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With the availability of powerful modern computation resources and large scale labeled
data, deep learning has shown enormous success in various computer vision tasks, including
medical and natural image analysis. In this thesis, deep learning methods are specifically
applied to two 3D vision tasks: volumetric medical image analysis and camera pose estima-
tion.

For volumetric medical image analysis, segmentation and mutant classification of high-
frequency ultrasound (HFU) mouse embryo images can provide valuable information for
developmental biologists. However, manual segmentation and identification of brain ventri-
cle (BV) and body requires substantial time and expertise. This thesis proposes an accurate,
e�cient and explainable deep learning pipeline for automatic segmentation and classification
of the BV and body. For segmentation, a two-stage framework is implemented. The first
stage produces a low-resolution segmentation map, which is then used to crop a region of in-
terest (ROI) around the target object. The second stage fine-resolution refinement network
acts on the ROI of each object and uses the segmentation probability map generated by
the first stage as its auto-context. The proposed segmentation method significantly reduces
inference time while maintaining high accuracy comparable to previous sliding-window ap-
proaches. Based on the BV and body segmentation map, a volumetric convolutional neural
network (CNN) is trained to perform a mutant classification task. Through backpropa-
gating the gradients of the prediction to the input BV and body segmentation maps, the
trained classifier is found to largely focus on the region where the Engrailed-1 (En1) muta-
tion phenotype is known to manifest itself. This suggests that gradient backpropagation of
deep learning classifiers may provide a powerful tool for automatically detecting unknown
phenotypes associated with a genetic mutation.

One of the key criticisms of deep learning is that large amounts of expensive and di�cult-
to-acquire training data are required in order to train models with high performance and
good generalization capabilities. Focusing on the task of monocular camera pose estimation
via scene coordinate regression (SCR), we describe a novel method, Domain Adaptation of
Networks for Camera pose Estimation (DANCE), which enables the training of models with-
out access to any labels on the target task. DANCE requires unlabeled images (without
known poses, ordering, or scene coordinate labels) and a 3D representation of the space (e.g.,
a scanned point cloud), both of which can be captured with minimal e↵ort using o↵-the-
shelf commodity hardware. DANCE renders labeled synthetic images from the 3D model,
and bridges the inevitable domain gap between synthetic and real images by applying unsu-
pervised image-level domain adaptation techniques (unpaired image-to-image translation).
When tested on real images, the SCR model trained with DANCE achieved comparable
performance to its fully supervised counterpart (in both cases using PnP-RANSAC for final
pose estimation) at a fraction of the cost.
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Chapter 1

Introduction

1.1 Overview

With the availability of powerful modern computation resources and large scale labeled

data, deep learning has shown enormous success in a wide variety of computer vision tasks,

including medical and natural image analysis. As the actual world is essentially 3D, a

vast majority of 3D vision tasks have been attracting increasing attention from the deep

learning community. In this thesis, deep learning methods are specifically applied to two 3D

vision tasks: volumetric medical image analysis and camera pose estimation. For the task

of volumetric medical image analysis, we focus on developing a deep learning approach for

the segmentation, classification, and visualization of 3D high-frequency ultrasound (HFU)

images of mouse embryos. For the task of camera pose estimation, we focus on estimating

the camera pose without pose labels by using labeled synthetic data and domain adaptation

techniques. It is worth noting that not only these two applications belong to the field

of 3D vision, but also their key common component in the pipeline is an image-to-image

translation module (i.e. ultrasound images to segmentation label images and camera images

to scene coordinate images).

1.2 Problem Statement

In this section, we will define the problems of volumetric medical image analysis and

camera pose estimation separately.

• The volumetric medical image analysis project is aiming to phenotype early- to mid-

gestational mouse embryos by segmenting brain ventricle (BV) and body in 3D im-

ages acquired in-utero with HFU. Around 20,000 NIH Knockout (KO) mouse strains

will be generated, 25% of which are expected to be embryonic or perinatal lethal,

including many important models of human structural birth defects and congenital

diseases. The development of phenotyping methods for embryonic lethal mice that

enable e�cient analysis of defects in embryonic growth in the KO mouse strains is

1
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highly demanded. In-utero 3D HFU image acquisition protocols and image processing

methods that permit real-time, noninvasive and longitudinal studies of the embryonic

development has been developed and validated. Volumetric HFU data will be col-

lected in-utero from mouse embryos staged between E9.5 to 15.5 in order to establish

a database of normal development. With provided HFU images of mouse embryos,

the research focus of this thesis is developing advanced image analysis and deep learn-

ing methods for analyzing brain development in mouse embryos and characterizing

defects caused by mutations.

• Estimating the 3D position and 3D orientation (6 degrees of freedom pose) of an agent

or an object with respect to a reference coordinate frame is a fundamental requirement

in robotic applications, such as robot navigation. One of the existing and accurate

deep learning camera pose estimation pipeline uses a deep neural network to predict

the scene coordinates followed by PnP-RANSAC. The problem for this pipeline is that

the training of the deep neural network requires large amounts of labeled data, which

is expensive and di�cult to acquire. To ease the burden of collecting training data,

a simple and e↵ective data collection pipeline will be proposed and demonstrated in

this thesis.

1.3 Contributions

Because deep learning methods are specifically applied to two 3D vision tasks: volu-

metric medical image analysis and camera pose estimation, it will be better to discuss the

contributions of each project separately.

• For volumetric medical image analysis, an accurate, e�cient and explainable deep-

learning-based pipeline for the segmentation and mutant classification of the brain

ventricle and body from high-frequency ultrasound mouse embryo images has been

developed. Segmentation and mutant classification of HFU mouse embryo images can

provide valuable information for developmental biologists. However, manual segmen-

tation and identification of the images requires substantial time and expertise.

For segmentation, a two-stage framework is implemented. The first stage produces

a low-resolution segmentation map, which is then used to crop a region of interest

(ROI) around the target object. The second stage fine-resolution refinement net-

work acts on the ROI of each object and uses the segmentation probability map

generated by the first stage as its auto-context. The proposed segmentation method

significantly reduces inference time while maintaining high accuracy comparable to

previous sliding-window approaches.

For mutant classification and visualization, a volumetric convolutional neural network

(CNN) is trained to perform a mutant classification task based on the BV and body

segmentation map. Through backpropagating the gradients of the prediction to the
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input BV and body segmentation maps, the trained classifier is found to largely focus

on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest

itself.

In summary, the proposed pipeline has the potential to uncover unknown phenotypes

manifested as shape changes associated with di↵erent gene mutations. Moreover, our

segmentation, mutant classification and visualization algorithms may be applicable

and invaluable in streamlining developmental biology studies.

• For camera pose estimation via scene coordinate regression (SCR), a novel pipeline,

Domain Adaptation of Networks for Camera pose Estimation (DANCE), is devel-

oped in order to ease the burden of collecting labeled data to train the deep SCR

network. Though without access to any labeled camera images, the SCR network

trained with DANCE achieved comparable performance to its fully supervised coun-

terpart. DANCE requires unlabeled images (without known poses, ordering, or scene

coordinate labels) and a 3D representation of the space (e.g., a scanned point cloud),

both of which can be captured with minimal e↵ort using o↵-the-shelf commodity

hardware. DANCE renders labeled synthetic images from the 3D model, and bridges

the inevitable domain gap between synthetic and real images by applying unsuper-

vised image-level domain adaptation techniques (unpaired image-to-image transla-

tion). One of the key criticisms of deep learning is that large amounts of expensive and

di�cult-to-acquire training data are required in order to train models with high per-

formance and good generalization capabilities. Our proposed pipeline demonstrates

a possible solution: the deep neural networks could be trained at a lower cost with

synthetic labeled data and a pool of unlabeled samples if the generation of synthetic

labeled data is easier than the direct gathering of labeled data.

1.4 Organization of the Thesis

This dissertation is organized as following: Chapter 1 has introduced both 3D vision

tasks; Chapter 2 will discuss the 3D vision task 1: volumetric medical image analysis;

Chapter 3 will discuss the 3D vision task 2: camera pose estimation. Finally, Chapter 4

will summarize both 3D vision application works.



Chapter 2

Volumetric Medical Image Analysis

2.1 Introduction

The mouse is a commonly used animal model in the study of mammalian embryo de-

velopment due to its high degree of homology with the human genome. Along with com-

plete knowledge of the mouse genome, a wide variety of gene editing tools have enabled

the creation of genetic modifications in mice, including many mutations that are lethal in

utero [14]. For instance, En1 homozygous mutants exhibit early embryonic deletion of the

mid-hindbrain region in the developing central nervous system that leads to a thickening

of the BV and subsequent death at birth [86]. Observing variations in the shape of the BV

and body is an e↵ective way to study how genetic defects, such as the En1 mutation, are

manifested during embryonic development [36,44].

High-throughput HFU has proven to be an e↵ective imaging modality to generate

high-resolution volumetric datasets of mouse embryos in utero over mid-to-late gestational

stages [3]. Accurate delineation of anatomical structures from HFU images can provide

valuable structural information and enable downstream analysis of complex biomedical im-

age data [46]. As such, accurate and time-e�cient BV and body segmentation in HFU data

can substantially aid biologists in observing and understanding the development of mouse

embryos.

Manual segmentation by imaging experts has long been considered the gold standard

in the field of biomedical image analysis. However, manual segmentation of the BV and

body (Fig. 2.1) from 3D HFU volumes is time-consuming, requiring half an hour or more

for each volume, which increases considerably with image quality decay. Additionally, the

large and ever increasing quantity of HFU images typically used in developmental studies

makes manual labelling impractical in the long run. Therefore, it is necessary to develop

fully automatic segmentation and classification algorithms to optimize this process [24].

Such an algorithm must overcome five primary challenges related to the image data: (1)

extreme imbalance between background and foreground (i.e., the BV makes up only 0.367%

of the whole volume, on average, while the body is around 10.6%); (2) di↵ering shapes

4
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Figure 2.1: (a-f) 6 embryonic mice HFU volumes are shown with three views each: a B-
mode image slice from the 3D volume, a manual BV (green) and body (red) segmentation,
and a 3D rendering (visualized in natural orientation relative to the HFU probe). The
numbers below each 3D rendering indicate corresponding image size in voxels. The arrow
in a) indicates an ambiguous boundary due to contact between the body and uterine wall.
The arrows in b), c) and d) indicate motion artifacts because of irregular physiological
movements of the anesthetized pregnant mice. The arrows in e) and f) indicate missing
head boundaries due to either specular reflections or shadowing from overlaying tissues.

and locations of the body and BV due to various embryonic stages; (3) large variation

in embryo posture and orientation; (4) the presence of missing or ambiguous boundaries

(Fig. 2.1(a)(e)(f)) and motion artifacts (Fig. 2.1(b)(c)(d)); and (5) large variation in image

size, from 150 ⇥ 161 ⇥ 81 to 210 ⇥ 281 ⇥ 282 voxels.

A nested graph cut (NGC) algorithm [34] was first developed to perform segmentation

of the BV from the manually selected head portion of HFU of the mouse embryo. NGC

relied on the nested structure of the BV, head, uterus and surrounding amniotic fluid and

successfully overcame the missing head boundary problem (Fig. 2.1(e)(f), Challenge 4).

This problem is caused by a loss of HFU signal due to either specular reflections or shadowing

from overlaying tissues. Subsequent work focused on BV and body segmentation in whole-

body images by extending the NGC algorithm to first detect and segment the interior of

the uterus and then to detect and segment the BV and body regions [35]. Although this

framework performed well on an initial set of 36 embryos [35], it did not generalize well to

larger, unseen data sets because the framework was developed based on manually crafted

assumptions and several parameters were hand-tuned on the smaller data set.

Given the success of Fully Convolutional Networks (FCN) for semantic segmentation

tasks [42], we developed a deep-learning-based framework for BV segmentation [54] that

outperformed the NGC-based framework in [35] by a large margin. Because the BV makes

up a very small portion (<0.5%) of the whole volume, the algorithm in [54] first applied a

volumetric CNN on a 3D sliding window over the entire volume to identify a 3D bounding

box containing the whole BV, followed by a FCN to segment the detected bounding box

into BV or background. Despite achieving high accuracy of 0.904 Dice Similarity Coe�cient

(DSC) for BV, this method was ine�cient because it required hundreds of thousands of

forward passes through a classification network in the first sliding-window-based localization
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step. The challenges for body segmentation are similar to those for BV segmentation, except

that the extreme imbalance between foreground and background is somewhat alleviated (the

body makes up 10.6% of the whole volume on average). Hence, the localization step is not

necessary for body segmentation. Qiu et al. [55] first applied an FCN to segment each

sliding window over the entire volume, and then determined the final body segmentation by

merging results from all the sliding windows. However, this sliding-window-segmentation

approach su↵ered from the same ine�ciencies as the localization method in [54].

Here, we propose an e�cient end-to-end auto-context refinement framework for joint BV

and body segmentation from volumetric HFU images. The proposed approach is to: (1)

generate a ROI from the original image through one-pass low-resolution segmentation and

cropping in order to circumvent the class imbalance problem without the use of a sliding

window; and (2) combine the low-resolution map with a cropped, fine-resolution image

as an auto-context [76] input so that the fine-resolution segmentation network can utilize

valuable global information and produce more accurate results. Specifically, a VNet (VNet

I) [48] is first applied to a downsampled HFU 3D image to jointly segment the BV and body

(Fig. 2.2). The resulting low-resolution body segmentation map is then up-sampled to the

original resolution, and a bounding box containing the body is generated. Next, the original

image and the coarse probability map for the up-sampled body in the bounding box are

concatenated as localized auto-context and fed into another VNet (VNet II) to generate the

final refined body segmentation map. A parallel process is applied to generate final refined

BV segmentation using a third VNet (VNet III). Each VNet is initially trained separately

and then fine-tuned in an end-to-end manner.

Compared with previous methods, this segmentation framework has the following ad-

vantages:

1. The class imbalance problem is mitigated by cascading the networks from low resolu-

tion of the whole image to fine resolution in localized regions without the need for a

time-consuming sliding window.

2. An auto-context input is created by concatenating the initial blurred low-resolution

segmentation map with the high-resolution image (Fig. 2.3). This auto-context input

improves segmentation accuracy by providing a full-resolution refinement network

with rich global context information.

3. The gradient of the refinement networks can flow end-to-end back to the low-resolution

segmentation network by combining localization and auto-context modules in a dif-

ferentiable pipeline which further improves segmentation accuracy.

Our proposed segmentation framework allows end-to-end training and e�cient, real-

time, one-pass inference while achieving comparable segmentation accuracy with the sub-

stantially more time consuming sliding-window-based approaches.
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The morphology of the BV of a En1 mutant mouse embryos is notably deformed com-

pared to the wildtype phenotype. Moreover, a di↵erence in spine curvature has been re-

ported to exist between En1 mutants and normal mouse embryos [86]. Because visually

identifying mutants is time consuming, an automatic classification model for En1 mutants

using the BV and body segmentation maps would be advantageous. We therefore extended

our BV and body segmentation work to include mutant classification using a volumetric

VGG-based CNN approach [69] . The purpose of this work is not simply to classify embryos,

but to better understand the underlying morphological changes associated with a mutant

phenotype. Therefore, to understand the underlying physiological structures that influence

the classification process, the method introduced in [68] is used to visualize the trained

network by backpropagating the gradient of the prediction with respect to the input BV

and body segmentation map.

In this thesis, we first present a real-time and accurate BV and body segmentation

algorithm, which is built on our previous e↵orts [87] with a more thorough exposition of

the methods, a more expansive discussion of the results, and a comparison with the prior

NGC-based method [35] for the same data set. Then we use the BV and body segmen-

tation to perform mutant classification together with a simple method for automatically

rotating the segmentation maps so that the body and BV shapes will all follow the same

canonical orientation. A standard 3D image orientation not only helps improve classifica-

tion results, but also assists better visualization of the 3D volumes. Finally, we leverage

gradient-backpropagation-based visualization of the data to understand what features the

learnt classifier uses to make its decision. It is worth noting that preliminary mutant clas-

sification results based on the BV segmentation only were reported in [55].

2.2 Related Work

2.2.1 Segmentation

Segmentation is a critical component of any pipeline designed to aid in image-based

analyses of mouse mutants. Registration-based analysis of magnetic resonance images has

been used extensively for studying postnatal brain phenotypes [15, 51] and brain develop-

ment [72]. This approach makes use of atlases of normal mouse brain anatomy that were

derived from image registration and averaging in combination with manual segmentation

by experts. Then, individual mouse brains of unknown phenotype are segmented automat-

ically via registration to the atlas. Current pipelines designed for detecting and analyzing

mutant mouse embryos have taken a similar approach [14] using ex vivo micro-CT [84] or

optical projection tomography (OPT) [85] images. In contrast, HFU is uniquely suited to

providing in vivo data on mouse embryonic development [3], but HFU embryo atlases have

not been established. In the current study, we investigate deep learning approaches as an

alternative to the more conventional, registration-based segmentation methods.
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Deep learning has been widely employed in biomedical image analysis tasks [4, 37, 40,

64, 88, 93]. Milletari et al. [47] applied deep CNNs to localize and segment the midbrain

in MRI and ultrasound images in a patch-wise manner with Hough voting. Although

this method attempted to implicitly incorporate a shape prior through Hough voting, the

patch-wise training strategy ignored the interdependent relationships between neighboring

patches during training of the CNN classifiers. Long et al. [42] developed the influential

FCN by replacing all the fully connected layers of traditional CNN-based classifiers with a

transpose convolutional layer and then Ronneberger et al. [57] improved the FCN model by

introducing symmetric skip connections between the encoder and decoder, leading to the

widely known UNet model. Liu et al. [41] proposed to use 2D FCN with feature pyramid

attention for automatic prostate zonal segmentation in 3D MRI images. Although this

2D-based FCN was shown to outperform UNet, it was still deficient in capturing inter-slice

correlation information compared to 3D-based models. Milletari et al. [48] further adapted

UNet to VNet for volumetric medical image segmentation and also introduced a Dice-based

loss function.

Tu [76] first proposed the auto-context concept for high-level vision tasks, such as im-

age segmentation. Specifically, the idea behind auto-context [76] is to iterate in order to

approach the reference segmentation through a sequence of models, where the input and

output of the previous model are concatenated to form the input for the next model such

that the next model can make use of richer context information from the output of the

previous model. It is possible to cascade two or more segmentation networks for the pur-

pose of either localization or auto-context. Roth et al. [58] focused on abdominal CT image

segmentation. They applied two cascaded 3D FCNs using the initial segmentation results

to localize the foreground organs, which were then input into the second FCN. The initial

segmentation was used only for localization and was not concatenated with the raw image

as auto-context input to the second FCN. Tang et al. [74] cascaded four UNets and trained

them in an end-to-end manner for skin lesion segmentation. However, this framework did

not use the segmentation output of a previous UNet to reduce the spatial region to the

next UNet, and was restricted to 2D binary segmentation. Chen et al. [11] cascaded two

residual FCNs for volumetric MRI brain segmentation in order to use the first FCN’s out-

put as context information for the second FCN. This framework also did not use the initial

segmentation for localization of desired structures to reduce spatial input into the second

network. In contrast to these e↵orts, the cascading networks we propose not only serve to

localize the ROI, but also function as an auto-context module for multi-class volumetric

image segmentation. The Mask-RCNN [21] has been well-known for accurate object detec-

tion and instance segmentation. It is less appropriate in our application, because each 3D

HFU image has only a single embryo (as opposed to imaging multiple embryos at once) and

Mask-RCNN was designed to detect and segment multiple objects in an image.
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2.2.2 Classification and Visualization

Increasingly powerful neural network architectures (e.g. AlexNet [33], VGGNet [69],

ResNet [23], DenseNet [27] and SENet [26]) have led to successful breakthroughs in a variety

of classification tasks. For example, Wang et al. [82] demonstrated that a VGG16 model

can outperform a radiomics-based method for thyroid nodules classification in ultrasound

images. Moreover, numerous works have focused on interpreting the decision making process

of these neural networks. Simonyan et al. [68] proposed visualizing the image-specific class

saliency map by backpropagating the gradient from the top-1 class prediction unit to the

input image. Springenberg et al. [70] adapted [68] to only backpropagate the positive

gradient to reduce noise in the saliency map. Zhou et al. [91] proposed using global average

pooling to replace fully connected layers such that the predicted class score can be mapped

back to the previous convolutional layer to generate the class activation maps (CAMs). The

CAM can highlight the class-specific discriminative regions. Selvaraju et al. [63] generalized

CAM to any CNN-based architecture by using gradient backpropogation and also combined

guided backpropagation [70] for better visualization.

In biomedical applications, it is essential that classification results are accurate and

interpretable. Wang et al. [81] embedded Grad-CAM [63] as an attention branch into a

classification network (ResNet-152 model) for 14 thorax diseases diagnosed in chest X-ray

images. The embedded Grad-CAM branch enabled the learned feature maps from the

classification branch to be converted into an attention map that highlighted the locations

of disease-specific regions under the supervision of image-level class labels.

Given a small data set, we adopted a shallow volumetric VGG-like network with 9 lay-

ers to perform the mutant classification. We developed an automatic procedure to rotate

the BV and body segmentation maps to a canonical orientation. This greatly reduced the

orientation variance among the training samples and between the training and testing sam-

ples, leading to significant improvement in the classification accuracy. Then, the technique

in [68] was utilized to visualize the saliency map by backpropagating the gradient from the

top-1 class prediction unit to the input. The pipeline was simple and fully automatic and

proved to be highly e↵ective for our classification and visualization tasks.

2.3 Data Set

The data set used for developing our segmentation framework consists of 231 embryonic

mouse HFU volumes which were acquired in utero and in vivo from pregnant mice (10-14.5

days after mating) using a 5-element 40-MHz annular array [3, 31]. The dimensions of the

HFU volumes varied from 150 ⇥ 161 ⇥ 81 to 210 ⇥ 281 ⇥ 282 voxels and the size of each

voxel is 50 ⇥ 50 ⇥ 50 µm. For each of the 231 volumes, manual BV and body segmen-

tations were conducted by trained research assistants using commercial software (Amira,

FEI, Hillsboro, Oregon, USA). It is worth noting that the BV could be segmented accu-
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rately because BV is a relatively small and dark region in the brain and can be segmented

using the region growing function in Amira. Then, our trained research assistants would

refine the BV boundaries. For BV, the labeling process took around 10 minutes for each

image volume. Because the body is much larger than the BV and has more variations,

the manual body segmentation was achieved by labeling every ⇡ 10 2D slices in a volume

and then using the label interpolation function in Amira to complete the 3D segmentation.

Then, the interpolated slices were examined and slices with large errors were corrected. The

number of 2D slices manually segmented in each 3D volume varied depending on the image

quality and the number of slices of the image. The body labeling process took around 30

minutes for each 3D image. Any interpolation artifacts from this approach had minimal

impact on the analyses. The data set containing 231 images was randomly split into 139

cases for training, 46 cases for validation and 46 cases for testing. The validation set was

used to determine the stopping criterion during training. The data used in this study will

be provided upon request.

Among the 231 data sets with manual BV and body segmentation, there were only 35

mutant images, which was not su�cient to train and test a mutant classification algorithm.

In addition, we also had 336 HFU embryo data sets without manual segmentation, but

have ground truth about the presence of the mutation. Hence, the developed segmentation

algorithm was applied to these 336 unlabeled HFU images. After auto segmentation of the

unlabeled data sets, we manually reviewed the results and selected 321 sets with visually

satisfactory segmentation. This process resulted in a total of 552 (231 manual + 321

automatic) data sets with BV and body segmentation containing 102 mutant and 440

normal. Because 102 mutant images were a small data set, six-fold cross validation was

employed to develop and evaluate the mutant classification algorithm.

2.4 Methods

2.4.1 Segmentation Framework

An overview of our proposed end-to-end BV and body segmentation framework is shown

in Fig. 2.2. The pipeline consists of an coarse segmentation stage and a segmentation

refinement stage. The initial coarse segmentation produces low-resolution segmentation

maps for BV and body, simultaneously. Next, the original data and the low-resolution label

for each object are passed to a Loc-Con module (Fig. 2.3), which first generates a bounding

box for the object using the centroid of the up-sampled predicted probability map. Then,

for the corresponding object, the Loc-Con module concatenates the full-resolution original

image and the initial up-sampled predicted probability map in the bounding box as auto-

context input for the refinement network. Next, the refinement network generates a full

resolution segmentation map within the bounding box. This segmentation is then projected

back to the entire image volume through zero padding. We first train the initial coarse
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Figure 2.2: The pipeline of the joint BV and body segmentation from 3D HFU images of
mouse embryos.
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Figure 2.3: Diagram of localization-auto-context (Loc-Con) module for the BV. A similar
configuration is used for the body. The gradient produced by the refinement loss can flow
back to the low-resolution segmentation network (blue arrows).

segmentation network and then separately train the BV and body refinement networks

using output from the trained initial segmentation network. Finally, we fine-tune all three

networks (VNet I, VNet II, VNet III) in an end-to-end manner. These three networks follow

the exact VNet structure [48] and only the first and last layers are changed based on how

many channels the input has and how many classes are predicted.

Initial Segmentation on Low-Resolution Volumes

Because of memory constraints and large variations in image sizes, all the images were

padded and downsampled (3rd order spline interpolation) to a low resolution volume of

1603 voxels. A VNet [48] (VNet I) was trained to perform BV and body segmentation,

simultaneously, at low resolution. The output of the VNet had 3 channels, representing the



12

background, BV, and body. The Dice loss [48] for each class was summed and used as the

training loss (loss I in Fig. 2.2).

Localization-auto-context Module

To better utilize the information obtained from the low-resolution segmentation result

for each structure, the Loc-Con module was introduced to produce the localized auto-context

input for refinement. For each foreground object (BV or body), the Loc-Con module steps

are as follows (Fig. 2.3):

1. Up-sample (trilinear interpolation) the initial coarse segmentation map to original

resolution.

2. Generate a fixed-pixel size bounding box (1443 for BV and 2243 for body) located

at the corresponding centroid of the up-sampled predicted probability map for each

class. Images were zero-padded when smaller than the bounding box.

3. Concatenate the original resolution image and the initial predicted probability map

(after up-sampling) in the bounding box to create the auto-context input for the

refinement network.

Going beyond previous works [11, 58, 74], our Loc-Con module served as a hard atten-

tion mechanism by leveraging the low-resolution, rough segmentation to crop an ROI (the

bounding box) at the original resolution. It made use of a conventional auto-context strat-

egy [76] by employing the initial predicted probability map, in conjunction with the original

image, as an additional input channel. The initial coarse segmentation map obtained from

the whole image at low resolution can provide global context information, which improved

the results of the subsequent segmentation networks (VNet II and III). Because trilinear up-

sampling was used, the gradient from the subsequent refinement networks (VNet II and III)

was able to flow back to the initial segmentation network (VNet I), which made end-to-end

fine-tuning feasible (Fig. 2.2).

Pre-training of Fine-Resolution Refinement Network

Two refinement networks (VNet II and III) were trained for body and BV segmen-

tation, respectively. For each object, the fine-resolution raw image and the up-sampled

initial segmentation probability map in the localized bounding box were concatenated and

used as the input. The structure of the refinement network was exactly the same as the

initial segmentation, except that it required 2 channels as input (original cropped image

and corresponding initial segmentation probability map), and produced a single channel as

output (indicating the probability of being part of the body or BV at each pixel). Using the

detected centroid information on the object, the output was zero-padded back to original

image size.
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End-to-end Refinement on Fine-Resolution

During the pretraining of the refinement stage, the parameters of the initial segmentation

network (VNet I) were frozen until the refinement network for each object (VNet II and

III) converged. After that, all three networks were jointly optimized to minimize the sum of

Dice losses measured on the fine-resolution image (loss II and III in Fig. 2.2). The gradient

backpropagation path for this end-to-end refinement is indicated in Fig. 2.2.

2.4.2 Mutant Classification and Visualization Pipeline

Subtle structural di↵erences in the BV and body shapes between mutant and normal

mouse embryos have been reported [86]. Hence, it is possible to use the BV and body

segmentation map (the output of our proposed segmentation algorithm in Sec. 2.4) to train

a volumetric CNN for mutant vs. normal binary classification. Due to the small number of

training images, each with varying orientation, it was important to first rotate all images

into a canonical orientation in order to reduce the input variance prior to feeding it into

a classifier. This approach is more e�cient for discovering subtle structural di↵erences

between the normal and mutant images, and for improving classification performance.

As shown in Fig. 2.4, we made use of the structural characteristics and relative positions

of the BV and body to rotate the BV and body segmentation map into a canonical space.

Specifically, we rotated the shape images so that the first Principal Component (PC) of

the BV shape was aligned with the X-axis. We then rotated the images so that the first

PC of the body shape was in the X-Y plane. Then the centroid positions of the BV and

body were used to flip the images to make sure they all have the same up-right orientation

along the Y axis. Finally, we made use of the fact that the front BV is wider than the back

BV to flip the images along the X axis such that all the images had the same orientation.

With all the BV and body shapes in the same orientation, a 256 ⇥ 192 ⇥ 160 bounding box

was cropped at the centroid of the body to remove unrelated regions. This bounding box

was then downsampled by 2 to reduce input size. Finally, a 9-layer volumetric VGG-like

CNN (Fig. 2.5) was trained on the rotated, cropped, and downsampled segmentation map

to perform mutant vs. normal binary classification. Note that the input segmentation map

has only one channel with di↵erent values indicating the BV, body and background.

In order to understand the decisions made by the trained network, we visualized the

trained network through the gradient of the prediction with respect to the input segmen-

tation map [68]. 20% of the maximum gradient value was used as the threshold to obtain

a binary saliency image. Guided gradient backpropagation [70] was also implemented, and

similar visualization results were obtained. These saliency images served as the explanations

of the classifier’s decisions between mutant and normal mice.
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Figure 2.4: Procedure for rotating each BV and body segmentation map into a canonical
orientation. The first Principle Component (PC) of BV and the first PC of body are used
(indicated as dash line in (a)). The up-down direction (dash arrow in (a)) is determined by
the comparative centroid positions of BV and body. The front-back direction (dash arrow
in (b)) is determined by the structural characteristic of BV because the front BV region is
wider than the back BV region (solid line in (b)).

2.4.3 Implementation Details

All the codes were written in Python 3.6.3. All neural network models were implemented

in PyTorch 1.2 [53], with CentOS 7.4, CUDA 9.1 using 2 NVIDIA Tesla P40 graphic-

processing-units (NVIDIA Corp., Santa Clara, CA, USA) with 2 x 24 GB of memory.

To compensate for the limited amount of training data for the segmentation networks,

data augmentation was employed. Available volumes were randomly rotated from �180� to

180� along each of the three axes, then randomly translated �30 to 30 voxels and, finally,

randomly flipped. During the initial pretraining step (VNet I), the Dice loss (loss I) between

the predicted segmentations and the downsampled manual labels were averaged across the

three classes (background, body and BV). During the pre-training refinement stage (VNet

II & III) and end-to-end refinement stage (VNet I, II and III), the Dice loss for body and BV

(loss II and III) were used to train the networks. All networks were trained with the Adam

optimizer [32] using a learning rate of 10�2 for the initial segmentation and pre-training

refinement stages. A learning rate of 10�3 was used for the end-to-end refinement stage.

The batchsize was 8 for the first stage segmentation; 2 for the second stage and refinement

stage. The training data size was 139 and we applied a drop-last data-loader. Thus, for the

first stage segmentation, 17 updates were performed per epoch; for the second stage and

refinement segmentation, 69 updates were performed per epoch. An independent validation

data set was used to determine the stop criterion. The first stage took 803 epochs; the

second stage took 349 and 270 epoch for BV and body, respectively; and the refinement
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Figure 2.5: Pictorial representation of the mutant classification network. The numbers
below each box indicate channel, depth, height and width. “bn”, “relu”, “conv”, “max
pool”, “global average pool” and “WX+b” indicate batch normalization, rectified linear
unit, convolution, max pooling, global average pooling and fully connected layer operations,
respectively.

stage took 117 epochs. The models were chosen to minimize validation loss.

In this work, ITK-SNAP [89] was used to visualize some initial and end-to-end segmen-

tation results of our proposed framework.

In order to compensate for the imbalance between the amount of mutant and normal

images (102 mutant and 440 normal), weighted cross entropy loss was used to train the clas-

sification networks with weights 3.5 and 1.0 for the mutant and normal classes, respectively.

No data augmentation was used for the training of the classification network because all of

the images were rotated into a canonical orientation before feeding into the network. The

network was trained using the SGD optimizer with momentum 0.9 and weight decay 10�5.

The learning rate was set to 10�2 for the first 70 epochs and decreased to 5⇥ 10�3 for the

remaining 30 epochs. Approximately, each epoch would have 57 updates.

2.5 Experimental Results and Discussion

2.5.1 Segmentation Results

In this work, we evaluated the performance of the proposed framework using the DSC

score with standard deviation, which is widely employed to evaluate segmentation perfor-

mance in biomedical imaging. Given reference segmentation G and predicted segmentation

P , the DSC can be computed as: DSC = 2|G\P |
|G|+|P | . As mentioned in Sec. 2.3, we used 139

image volumes for training, 46 image volumes for validation and 46 image volumes for test-

ing. We used further data augmentation as described in Sec. 2.4.3 during the training. Note

that because each voxel can be treated as a training sample, the relatively small number of

image volumes for training was su�cient to generalize well to the test image volumes.

As shown in Table 2.1, the initial results of our proposed segmentation framework

achieved a satisfactory average DSC score of 0.924 for the body and lower DSC score
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Figure 2.6: Comparison of initial coarse segmentation and refined segmentation for four
HFU volumes. Green indicates BV, red indicates body and the numbers below the predicted
segmentation correspond to DSC. In a), b) and c), yellow arrows indicate that the refinement
improved the segmentation in terms of boundary and structure. d) represents an image
with motion artifacts where the manual segmentation was noisy in the body background
boundary while the refinement network produced a smooth boundary which was closer to
the true physical structure. The refined BV segmentation in d) is also more accurate than
the initial BV segmentation.

of 0.887 for the BV. This was expected because the BV was much smaller than the body.

Hence, it was necessary to localize the ROI and refine the segmentation. The refinement

using the raw image as well as the initial predicted probability map improved the average
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Table 2.1: DSC with standard deviation and inference time per volume averaged over 46
test volumes

Methods
Results BV DSC Body DSC

Inference
Time ⇤

NGC-based
Framework [35]

0.762±0.254 0.775±0.183 699.3 s

Sliding-window
Benchmark

0.904±0.050 [54] 0.924±0.023 [55] 102.4 s

Coarse
Segmentation

0.887± 0.055 0.924 ± 0.023 6 ms

Refinement Without
Auto-Context Input

0.893±0.057 0.918±0.059 80 ms

Refinement With
Auto-Context Input

0.898±0.052 0.927±0.026 90 ms

Refinement

End-to-end
0.899±0.056 0.934±0.015 90 ms

* The average inference time was calculated on two NVIDIA Tesla P40 graphic cards. The
sliding-window benchmark inference time was summed over separate BV [54] and body [55]
segmentations.

DSC to 0.898 for the BV. In order to determine the e�cacy of the auto-context approach,

only the raw image cropped from the bounding box found in the localization step was fed

to the refinement network. Compared to jointly using the initial segmentation and the raw

image (auto-context input [76]), this refinement-without-auto-context approach yielded a

lower DSC for the BV (between 0.893 and 0.898), which indicates context information is

important to BV segmentation. In our application, jointly using the initial segmentation

and the raw image (auto-context input) was similar to stacking two VNet together with

the first one being frozen. In this way, the second VNet (the refinement network) had

larger receptive field and was able to utilize more context information to improve the final

segmentation results. Note that for the body segmentation, the gain from the refinement

compared to the initial coarse segmentation was limited, because the body boundary was

fairly smooth and did not su↵er from a downsampled representation. Finally, end-to-end

refinement improved BV DSC to 0.899 and body DSC to 0.934. As shown in Fig. 2.6, the

initial segmentation produced reasonable BV and body segmentation results. After end-to-

end refinement, the segmentation accuracy was improved along with better boundaries, and

sometimes eliminated structural segmentation errors in the first stage. This implies that

the fine-resolution refinement was more beneficial than suggested by the small improvement

in the DSC metric.

Compared with other existing methods, our proposed segmentation framework outper-

forms the rule-based segmentation NGC-based framework (Tab. 2.1) [35] by a large margin.

Moreover, the NGC-based framework was not robust with 8 failure cases in BV and 3
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Figure 2.7: Comparison of qualitative segmentation results among di↵erent methods for five
HFU images. Green indicates BV, red indicates body and the numbers below the predicted
segmentation are corresponding DSC. Yellow arrow in a) indicates ambiguous boundary due
to the deep touching of the body and uterine wall. Image b) has severe motion artifacts.
Yellow arrow in c) indicates missing head boundary. Image d) has di↵erent contrast with
image b) and c). Yellow arrow in e) indicates severe missing signal of body, which leads to
unsatisfactory automatic body segmentation results across di↵erent methods.

in body (DSC < 0.6) while our proposed framework and the sliding-window-based meth-

ods [54,55] did not have any failure cases. Although the performance was comparable to the

sliding-window-based methods, our proposed method achieved a 1000 fold inference time

reduction from 102.36 to 0.09 seconds per volume, enabling real-time segmentation. For

fair comparison, the networks from [54] and [55] were retrained using the same training set

described here and evaluated on the same testing set. Therefore, the numbers reported here

are slightly di↵erent from those reported in [54,55].

Qualitatively, the proposed segmentation pipeline and sliding-window-based methods

performed consistently well when challenged with ambiguous or missing boundaries, motion

artifacts, and di↵ering image contrast (Fig. 2.7). In contrast, the NGC-based framework

performed worse and failed to produce correct segmentation when boundaries were missing

or ambiguous. Our manual body segmentation was achieved by labeling every few images

in a volume and then using a label interpolation function to complete the 3D segmentation.

Although we determined that the interpolated manual segmentation was reliable for algo-

rithm development and other down-stream analyses, this protocol can potentially lead to

interpolation artifacts (e.g. Fig. 2.7(b)(c)). Advantageously, these artifacts were mitigated
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by our deep-learning-based framework with segmentation results closer to the true physical

structure. For similar interpolated 2D slices across di↵erent 3D images, some were slightly

under-segmented on the boundaries while others were slightly over-segmented. Moreover,

there are still su�cient number of manually labeled slices which are accurate on the bound-

aries. When we trained our deep neural networks with over a hundred such 3D images, the

network learned the true boundaries so that the interpolation artifacts were mitigated. This

is similar to small random noise being added to the manual label, but the trained network

can still generalize well [2].

Table 2.2: Confusion matrix of mutant classification results summed over validation samples
with six-fold cross validation. The threshold value was set to 0.5 and the average accuracy
is 0.969.

True
Predict

Mutant Normal

Mutant 96 6
Normal 11 429

Figure 2.8: ROC curves and AUC scores of the mutant classification results with di↵erent
input combinations (each obtained with six-fold cross validation).
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Figure 2.9: Saliency images of the trained mutant classification neural network. The first
row is the normal mouse embryo BV (green) and body (red) segmentation while the second
row is mutant. Two images are presented for each sample. The blue arrow in the first image
indicates the known structural di↵erences between En1 mutant and normal BVs while the
blue dots in the second image (salient points) indicate where the trained network focused
when making the prediction.

2.5.2 Classification and Visualization Results

Using the rotated BV and body segmentation maps, a volumetric CNN (Fig. 2.5) was

trained to perform mutant vs. normal binary classification. Due to the limited number of

mutant images (102 mutant vs. 440 normal), we conducted a six-fold cross validation, where

each fold had the same mutant vs. non-mutant ratio. In each run, one fold was used for val-

idation while the other five folds were used for training. The average classification accuracy

among validation samples are shown in Table 2.2. We also show the Receiver Operating

Characteristic (ROC) curve in Fig. 2.8 (red curve), which was obtained by using di↵erent

thresholds on the predicted probability for the mutant class. The average classification

accuracy was 0.969, and the area under the ROC curve (AUC) was 0.9893.

In order to verify the utility of rotating the shape images into a canonical space, we

also used unrotated BV and body segmentation maps as input to train the same classifi-

cation network. Without pre-processing rotation, the BV and body were in a wide variety

of orientations in the segmentation maps. Because of the limited amount of training data,

additional segmentation maps were generated by using existing data but with random com-

binations of 90-, 180-, or 270-degree rotations around each axis or image flipping along each

axis. Using this data, the network still failed to converge to good results (AUC of 0.4503,

Fig. 2.8 green curve). The reason for the divergence of the network could be that the subtle

structural di↵erences between normal and mutant mouse embryos (Fig. 2.9 blue arrows)

were overwhelmed by the large variations of embryo orientation. Hence, for our somewhat

limited data set it was critical to perform the rotation into a canonical space such that

the embryo orientations were aligned. A standard 3D image orientation also assists better

visualization of the 3D volumes.

To investigate which shape information (BV, body or both) was important for final

classification, only the rotated BV or body segmentation maps were used to train the same
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classifier. This approach achieved an AUC of 0.9852 for BV and 0.6871 for body (Fig. 2.8

blue and yellow ROC curves), respectively. It is worth noting that the AUC of 0.9852 ob-

tained based on just the BV segmentation is similar to the AUC of 0.9893 obtained using BV

and body segmentation maps. These AUC values indicate that the BV contributes the most

to successful mutant classification. This is consistent with the saliency images (Fig. 2.9),

where most salient points were located around the known structural di↵erences between

En1 mutant and normal BVs. We then defined a tight bounding box around unrotated

BV data and trained the same classifier with the same data augmentation as the above

unrotated BV and body segmentation maps (Fig. 2.8 green curve). Using this approach,

we achieved an AUC of 0.9791 (Fig. 2.8 cyan curve), which indicates that unrotated BV

(with data augmentation) is su�cient to train an accurate mutant classification network.

These results also explain why, even with su�cient data augmentation, unrotated BV and

body data (Fig. 2.8 green curve) fails, because the large bounding box includes the BV

and body. The large bounding box makes the BV too small relative to the input image

size such that the subtle BV di↵erences between En1 mutant and normal embryos were

easily overwhelmed by the variations of embryo orientation. Our rational for using the BV

and body together to train a classifier is that a di↵erence in spine curvature exists between

En1 mutant and normal mouse embryos [86]. Using the BV and body together, the visu-

alization in (Fig. 2.9) would have the potential to highlight di↵erences in spine curvature.

Unfortunately, our trained classifier does not seem to make use of the spine curvature in

its decision. The reason might be the spine curvature di↵erence is not as consistent and

conspicuous as the BV di↵erence between mutant and normal mouse embryos.

More importantly, as shown in Fig. 2.9, we visualized the trained network through

the gradient of the prediction with respect to the input segmentation map [68] and used

20% of the maximum gradient value as the threshold to obtain a binary saliency image.

The visualization of the trained classifier (using rotated BV and body segmentation maps)

demonstrated that the trained network focused on regions where En1 mutation is known

to cause the loss of brain tissue and thickening of the BV (Fig. 2.9 blue arrows). This

BV region is the main ROI when performing manual segmentation for mutant vs. normal

classification En1. If had not known a priori where to detect the di↵erence in BV between

normal and En1 mutant mouse embryos beforehand, the visualization results of the trained

network would have highlighted these relevant regions. This observation indicates that gra-

dient backpropagation of trained, deep-learning classifiers has the potential to automatically

detect unknown phenotypes associated with a known genetic mutation.

2.5.3 Limitations

Our study had a few limitations. First, the proposed two-stage segmentation framework

only provided limited improvement over the first stage initial segmentation. If less-accurate

automatic segmentation quality for some down-stream analyses is acceptable, the initial
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segmentation would be enough, which will further reduce the inference time by another

factor of 15 (from 90 ms to 6 ms per image). Second, the reference manual segmentation for

the 3D images was obtained by labeling every few frames and then using a label interpolation

function, which inevitably introduced some interpolation artifacts. Finally, although a

di↵erence in spine curvature has been reported to exist between En1 mutant and normal

mouse embryos [86], our trained classification neural network did not seem to use this

di↵erence to perform the classification (Fig. 2.9). Further work is necessary to understand

why our methods did not detect these di↵erences.

2.6 Summary of Major Contributions

• For segmentation, an end-to-end two-stage framework was proposed for accurate and

real-time segmentation of the BV and body in 3D, in vivo and in utero HFU images

of mouse embryos. The initial coarse segmentation stage acted as an ROI localization

module and provided global context information for the second-stage, fine-resolution

refinement network. The results demonstrated the e�cacy of this two-stage struc-

ture. The proposed method achieved high DSC scores of 0.899 for BV and 0.934 for

body segmentation, comparable to the previous benchmark (i.e. sliding-window-based

methods), and was approximately one thousand times faster in inference time.

• For mutant vs. normal classification, a deep-learning-based method was also developed

using the BV and body segmentation maps. To overcome the limited data problem,

a fully automatic method was developed to rotate the raw segmentation maps such

that the BV and body shapes were in a canonical orientation, thus, removing unin-

formative input variations. Using this pre-processing approach, the model achieved a

high average accuracy of 0.969 and AUC of 0.9893 over six cross validation folds.

• For network visualization, the trained classification model was shown to di↵eren-

tiate between mutant and normal mouse embryos by focusing on the BV region

where the phenotype associated with the En1 mutation typically manifests. The

proposed pipeline has the potential to uncover unknown phenotypes manifested as

shape changes associated with di↵erent gene mutations.

To sum up, our segmentation, mutant classification and network visualization algorithms

may be applicable and invaluable in streamlining developmental biology studies.



Chapter 3

Camera Pose Estimation

3.1 Introduction

Estimating the 3D position and 3D orientation (6DoF pose) of an agent or an object

with respect to a reference coordinate frame is a fundamental requirement in robotics ap-

plications. Visual localization o↵ers several advantages compared to other modalities for

deriving 6DoF poses: it is e↵ective both indoors and outdoors, it requires no extra infras-

tructure, and it can be precise and accurate using only a single RGB image.

Figure 3.1: At training time, the SCR network is trained using unsupervised deep domain
adaptation techniques, which bridge the domain gap between labeled synthetic images and
real camera images of the scene. At test time, only the trained SCR network is kept, it
regresses 3D scene coordinates for each pixel, from which the camera pose is calculated via
PnP-RANSAC.

23
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Prior solutions for pose estimation from RGB images can be split into two categories:

those that use hand-crafted features and those based on machine learning. The methods

based on hand-crafted features incorporate extensive prior knowledge about the problem,

and often achieve better accuracy today. However, learned methods can o↵er higher speed,

robustness to occlusions, and access to continuous intermediate representations, and are

therefore gaining popularity. Furthermore, learning-based methods such as CNN can o↵er

potentially more compact representations of spaces in their weights compared to Simulta-

neous Localization and Mapping (SLAM) maps, and have been shown to outperform many

hand-crafted methods in textureless areas [80].

The major drawback of learning-based methods in the past has been that they require

supervised training on large image sets with known camera poses, and need to be re-trained

for every new scene or in case any changes in the target scene. In general, a labeled training

set needs to be generated for each new environment, making data collection tedious and

hindering the scalability and practical applicability of these techniques. A typical way to

generate a training set is to track the camera with an external localization system while it

moves through the environment, implying high overhead. Infrared tracking systems using

fixed infrastructure cameras and active beacons (e.g., WorldViz or Vicon) can capture sub-

cm and sub-degree accurate pose labels for the moving camera images. However, the cost

and di�culty of using these localization systems is not trivial and is even infeasible in some

places. Another method of obtaining labeled training images is to use on-board RGB-D

SLAM as in 7Scenes [66] and ScanNet [13].

In this thesis, we take a representative method that solves the scene coordinate regression

problem, and show that it can be trained with synthetically generated images at a fraction

of the cost compared to acquiring real pose labels, and it still achieves the same median

error. As an alternative to training with expensive labeled camera images, we propose a

novel pipeline Domain Adaptation of Networks for Camera pose Estimation (DANCE),

shown in Fig. 3.1, which relies on a lower-cost combination of unlabeled camera images and

labeled synthetic images.

Our key contributions are (i) providing a domain adaptation methodology to train a

neural network for the task of SCR using only labels generated in simulation (via rendering).

This enables (ii) the training of camera pose estimation at significantly lower overhead

cost compared to fully supervised learning-based solutions. Specifically, we render a large

number of images with known (arbitrary) poses and scene coordinates from a laser scan

of the space. The appearance of these images is far from real photos, and to bridge this

domain gap, (iii) we employ domain adaptation at the image level. These techniques allow

the training of the SCR network with domain adapted labeled rendered images only.
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3.2 Related Work

Vision-based localization approaches can be categorized into retrieval-based and regression-

based families, both requiring a large number of images that cover the whole scene.

Retrieval-based methods typically extract global descriptors from keyframes [12] [79]

and/or local descriptors from feature points [71] [49] [50], and build a database of scene

descriptors. Then, descriptors extracted from the query image or sequence of images are

matched to the closest entries in the database and assigned a location, which is finally

validated by geometric constraints. Feature point-based methods are more robust, but

tend to be slower than keyframe-based methods. While we focus on indoor scenarios,

our problem is highly related to large-scale visual localization methods [61] [28] [59] [43]

which are predominantly based on features and sparse 3D maps, but have recently begun

incorporating learning-based components as well [60]. Prior knowledge about the coarse

location from GPS [61] [90] [43], radio signals [29] [20], a LiDAR map [16] or other means

can significantly reduce the search space and can make these methods applicable even at

city scale [43].

Regression-based methods are both robust and fast, and therefore o↵er a promising new

direction. However, at the time of writing, they are less accurate, limited in scale, and

expensive to train. One family of regression approaches use learned models [66] [78] [6] [10]

to perform SCR and then input point samples from the intermediate scene coordinate map

to a PnP-RANSAC pose estimator. More recent examples of this group of methods are

DSAC, DSAC++, and DSAC* [8], which add di↵erentiable approximations for all steps

of the pipeline, including SCR, PnP, and RANSAC and achieve state-of-the-art pose es-

timation performance. Another family of regression approaches including PoseNet [30],

PoseLSTM [80], and RelocNet [5] directly return the 6DoF pose from a single image and

can be trained end to end. In addition to localization of a single image, VLocNet++ [56]

implements learning-based odometry and adds semantics, and for the first time exceeds the

accuracy of feature-based methods. Sattler et al. [62] analysed why direct pose regression

methods generally fall behind feature-based methods and concluded that CNNs rather learn

to retrieve similar images instead of learning a 3D map of the space. Further research is

urged for, and our training technique makes that a lot easier than before.

An often cited drawback of learning-based methods is that they are trained for a partic-

ular scene and are di�cult to adapt to other environments. New techniques have attempted

to address this drawback using a variety of methods. The authors of [10] and [9] show how

to adapt a random forest to a new place at runtime. RelocNet [5] performs regression of

relative poses and thus avoids the need to retrain for every scene, while ESAC [7] breaks a

scene into smaller parts and trains a network for each before using an ensemble network to

decide which subnetwork to use, thus allowing SCR to be performed for larger areas. Unfor-

tunately, all regression models require supervised training on image datasets with ground
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truth pose labels or scene coordinates, which are very expensive to acquire. Similarly in

feature-based methods, the need to support the innumerable variations in scenes resulting

from lighting changes, weather conditions, etc., and the cost of collecting data across these

conditions can be prohibitively expensive. These challenges can be avoided by synthetically

generating rather than collecting data [67] [73] [75] [45].

Because modeling every aspect of the real world in a rendering pipeline is infeasible,

synthetic images inevitably di↵er from those captured with a real camera – this di↵erence

in appearance is referred to as the domain gap. The authors of [65] demonstrate that

feature-based retrieval using the representations learned by a PoseNet trained on purely

synthetic images is highly e↵ective for synthetic queries, but fails when used on real images.

Researchers have taken a variety of approaches to attempt to reduce this domain gap. [65]

transforms real features to look more similar to synthetic features using an autoencoder.

Other recent works on 6DoF object pose estimation [1] [39] [83] apply domain random-

ization, i.e., generating synthetic training data with randomized rendering parameters in

order to robustify the trained networks. Several domain adaptation works [19] [77] apply

feature-level alignment for image classification; other recent works [25] [38] combine the

CycleGAN-based image-level alignment, and adversarial feature-level alignment for image

segmentation. CyCADA [25] performs both the image-level and feature-level adaptation

in an end-to-end manner while BDL [38] decouples them. Because both image segmenta-

tion and our SCR task require dense predictions, it is imperative for the adapted synthetic

images to preserve both the semantic content and the geometric structure. We propose

to employ the contrastive unpaired translation (CUT) model [52] for image-level domain

adaptation to train the SCR network.

3.3 Method

In order to successfully bridge the domain gap, we must transform rendered images

such that they appear to come from the same distribution as the real camera images while

preserving both the semantic content and the geometric structure to enable e↵ective camera

pose estimation. We utilize a generative adversarial network (GAN) based framework (the

CUT model [52]) for the image-to-image translation step. Specifically, using the rendered

images XS along with a set of unordered, unlabeled photos XT from the same scene, a

mapping network GS!T is trained using the CUT framework to map from the source

domain of rendered images XS to the target domain of real photos XT without changing

the geometric and semantic content in XS . In this way, the corresponding rendered scene

coordinate labels YS of XS can be reused for X̂T , where X̂T = G
⇤
S!T (XS) (⇤ denotes

converged models after training). Finally, an SCR network fT is trained with (X̂T , YS) for

use in the target domainXT . Note that direct training on domainXT is not possible because

the target labels YT are not available and real photos XT do not have any corresponding
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or pairwise relationship with synthetic images XS . At inference time, we apply the target

network f
⇤
T in the target domain XT (real photos) and feed the predicted scene coordinates

f
⇤
T (XT ) to a traditional PnP-RANSAC [17] to compute the final pose estimates. This whole

process is illustrated in Figure 3.1.

One could ask why not just train on (XS , YS) and apply the converged model in the

target domain XT directly. As shown in Table 3.1 (a) (blind transfer), this approach leads

to severely degraded performance. In order to bridge the domain gap between the rendered

images XS and photos from the real world XT , we train the SCR network on the domain

adapted labeled rendered images (X̂T , YS).

3.3.1 Mathematical Description

We consider an unsupervised domain adaptation problem, where we are provided dis-

tributions for source data XS , source labels YS and target data XT , but no target labels.

The ultimate goal is to learn a model fT that can accurately predict the label on the target

distribution XT . In our problem, XS indicates rendered (source domain) images, YS indi-

cates rendered (source domain) scene coordinate labels, XT indicates real (target domain)

camera images, and fT indicates the SCR network trained using DANCE to perform well

in the domain of real camera images (target domain). The rendered scene coordinates YS

encode the (X,Y, Z) coordinates in the model of the world (point cloud) which correspond

to each pixel (U, V ) in the images XS . The objective of the trained SCR network fT is

to predict these ((U, V ), (X,Y, Z)) correspondences for images in the target domain. The

training procedure is illustrated in Fig. 3.2 and described below.

Domain Adaptation

We use a combination of preprocessing and image-level domain adaptation techniques

to map the source images into the target domain. First, simple histogram matching brings

the color distribution of the rendered images XS closer to that of the target domain XT ,

because our laser scanner’s automatic white balance setting leads to a mismatch with the

query camera. Hereafter, XS indicates source rendered images after histogram matching.

Next, an image-level domain adaptation network GS!T is trained to translate the ren-

dered images (source) XS into the domain of real photos (target) XT so that they can fool

an adversarial discriminator network DT (see Fig. 3.2). The following GAN objective is

employed:

LGAN (XS , XT ;GS!T , DT )

=Ext⇠XT [logDT (xt)]

+Exs⇠XS [log(1�DT (GS!T (xs)))]

(3.1)
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Figure 3.2: The training pipeline for the SCR network with unsupervised deep domain
adaptation.

The mapping network GS!T tries to minimize the loss function while the discriminator

DT tries to maximize it. This optimization procedure ensures that the learned mapping

GS!T is able to translate source images to convincing target images. Note that there is no

corresponding or pairwise relationship between source data XS and target data XT .

Because scene coordinate estimation from the input image is a dense prediction task, it is

important that the mapping GS!T (XS) preserves the structure and content of the original

image XS . However, a traditional GAN model (with objective 3.1 only) can not ensure

this consistency requirement. To enforce consistency, the following multi-layer patch-wise

noise-contrastive estimation (PatchNCE) loss is adopted [52]:

LPatchNCE(XS ;GS!T , H) =

Exs⇠XS

LX

l=1

SX

s=1

l(ẑ(s)l , z
+(s)
l , z

�(S\s)
l )

(3.2)

A high-level understanding of the LPatchNCE loss [52] is that the patches at the same

location before and after the mapping network should be more similar than patches at other

spatial locations in the same image. Here, ẑ(s)l is the feature vector at location s from the

l-th feature layer for the translated image x̂T = GS!T (xS). z
+(s)
l is the feature vector at

the same location s from the l-th layer for the input image xS , and z
�(S\s)
l are the feature

vectors at locations other than s from the l-th layer for the input image xS .
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The mapping network GS!T can be decomposed into an encoder Genc followed by a

decoder Gdec. The feature vectors ẑ
(s)
l , z+(s)

l and z
�(S\s)
l are extracted from the l-th layer

of Genc and then passed through a small 2-layer multi-layer perceptron (MLP) network Hl,

producing 256-dim final features. L (=5) is the number of layers chosen to extract features

and S (=256) is the number of locations sampled in each layer. Each layer and spatial

location of these extracted features represents a patch of the input image, with deeper

layers corresponding to larger patches. The loss function

l(ẑ(s)l , z
+(s)
l , z

�(S\s)
l ) =

� log

"
exp(ẑ(s)l · z+(s)

l /⌧)

exp(ẑ(s)l · z+(s)
l /⌧) +

Plen(S\s)
n=1 exp(ẑ(s)l · z�(n)

l /⌧)

#
(3.3)

encourages the current query ẑ
(s)
l to be closer to the positive example z

+(s)
l but di↵erent

from negatives z�(S\s)
l . ⌧ (=0.07) is a temperature parameter to scale the similarity between

two examples. For more details, please refer to [52].

The aggregate loss used to train the image level adaptation network GS!T can be

summarized as follows:

LCUT (XS , XT ;GS!T , DT , H)

= �GANLGAN (XS , XT ;GS!T , DT )

+ �SLPatchNCE(XS ;GS!T , H)

+ �TLPatchNCE(XT ;GS!T , H)

(3.4)

The third term LPatchNCE(XT ;GS!T , H) is an identity loss for network regularization.

After training the domain adaptation network, we only keep the trained model G⇤
S!T as

a fixed transformation function from source images XS (rendered images) to target images

XT . Hereafter, X̂T = G
⇤
S!T (XS) indicates domain adapted images.

Target SCR Network Training

Finally, the paired training data (X̂T , YS) are used to train a target SCR model fT with

an L2 loss:

LL2(X̂T , YS ; fT ) = E(x̂t,ys)⇠(X̂T ,YS)
kys � fT (x̂t)k2 (3.5)

After training the target model fT with the above loss, the trained model f⇤
T can be

used to predict scene coordinates for target camera images XT at testing time. Finally, the

predicted coordinates f⇤
T (XT ) are passed to PnP-RANSAC to compute final pose estimates.
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3.3.2 Implementation Details

Network Architectures

The SCR network fT is a fully convolutional network consisting of a feature encoder

followed by a regression head. Specifically, the feature encoder is a ResNet18 [22] after

removing the last 2 layers (1000-d fc and average pool) and setting the last 2 stride-2 con-

volutional layers (conv4 1 and conv5 1) to stride 1. The regression head has 3 convolutional

layers to transform the features from the encoder to the 3-channel scene coordinate pre-

dictions. For the image-level adaptation, we follow the network architectures of CUT [52]

with a ResNet-based generator of 9 residual blocks (GS!T ) and a PatchGAN discriminator

(DT ).

Training

When training the CUT-based domain adaptation networkGS!T , the image is randomly

cropped to 320 ⇥ 320 pixels and the network is trained for 6 epochs with learning rate 2.0

⇥ 10�3, batch size 10 and Adam optimizer. The weights in equation 3.4 are set to �GAN =

1, �S = 1 and �Y = 1. In order to compute the multi-layer PatchNCE loss (LPatchNCE),

features are extracted from 5 layers (L = 5), which correspond to RGB pixels, the first

and second downsampling convolution, and the first and the fifth residual block. These

layers correspond to receptive fields of sizes (i.e. patch sizes) 1⇥1, 9⇥9, 15⇥15, 35⇥35, and

99⇥99. For features of each layer, 256 (S = 256) random spatial locations are sampled,

and a 2-layer MLP Hl is employed to extract 256-dim final features. To train the final SCR

network fT , the image is also randomly cropped to 320 ⇥ 320 pixels and the network is

trained using the Adam optimizer with learning rate 1.0 ⇥ 10�4, weight decay 1.0 ⇥ 10�5,

and batch size 48. Because our DANCE pipeline can generate innumerate training data,

we do not perform other data augmentation methods besides random cropping. All the

hyper-parameters and the stopping criterion are selected based on the experimental results

of an independent validation dataset.

3.4 Dataset Generation

We evaluate the pose estimation performance of several techniques within our laboratory

space (5.8 meters wide, 14.3 meters long, 3.0 meters high). We capture or generate all

necessary datasets for training, validation, and testing to ensure a fair comparison among

the techniques. The data used in this study will be provided upon request.

3.4.1 Laser Scan

While there is nothing specific to point clouds about DANCE, for simplicity we use a

Leica BLK360 laser scanner to capture a color point cloud of our robotics lab space. To
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reduce occlusions, we merge 16 scans into a single point cloud of 118M points, each storing

location (X, Y, Z) and color (R, G, B) information.

3.4.2 Synthetic Images

Synthetic images with corresponding scene coordinate labels are generated by placing a

virtual camera with known random pose in the space and projecting the point cloud onto the

virtual image plane using intrinsic parameters measured from the device camera. We render

100k synthetic images with corresponding scene coordinate labels from virtual camera poses

drawn from a similar distribution as the device images (described below). These images

and labels can be considered a representative sample set from the source distribution XS

and YS . The lab is equipped with a WorldViz infrared tracking system that serves as the

reference coordinate frame and provides poses for evaluation purposes (this is the expensive

step that DANCE seeks to circumvent). The transformation between WorldViz and the

point cloud(s) is established by recording the coordinates of fixed WorldViz markers with

respect to each frame and aligning them via the iterative closest point algorithm.

3.4.3 Camera Images

We sample the target distribution XT (capture real photos) by moving an iPhone 6 in

the space. The phone is mounted horizontally on a wheeled cart which is pushed manually

through the space in order to mimic a robot with a fixed RGB camera. The ground truth

pose of the camera is determined by tracking multiple WorldViz markers placed on the cart

and by establishing the transformation between the cart and camera frames. Camera images

are extracted from videos captured over four trajectories and downsampled to 640 ⇥ 360

pixels. We dedicate two trajectories (28411 images) for training the baseline networks for

comparison with DANCE, one trajectory (1637 images) for validation, and one trajectory

(2104 images) for testing purposes. The WorldViz ground truth pose labels are collected

for all the photos, but these labels are not needed for the training of the DANCE pipeline.

These pose labels are only used for training the fully-supervised baselines and for evaluation.

3.4.4 Domain Gap

Although we do not need to know where the domain gap stems from in order to bridge

it, we hypothesize that in our case it stems from the simplicity of the rendering method.

An image rendered from a point cloud has inevitable holes due to occlusions and splatting

artefacts, so the resulting synthetic image largely di↵ers from a photo of the scene.
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Figure 3.3: Three samples are shown with some intermediate results. The numbers on
the predicted scene coordinates (SC) indicate estimated pose errors. The last row is an
unsatisfactory case because the query image has small field of view and the corresponding
location is poorly covered by the point cloud. For illustrative purposes, the rendered (source)
images XS and camera (target) images XT are shown in the same poses. In practice, XS

and XT do not have any pairwise relationship.

3.5 Experimental Results

We evaluate the predicted pose error of each technique with respect to the measured

ground truth (WorldViz) pose. All the results are reported on the 2104 test images.

Comparing training strategies We compare side by side multiple training strategies of

the same SCR network, including the original, expensive fully supervised labels, and we show

that our proposed strategy can achieve comparable median performance. As summarized

in Table 3.1, we first quantify an intuitive lower bound (a) and upper bound (e) of the

DANCE pipeline where the SCR networks are trained with di↵erent strategies. When the

SCR network is trained on the 100k synthetic images with corresponding scene coordinate

ground truth (without any domain adaptation, (XS , YS)) and tested with real camera

images XT , it fails (Table 3.1(a)). This lower bound (Blind Transfer) performance indicates

that the domain gap between the rendered and camera images is significant. When the

SCR network is trained on the 28411 real images with scene coordinate labels (rendered

from the point cloud using ground truth poses only for evaluation), 2.9�, 0.17m median

error is obtained (Table 3.1(e)). This indicates that if there is no domain gap between the

training and testing images, our proposed SCR and PnP-RANSAC pipeline can achieve

good performance.

When we trained the SCR network within the proposed unsupervised deep domain

adaptation framework (100k domain adapted labeled synthetic images (G⇤
S!T (XS), YS)),

DANCE (Table 3.1(d)) outperforms the lower bound method (no domain adaptation, Table

3.1(a)) by a large margin and is on par with the upper bound method (full supervision)
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Method Median error 95%-tile error Requires

PoseNet [30] 4.2�, 0.28m 16.9�, 0.69m RP
UcoSLAM [50] 2.7�, 0.08m 9.7% invalid R+

(a): Blind
Transfer

110�, 7.57m 175�, 16.5m SSC

(b): (a) + Hist.
match.

14.1�, 1.09m 154�, 15.3m SSC,R

(c): (b) + Cy-
cleGAN

4.2�, 0.22m 96.5�, 6.58m SSC,R

(d): (b) + CUT
(DANCE)

3.0�, 0.14m 25.7�, 0.95m SSC,R

(e): Fully Su-
pervised [8]

2.9�, 0.17m 11.1�, 0.47m RSC

Table 3.1: Comparison of existing pose estimation methods and variants of our DANCE
proposal. Requirements: R Real images (lowest cost); R+ Real image sequence (low);
SSC Synthetic images with Scene Coordinates (low); RP Real images with Poses (high); or
RSC Scene Coordinates (highest). The synthetic labeled images are rendered from a color
point cloud of the same scene. Compared to PoseNet and its fully supervised counterpart
(e), DANCE achieves similar performance with significantly lower data acquisition cost.
Compared to UcoSLAM which has 9.7% invalid pose estimates, DANCE has better tail
performance and does not require the real images to be in sequence. (e) is a componentwise
training variant of DSAC [8]. All the baseline methods are retrained using our training
data.

in terms of median error (Table 3.1(e)). We do not claim 0.14m median error of DANCE

is better than 0.17m of the upper bound method due to the lack of statistical test (Table

3.1 (d) vs (e)). This indicates that the domain gap necessitates the application of domain

adaptation techniques, and that our proposed training pipeline is e↵ective at narrowing the

domain gap between the rendered images XS and real camera images XT . It is worth noting

that the fully supervised upper bound method (Table 3.1(e)) is a componentwise training

variant of DSAC [8] (a SCR based framework) where the SCR network and PnP-RANSAC

were trained in an end-to-end manner. DSAC [8] showed that end-to-end training can only

provide marginal performance gain compared with componentwise training, which indicates

the upper bound method is a strong baseline for comparison.

Compared with other existing methods, DANCE achieves lower median errors than the

fully supervised PoseNet [30] and comparable median errors to a fully supervised SCR based

method [8] (Table 3.1(e)) with much lower deployment overhead. Specifically, PoseNet re-

quires camera images with ground truth poses for training (28411 real images with ground

truth poses in our experiments) while our pipeline only requires rendered images with ground

truth scene coordinates (100k (XS , YS)) and unlabeled camera images (28411 real images

XT without labels). The unlabeled camera images are only used to provide target domain

information to train the mapping network GS!T in our pipeline. Though PoseNet is not
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the state-of-the-art learning based method, the results demonstrate that our unsupervised

pipeline is able to achieve better localization performance than a fully supervised approach.

Furthermore, using DANCE to train an SCR network achieves comparable median perfor-

mance to training the same SCR network using the harder to acquire fully supervised labels

(Table 3.1(e)) thereby demonstrating that the DANCE pipeline can bridge the domain gap

su�ciently to allow comparable performance to fully supervised methods.

In summary, as shown in Table 3.1 and Figure 3.4, the DANCE-trained SCR network

can achieve performance comparable to fully supervised PoseNet, but without the need for

tedious real pose labels.

Figure 3.4: Top-down view of the room. The full test trajectory is shown in the background
(dash red line), and pose estimates (solid arrows) on a subset of the trajectory are shown
in the foreground for qualitative comparison. The solid arrows indicate the camera location
and orientation. The statistics in Table 3.1 are w.r.t. the full test trajectory.

Comparison with feature-based relocalization We also compare the relocalization

performance of our method with a state-of-the-art, feature-based SLAM system called

UcoSLAM [50] (Table 3.1). This is a recent variant of the popular ORB-SLAM2 [49] with

support for fiducial landmarks, map loading/saving, and a highly speed-optimized version

of the DBoW2 [18] bag-of-words image matcher. We build the SLAM map with the same

real image sequences we use in the training of our proposed method (two sequences with

28411 camera images). At test time, we enforce relocalization for each frame of the test

sequence. We acknowledge this is not the ideal use case for a SLAM algorithm, but it makes

a fair comparison with a single-frame localization method possible. While DANCEperforms

slightly worse than UcoSLAM in terms of median errors, it is much more robust as it re-



35

turns a valid pose for every frame while UcoSLAM sometimes fails to get valid results (25.7�,

0.95m 95%-tile error vs 205 frames out of 2104 testing frames are invalid, Table 3.1). It is

also worth noting that SLAM requires a whole image sequence to build a 3D map while our

proposed pipeline only requires unordered images to provide target domain information for

training GS!T .

Other domain adaptation methods To investigate the e�cacy of each domain adap-

tation component in our proposed pipeline (DANCE), we compare various architectural

options in Table 3.1. The lower bound (a) error is 110�, 7.57m when training the SCR

network on the synthetic images and testing on the real images. We then perform his-

togram matching (b) from rendered images to camera images and train the SCR network

on these transformed images. Histogram matching improves the median error to 14.1�,

1.09m. Next, the image level adaptation network GS!T is trained with di↵erent GAN

frameworks (CycleGAN [92] vs CUT [52]) to map the rendered images after histogram

matching to camera images (Table 3.1 (c) vs (d)). Our DANCE pipeline adopts the CUT

framework to train the adaptation network GS!T , which was shown to have better unpaired

image-to-image translation power than CycleGAN. By training the SCR network on these

domain adapted labeled rendered images (G⇤
S!T (XS), YS), DANCECUT (Table 3.1(d))

outperforms DANCE-CycleGAN (Table 3.1(c)) by a significant margin. This indicates that

a better unpaired image-to-image translation GAN model can further improve our DANCE

pipeline.

Other 3D representations Besides a color point cloud (the 3D representation in DANCE

pipeline) captured from a laser scan, we also tested our method in case the 3D representation

is a SfM model of the space. While sparse SfM point clouds can be used for feature-based

localization, generating scene coordinates requires a dense model. We performed dense re-

construction from our training images using Colmap 1, but the quality of the resulting 3D

representation was poor with significant distortion and missing areas. We concluded that

an SfM pipeline is not necessarily suitable for building the 3D representation of the scene

in order to generate the labeled rendered images. In the future, better domain adaptation

methods might be able to bridge such even larger domain gap. It is an interesting ques-

tion what is the minimally required quality of a reconstruction for our domain adaptation

technique to work, we leave this analysis for future work.

Other coordinate regression networks Note that our primary goal was to simplify

the training process of pose (or scene coordinate) regression networks in general, in order

to make this family of methods more accessible, and chose the fully supervised PoseNet

as one of well-known baselines for comparison. We have shown to achieve results similar

1https://colmap.github.io/
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to these fully supervised methods but only at a fraction of the cost. Since its original

publication, several methods have improved on PoseNet, and we anticipate that swapping

to a more powerful SCR method may improve performance. This is indeed possible in our

general training framework and we see this as a key strength of our framework. There is

no assumption on the pose estimation network (PoseNet or other), there is no assumption

on the input 3D representation (point cloud), there is no strict assumption on the domain

adaptation method used (we tested a CycleGAN like pipeline as well as CUT). Furthermore,

while our general training framework could be applied to other, newer scene coordinate

regression methods, we also expect that with better laser scanners, let alone better domain

adaptation methods in the future, the accuracy could be even further improved.

3.6 Summary of Major Contributions

• We have shown that it is possible to train a neural network to perform the task

of scene coordinate regression for monocular camera pose estimation on real images

using only synthetic labeled images and a pool of unordered unlabeled photos. Our

proposal achieves performance comparable with existing fully supervised techniques

but with significantly lower overhead cost. These existing techniques require photos

with ground truth camera pose labels, which are typically obtained using cumbersome

motion capture systems that track markers mounted on the camera. For each room

or environment, the motion capture system would need to be deployed to generate a

new set of labeled training photos.

• In contrast to existing approaches, deploying DANCE in a new room is simpler, requir-

ing (unlabeled) images along with a dense 3D representation of the room to generate

synthetic labeled images. Our dense representation was captured with the push of

a button using a tripod-mounted Leica BLK360 scanner. Alternatively, one could

potentially use even cheaper capture systems such as recent iOS devices which come

equipped with LiDAR. In general, we believe our DANCE pipeline will continue to

benefit from both the rapid development of 3D capture techniques and more powerful

unpaired image-to-image translation models.

• Furthermore, there is no reason why this pipeline cannot be applied in tasks beyond

pose estimation, and modalities beyond images. Any task for which there is an abun-

dance of unlabeled samples, and for which the construction of a crude simulation is

easier than the direct gathering of labeled data should be amenable to this technique.



Chapter 4

Summary of the Thesis

In this thesis, we explore the deep learning application to two 3D vision tasks: (1)

Volumetric HFU mouse embryo image analysis and (2) Camera pose estimation. In Chapter

1, we first introduce these two 3D vision problems and outline the structure of the thesis.

Then in Chapter 2 and 3, we discuss and demonstrate the successful application of deep

learning techniques to these two 3D vision tasks. Though we have summarized each project

separately, there are still some common points which should be summarized together here:

• FCN architecture [42] is e↵ective and e�cient at performing dense predictions, which

allows only one pass of the network to produce classification or regression results for

every pixel of the input images. The use of FCN enables accurate and real-time BV

and body segmentation as well as camera pose estimation.

• Deep learning methods are much more robust than traditional computer vision tech-

niques. For the task of volumetric medical image analysis, the proposed deep learning

method was shown to be much more accurate and robust than NGC-based frame-

work [35]. For the task of camera pose estimation, the proposed deep learning pipeline

was demonstrated to be more robust than UcoSLAM [50] in terms of 95%-tile error.

• Training data collection is the common concern when using deep learning models. For

each of the 231 HFU volumes, manual BV and body segmentations were conducted by

trained research assistants using commercial software (Amira, FEI, Hillsboro, Oregon,

USA). This data collection procedure is time-consuming and tedious with around 10

minutes for each manual BV segmentation and around 30 minutes for each manual

body segmentation. Later in order to ease the burden of collecting training data

for camera pose estimation, we used a commercial laser scanner to capture a color

point cloud, from which a large number of labeled synthetic images were generated to

train the SCR network. However, the synthetic images and the real camera images

have a domain gap, which will lead to severe model degradation during testing phase.

Hence, a domain adaptation network was used to transform the synthetic images into

real-looking images for bridging the domain gap.

37
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• The use of prior or domain knowledge can make the deep learning models more ef-

fective and e�cient. For BV and body segmentation, knowing that there is only one

BV (or one body) in a single HFU volume, we can use the mass center of the BV

(or the body) to perform ROI localization instead of using time-consuming sliding

windows. Additionally, knowing the En1 mutation phenotype mainly manifests itself

in the BV region and some parts of the body, we used the BV and body segmentation

maps to perform mutant classification achieving very high accuracy. In comparison,

we failed to train a mutant classification network by using the original images, because

the uninformative variations of the original images overwhelmed the subtle structural

changes in the BV region. For camera pose estimation, DSAC [8] was shown to be

more accurate and robust than PoseNet [30], because DSAC tried to make use of

the prior knowledge that camera images are captured by projecting 3D scene object

points onto the image planes. This is also why we built our proposed camera pose

estimation pipeline based on DSAC.

• There is a current trend that deep learning techniques will become more and more

dominant in di↵erent 3D vision tasks. Though deep learning techniques were only

successfully applied to two 3D vision tasks in this thesis, we believe that deep learning

could be more easily and e↵ectively applied to other 3D vision tasks in the future.

We also hope that this thesis can inspire more people to explore and advance other

3D vision tasks with the help of deep learning.
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