Given
glm],m = 1..M, the peak frequency f7 "o and the half-power bandwidth bfmm can be
determined. The actual formant filter at any time can be written as a shifted and scaled
version of G;(f). Specifically, at time ¢, given an amplitude (a), a center frequency (ff),

and a bandwidth (b}), the i-th formant filter is given by

roto

Fi(f) = a;- Gi <Zb¢ (f=fD+ ff”’“’) (5.1)

Then the filter for the voice pathway with N formant filters can be written as F}(f) =
SN F!(f). We learn the parameters g[m],m = 1...M for G;(f) during the unsupervised
pre-training of the speech encoder, which does not require neural data. Fitting such a
prototype filter is not data-hungry even with a relatively large M. We used M = 20 in
our experiment. Although two formants (N=2) have been shown to suffice for intelligible
reconstruction [11], we use N=6 in our experiments for more accurate synthesis. We denote
the parameter set for the voice filter at time ¢ by S* = {(f{,al,bl)li € {1,--- ,N}}. As

explained later, the bandwidth bﬁ parameters are not independent speech parameters, rather

functions of the center frequencies f/.
Unvoice filter For the unvoice pathway, we add a broadband filter described by {(f%, a, bt
The shape of this filter F(f) follows equation 5.1 but with the filter coefficients (af, ff, b!)

replaced by (o, f%, bt). The bandwidth is constrained to satisfy b% > 2000Hz, following the

n’ n



36

broadband nature of obstruent phonemes. We also keep the multiple formant filters in the
voice filter described by SY. This is motivated by the fact that human beings differentiate
consonants with similar sounds such as /p/ and /d/, not only by the immediate burst of
these sounds, but also the development of the following formant frequency until the next
vowel [49]. To encode such formant transitions, we use the same formant filter parameters
for modeling the narrow passbands in both the voiced component and the unvoiced compo-
nent. The parameter set for the unvoiced component is thus 7" = SHU{(fL, a4, b%)}. The
overall filter for the unvoice pathway is: FY(f) = FL(f) + Zfil FH(f).

To further reduce the dimension of the parameter space, we model the bandwidth b¢ of

a formant filter as a piecewise linear function of the center frequency f} , inspired by the

statistics reported in the literature [36]. Specifically, we assume

b a(ff— fo) +bo, if fI> fo

1
bo, otherwise

where threshold frequency fy, slope a and baseline bandwidth by, are three parameters

that can be learnt during unsupervised pre-training, shared among all formant filters.

Harmonic excitation In the voice pathway, the voice filter is applied on the harmonic
excitation. This pathway models the human production of vowels and nasals, which results
from the voice excited by the vocal cord shaped by the vocal tract. The excitation is
constructed by sinusoidal harmonic oscillations with a time varying fundamental frequency
f§. Inspired by the formulation in [19], we define the harmonic excitation h' as: h' =
Zszl ht, where K is the total number of harmonics ( K=80 in our experiment). Assuming
the initial phase is 0, each harmonic resonance hfc at time step ¢ has an instant phase that
is the accumulation of resonance frequency in the past. Specifically, the k-th resonance at
time step ¢ is h}, = sin(27 Zizo fl,gT))7 where fét) = k:fét). Denoting the spectrogram of h
as H'(f), the spectrogram of the voice component is the multiplication of H'(f) and the
voice filter, i.e., VI(f) = H'(f) o F{(f).
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Noise excitation The unvoice pathway models consonants like plosives and fricatives,
where the vocal tract and human mouth filter the airflow through the mouth. It follows
a similar process as in the harmonic counterpart. The major difference is that the exci-
tation being filtered becomes stationary white Gaussian distributed noise n(t) ~ N (0, 1),
with a corresponding spectrogram N!(f). The filtered noise spectrogram (i.e., the unvoice

component) is U(f) = N(f) o FL(f).

5.1.2 ECoG decoder and speech encoder

The ECoG decoder is constructed by a three-dimensional ResNet that treats time-
varying signals on an ECoG grid array as spatiotemporal three-dimensional tensors (width
x height x time). As is depicted in Fig. 5.1c, after an initial temporal convolutional layer
(with 128 feature map filters and kernel size of 1 x 1 x 9(72ms)), the signal passes through
eight residual blocks. Each block contains two three-dimensional convolutional layers (with
128 feature map filters, each has kernel size of 3 x 3 x 5(50ms)). The output of the residual
blocks creates a shared latent representation consisting of 128 feature maps (each is a one-
dimensional temporal signal by average pooling the two spatial dimensions), which is then
fed into different output heads (each applies one-dimensional convolution with temporal
kernel size of 1) to generate speech parameters. The overall temporal receptive field for
generating one speech parameter is 73 temporal samples of 584 ms.

The speech encoder network architecture we choose is as simple as possible to demon-
strate the effectiveness of the speech synthesizer design. In the experiment, we use three
layers of temporal convolution (we treat the frequency axis of the spectrogram as the fea-
ture dimension) to generate a latent representation (Fig. 5.1d). Each convolutional layer
has 128 feature maps and temporal kernel size of 3 frames (24ms). To output the speech
parameter, we apply the same multi-head structure to the latent representation as in the

last layer of the ECoG decoder.
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5.2 Loss and training hyper-parameters

The speech encoder is trained with a weighted average of the mixed spectral loss and

the parameter loss. The mixed spectral loss [19] is defined as:

LMSS(gt(f)v St(f)) = Llin(gt(f)v St(f)) + Lmel(gt(f)7 St(f))a

in which,

Ly (z,y) = ||z — yH1 + [[logz — 10gy”1

Lmel(xa y) = H'rmel - ymelHl + |‘logxmel - 1Ogymelnl

where S*(f) and S’t( f) denote the ground truth and reconstructed spectrograms, respec-
tively, subscript lin means that the frequency is in the linear scale while the subscript mel
means the frequency is in the mel scale.

Let’s denote the j-th reconstructed speech parameter as ]5]’e and it reference P;, the

overall training loss for the ECoG decoder becomes:

L= Lspectrogram + Lspeechparameters

= NoLuss(3'(0), 5N + Y (| B - 21

where \; balance the contribution from different loss terms since they have different
physical meanings and scales.

Both the speech encoder and ECoG decoder are fitted by Adam optimizer with hyper-
parameters: Ir = 1073, 5, = 0.9, 82 = 0.999. We train an individual ECoG decoder and
speech encoder per patient. The pre-training of the speech encoder and the training of
the ECoG decoder share the same training/testing set partition. During the training, we
augment the data by randomly selecting a one second segment from the production period

of each trial and repeating this multiple times. The segment is cropped so that it contains
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the entire vocalized word.

5.3 Produced speech decoding performance

We first demonstrate that our approach produces accurate speech decoding with de-
tailed acoustic features. The model’s decoded spectrogram preserves the spectro-temporal
structure of the original speech and reconstructs both vowels, consonants (Fig. 5.2a) as well
as the overall spectral energy distribution. These acoustic details result in a reconstruction
which preserves the speakers’ timbre and leads to naturalistic voice decoding. Our model’s
speech parameters which include loudness, formant frequency and the mixing parameter
(i.e., voiced or unvoiced) are decoded accurately with correct temporal alignment of each
word onset and offset (Fig. 5.2b, ¢). The overall accuracy of the fundamental frequency (i.e.,
pitch) and the first two modeled formants (i.e., F1-F2), together with other parameters,
are a major driving force for accurate speech decoding as well as naturalistic reconstruction
which mimics the patient’s voice.

In order to evaluate the performance and quality of speech we use several objective met-
rics, including the correlation coefficient (CC) between the decoded spectrogram and actual
produced speech [3,4,38], an objective measure for speech intelligibility, Short Time Objec-
tive Intelligibility (STOI) [4,73], and a measure of spectral distortion, mel-cepstral distortion
(MCD) [5,53]. Across all participants and metrics our neural decoding results performed
much above chance (Fig. 5.2d in grey; estimated using shuffled data) and approached an up-
per bound of performance based on the unsupervised auto-encoder (i.e., speech-to-speech)
which does not use neural data. The performance range across metrics and our participants
are equal and often better than the current literature [3-5,38]. Critically, all these models
represent the non-causal case (Fig. 5.2d) which uses data both from the past (feedforward)
and the future (feedback), which is currently a common practice [2-5,55] with the exception
of a nominal few [38].

In order to directly assess the performance of the causal (predicting using only the past)
and anti-causal (predicting using the future feedback) models and compare them with the

non-causal (using past and future) model, which is standard in the field, we trained three
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separate models varying the temporal convolution direction. Our results (Fig. 5.2¢) show
a slight decrease in performance with the causal model, however it performs close to the
other models while providing a more accurate and constraint interpretation because it is
causal and only uses past signals to predict the future speech. This is encouraging, as it
suggests that, with additional improvement in the decoder design and training, it is possible
to design practically applicable neuroprosthetic speech synthesizers. Also, comparable per-
formance between causal, anticausal, and noncausal approaches indicates a similar amount
of information contained by feedforward and feedback signals, and that both causal and

anticausal models are accurate for fair feedforward-feedback analysis.
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Figure 5.2: Comparison of original and decoded speech produced by the model. (a) Spectrograms
of decoded (left) and original (right) speech exemplar words. (b) Decoded loudness parameter with
the voiced (mostly vowel) or unvoiced (mostly consonant) mixing parameter color coded over the
loudness curves. (c) Frequencies of the first two formants (F1, F2) and the pitch (F0). The matching
between decoded (dashed) curves and reference (solid) curves in both averaged frequencies during
each phoneme as well as the overall temporal dynamic leads to intelligible and naturalistic decoding
of voiced sounds. (d) Evaluation of the decoded speech quality in objective metrics. The correlation
coefficient of spectrogram (CC, left), short-time objective intelligibility (STOI, middle), and Mel
cepstral distortion (MCD, right) are used for the evaluation. Note that lower MCD values represent
better performance. Both the reconstructed speech from the speech auto-encoder (yellow boxes) and
the speech decoded by the ECoG decoder (green boxes) are reported. Besides, the performance of
a model trained on a shuffled dataset (trained by matching the decoded spectrogram from a neural
signal in a given duration to randomly selected segments of spectrograms during the entire recording
session) is also reported as a control. (e) Comparison of CC metric among noncausal (green), causal
(blue), and anticausal (red) models. Compared to the shuffled model (the same shuffled model as
in Fig. 5.2d), the close performance among noncausal, causal, and anticausal models demonstrates

adequate information for decoding speech in both feedforward and feedback signals during speech

production.
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5.4 Perceived speech decoding performance

Besides decoding produced speech, we also investigated decoding speech stimuli with
the same speech synthesizer and framework following the aforementioned network design.
The network decodes ECoG signal during perception period to generate perceived stimuli.
Figure 5.3 reports the decoded samples. The spectro-temporal structure of the original
speech are well preserved by the model and both vowels and consonants are reconstructed
(Fig. 5.3a). The speech parameters are decoded accurately (Fig. 5.3b, ¢). The correlation
coefficient reported in Fig. 5.3e (purple boxes) demonstrate high performance of the de-
coded stimuli in objective metrics. This result shows that our proposed speech synthesizer
is capable of decode both produced and perceived speech. Participants 4 and 5 have dam-
aged STG. The average CC among the first three participants are 0.88 (perception) and
0.84 (production). And the fact that accuracy of decoded speech for perception is higher
than production further supports that decoding produced speech is a more difficult task
than decoding perceived speech. Comparing to the results yielded by trans-GAN approach
introduced in Chapter 3 where decoding achieves 0.72 (perception) average CC and 0.59
(production) average CC, on the same dataset, the method proposed in this chapter has
a significant improved performance with 0.88 (perception) and 0.84 (production) average
CC, respectively. Since participants 4 and 5 have damage to the STG, we exclude them for

average CC computation.
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Figure 5.3: Comparison of original and decoded speech produced by the model for stimulus
decoding. (a) Spectrograms of decoded (left) and original (right) speech exemplar words.
(b) Decoded loudness parameter with the voiced (mostly vowel) or unvoiced (mostly con-
sonant) mixing parameter color coded over the loudness curves. (c) Frequencies of the
first two formants (F1, F2) and the pitch (FO). The matching between decoded (dashed)
curves and reference (solid) curves in both averaged frequencies during each phoneme as
well as the overall temporal dynamic leads to intelligible and naturalistic decoding of voiced
sounds. (d) Evaluation of the decoded speech quality in objective metrics. The correlation
coefficient of spectrogram (CC). The speech decoded by the ECoG decoder (purple boxes)
are reported. Besides, the performance of a model trained on a shuffled dataset (magenta
boxes, trained by matching the decoded spectrogram from a neural signal in a given dura-
tion to randomly selected segments of spectrograms during the entire perception period) is

also reported as a control.

5.5 Discussion

Recently, a growing number of studies have leveraged deep neural networks for cortical

speech decoding. Both convolutional neural networks (CNN) [2,4,78,79]and recurrent neu-
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ral networks (RNN) [5] have been employed to map ECoG signals into speech as well as
text [55]. However, our approach greatly diverges from these studies. Firstly, we develop
a novel differentiable speech synthesizer that can generate natural speech from a compact
set of interpretable speech parameters based on several signal processing equations. This
rule-based synthesizer allows for unsupervised pre-training of meaningful encoded represen-
tations (reference speech parameters), as well as reduces the capacity of the entire model
and increases training data efficiency. Our approach provides a direct mapping to a patient’s
voice and eliminates the need for labeled articulatory data that maps speech to articula-
tory dynamics as proposed by Anumanchcipalli et al. [5]. Also, we demonstrate that our
proposed model is capable of decoding both produced and perceived speech. Secondly,
our compact speech representation leverages an interpretable decomposition of speech into
voiced and unvoiced components. This decomposition is biologically necessary, has been
reported in neural representations across frontal and temporal cortices [12,45] and stands
in contrast to other traditional speech synthesizing approaches [21,22] . Lastly, the speech
neural decoding models to date mostly employ non-causal operations. Since such decoders
require both past and future information for decoding, they are not applicable for real time
speech prosthetic application. Furthermore, these mixed operations hinder disentangling
feedforward and feedback cortical contributions. In addition to providing a causal model
which directly translates to practical speech prosthetics, our approach provides one of the
first reports which can dissociate feedforward and feedback cortical contributions during

speech production (see Chapter 6).
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Chapter 6

Feedforward-Feedback Contribution Anal-

ysis for Speech Decoding Models

6.1 Background

The human neocortex is anatomically divided by the central sulcus which separates the
frontal lobe from the posterior temporal parietal and occipital cortices [50]. Traditionally,
this separation has been viewed as a functional division wherein high order planning and
feedforward motor execution lies in the frontal cortices in contrast to sensory and reaffer-
ent feedback processing across posterior cortices for the various sensory modalities (e.g.,
auditory, visual, somatosensory, etc.) [27]. High order capacities such as working memory,
cognitive control and decision making are often viewed as initiated by frontal cortices with
direct influence on sensory cortices [29,57,72].

Cardinal among human high order functions is the ability to plan and execute complex
speech sequences which carry semantic and linguistic meaning [11,43]. Speech production
is one of the most complex of human motor behaviors which requires precise coordination
of a multitude of muscles in the mouth, larynx and respiratory systems [70]. These finely
tuned motor actions then produce reafferent self-produced feedback in the auditory, tactile
and proprioceptive domains. The dynamic interaction between feedforward commands and
the re-afferent sensory feedback is a hallmark of sensory motor systems across the animal

kingdom [15]. Prevailing models in speech motor control propose a feedforward system with
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causal prediction of actions and a feedback system processing the reafferent feedback and any
changes in the predicted input [34,35,40-42,44]. Despite implementational differences across
these models there is a consensus that the causal feedforward system is mainly supported by
frontal cortices, while posterior cortices support anticausal feedback processing. However,
these models do not specify the timing of recruitment for causal and anticausal processing
nor do they agree on the exact set of regions supporting each function.

A growing body of literature has leveraged unique human neurosurgical electrocorticogr-
pahic (ECoG) recordings in order to obtain a combined spatial and temporal resolution
critical for investigating speech production. Studies have detailed the organization and dy-
namics by which speech is planned [26] and executed [9,12] in frontal cortices as well as
the auditory feedback architecture in temporal cortices [10,24,31,32]. Furthermore, the un-
precedented signal to noise ratio offered by human neurosurgical recordings has ushered deep
neural network approaches to accurately decode speech represented in auditory [2,4,78,79]
and sensorimotor [5] cortices. Despite these impressive leaps forward, approaches to date
have not been able to disentangle feedforward and feedback contributions to speech as the
causal control signals and anti-causal responses co-occur.

We directly address this issue by interpreting the produced speech decoding model
that we proposed in Chapter 5. By learning neural network architectures which apply
either casual, anticausal (or both) spatial-temporal convolutions we are able to analyze
the overall feedforward and feedback contributions, respectively, as well as elucidate the
temporal receptive fields of recruited cortical regions. Our analyses reveal a surprisingly
mixed architecture of causal and anticausal processing across cortex while achieving speech

decoding performance on-par or better than previously reported.

6.2 Method

6.2.1 Revealing delay-dependent contribution of different cortical regions

from the trained ECoG to speech model

As described in the background, the main objective of this study is to learn the contribu-

tion of different cortical regions to speech production from the developed ECoG to speech
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decoding model. We accomplish this by examining how the input signal at a particular
electrode (the entire signal or the signal at a certain delay relative to the produced speech)
affects the accuracy of the model prediction. There are two major approaches for this pur-
pose: gradient approaches and occlusion approaches [54,66,71]. The gradient approaches
calculate the gradient of the network output with respect to the input. Visualization re-
sults in computer vision studies have shown that such gradients can be noisy at the pixel
level [71]. Although extensive research has been conducted to improve the robustness of
gradient-based sensitivity analysis, our experiments using such gradient approaches have
shown that they do not produce reliable results for the spatially sparse ECoG data. The
occlusion approaches investigate the changes in the network output when certain input sig-
nals or part of the signals are occluded (set to 0 or appropriate baseline). In our analysis, we
use the average value of the ECoG signal during the silent period as the baseline. We have
found that this approach produces more reliable contribution analysis. The problem with
using the occlusion approach for computer vision applications is the heavy computational
complexity, since there are typically millions of pixels in an image. This is computationally
feasible for our study, given the relatively small number of electrodes. For these reasons, we
adopt the occlusion approach for visualizing the contribution of different cortical regions.
Furthermore, we use the changes in the accuracy of the decoded spectrogram (measured in
terms of the correlation with the ground truth spectrogram) rather than the decoded spec-
trogram itself, to define the contribution. Before formally defining the various contribution
scores, we introduce the following notations: A,ef[s]: the reference spectrogram or speech
parameter over a time duration S centered at time s, i.e., from s — S/2 to s + S/2, derived
by the speech-to-speech autoencoder. Ajpgact[s]: the model output with “intact” input (i.e,

all ECoG signals are used). A s[t]: the model output at time duration centered at s

écclude[
when the ith ECoG electrode signal in the time duration centered at t from ¢ — % tot+ %
is occluded r(-,-): correlation coefficient between two signals. We define the contribution
of ith electrode in time duration ¢ (which indicates a duration from ¢ — T/2 to t + T/2
for a given temporal scope of T) to the output over duration s (which indicates a duration

from s —S/2 to s+ S/2 for a given temporal scope of S) by the reduction in the correlation

coefficient between the output signal with the reference signal over the duration s when the
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ith electrode signal in duration ¢ is occluded. Specifically:
C'[s,t] = Mean{(Avet[s], Aintace[s]) — 7(Aret[s], Adeciuaelslt]) }
where Mean{-} denotes averaging across all testing samples.

Visualizing spatial contribution map

The contribution of the entire ith-electrode signal to the entire output signal, C?, can
be determined by setting S and T to cover the entire input and output signal duration.
The causal and anti-causal contribution plots in Fig. 6.1 were generated by applying such
analysis to the learned anticausal model (Fig 6.1b) and causal model (Fig 3c), respectively.
The contrast of the anticausal and causal contribution (Fig 6.1e) for electrode i is the
difference between the causal and anticausal contribution. And the noise level contribution
analysis (Fig 6.1d) is generated from the shuffled model with the non-causal model (the
shuffled model is trained on an artificial dataset with temporal misaligned input-output,
models of different causality are equivalent). To generate per region feedback-feedforward
barplot (Fig 6.1f), we calculate the contrast contributions averaged over electrodes of the

same within-subject anatomical labels corresponding to each region.

Visualizing spatial-temporal contribution receptive field

When evaluating the contribution over a finite duration we use small temporal scope
S =T =64ms. To Evaluate the contribution of an electrode signal to the output with

various delay, denoted by 7, we average C'[s, s + 7] for all s in a certain duration leading to

~i 1 i
C'r) = Sl_sog;()(][s,s—kf]

Here we assume the effect of delay is independent of actual output time s. When 7 < 0,
C ot (T) = CH(T)|r<—0 reveals the causal contribution of electrode i to the output (Fig
6.1 a,b). To investigate pre-production contribution, we restrict s + 7 and s to be no later

than the onset of production (vise-versa for during-production analysis). When 7 > 0 the
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tmticausal(T) = C¥(7)|;>=0 reveals the anticausal contribution (Fig 6.1c).

Visualizing per region temporal contribution receptive field

Similar to the per region plot in Fig 6.1f, to generate a contribution temporal curve for
each region (Fig 6.3), we average the spatial-temporal receptive field data (Fig 6.2) over to
the same within-subject anatomical region labels. As a reference to the noise level, we also
generate the curve for the shuffled model (grey curves in Fig 6.3). We omit those curves
that are not significantly above noise level by Wilcoxon sign rank testing between averaged
(over time) region contribution curves and the averaged (over time) noise level curve. The
contrast of the anticausal and causal contribution of electrode 7 is defined as

) i
anticausal causal

C

i _
contrast —

6.3 Result

6.3.1 Feedforward and feedback cortical contributions to speech produc-

tion

To elucidate the feedforward and feedback contribution of different cortical regions to
speech production, we examined the relative contribution of each electrode to decoding
speech in our models. We derived the relative contribution by quantifying how the input
signal at a particular electrode affects the overall accuracy (measured by the CC) of the
reconstructed speech in the causal and anticausal models, respectively. In both the causal
and anticausal models, peri-sylvian electrodes were important for speech decoding; how-
ever, there was a surprising recruitment of frontal regions when decoding speech based on
the feedback (anticausal model, Figure 6.1b) as well as recruitment of temporal sites when
decoding speech based on the feedforward signals (causal model, Figure 6.1¢). We only
show significant contributions that are above a threshold derived from the shuffled model
(depicted in Figure 6.1d). In order to quantify the prevalence of feedforward or feedback
processing, we directly contrasted the two and projected the results onto the cortex (Figure

6.1e). To ascertain regions that contribute significantly more to feedback or feedforward
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processing, we conducted a region of interest analysis, based on within-subject anatomi-
cal labels of each electrode, testing for an increase in causal or anticausal contributions
across trials (non-parametric paired Wilcoxon test; Figure 6.1f). We found a surprisingly
mixed distribution of causal and anticausal contributions within both temporal and frontal
cortices. A majority of temporal cortex were predominantly anticausal, including caudal
superior temporal gyrus (STG; Wilcoxon sign rank, P=1.607E-15, Z=9.6234) and portions
of middle temporal gyrus (MTG; rostral MTG: Wilcoxon sign rank test P=2.5108E-04,
7Z=4.9359, and middle MTG: Wilcoxon sign rank test P=1.5257E-13, Z=9.0185) as well
as supramarginal cortex (Wilcoxon sign rank test P=1.1144E-04, Z=5.3919), implicating
it in processing the auditory feedback signals for speech production. However, there was
also a significant causal contribution in rostral STG (Wilcoxon sign rank test P=0.0332,
Z=-2.9628). Similarly, the majority of sensorimotor cortex was predominantly casual, impli-
cating it in processing the motor speech commands including ventral precentral (Wilcoxon
sign rank, P=4.9511E-08, Z=-7.1409) and postcentral gyri (Wilcoxon sign rank, P=6.419E-
04, Z=-4.9612). However, the dorsal division of precentral gyrus was equally causal and
anticausal (Wilcoxon sign rank, P=0.4349, Z=0.6525), implicating it in processing both
feedforward and feedback information equally. Within the inferior frontal cortex, we found
a striking division of function wherein pars opercularis was significantly causal (Wilcoxon
sign rank test, P=8.0693E-15, Z=-9.6185) while pars triangularis was significantly anti-
causal (Wilcoxon sign rank test, P=2.6715E-06, Z=6.3518). Overall, these findings provide
evidence for a mixed feedforward and feedback processing of speech commands and their

reafference across temporal and frontal cortices, in contrast to a dichotomous view.

6.3.2 Temporal dynamics and receptive fields of speech production

Speech production includes articulatory planning and executing the motor commands,
processes that recruit distinct regions of frontal cortex [26]. However, their exact temporal
receptive fields remain poorly understood. Earlier, we examined the causal and anticausal
cortical contributions during speech articulation. Next, we examine articulatory planning
and articulation of speech production stages and derive the related temporal receptive fields

across the cortex. We leverage the receptive fields to test how cortical regions contribute
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Figure 6.1: (a) averaged signal of input ECoG projected on the standardized MNI anatom-
ical map. The colors reflect the percentage change of high gamma compared to the baseline
level during the pre-stimulus baseline period. (b) shows the anticausal contribution of dif-
ferent cortical locations (red indicates higher contribution), while (c) illustrates the causal
contribution. (d) noise level of the contribution analysis evaluated by the contributions from
the shuffled model. Contributions below noise level are not shown in (b) and (c). (e) the
contrast obtained by taking the difference of the anticausal and causal contribution maps
(red means higher anticausal contribution, while blue means higher causal contribution).
The boxplots (f) show the average difference in each cortical region (*: P-value<0.05, **:
P-value<0.01,***: P-value<0.001,****: P-value<0.0001).
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differently to speech decoding with time and how frontal cortex dynamics change when feed-
back is introduced (after articulation starts). Both feedforward and feedback information
is processed in tandem.

We employed a similar occlusion approach to derive the temporal receptive fields as
in the previous section. However, we quantified how the input signal at a particular elec-
trode affects the accuracy of the reconstructed speech across varying delays. This approach
allowed us to quantify the contribution of a specific electrode in the model as a function
of delay relative to speech decoding, similarly to classical temporal receptive fields (i.e.,
TRF). We conducted this analysis for both causal and anticausal models during two epochs
— one prior to production (-512ms ~ 0 ms; Figure 6.2a) and the other during production,
which included both causal and anticausal components (Oms ~ 512ms; Figure 6.2b, c).
The projection of all the temporal receptive fields onto the cortex, which were significantly
above a threshold derived from the shuffled model, are plotted in Figure 6.2 as a function
of delay. We found an increased frontal and MTG contribution prior to production (Figure
6.2a) compared with during production (Figure 6.2b). These processes are likely related to
articulatory planning and lexical retrieval prior to speech production. During production,
there was a prominent sharpening of ventral precentral gyrus receptive fields marked by a
significant increase in contribution compared with pre-production (Wilcoxon sign rank test,
P=8.3979E-05, Z=5.4203). While a majority of prefrontal regions engaged prior to produc-
tion, there was a significant decrease in contribution across pars triangularis (Wilcoxon sign
rank test, P=1.8493E-32, Z=-13.6074), middle frontal gyri (MFG; Wilcoxon sign rank test,
P=3.9177E-09, Z=-7.6103 for caudal and P=4.1581E-04, Z=-4.8311 for rostral) except for
pars opercularis (Wilcoxon sing rank test, P=0.4819, Z=0.2066). Similarly, to our previ-
ous results (Figure 6.1e,f), during production, we found a significant increase in anticausal
contribution for caudal STG (Wilcoxon sign rank test, P=2.6789E-17, Z=9.6711), pars
triangularis (Wilcoxon sign rank test, P=0.0162, Z=3.9003) and caudal MFG (Wilcoxon
sign rank test, P=0.0045, Z=3.9862) compared with causal contributions. This confirms
the anatomical-functional division of the inferior and middle frontal gyri as well as cau-
dal (Wilcoxon sign rank test, P = 2.6789E-17, Z = 9.6711) and rostral separation of STG
(Wilcoxon sign rank test, p= 0.0343, Z= -2.9457).
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Figure 6.2: Spatial-temporal receptive fields based on decoding contribution. The contri-
bution to decoding the current speech from cortical neural responses with certain temporal
delays. (a) and (b) are the feedforward spatial-temporal receptive fields derived from the
causal model by evaluating the contribution of past (negative delays) neural signals during
a period before production onset (a) and after onset (b). (c) represents the feedback spatial-
temporal receptive fields derived from the anticausal models that evaluate the contribution
of future (positive delays) neural signals during feedback after articulation. Contributions
below significance (pj0.05) representing the noise level are clipped and not shown in the
plots.

Next, we conducted a region of interest analysis, based on within-subject anatomical
labels of each electrode, in order to derive the temporal receptive curves per region (Figure
6.3). This approach provides critical insight as to the temporal tuning and peak recruitment
of various regions to feedforward processing prior to (Figure 6.3a) and during production
(Figure 6.3b) as well as feedback processing (Figure 6.3c). We found a shift in receptive
field tuning for the two subdivisions of precentral gyrus. Prior to production, dorsal and
ventral precentral gyri were not significantly different from each other (Wilcoxon sign rank
test, P=0.454, Z=-0.36103), and had close peak times (-196ms, -192ms prior to speech for
ventral and dorsal precentral gyri, respectively). However, during production, these dy-
namics shifted and we found a significant decrease in dorsal precentral causal contribution
(Wilcoxon sign rank test, P=4.7575E-05, Z=-5.6272) accompanied by a temporal separa-
tion of peaks (-208ms, -184ms for ventral and dorsal precentral gyri, respectively; Figure
6.3a,b). Within the inferior frontal gyrus, we found pars opercularis was recruited simi-
larly both prior to production and during production for feedforward processing (Wilcoxon
sign rank test, P=0.5922, Z=1.7462) at a peak delay of -248ms and -280ms, respectively.

During production, pars triangularis had a selective increase in recruitment for anticausal
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compared with causal contributions (Wilcoxon sign rank test, P=0.0162, Z=3.9003), im-
plicating it in increased feedback processing (Figure 6.2c). The anticausal receptive fields
during production provide evidence for feedback processing most strongly contributed by
caudal STG, with the earliest peak in contributions seen in dorsal precentral gyrus (144 ms)
and caudal STG (168 ms) followed by parietal (supramarginal 184ms, postcentral 192ms)
and ventral precentral (280 ms) gyri. These findings suggest a preferential recruitment of
prefrontal cortices in feedforward processing prior to production followed by a shift in dy-
namics during production when feedforward and feedback signals are jointly processed with

anatomical divisions of labor.

6.3.3 Contribution analysis for speech parameters

To evaluate the contribution of brain activities to decoded speech with a finer scope, we
investigate the contribution map for the speech parameters that are important to decoding
accurate speeches. We report contribution maps for loudness, fo , f1 , and fo . We observe
a similar trend as in the overall spectrogram contribution analysis, where most perisylvian
cortices process both feedback (Figure 6.4a) and feedforward (Figure 6.4b) signals for most

reported components.

6.4 Comparing feedback cortical contribution between speech

perception and production

To evaluate the function of feedback contribution, we compare contribution of feedback
production and contribution during perception periods. From Figure 6.5 (a) and (b), we ob-
serve that in both perception and production periods, the contribution map involve frontal,
central and temporal gyri. The difference between perception and production Figure 6.5
(c) shows that most covered cortices, especially STG are recruited more during perception
than production. On the other hand, although speech-motor cortex is recruited for process-
ing feedback signal during both listening and speaking, it contributes more during speech
production.

We also investigate the influence of varying tasks on the contribution during perception
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Figure 6.3: The temporal receptive field across anatomical regions. The contribution to
decoding the current speech from cortical neural responses with certain temporal delays.
(a) and (b) are the feedforward temporal receptive fields derived from the causal model by
evaluating the contribution of past (negative delays) neural signals during a period before
production onset (a) and after onset (b). (c) represents the feedback temporal receptive
fields derived from the anticausal models that evaluate the contribution of future (positive
delays) neural signals during feedback after articulation. The temporal propagation of the
shuffled model estimates the noise level dynamics (grey curves in plots). Only regions sig-
nificantly above noise level (Wilcoxon sign rank test on across-time averaged data, P<0.05)
are reported.
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Figure 6.4: Contribution maps for speech components of (a) anticausal model and (b) causal
model.
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Figure 6.5: Comparison of feedback cortical contribution between perception and produc-
tion periods. contribution during (a) preception and (b) production feedback process. (c)
contribution contrast between (a) and (b).
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Figure 6.6: Comparison of cortical contribution between different speech tasks during per-
ception period. Contribution map for (a) passive listening task, (b) imaginary speaking
task, and (c) active speaking task. The contrast contribution map (d) between imaginary
speaking and passive listening tasks, (e) between active speaking and passive listening task,
and (f) between active speaking and imaginary listening tasks.

period. We designed three different tasks to complement auditory repetition. They are pas-
sive listening (the patients are not required to respond after listening to the speech stimuli),
imaginary speaking (the patients are asked to repeat the listened word imaginarily without
actual articulation), and active speaking (the patients are asked to repeat the listened word
with actual articulation) tasks. We observe that, even though patients were listening to
the same stimuli, STG and speech-motor cortex recruitment are different depending on the
tasks (Figure 6.6 (a)-(c)). Both active and imaginary tasks recruit STG and speech-motor
cortex more than passive task (Figure 6.6 (d) and (e)), and the active task has more STG

contribution than imaginary task(Figure 6.6 (f)).

6.5 Discussion

Our study leverages a novel deep learning approach together with neurosurgical record-
ings and, to our knowledge, is the first to dissociate direct feedforward and feedback cor-

tical contributions during speech production. Our neural network architecture achieves
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state-of-the-art decoding of speech production, by tapping an interpretable compact speech
representation and can be altered to focus on causal, anticausal and non-causal decoding.
Our analyses of the cortical contributions driving the performance of these models reveal a
mixed distribution of feedforward and feedback processing during speech production. This
was prominent in inferior, middle frontal, and superior temporal gyri which exhibited an
anatomical division between feedforward and feedback processing. Lastly, we show a change
in the temporal dynamics of frontal recruitment during speech planning through produc-
tion, characterized by a shift of inferior frontal and precentral gyri recruitment, processing
both feedforward and feedback information at different time points and spatial locations.

During speech production, we process feedforward and feedback signals in tandem. It
was previously impossible to disentangle the two. Attempts have focused on experimental
manipulations which change the feedback by shifting frequency [10] or time [60]. However,
these manipulations change the cortical dynamics and introduce other cognitive processes
due to hearing one’s own voice altered as well as induced motor compensation. We applied
convolution filters with different causality to directly train models to disentangle feedforward
(i.e., causal models) and feedback (i.e., anticausal models) contributions of cortical regions.
Feedforward and feedback processes are critical for driving articulatory vocal tract move-
ment. The feedforward pathway generates an initial articulatory command and predicts
sensory (auditory and somatosensory) targets; the feedback pathway compares the targets
with the perceived sensory feedback and updates subsequent feedforward commands. The
exact mapping between anatomical regions and their contribution to specific functional
roles differ across speech motor control models ( [35], [44]). Further, these findings have
been developed based mostly on non-invasive studies which have low temporal (e.g., fMRI)
or spatial resolution (e.g., M/EEG). Our high spatio-temporal resolution ECoG data to-
gether with advanced deep neural networks provides a fine-grained mapping of the cortical
feedforward and feedback speech networks.

Consistent with the predominant speech motor control models, our results showed a
dominant feedforward process in the ventral motor and pars opercularis of the inferior frontal
gyrus, while posterior superior temporal and supramarginal gyri in the parietal lobe showed

feedback. However, in contrast to these models, we found that cortices in the frontal lobe,
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including pars triangularis and caudal middle frontal, are predominantly feedback in nature,
while rostral STG appears feedforward. This feedback processing across frontal cortices
became even stronger when we limited our analyses to the speech production epoch (Figure
6.2c). Additionally, most gyri (inferior frontal, caudal middle frontal, superior temporal,
precentral, and postcentral cortices) had both feedforward and feedback contributions above
the noise level derived from the shuffled model, suggesting the feedforward and feedback
processing can mix in these regions.

Our results highlight the anticausal feedback signature exhibited by sensorimotor and
frontal cortices. While this goes against the canonical model of the frontal cortex in an
action-perception loop [28], our findings complement a growing body of evidence showing
specific responses in the frontal cortex to auditory stimuli during perception. Cheung et
al. [13] found distinct auditory receptive fields as well as robust passive listening responses in
ventral precentral gyrus. Similarly, the dorsal division of precentral gyrus has recently been
implicated in processing auditory feedback of altered speech as well as responding robustly
during passive listening [60]. However, this begs the question as to why the speech motor
cortex is processing auditory information. Our feedback contribution analysis suggests that
the auditory processing is specifically leveraged for anticausal processing of the reafferent
signals during production. Indeed, our results show that dorsal precentral gyrus decreases
feedforward processing while engaged in actual speech production (Figure 6.3b) and is
recruited for feedback at an early time point together with temporal cortices (Figure 6.3c).
Under this view, the auditory frontal responses seen during passive listening may constitute
a representation dedicated to feedback processing when speech is produced.

To summarize, we provided a new approach to decode speech production and interro-
gate the recalcitrant problem of mixed feedforward and feedback processing during speech
production. We were able to leverage feedforward processing only in causal models to drive
neural speech prosthetics (as opposed to the literature using non-causal processing [2-5,55])
as well as provide insights into the underpinning cortical drivers. Our results suggest a mixed
cortical architecture in frontal and temporal cortices that dynamically shifts and processes
both feedforward and feedback signals across the cortex in contrast to previous views asso-

ciating feedforward or feedback processing of speech with primarily anterior and posterior



cortices, respectively.
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Chapter 7

Attention Mask Reflects Speech Cortical
Network Dynamics during Perception-Production

Task

7.1 Attention Mask Visualization

In Chapter 3, we introduced a convolutional residual ECoG decoder structure 3.4. In-
side, we designed a bypass convolution layer that generates a dynamic mask from the
backbone features and applied back to attenuate backbone features. These attention masks
help the network to focus on electrodes with useful information at each time step. Addi-
tionally, it provides a way to visualize the brain signal dynamics of different cortical areas
at different times. Ideally, as the brain state changes over time, the attention mask also
alters its attenuation pattern to emphasize more important electrodes per time step. As
an example, we visualize the dynamics of the mask for one subject of HB. The hybrid grid
provides both satisfying resolution on STG area and large span over other perisylvian cor-
tical areas related to language. Fig. 7.1 shows the averaged evolution of the attention mask

for all the test samples.

62



63

0.5

Time

L Perception period
Stimuli ON Stimuli OFF

Figure 7.1: The averaged evolution of the attention mask during active listening task. The
color in each electrode indicates the value of the attention mask, following the color bar.
The white square shows the 8x8 grid used in the experiment. Similar dynamic is also
observed in the other HB subject.

7.2 Attention Mask Reflect Perception-Production Cortical
Dynamic

By observing the attention mask as in Fig. 7.1, we notice that STG, Broca’s area and
motor cortices are attended sequentially. Accessory auditory cortex in the STG is consis-
tently attended during the perception period. Another observation is that the attention
in Broca’s area increases shortly after auditory cortex is initially activated. This suggests
that Broca’s area is active during speech perception and is likely involved in sequencing
articulatory information prior to speech articulation [26]. Moreover, motor cortex is active
during the stimuli perception and prior to speech production. Similar phenomenon has
been observed during active listening task in the literature [13]. In order to confirm that
the observation on motor area activation is related to perception rather than early articu-
latory preparation, further study is required. The fact that the attention mask generated
by the learnt network matches with recent findings in the neuroscientific literature [13,26]
of cortical dynamics is reassuring. It also suggests that such a deep learning architecture
with an embedded attention mask can potentially help elucidate the functions of cortical

regions during different cognitive tasks.



Chapter 8

Impulse Response of Deep Speech Stimuli
Decoding Network Reflects Phoneme Se-

lectivity of STG

8.1 Impulse Response of a Deep Neural Network

Previous studies on pSTG cortex have shown selectivity to phonetic features for vowels
and consonants [56,61]. We were interested in evaluating whether our decoding approach
also revealed similar phoneme selectivity for certain electrodes. We achieved this by inves-
tigating the “impulse response” of each electrode input for the stimuli decoding model we
build in Chapter 2 . The impulse response for a given electrode can be considered as the
stimuli speech (with its corresponding spectrogram with a certain temporal and spectral
span) that causes a short-term response in the cortex area observed by this electrode. We
generated an impulse signal for each of the 64 electrode channels. The impulse is gener-
ated between 500ms-600ms among the overall 1000ms duration. The impulse value is set
to be the highest signal value of ECoG in our dataset. The rest of the temporal samples
and electrodes are set to be zero. To generate the impulse response for a fitted model for
each electrode, we drive the fitted model with the impulse input and obtain the decoded

spectrogram for each electrode.
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Electrode No. 7 8 50 54 | 55
Perceived phoneme | /u: | /ss | /ou | /sh | /i

Table 8.1: Discovered phonetic features for ECoG electrodes on subject S1

Electrode No. 38 |39 |40 |47 |48
Perceived phoneme | /sh | /i | /i ]| /ou | /w:

Table 8.2: Discovered phonetic features for ECoG electrodes on subject S2

8.2 Phonetic Feature of Model Impulse Response

Figure 8.1 shows the impulse response for all 64 channels by training the model with
all samples in the dataset. Since there exists an offset and orientation mismatch between
ECoG arrays for different subjects, spatial distribution difference of impulse response for
two models is expected. But the discovered phonetic features for both patients are robust
and mostly consistent. We generated the “speech” signal from these impulse responses and
were able to identify some of the phonemes, which are listed in Tables 8.1 and 8.2. We have
found that the impulse responses for both subjects include the common set of /sh/, /i/ ,
Ju:/ and /u/.

Previous studies investigating the pSTG area have revealed that certain electrode re-
sponses are sensitive to clusters of phonemes [6]. Here we further specified which phonemes
are selected by certain electrodes. It is possible to uncover more electrodes with phonemes
sensitivity given a bigger dataset of richer speech stimuli.

The consistency between WaveNet phonetic impulse response provides evidence for the
phonetic selectivity of STG and suggests a promising direction for further study of the STG

area with the discovered phonetic impulse responses.
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Figure 8.1: Impulse response for subject S1 (a) and S2 (b). Each subfigure corresponds to
one ECoG electrode site..



Chapter 9

Summary and Future Work

9.1 Summary

In this study, we explore three approaches for decoding speech from ECoG brain activ-
ities as well as interpret the decoding networks.

In our first approach, we adapt WaveNet to decode speech from ECoG signals while
listening to word stimuli. Despite a relatively small dataset, the high parameter efficiency of
the adapted WaveNet is able to overcome the overfitting problem and generate reconstructed
spectrograms with intelligible quality. The impulse response analysis of the fitted WaveNet
model further reveals distinct phonetic encoding by some cortex areas on STG. The phonetic
features discovered by these impulse responses are consistent with previous discovers of STG
area and suggest a promising direction for further analysis of the area and other auditory
cortices.

For the second approach, we proposed a new framework containing a decoder to extract
features from and map the ECoG signals to a representation space. A generator then
converts the features to a spectrogram. The generator in our framework is pre-trained
to predict realistic spectrograms from the representation space. This approach allows us
to tackle the challenge of limited training data and achieve accurate reconstruction from
cortical areas including STG. Additionally, the temporal attention mechanism introduced in
the decoder allows for better generalization of the network and interpretation of the results

for neuroscientific discoveries. The visualization of attention mask reflects the dynamics
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among superior temporal, inferior frontal, and precentral gyri during speech perception
tasks. We also proposed attentional based model which separately operates temporal and
space dimensions with convolution and attention respectively. We augment the attention
layer by MNI coordinate features to achieve more expressive power. The preliminary results
shows similar performance of the proposed attentional model and convolutional model on
partial-grid data.

Towards decoding produced speech, in the third approach, we proposed a novel dif-
ferentiable speech synthesizer which generates speech spectrograms from a small set of
interpretible compact acoustic speech parameters. Employing the proposed speech syn-
thesizer, we construct a ECoG decoder that maps the ECoG signals to speech parameters
with high data efficiency. The ECoG decoder can use temporal convolutions with different
causalities. Analysis on the anticausal vs. causal decoders lead us towards the discovery of
a surprisingly mixed feedback-feedforward processing over frontal and posterior lobe of the

brain for speech production.

9.2 Future Work

In future work we aim to use the developed techniques to study speech processing in
human cortex in finer details. For instance, dynamics of speech perception, understanding
and production can be studied by developing not only stimulus speech decoders and response
speech decoders, but also semantic word decoders. Our developed framework might also be
useful for other medical applications where limitations in training data hinder the use of
deep learning.

We are also interested in the effect of epilepsy on speech perception and production
by studying the contrast contribution between patients with epileptic STG activity in and

without.
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