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Lecture Outline

• Multi-resolution representation of images: Gaussian 
and Laplacian pyramids

• Applications for Multiresolution Representations
– Image blending

• Wavelet transform through Iterated Filterbank
Implementation
– 1D wavelet
– 2D wavelet

• Image denoising using wavelet transform
• Image coding using wavelet transform (JPEG2K)
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Gaussian pyramid 
(Approximation 
Pyramid)

Laplacian pyramid 
(Prediction 
Residual Pyramid)

From [Gonzalez2008] 
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Multi-Resolution Representation 
(aka Pyramid Representation)

Prefilter before 
downsampling

From [Gonzalez2008] 

Gaussian 
Pyramid

Laplacian 
Pyramid



Averaging and Interpolation Filters

• Approximation filters:
– Any filter for prefiltering before downsampling by 2
– Binomial filter:  [1 4 6 4 1]/16

• (used in the original paper [Burt-Adelson1993a], can be 
implemented with shifts and add only)

• Interpolation filters (on zero-filled signals)
– Any filter for interpolation by 2
– Binomial filter: [1 4 6 4 1]/8 (=downsampling filter*2)

• (used in the original paper [Burt-Adelson1993a])
• Equivalent to interpolate a missing sample using the average of 

left and right known samples
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From [Szeliski2012] 



Pseudo Code to Generate a Pyramid

• Simultaneously creating a Gaussian and a Laplacian Pyramid
• Ex: 3 level, using h[ ] for pre-filtering, g[] for interpolation

Gimg3=Inimg;
Gimg2=downsize(Gimg3, h);
Uimg3=upsize(Gimg2, g);
Limg3=Gimg3-Uimg3;
Gimg1=downsize(Gimg2, h);
Uimg2=upsize(Gimg1,g);
Limg2=Gimg2-Uimg2;

• Gaussian pyramid: Gimg1, Gimg2, Gimg3
• Laplacian pyramid: GImg1, Limg2, Limg3
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How to recover original image from the 
Laplacian pyramid?

• Pyramid Generation:

Gimg3=Inimg;
Gimg2=downsize(Gimg3, h);
Uimg3=upsize(Gimg2, g);
Limg3=Gimg3-Uimg3;
Gimg1=downsize(Gimg2, h);
Uimg2=upsize(Gimg1,g);
Limg2=Gimg2-Uimg2;

Gaussian pyramid: Gimg1, 
Gimg2, Gimg3;

Laplacian pyramid: Gimg1, 
Limg2, Limg3
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• Reconstruction from 
Laplacian Pyramid:

Uimg2=upsize(Gimg1,g);
Gimg2 = Uimg2+Limg2;
Uimg3=upsize(Gimg2, g);
Gimg3=Uimg3+Limg3;



Sample Python Code

# Generating Gaussian Pyramid
g3 = img
height2 = int(g3.shape[0]/2), width2 = int(g3.shape[1]/2)
g2 = cv2.resize(g3,(width2,height2),interpolation=cv2.INTER_LINEAR)
height1 = int(g2.shape[0]/2), width1 = int(g2.shape[1]/2)
g1 = cv2.resize(g2,(width3,height3),interpolation=cv2.INTER_LINEAR)

# Generate Laplacian Pyramid
l1 = g1
l2 = g2 - cv2.resize(g1,(width1,height1),interpolation=cv2.INTER_CUBIC)
l3 = g3 - cv2.resize(g2, (width2,height2),interpolation=cv2.INTER_CUBIC)

# Reconstruct from Laplacian Pyramid
width2=int(l1.shape[0]*2), height2=int(l1.shape[1]*2)
r2= l2 + cv2.resize(l1,(width2,height2),interpolation=cv2.INTER_CUBIC)
width3=int(r2.shape[0]*2), height2=int(r2.shape[1]*2)
r3= l3 + cv2.resize(r2,(width3,height3),interpolation=cv2.INTER_CUBIC)
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Sample Python Code for Pyramid Generation 
and Display
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Use of Pyramid Representations

• Feature extraction across scales (SIFT)
• Enable object search (e.g. faces) of different sizes 
• Speed up computations: motion estimation
• Denoising: zero out small values in high level Laplacian 

images 
• Compression: Using Laplacian pyramid to represent an 

image (not most efficient)
• Image blending
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Pictures from [Szeliski2012]

For more details, see [Szeliski2012]
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Lecture Outline

• Multi-resolution representation of images: Gaussian 
and Laplacian pyramids

• Applications for Multiresolution Representations
– Image blending

• Wavelet transform through Iterated Filterbank
Implementation
– 1D wavelet
– 2D wavelet

• Image coding using wavelet transform (JPEG2K)



Pyramid is a redundant representation

• A pyramid (either Gaussian or Laplacian) includes an image of the 
original size plus additional smaller images

• How many samples in all levels?
• Original image (level J-0)  NxN (assuming N=2J)
• Next level (level J-1): N/2xN/2
• Level l (l=0 to J): N/(2J-l) x N/(2J-l)

• Total # samples =𝑁!∑"#$
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– Increase by 1/3
• However, with Laplacian pyramid, many samples are close to zero 

except at the top level.
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Wavelet Transform Using Subband
Decomposition

• Pyramid is a redundant transform (more samples than original)
• Wavelet is a non-redundant multi-resolution representation

– Wavelet transform is a special type of unitary transform
• There are many ways to interpret wavelet transform. Here we 

describe the generation of discrete wavelet transform using the 
tree-structured subband decomposition (aka iterated filterbank) 
approach
– 1D 2-band decomposition
– 1D tree-structured subband decomposition (discrete wavelet 

transform)
– Harr wavelet as an example
– Extension to 2D by separable processing
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Two Band Filterbank

s(n) u(n)
q(n)

r(n)

t(n) v(n)

From [Gonzalez2008] 



What does the filter bank do?

• h0: Lowpass filter (0-¼ in digital freq.)
– y0: a low-passed and then down-sampled version of x (Sampling 

theorem tells us we can down-sample after bandlimiting)

• h1: Highpass filter (1/4-1/2 in digital freq.)
– y1: a high-passed and then down-sampled version of x (Sampling 

theorem also works in this case)

• g0: interpolation filter for low-pass subsignal
– q: reconstructed low-pass filtered signal s

• g1: interpolation filter for high-pass subsignal
– r: reconstructed high-pass filtered signal t

• Can reach perfect reconstruction even if these filters 
are not ideal low-pass/high-pass filters!
– When the filters h0,h1, g0, g1 are designed appropriately, 
– X^=X (perfect reconstruction filterbank)
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DTFT of signals after downsampling and 
upsampling (Optional)
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Down&sampling!by!factor!of!2:
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⇔ Xu(u)= X(2u)

Conceptual proof by doing sampling on continuous signal under 2 different sampling rates.



Perfect Reconstruction Conditions (Optional)
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!! 

x(n)*h0(n)⇔ X(u)H0(u)
xl(n)= down(x(n)*h0(n))⇔ Xl(u)= (X(u/2)H0(u/2)+ X(u/2−1/2)H0(u/2−1/2))/2
up(xl(n))⇔ Xl(2u)= (X(u)H0(u)+ X(u−1)H0(u−1))/2
x(n)=up(xl(n))* g0(n)+up(xh(n))* g1(n)
⇔

X(u)= (X(u)H0(u)G0(u)+ X(u−1)H0(u−1)G0(u))/2

+(X(u)H1(u)G1(u)+ X(u−1)H1(u−1)G1(u))/2
= X(u)(H0(u)G0(u)+H1(u)G1(u))/2
+ X(u−1)(H0(u−1)G0(u)+H1(u−1)G1(u))/2

To!guarantee! X(u)= X(u),!we!need
H0(u)G0(u)+H1(u)G1(u)=2
H0(u−1)G0(u)+H1(u−1)G1(u)=0!!(To!remove!aliasing!component!)



Perfect reconstruction 
conditions (Optional)
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Perfect!reconstruction!condition:
H0(u)G0(u)+H1(u)G1(u)=2
H0(u−1)G0(u)+H1(u−1)G1(u)=0

The!second!equation!(aliasing!cancelation)!can!be!guaranteed!by!requiring
G0(u)=H1(u−1)⇔ g0(n)= −1( )n h1(n)
G1(u)= −H0(u−1)⇔ g1(n)= −1( )n+1h0(n)
(Quadrature!Mirror!Condition)

To!guarantee!perfect!reconstruction,!the!filters!must!satisfy!the!biorthogonality!condition:
<hi(2n−k),gj(k)>=δ(i− j)δ(n)
One!has!freedom!to!design!both!g0(n),g1(n),!which!can!have!different!length.

A!more!strict!condition!requires!orthonality!between!g0(n),g1(n)!:
< gi(n),gj(n+2m)>=δ(i− j)δ(m)
which!yields
g1(n)= −1( )n g0(L−1−n),
h0(n)= g0(L−1−n)
h1(n)= g1(L−1−n)= −1( )n g0(n)= −1( )n h0(L−1−n)
One!only!has!freedom!to!design!g0(n),!filter!length!L!must!be!even!and!all!filters!have!same!length.
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Haar Filter (Simplest Orthogonal Wavelet 
Filter)

x3,...]x2,[x1,r2,....]q2r1,[q1rqx̂
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Note with Haar wavelet, the lowpass subband essentially takes the average of every two samples, 
L=(x1+x2)/sqrt(2), and the highpass subband takes the difference of every two samples, H=(x1-
x2)/sqrt(2).
For synthesis, you take the sum of the lowpass and high pass signal to recover first sample 
A=(L+H)/sqrt(2), and you take the difference to recover the second sample B=(L-H)/sqrt(2).



MATLAB example
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>> [ca,cd]=dwt(y,'db4');
>> z=idwt(ca,cd,'db4');
>> wy=[ca,cd];
>> subplot(3,1,1),plot(y), title('Original 
sequence');
>> subplot(3,1,2),plot(wy), title('Wavelet 
transform: left=low band, righ=high 
band');
>> subplot(3,1,3),plot(z), 
title('Reconstructed sequence');
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Iterated Filter Bank

From [Vetterli01]



MATLAB example
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>> [ca,cd]=dwt(y,'db4');
[caa,cad]=dwt(ca,'db4');
[caaa,caad]=dwt(caa,'db4');
wy1=[ca,cd];
wy2=[caa,cad,cd];
>> wy3=[caaa,caad,cad,cd];
>> 
subplot(4,1,1),plot(y),title('Or
iginal Signal');
>> 
subplot(4,1,2),plot(wy1),title('
1-level Wavelet Transform');
>> 
subplot(4,1,3),plot(wy2),title('
2-level Wavelet Transform');
>> 
subplot(4,1,4),plot(wy3),title('
3-level Wavelet Transform');
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Discrete Wavelet Transform = Iterated Filter 
Bank

From [Gonzalez2008] 
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Wavelet Transform vs. Fourier Transform

• Fourier transform:
– Basis functions cover the entire signal range, varying in 

frequency only
• Wavelet transform

– Basis functions vary in frequency (called “scale”) as well as 
spatial extend

• High frequency basis covers a smaller area
• Low frequency basis covers a larger area
• Non-uniform partition of frequency range and spatial range
• More appropriate for non-stationary signals
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Temporal-Frequency Domain Partition

From [Gonzalez2008] 
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How to Apply Filterbank to Images?

Applying the 1D decomposition along rows of an image first, and then columns!

From [Gonzalez2008] 

LL

LH

HL

HH

LL LH
HLHH
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1 Stage Decomposition: 4 Subimages

LL

HH

LH

HL

With Harr filter, you can work on every 2x2 blocks in an image, [A,B;C,D]. LL=(A+B+C+D)/2;LH=(A+B-C-D)/2; 
HL=(A-B+C-D)/2; HH=(A+D-B-C)/2. For synthesis, A=(LL+LH+HL+HH)/2,B=((LL+LH)-(HL+HH))/2; C=((LL+HL)-
(LH+HH))/2;D=((LL+HH)-(LH+HL))/2;

From [Gonzalez2008] 
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Wavelet Transform for Images: Repeat the 
same operation on LL image 

From [Usevitch01]
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From [Gonzalez2008] 



Wavelet vs. Laplacian pyramid

• Both provides multi-resolution representation
• Wavelet is not redundant, Laplacian pyramid is redundant
• Wavelet has 3 high bands at each scale, with horizontal, vertical 

and mixed directions. Laplacian pyramid is isotropic.
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Common Wavelet Filters

• Haar: simplest, orthogonal, not very good
• Daubechies 8/8: orthogonal
• Daubechies 9/7: bi-orthogonal, most commonly used if 

numerical reconstruction errors are acceptable
• LeGall 5/3: bi-orthogonal, integer operation, can be 

implemented with integer operations only, used for 
lossless image coding

• Differ in energy compaction capability
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Comparison of Different Filters

From [Gonzalez2008] 
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Impact of Filters and Decomposition Levels on 
Energy Compaction

• Coefficients with magnitude< 1.5 are set to zero.
From [Gonzalez2008] 



MATLAB Tools for 2D Wavelet: 1 Level

• [CA,CH,CV,CD] = DWT2(X,'wname’, 'mode',MODE),
• [CA,CH,CV,CD] = DWT2(X,Lo_D,Hi_D, 'mode',MODE))
• X = IDWT2(CA,CH,CV,CD,'wname’, 'mode',MODE), 
• X = IDWT(CA,CD,Lo_R,Hi_R, 'mode',MODE)
• Available wavelet names 'wname' are:
• Daubechies: 'db1' or 'haar', 'db2', ... ,'db45'
• Coiflets : 'coif1', ... ,  'coif5'
• Symlets : 'sym2' , ... ,  'sym8', ... ,'sym45'
• Discrete Meyer wavelet: 'dmey'
• Biorthogonal: …
• Use following to find actual filters:
• [LO_D,HI_D,LO_R,HI_R] = WFILTERS('wname') 
• Modes of boundary treatment:
• 'sym’: symmetric-padding (half-point): boundary value symmetric replication - default mode.
• 'zpd’: zero padding
• ‘ppd’: periodic-padding
• Let SX = size(X) and LF = the length of filters; then size(CA) = size(CH) = size(CV) = size(CD) = 

SA where SA = CEIL(SX/2), if mode=‘ppd’. SA = FLOOR((SX+LF-1)/2) for other modes. 
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MATLAB Tools for Wavelet: Multi-level

• Wavedec2( ), waverec2( ): multi-level
• [C,S] = WAVEDEC2(X,N,'wname’)
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Python tool for Wavelet (1/3)

• Python package for wavelet : Pywavelet (version 5.0.1)
• Install command : pip install PyWavelets
• 1D single level dwt :

– (cA,cD) = pywt.dwt(data, wavelet, mode = ‘mode_type’)
– data = pywt.idwt(cA, cD, wavelet, mode = ‘mode_type’)

• 2D single level dwt: 
– (cA, (cH, cV, cD)) = pywt.dwt2(data, wavelet, mode = ‘mode_type’)
– data = pywt.idwt2((cA, (cH, cV, cD)) , wavelet, mode = ‘mode_type’)

• 2D multi-level dwt:
– [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)]  = pywt.wavedec2(data, wavelet, mode = 

‘mode_type’, level=None)
– data = pywt.waverec2([cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)], wavelet, mode = 

‘mode_type’ )
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Python tool for Wavelet (2/3)

• Currently the built-in wavelet families in pywt are:
– Haar (haar)
– Daubechies (db)
– Symlets (sym)
– Coiflets (coif)
– Biorthogonal (bior)
– Reverse biorthogonal (rbio)
– “Discrete” FIR approximation of Meyer wavelet (dmey)
– Gaussian wavelets (gaus)
– Mexican hat wavelet (mexh)
– Morlet wavelet (morl)
– Complex Gaussian wavelets (cgau)
– Shannon wavelets (shan)
– Frequency B-Spline wavelets (fbsp)
– Complex Morlet wavelets (cmor)
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Python tool for Wavelet (3/3)
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PyWavelets Matlab

symmetric sym, symh

reflect symw

smooth spd, sp1

constant sp0

zero zpd

periodic ppd

periodization per

N/A asym, asymh

N/A asymw

• Built-in wavelet mode in pywt



Non-separable Wavelet Transforms (optional) 

• Separable implementation leads to 3 high-freq subband
at each scale
– Horizontal, vertical, cross (checkerboard pattern)
– Cross band mixes different directions

• Steerable pyramid [Simoncelli1992]
– No mixing of directions
– Four high-freq subbands: 0, 45, 90, 135
– Enable better image enhancement and feature extraction
– Necessarily redundant
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Simoncelli, E. P., Freeman, W. T., Adelson, E. H., & Heeger, D. J. (1992). Shiftable
multiscale transforms. IEEE transactions on Information Theory, 38(2), 587-607.

From [Szeliski2012] 
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Lecture Outline

• Multi-resolution representation of images: Gaussian 
and Laplacian pyramids

• Applications for Multiresolution Representations
– Image blending

• Wavelet transform through Iterated Filterbank
Implementation
– 1D wavelet
– 2D wavelet

• Image denoising using wavelet transform
• Image coding using wavelet transform (JPEG2K)



Wavelet Domain Image Denoising

• Apply wavelet transform to an image
• Small wavelet coefficients in non-LL band typically corresponds to 

noise.
• Modify the coefficients based on signal and noise statistics

– If noise is Gaussian N(0,σn), true signal coeff is Laplacian with STD σ
– Soft-thresholding

• Inverse wavelet transform
• Remove noise yet not blurring the edges!
• Other more sophisticated approaches
• How to estimate signal and noise statistics?
• More on this in the lecture on sparsity-based image processing
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From: Sendur, Levent, and Ivan W. Selesnick. "Bivariate shrinkage functions for wavelet-based denoising 
exploiting interscale dependency." IEEE Transactions on signal processing 50.11 (2002): 2744-2756. 
http://eeweb.poly.edu/iselesni/bishrink/BiShrinkTSP.pdf

http://eeweb.poly.edu/iselesni/bishrink/BiShrinkTSP.pdf
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Lecture Outline

• Multi-resolution representation of images: Gaussian 
and Laplacian pyramids

• Applications for Multiresolution Representations
– Image blending

• Wavelet transform through Iterated Filterbank
Implementation
– 1D wavelet
– 2D wavelet

• Image denoising using wavelet transform
• Image coding using wavelet transform (JPEG2K)



Wavelet Based Image Compression 
(Basic Idea)

• Wavelet transform is an good representation to use for image 
compression because many coefficients can be truncated to zeros. 

• Three steps:
– Apply wavelet transform to an image
– Quantize wavelet coefficients in all subbands (e.g. uniform 

quantization)
• Q(f)=floor( (f-mean+QS/2)/QS) *QS+mean

– Represent the quantized coefficients using binary bits (entropy coding)
– Wavelet based coders differ mainly in entropy coding.

• JPEG2000 (J2K) uses wavelet-based coding. Uses sophisticated 
entropy coding. 

– Significantly better than JPEG.
– Offers “scalability”
– A. Skodras,  C. Christopoulos, T. Ebrahimi, The JPEG2000 Still Image 

Compression Standard, IEEE Signal Processing Magazine, Sept. 2001.
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Recap of JPEG

• Divide an image into small blocks
• For each block (encoder)

– Forward  DCT transform (Decorrelation and energy 
compaction)

– Quantize the DCT coefficients
– Binary encoding of quantized DCT coefficient indices

• For ach block (decoder)
– Binary decoding to recover the coefficient indices
– Inverse quantization to recover quantized coefficient values
– Inverse DCT transform
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JPEG Pros and Cons

• Pros
– Low complexity
– Memory efficient
– Reasonable coding 

efficiency

• Cons
– Single resolution
– Single quality
– No target bit rate
– Blocking artifacts at low bit rate
– No lossless capability
– Poor error resilience
– No tiling
– No regions of interest

0.25 bpp
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JPEG2000 Features

• Improved coding efficiency
• Full quality scalability

– From lossless to lossy at different bit rate
• Spatial scalability
• Improved error resilience
• Tiling
• Region of interests
• More demanding in memory and computation time
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Why do we want scalability

• The same image may be accessed by users 
with different access links or different display 
capability
– High resolution monitor through High speed 

Corporate Intranet
– Small portable device through Wireless modem

• Non-scalable: 
– Have different versions for each desirable bit rate 

and image size
• Scalable

– A single bit stream that can be accessed and 
decoded partially
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What is Scalability?
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Quality Scalability of JPEG2000

Figures in this slide are extracted from: A. Skodras,  C. Christopoulos, T. Ebrahimi, The JPEG2000 Still 
Image Compression Standard, IEEE Signal Processing Magazine, Sept. 2001. 

Same spatial resolution, increasingly smaller quantization stepsizes
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Spatial Scalability of JPEG2000

From [skodras01]
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How J2K Achieves Scalability?

• Core: Wavelet transform
– Yields a multi-resolution representation of an original 

image
• Still a transform coder 

– Block DCT is replaced by a full frame wavelet 
transform

– Wavelet coefficients are coded bit plane by bit plane
– Spatial scalability can be achieved by reconstructing 

from only low resolution (coarse scale) wavelet 
coefficients

– Quality scalability can be achieved by decoding only 
partial bit planes
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JPEG2000 Codec Block Diagram

• Quantization: Each subband may use a different step-size.  Quantization can be 
skipped to achieve lossless coding
• Entropy coding: Bit plane coding is used, the most significant bit plane is coded 
first. Uses sophisticated context-based arithmetic coding
• Quality scalability is achieved by decoding only partial bit planes, starting from the 
most significant bitplane (MSB). Skipping one bit plane while decoding = Increasing 
quantization stepsize by a factor of 2. 
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Lossless vs. Lossy

• Lossless
– Use LeGall 5/3 filter
– Use lifting 

implementation
– Use an integer version of 

the RGB->YCbCr
transformation

– No quantization of 
coefficients

• Lossy
– Use Daubechies 9/7 filter
– Use the conventional 

RGB->YCbCr
transformation
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Preprocessing Steps

• An image is divided into tiles, and each tile is processed independently
• Tiling can reduce the memory requirement and computation complexity
• Tiling also enable random access of different parts of an image
• The tile size controls trade-off between coding efficiency and complexity
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Dividing Each Resolution into Precints

• Each precint is divided into many code blocks, each coded independently.
• Bits for all code blocks in the same precint are put into one packet.
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Scalable Bit Stream Formation (not required)

First layer: LL
Other layer: LH, HL, HH of a spatial resolution)

(bits for one precint)
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Coding Steps for a Code Block (not required)

• The bit planes of each code block are coded 
sequentially, from the most significant to the least 
significant

• Each bit plane is coded in three passes
– Significance propagation: code location of insignificant bits with 

significant neighbors
– Magnitude refinement: code current bit plane of coefficients 

which become significant in previous bit planes 
– Clean up: code location of insignificant bits with insignificant 

neighbors
• Each pass is coded using Context-Based Arithmetic 

Coding
– The bit of a current coefficient depends on the bits of its 

neighboring coefficients (context)
– The current bit is coded based on the conditional probability of 

this bit given its context
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Region of Interests (not required)

• Allows selected regions be coded with higher accuracy (more bit planes)
– Ex: faces
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Error Resilience (not required)

• By adding resynchronization codewords at the 
beginning of each packet, transmission errors in one 
packet will not affect following received packets

• The context model for each coding pass in a codeblock
can be reset to enhance error resilience

• Packet size and codeblock size and context model 
reset periods can control tradeoff between coding 
efficiency and error resilience
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Coding Results: JPEG vs. JPEG2K

From [skodras01]
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Another Example

From [skodras01]
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JPEG2000 vs. JPEG: Coding Efficiency

J2K R: Using reversible wavelet filters;  J2K NR: Using non-reversible filter; VTC: Visual texture coding for MPEG-4 video

From [skodras01]



Pop Quiz

• What is the main difference between JPEG and 
JPEG2K?

• How does JPEG2K achieve spatial scalability and 
quality scalability, respectively?
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Pop Quiz (w/ Answers)

• What is the main difference between JPEG and 
JPEG2K?
– JPEG use block wise transform, JPEG2K uses a frame wise 

transform (wavelet)
• How does JPEG2K achieve spatial scalability and 

quality scalability, respectively?
– Spatial scalability is afforded by the multiresolution 

representation of wavelet transform
– Quality scalability is obtained through bit plane coding. Higher 

quality is obtained by transmitting/decoding more bit planes (= 
smaller quantization stepsizes). 
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Summary

• Pyramid representation
– Gaussian pyramid: repeatedly down sample
– Laplacian pyramid: upsample and generate upsample error
– Redundant representation: more samples than the original image

• Wavelet transform
– Repeatedly splitting the low-low image to LL, LH, HL, HH
– Non-redundant representation, energy compaction

• Image compression using wavelet
– Naturally offer spatial scalability 
– Scalability enables progressive transmission
– Full frame transform -> No blocking artifacts
– Significantly better coding efficiency than JPEG 
– Enable progressive transmission
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Written Homework

1. For the given image below, manually compute a 3-level Gaussian pyramid and corresponding 
Laplacian pyramid. Use 2x2 averaging for the approximation filter, and use bilinear for the 
interpolation filter (for pixels on the boundary, you can just use nearest neighbor). 

2. From the Laplacian pyramid generated in Prob. 1, reconstruct the original image.
3. For the same image above, manually compute the wavelet transform (with 3-level) using the Haar

analysis filters. Comment on the differences between the residual pyramids generated in Prob. 1 
with the wavelet transform generated here, in terms of number of samples and signal energy in 
different levels/bands. Hint: use the simplified operation in Slide 29 for Haar wavelet.

4. Reconstruct the image from the wavelet transform in Prob. 3 using Haar synthesis filters, show the 
reconstructed image at all levels. Do you get back the original image? Hint: use the simplified 
operation in Slide 28 for Haar wavelet.

5. Quantize all the wavelet coefficients created in Prob. 3 by a stepsize of 2. Then reconstruct the 4x4 
image from the quantized wavelet coefficients using Haar synthesis filter. Compare with the results 
of Prof. 4.

6. [Optional] Using MATLAB freqz( ) function to derive the frequency response of the low-pass and 
high-pass filters used in the following wavelet transforms: Haar, Daubechies 9/7, and LeGall 5/3. 
Plot the magnitude response of each and comment on their pros and cons. 
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Computer Exercises (optional)

1. Learn how to use the following MATLAB functions through online help: dwt, idwt, wavedec, waverec.
2. Write  a function that i) applies 3 level wavelet transform to an image using a specified wavelet transform; ii) 

quantize all transform coefficients with a uniform quantizer with a given quantization stepsize (QS); iii) 
Reconstruct the image (which we will call the quantized image)  from the quantized transform coefficients; iv) 
Count the number of non-zero coefficients after quantization and compute the PSNR of the quantized image 
against the original image); v) Show the original and quantized image. The function should have the original 
image, the filter name, and the QS as input, and the number of non-zeros and PSNR, and quantized image 
as output, as follows:  

[NonZeroNum,PSNR,outimg]=WaveletQuant(inimg,’wname’,QS);
Test your program within a main program that read in a image, extract the grayscale version, and applies 
your function to the grayscale image.
A note on quantization: for the lowest band, please assume the coefficient values have a mean value of 
128. For all other bands, assume the coefficient values have a mean value of 0. Your quantizer should be 
centered around the mean value. That is
Q(f)=floor( (f-mean+QS/2)/QS) *QS+mean.

3. Write a main program that applies the above function to an image using the Haar wavelet and a series of QS 
including 1, 4,  16, 32, and record the NonZeroNumber and PSNR corresponding to different QS. It then 
applies the above function to the same image with another more complicated wavelet filter (e.g. ‘db4’) with 
the same set of QS.  Plot in the same figure, the PSNR vs. NonZeroNum curves, obtained by the two 
different wavelet filters. You should include this figure in the report,  and explain the pros and cons of 
different filters. Which filter is likely to yield higher coding efficiency (i.e. produced better quality at the same 
bit rate, or reduces low bit rate to achieve the same quality)? Note that you may assume that the number of 
bits needed to code the quantized wavelet coefficients is proportional to the number of non-zero coefficients. 
Therefore, each of the two curves represent the achievable rate-quality performance by a wavelet-based 
image coder using the corresponding filter. 
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Computer Exercises (optional)

The following assignments are all OPTIONAL.

1.Write a program that can generate 1-level 1D wavelet transform of a finite length 1D sequence 
using a given pair of wavelet analysis filters. Your program should have a syntax
[CA,CD] = MYDWT(X,Lo_D,Hi_D)
You can call the conv( ) function of MATLAB. For simplicity, you could choose the “same” option 
for boundary treatment. This way, each the resulting subsignal should be half length of your 
original signal (make your original sequence has even length). Test your program on any 1D 
sequence (manually generated, for example, or 1 row of an image) and different wavelet filters. 
You can generate different wavelet filters (e.g. Haar and db4) using “wfilters()” function. 
2. Write a program that can reconstruct a 1D sequence  from its 1-level 1D wavelet transform 
using a given pair of wavelet synthesis filters. Your program should have a syntax
X =MYIDWT(CA,CD,Lo_R,Hi_R)
Apply this program to the subband signals generated in Prob. 1 and you should get back the 
original sequence approximately. Note that your program may not generate exact reconstruction 
at boundaries because of simplified boundary treatment.
3. Write a program that can generate 1-level 2D wavelet transform of an image by using your 
function MYDWT() or the dwt( ) function of MATLAB, if your program does not work well. 
Basically, you need to apply dwt( ) to rows and columns separately, and you need to organize 
your data structure properly. You should save the four subbands in a single image (all in floating 
point) so that the LL band is in the top-left, HL band is in the top-right, etc. Your program would 
have a syntax WIMG= MYDWT2(IMG,Lo_D,Hi_D). Use your program to generate the wavelet 
transform of a gray scale image (or a croped to a smaller size) using two wavelet filters: Haar
and db4. Display the resulting transform images and comment on their differences. 
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Computer Exercises (optional)

4. Write a program that can reconstruct an image from its 1-level 2D wavelet transform 
image using your function MYIDWT() or the idwt( ) function of MATLAB. Basically, you need 
to apply idwt( ) to rows and columns of the wavelet transform image separately. Apply your 
program to the results from Prob. 3.
5. Quantize the wavelet coefficients you obtained in Prob. 3 using a uniform quantizer with a 
user-given step size, and then reconstruct the image from quantized coefficients using the 
program in Prob. 4. Show the reconstructed images with two different quantization stepsizes, 
4 and 16. If you cannot get your programs working for Prob. 3 and 4, you could use the dwt2() 
and idwt2() functions instead.
7. Develop MATLAB codes that implement 2-level 2D wavelet transform and reconstruction. 
Basically you can apply the 1-level program you have developed on the LL-band of 1-level 
transform to produce 2-level transform. Show the decomposed images and reconstructed 
images at different stages.
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