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Lecture Outline

= « Multi-resolution representation of images: Gaussian
and Laplacian pyramids

« Applications for Multiresolution Representations
— Image blending

« Wavelet transform through lIterated Filterbank
Implementation

— 1D wavelet
— 2D wavelet

« Image denoising using wavelet transform
Image coding using wavelet transform (JPEG2K)
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From [Gonzalez2008]
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Multi-Resolution Representation
(aka Pyramid Representation)

1x1 N a

Level 0 (apex)

FIGURE7.2 (a) A
Level 2 pyramidal image
. structure and
(b) system block
diagram for
creating it.

ILevel 1

N

N2 X N2/
4

TLevelJ — 1

b
NXNy Level J (base)

Downsampler
Approximation % Levelj — 1 Gauss!an
) > filter 2+ T approximation Pyramid
Prefilter before —
downsampling 2? Upsampler
Interpolation
filter
Prediction
i Level j Laplacian
A rediction i
Inpul mage prCSidUﬂl Pyramld

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing From [Gonzalez2008]



Averaging and Interpolation Filters

« Approximation filters:

— Any filter for prefiltering before downsampling by 2

— Binomial filter: [14 6 4 1]/16

» (used in the original paper [Burt-Adelson1993a], can be
implemented with shifts and add only)

 Interpolation filters (on zero-filled signals)
— Any filter for interpolation by 2
— Binomial filter: [1 4 6 4 1]/8 (=downsampling filter*2)
* (used in the original paper [Burt-Adelson1993a])

« Equivalent to interpolate a missing sample using the average of
left and right known samples

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Figure 3.33 The Gaussian pyramid shown as a signal processing diagram: The (a) analysis
and (b) re-synthesis stages are shown as using similar computations. The white circles in-
dicate zero values inserted by the T 2 upsampling operation. Notice how the reconstruction
filter coefficients are twice the analysis coefficients. The computation is shown as flowing
down the page, regardless of whether we are going from coarse to fine or vice versa.

From [Szeliski2012]
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 6



Pseudo Code to Generate a Pyramid

« Simultaneously creating a Gaussian and a Laplacian Pyramid
« Ex: 3 level, using h[ ] for pre-filtering, g[] for interpolation

Gimg3=Inimg;
Gimg2=downsize(Gimg3, h);
Uimg3=upsize(Gimg2, g);
Limg3=Gimg3-Uimg3;
Gimg1=downsize(Gimg2, h);
Uimg2=upsize(Gimg1,9);
Limg2=Gimg2-Uimg2;

* Gaussian pyramid: Gimg1, Gimg2, Gimg3
« Laplacian pyramid: GImg1, Limg2, Limg3

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



How to recover original image from the
Laplacian pyramid?

* Pyramid Generation: « Reconstruction from
Laplacian Pyramid:
Gimg3=Inimg;
Gimg2=downsize(Gimg3, h); Uimg2=upsize(Gimg1,9);
Uimg3=upsize(Gimg2, g); Gimg2 = Uimg2+Limg2;
Limg3=Gimg3-Uimg3; Uimg3=upsize(Gimgz2, g);
Gimg1=downsize(Gimg2, h); Gimg3=Uimg3+Limg3;

Uimg2=upsize(Gimg1,9);
Limg2=Gimg2-Uimg2;

Gaussian pyramid: Gimg1,
Gimg2, Gimg3;

Laplacian pyramid: Gimg1,
Limg2, Limg3

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 8



Sample Python Code

# Generating Gaussian Pyramid

g3 =img

height2 = int(g3.shape[0]/2), width2 = int(g3.shape[1]/2)

g2 = cv2.resize(g3,(width2,height2),interpolation=cv2.INTER_LINEAR)
height1 = int(g2.shape[0]/2), width1 = int(g2.shape[1]/2)

g1 = cv2.resize(g2,(width3,height3),interpolation=cv2.INTER_LINEAR)

# Generate Laplacian Pyramid

11=g1

12 = g2 - cv2.resize(g1,(width1,height1),interpolation=cv2.INTER_CUBIC)
I3 = g3 - cv2.resize(q2, (width2,height2),interpolation=cv2.INTER_CUBIC)

# Reconstruct from Laplacian Pyramid

width2=int(I1.shape[0]*2), height2=int(I1.shape[1]*2)

r2= 12 + cv2.resize(l1,(width2,height2),interpolation=cv2.INTER_CUBIC)
width3=int(r2.shape[0]*2), height2=int(r2.shape[1]*2)

r3= 13 + cv2.resize(r2,(width3,height3),interpolation=cv2.INTER_CUBIC)

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 9



Sample Python Code for Pyramid Generation

and Display

1# -*- coding: utf-8 -*-

2

3

4

5

6

7

8 numpy np

<] matplotlib.pyplot plt

1%} cv2

il skimage.transform pyramid gaussian

2 skimage.transform pyramid laplacian

3

Aimg = cv2.imread( )

5 rows, cols, dim = img.shape

O pyramid = (pyramid_gaussian(img, downscale=))
J pyramid L = (pyramid_laplacian(img, downscale= ))

8 # create a space to put pyr img in

) composite img = np.zeros((rows, cols + cols // , ), dtype=np.double)
0 composite_img[:rows, :cols, :] = pyramid[ ]

| composite_img L = np.zeros((rows, cols + cols // , ), dtype=np.double)
2 composite _img L[:rows, :cols, :] = pyramid L[ ]

3

i row =

5 p,q (pyramid[ :],pyramid L[ :]):

6 n_rows, n_cols = p.shape[: ]

7 composite img[i row:i row + n_rows, cols:cols + n_cols] =p
8 composite img L[i row:i row + n_rows, cols:cols + n_cols] = q
g i row += n_rows

1%]

1

2 cv2.imshow( ,composite_img L)

- fig, ax = plt.subplots()

A plt.suptitle( )

5 ax.imshow(composite img[:,:,::- ])

6 plt.show()
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Use of Pyramid Representations

« Feature extraction across scales (SIFT)
« Enable object search (e.g. faces) of different sizes
« Speed up computations: motion estimation

« Denoising: zero out small values in high level Laplacian
Images

« Compression: Using Laplacian pyramid to represent an
image (not most efficient)

* Image blending

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 11



(b)

(d)

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) (©) 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c) regular splice, (d) pyramid blend.

Pictures from [Szeliski2012]

For more details, see [Szeliski2012]

) (k)

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) (©) 1983 ACM.

The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid

(taken from levels 0, 2, and 4). The left and middle columns show the original apple and

orange images weighted by the smooth interpolation functions, while the right column shows
Yao Wang, 2022 ECE-GY 61the averaged contributions.



Lecture Outline

« Multi-resolution representation of images: Gaussian
and Laplacian pyramids

« Applications for Multiresolution Representations
— Image blending

= « Wavelet transform through lIterated Filterbank
Implementation

— 1D wavelet
— 2D wavelet

« Image coding using wavelet transform (JPEG2K)

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 13



Pyramid is a redundant representation

* A pyramid (either Gaussian or Laplacian) includes an image of the
original size plus additional smaller images

 How many samples in all levels?

« Original image (level J-0) NxN (assuming N=2")
* Next level (level J-1): N/2xN/2

« Level I (I=0 to J): N/(2) x N/(27)

1J-1
+ Total # samples =N2¥7_, Y= N2Ta_ » 2N?
1__
4

— Increase by 1/3

« However, with Laplacian pyramid, many samples are close to zero
except at the top level.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Wavelet Transform Using Subband
Decomposition

* Pyramid is a redundant transform (more samples than original)

 Wavelet is a non-redundant multi-resolution representation
— Wavelet transform is a special type of unitary transform
« There are many ways to interpret wavelet transform. Here we
describe the generation of discrete wavelet transform using the
tree-structured subband decomposition (aka iterated filterbank)
approach
— 1D 2-band decomposition

— 1D tree-structured subband decomposition (discrete wavelet
transform)

— Harr wavelet as an example
— Extension to 2D by separable processing

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 15



Two Band Filterbank

a
b

FIGURE 7.4 (a) A
two-band filter
bank for one-
dimensional
subband coding
and decoding, and
(b) its spectrum
splitting
properties.

Yao Wang, 2022
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What does the filter bank do?

hO: Lowpass filter (0-V4 in digital freq.)

— y0: a low-passed and then down-sampled version of x (Sampling
theorem tells us we can down-sample after bandlimiting)

h1: Highpass filter (1/4-1/2 in digital freq.)

— y1: a high-passed and then down-sampled version of x (Sampling
theorem also works in this case)

g0: interpolation filter for low-pass subsignal
— Q: reconstructed low-pass filtered signal s

g1: interpolation filter for high-pass subsignal

— r: reconstructed high-pass filtered signal t

Can reach perfect reconstruction even if these filters
are not ideal low-pass/high-pass filters!

— When the filters hO,h1, g0, g1 are designed appropriately,
— X*=X (perfect reconstruction filterbank)

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 17



DTFT of signals after downsampling and
upsampling (Optional)

Down-sampling by factor of 2:

1 u u 1
x (m)=x(Zm)e X (u)==| X| = |+X| =——=
Up-sampling by factor of 2:

X(Ej, m=even
x (m)=- 2 S X (u)=X(2u)

0, otherwise

Conceptual proof by doing sampling on continuous signal under 2 different sampling rates.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Perfect Reconstruction Conditions (Optional)

s(n) u(n)

|
: (@)
ho(n) 24 24 goln) 3
[
Yoln )J [ e
x(n)®— Analysis | Synthesis [+ }ex(n
{ (} 1t ) e
hi(n) 24 : 24 g (n) r(n)
t(n) ' v(n)
x(n)*h,(n) < X(u)H (u)

x (n)=down(x(n)*h (n) < X (u)=(X(u/2)H (u/2)+X(u/2-1/2)H (u/2-1/
up(x,(n)) = X,(2u)=(X(u)H (u)+ X(u-1)H (u-1))/2
x(n)=up(x,(n))* g,(n)+up(x,(n))* g,(n)
& X(u)=(X(WH, (WG, W)+ X(u-1)H,(u-1)G,(u))/2

+ (X(u)H1 (u)G1 (W+X(u- 1)H1 (u— 1)Gl(u)) /2

= X(u)(H,(u)Gy(u)+H (u)G, (u))/2

+ X(u-1)(H (u-1)G,(u)+H, (u-1)G, (u))/2
To guarantee X(u)= X(u), we need
H (u)G,(u)+H, ()G, (u)=2

H (u-1)G (u)+H, (u—1)G,(u)=0 (To remove aliasing component!)
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 19



Perfect reconstruction condition: P e rfe Ct re CO n St FU Ctl O n

H (u)G,(u)+H, (u)G (u)=2 agn .
b -G (0 -1 (= conditions (Optional)

The second equation (aliasing cancelation) can be guaranteed by requiring

G,(u)=H,(u-1) & g,(n)=(-1) h, (n)

G,w)=—H,(u-1) & g,(m)=(~1)"" h(n)

(Quadrature Mirror Condition)

To guarantee perfect reconstruction, the filters must satisfy the biorthogonality condition:
<h(2n- k),gj (k)>=06(i— j)o(n)
One has freedom to design both g (n), g,(n), which can have different length.

A more strict condition requires orthonality between g (n),g,(n) :
<g,(n),g,(n+2m)>=6(i—j)o(m)

which yields

g,(m=(-1) g,(L-1-n),

h,(n)=g,(L—1-n)

h,(n)=g,(L-1-n)=(-1) g,(m)=(-1) B (L-1-n)

One only has freedom to design g (n}: filter lenﬁth L must be even and all filters have same length.
Yao Wang, 2022 0*ECE-GY 61237 Image and Video Processing 20



Haar Filter (Simplest Orthogonal Wavelet
Filter)

h0 :averaging, [1,1]/\/5; hl:difference, [1,-1]/\/5;
g0=[1,112; gl=[1,1742

Input sequence :[x1,x2,x3,x4,....]

Analysis(Assuming samples outside the boundaries are 0. remember to flip the filter when doing convolution)

s=x*h0 =[s0,s1,52,83,84,...], s0 = (x1+0)/+/2,s1 = (x2+ x1)/7/2,52 = (x3+ x2)/7/2,53 = (x4 + x3)//2...
y0=s42=[s1,s3,..,]

t=x*h1=[t0,t1,t2,t3,t4,...], 0 =[x1-0]/v/2, t] = [x2-x1]/¥/2, 12 = [x3-x2]/+/2, 13 = [x4-x3]/V/2,...
yl=142=tl],13,...]

Synthesis :

u=y0712=]0,s1,0,s3,...]

q=u*g0=[ql,q2,93,q4,...],q1 = (s1 + 0)/v/2 = (x 1+ x2)/2,q2 = (0+51)//2 = (x1+x2)/2,q3 = (s3+ 0)/v/2 = (x3+ x4)/2
v=y1T2=][0,t1,0,13,...]

r=v*el=[rl,12,r3,r4,.],r1 = (41+ 0)/\/2 = (x1-x2)/2,12 = (0 + t1)//2 = (xX1+x2)/2,13 = (43 + 0)/+/2 = (x3—x4)12,
X=q+r=[ql+rl,q2+12,...]=[x1,x2,X3,...]

Note with Haar wavelet, the lowpass subband essentially takes the average of every two samples,
L=(x1+x2)/sqrt(2), and the highpass subband takes the difference of every two samples, H=(x1-
x2)/sqrt(2).

For synthesis, you take the sum of the lowpass and high pass signal to recover first sample
A=(L+H)/sqrt(2), and you take the difference to recover the second sample B=(L-H)/sqrt(2).

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 21



Yao Wang, 2022

MATLAB example

>> [ca,cd]=dwit(y,'db4");

>> z=idwt(ca,cd,'db4");

>> wy=[ca,cd];

>> subplot(3,1,1),plot(y), title('Original
sequence');

>> subplot(3,1,2),plot(wy), title("Wavelet
transform: left=low band, righ=high
band');

>> subplot(3,1,3),plot(z),
title('Reconstructed sequence’);

Original sequence
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lterated Filter Bank

Ha _@ H, -@—. Analysis
@

Hag
Stage J

A 3. terated filter bank. The lowpass branch gets split repeatedly
to get a discrete-time wavelet transform.

From [VetterliO1]

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



MATLAB exal

>> [ca,cd]=dwt(y,'db4’);
[caa,cad]=dwt(ca,'db4");
[caaa,caad]=dwt(caa,'db4");
wy1=[ca,cd];
wy2=[caa,cad,cd];

>> wy3=[caaa,caad,cad,cd];
>>
subplot(4,1,1),plot(y),title('Or
iginal Signal');

>>
subplot(4,1,2),plot(wy1),title("
1-level Wavelet Transform’);
>>
subplot(4,1,3),plot(wy2),title("
2-level Wavelet Transform’);
>>
subplot(4,1,4),plot(wy3),title("
3-level Wavelet Transform');

Yao Wang, 2022
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Discrete Wavelet Transform = lterated Filter
Bank

Yao Wang, 2022

ECE-GY 6123: Image and Video Processing

- [
hy(—n) 2¢ oW/ 1 ba c
— FIGURE 7.28 A
f(x)eVie— ty(—n) 2 W -2 three-scale FWT
filter bank:
h(—n) 5 hy(—n) i A—— (a) block diagram:
' Vit | \ = (b) decomposition
space tree: and
ho(—n)l— 24 V-2 (c) spectrum
splitting
characteristics.
h,(—n) 2y 8V 3
VJ H(('))
/ \ *"I Vs |
+—— V| ——w I
Vi-1 Wi - Vo wl | |
| | |
|
Vi-2 Wi-2 ViocalWizal Wi |
|
P L .
V-3 Wy-3 : ' L o

From [Gonzalez2008]
25



Wavelet Transform vs. Fourier Transform

 Fourier transform:

— Basis functions cover the entire signal range, varying in
frequency only

« Wavelet transform
— Basis functions vary in frequency (called “scale”) as well as
spatial extend
» High frequency basis covers a smaller area
« Low frequency basis covers a larger area
« Non-uniform partition of frequency range and spatial range
« More appropriate for non-stationary signals

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing

26



Temporal-Frequency Domain Partition

-
2
)
=
o
2
[
Time Time Time
i e
FIGURE 7.21 Time-frequency tilings for (a) sampled data. (b) FFT. and (¢) FW'T basis
functions.

From [Gonzalez2008]

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 27



How to Apply Filterbank to Images”?

Applying the 1D decomposition along rows of an image first, and then columns!

h FIGURE7.5 A
o(n) 2y ®am,n) two-dimensional,
Columns fou r—bﬂand filter
ho(m) 24 (along n) bank for subband
image coding.
Rows l . '
(along m) hy(n) 2% o dV(m.n)
x(m, n) @— Columns .
ho(n) 2y o d(m, n)
olumng
hy(m) 2y I .
Rows
hy(n) 2% 8 dP(m.n)
.olumn.
From [Gonzalez2008]

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 28



1 Stage Decomposmon 4 Subimages

FIGURE7.7 A

four-band split of  E— —
the vase in Fig. 7.1

using the subband

coding system of

Fig. 7.5.

LH

HH

From [Gonzalez2008]

With Harr filter, you can work on every 2x2 blocks in an image, [A,B;C,D]. LL=(A+B+C+D)/2;LH=(A+B-C-D)/2;
HL=(A-B+C-D)/2; HH=(A+D-B-C)/2. For synthesis, A=(LL+LH+HL+HH)/2,B=((LL+LH)-(HL+HH))/2; C=((LL+HL)-

(LH+HH))/2;D=((LL+HH)-(LH+HL))/2;
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 29



Wavelet Transform for Images: Repeat the
same operation on LL image

LLs|HL;
Hi,
LHA|HH;
Li, HL HL,
LH, | HH.
LH, HH, LH, HH,
A 4. The subband labeling scheme for a one-level, 2-D wavelet A 6. The subband labeling scheme for a three-level, 2-D wavelet

transform. transform.

From [UsevitchO1]

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 30



a
o1 fe] el

FIGURE7.8 (a) A
discrete wavelet
transform using
Haar basis
functions. Its local
histogram LT P
variations are also
shown;

(b)—(d) Several
different
approximations
(64 X 64,

128 X 128, and
256 X 256) that
can be obtained
from (a).

From [Gonzalez2008]

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 31




Wavelet vs. Laplacian pyramid

« Both provides multi-resolution representation
 Wavelet is not redundant, Laplacian pyramid is redundant

 Wavelet has 3 high bands at each scale, with horizontal, vertical
and mixed directions. Laplacian pyramid is isotropic.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 32



Common Wavelet Filters

« Haar: simplest, orthogonal, not very good
« Daubechies 8/8: orthogonal

« Daubechies 9/7: bi-orthogonal, most commonly used if
numerical reconstruction errors are acceptable

« LeGall 5/3: bi-orthogonal, integer operation, can be
implemented with integer operations only, used for
lossless image coding

 Differ in energy compaction capability

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 33



Table 3. Daubechies 9/7 Analysis
and Synthesis Filter Coefficients.

Analysis Filter Coetticients

Low-Pass Filter h, (1)

High-Pass Filter h, (1)

Yao Wang, 2022

0 0.6029490182363579 1.115087052456994
+1 | 0.2668641184428723 | —0.5912717631142470 Tag:,‘;t‘};elseiscguesr/ 20’;'}232'&:“‘1
+2 | -0.07822326652898785 | —0.05754352622849957 Analvsis Filter Svnthesis Filter
7 Coefficients ‘Coefficients
+3 [ —0.01686411844287495 | 0.09127176311424948
" : Low-Pass | High-Pass | Low-Pass | High-Pass
*+4 | 0.02674875741080976 : Filter h; (1) | Filter hy(1) | Filter g; (i) | Filter gg(1)
Synthesis Filter Coefticients 0 6/8 1 1 6/8
1 Low-Pass Filter g; (1) High-Pass Filter gg(i) +1 | 2/8 ) 1/2 ~2/8
0 1.115087052456994 0.6029490182363579 +2 | —1/8 ~1/8
— / /
+1 | 0.5912717631142470 —0.2668641184428723
+2 [ —0.05754352622849957 | —0.07822326652898785
+3 [ —0.09127176311424948 | 0.01686411844287495
+4 :
0.02674875741080976

ECE-GY 6123: Image and Video Processing
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Comparison of Different Filters

0 From [Gonzalez2008]

FIGURE 8.42 Wavelet transforms of Fig. 8.23 with respect to (a) Haar wavelets,
(b) Daubechies wavelets, (¢) symlets. and (d) Cohen-Daubechies-Feauveau biorthogonal

Yao Wang, 2022 wavelets 35



Impact of Filters and Decomposition Levels on
Energy Compaction

Filter Taps
Wavelet (Scaling + Wavelet) Zeroed Coefficients

Haar (see Ex.7.10) 2+ 2 46%
Daubechies (see Fig. 7.6) 8 +8 51%
Symlet (see Fig. 7.24) 8 +8 S1%
Biorthogonal (see Fig.7.37) 17 + 11 55%
Scales and Filter Approximation Truncated Reconstruction
Bank Iterations Coefficient Image Coefficients (%) Error (rms)

| 256 X 256 75% 1.93

2 128 X 128 93% 2.69

3 64 X 64 97% 3.12

4 32 %32 08% 3.25

S 16 X 16 98% 3.27

« Coefficients with magnitude< 1.5 are set to zero.

TABLE 8.12
Wavelet transform
filter taps and
zeroed coefficients
when truncating
the transforms in
Fig.8.42 below 1.5.

TABLE 8.13
Decomposition
level impact on
wavelet coding
the 512 X 512
image of Fig. 8.23.

From [Gonzalez2008]
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MATLAB Tools for 2D Wavelet: 1 Level

« [CA,CH,CV,CD]=DWT2(X,'wname’, 'mode',MODE),

« [CA,CH,CV,CD]=DWT2(X,Lo_D,Hi_D, 'mode',MODE))
« X=IDWT2(CA,CH,CV,CD,'wname’, 'mode',MODE),

« X=IDWT(CA,CD,Lo_R,Hi_R, 'mode',MODE)

. Available wavelet names 'wname' are:

. Daubechies: 'db1' or 'haar’, 'db2', ... ,'db45'

. Coiflets : 'coif1', ..., 'coif5'

. Symlets :'sym2', ..., 'sym8', ... ,'sym45'
. Discrete Meyer wavelet: 'dmey'

. Biorthogonal: ...

+ Use following to find actual filters:

« [LO _D,HI D,LO_R,HI_R]=WFILTERS('wname')

*  Modes of boundary treatment:

+ 'sym’: symmetric-padding (half-point): boundary value symmetric replication - default mode.

« 'zpd’: zero padding

‘ppd’: periodic-padding

+ Let SX = size(X) and LF = the length of filters; then size(CA) = size(CH) = size(CV) = size(CD) =
SA where SA = CEIL(SX/2), if mode="ppd’. SA = FLOOR((SX+LF-1)/2) for other modes.
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MATLAB Tools for Wavelet: Multi-level

« Wavedec2( ), waverec2( ): multi-level
« [C,S] = WAVEDEC2(X,N,'wname’)

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Python tool for Wavelet (1/3)

« Python package for wavelet : Pywavelet (version 5.0.1)
* Install command : pip install PyWavelets

* 1D single level dwt :
— (cA,cD) = pywt.dwt(data, wavelet, mode = ‘mode_type’)
— data = pywt.idwt(cA, cD, wavelet, mode = ‘mode_type’)

« 2D single level dwt:
— (cA, (cH, ¢V, cD)) = pywt.dwt2(data, wavelet, mode = ‘mode_type’)
— data = pywt.idwt2((cA, (cH, cV, cD)) , wavelet, mode = ‘mode_type’)

o 2D multi-level dwt:

— [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)] = pywt.wavedec2(data, wavelet, mode =
‘mode_type’, level=None)

— data = pywt.waverec2([cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)], wavelet, mode =
‘mode_type’)
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Python tool for Wavelet (2/3)

« Currently the built-in wavelet families in pywt are:

Yao Wang, 2022

Haar (haar)

Daubechies (db)

Symlets (sym)

Coiflets (coif)

Biorthogonal (bior)

Reverse biorthogonal (rbio)
“Discrete” FIR approximation of Meyer wavelet (dmey)
Gaussian wavelets (gaus)

Mexican hat wavelet (mexh)

Morlet wavelet (morl)

Complex Gaussian wavelets (cgau)
Shannon wavelets (shan)
Frequency B-Spline wavelets (fbsp)
Complex Morlet wavelets (cmor)

ECE-GY 6123: Image and Video Processing
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Python tool for Wavelet (3/3)

symmetric
reflect
smooth
constant
zero
periodic
periodization
N/A

N/A

Yao Wang, 2022

« Built-in wavelet mode in pywt

sym, symh
symw

spd, sp1

sp0

zpd

ppd

per

asym, asymh

asymw

ECE-GY 6123: Image and Video Processing
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Non-separable Wavelet Transforms (optional)

« Separable implementation leads to 3 high-freq subband
at each scale
— Horizontal, vertical, cross (checkerboard pattern)
— Cross band mixes different directions
« Steerable pyramid [Simoncelli1992]
— No mixing of directions
— Four high-freq subbands: 0, 45, 90, 135

— Enable better image enhancement and feature extraction
— Necessarily redundant
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(b) (d)

Figure 3.40 Steerable shiftable multiscale transforms (Simoncelli, Freeman, Adelson et al.
1992) (© 1992 IEEE: (a) radial multi-scale frequency domain decomposition; (b) original
image; (c) a set of four steerable filters; (d) the radial multi-scale wavelet decomposition.
From [Szeliski2012]
Simoncelli, E. P., Freeman, W. T., Adelson, E. H., & Heeger, D. J. (1992). Shiftable
multiscale transforms. IEEE transactions on Information Theory, 38(2), 587-607.
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Lecture Outline

« Multi-resolution representation of images: Gaussian
and Laplacian pyramids

« Applications for Multiresolution Representations
— Image blending

« Wavelet transform through lIterated Filterbank
Implementation

— 1D wavelet
— 2D wavelet

= « |mage denoising using wavelet transform
Image coding using wavelet transform (JPEG2K)
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Wavelet Domain Image Denoising

* Apply wavelet transform to an image

« Small wavelet coefficients in non-LL band typically corresponds to
noise.

* Modify the coefficients based on signal and noise statistics
— If noise is Gaussian N(0,0,), true signal coeff is Laplacian with STD o
— Soft-thresholding

4
. V202 3
w(y) = soft (y, ~ L 2
5 !
g o
« Inverse wavelet transform £,
1]
 Remove noise yet not blurring the edges! -
[ [l _3
« Other more sophisticated approaches » .
-5 0
* How to estimate signal and noise statistics? y (Noisy Coefficient)

« More on this in the lecture on sparsity-based image processing

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Yao

g. 13. (a) Original image. (b) Noisy image with PSNR = 20.02 dB. (¢) Denoised image using soft thresholding; PSNR = 27.73 dB. (d) Denoised

From: Sendur, Levent, and Ivan W. Selesnick. "Bivariate shrinkage functions for wavelet-based denoising
exploiting interscale dependency." IEEE Transactions on signal processing 50.11 (2002): 2744-2756.

ttp:/I eb.poly.edu/iselesni/bishri iIShrink TSP.pdf Vi .
; : ideo Processing
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Lecture Outline

« Multi-resolution representation of images: Gaussian
and Laplacian pyramids

« Applications for Multiresolution Representations
— Image blending

« Wavelet transform through lIterated Filterbank
Implementation

— 1D wavelet
— 2D wavelet

« Image denoising using wavelet transform
Image coding using wavelet transform (JPEG2K)

4
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Wavelet Based Image Compression
(Basic Idea)

« Wavelet transform is an good representation to use for image
compression because many coefficients can be truncated to zeros.

* Three steps:
— Apply wavelet transform to an image

— Quantize wavelet coefficients in all subbands (e.g. uniform
quantization)

« Q(f)=floor( (f-mean+QS/2)/QS) *QS+mean
— Represent the quantized coefficients using binary bits (entropy coding)
— Wavelet based coders differ mainly in entropy coding.

« JPEG2000 (J2K) uses wavelet-based coding. Uses sophisticated
entropy coding.
— Significantly better than JPEG.
— Offers “scalability”

— A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG2000 Still Image
Compression Standard, IEEE Signal Processing Magazine, Sept. 2001.
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Recap of JPEG

* Divide an image into small blocks

* For each block (encoder)

— Forward DCT transform (Decorrelation and energy
compaction)

— Quantize the DCT coefficients
— Binary encoding of quantized DCT coefficient indices

* For ach block (decoder)

— Binary decoding to recover the coefficient indices
— Inverse quantization to recover quantized coefficient values
— Inverse DCT transform

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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JPEG Pros and Cons

* Pros « Cons
— Low complexity — Single resolution
— Memory efficient — Single quality
— Reasonable coding — No target bit rate
efficiency — Blocking artifacts at low bit rate

— No lossless capability
— Poor error resilience
— No tiling

— No regions of interest

0.25 bpp

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 50



JPEG2000 Features

« Improved coding efficiency
« Full quality scalability

— From lossless to lossy at different bit rate
« Spatial scalability
* Improved error resilience
* Tiling
« Region of interests
 More demanding in memory and computation time

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Why do we want scalability

 The same image may be accessed by users
with different access links or different display
capability
— High resolution monitor through High speed
Corporate Intranet

— Small portable device through Wireless modem

* Non-scalable:

— Have different versions for each desirable bit rate
and image size

e Scalable

— A single bit stream that can be accessed and
decoded partially

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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What is Scalability?

Decoded frames in hybrid spatial/SNR layers
SP(0) SP(1) SP(2) SP(M — 1)

* e

-
- ——— ==

4
I
I
I
I
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A
|
|
|
|
|
|
|
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M

PR R RPN R Sy Sy Sy S )
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J

Bit stream

Figure 11.7 N x M layers of combined spatial/quality scalability. Reprinted from I. Sodagar,
H.-1. Lee, P. Hatrack. and Y.-Q. Zhang, Scalable wavelet coding for synthetic/natural hybnd
images, IEEE Trans. Circuits Syst. for Video Technology (March 1999), 9:244-54. Copyright
1999 IEEE.
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Quality Scalability of JPEG2000

A 17. Example of SNR scalability. Part of the decompressed image “bike” at (a) 0.125 b/p, (b) 0.25 b/p, and (c) 0.5 b/p.

Figures in this slide are extracted from: A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG2000 Still
Image Compression Standard, IEEE Signal Processing Magazine, Sept. 2001.

Same spatial resolution, increasingly smaller quantization stepsizes
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Spatial Scalability of JPEG2000

A 18. Example of the progressive-by-resolution decoding for the color image "bike.” From [skodras01]
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How J2K Achieves Scalability?

e Core: Wavelet transform

— Yields a multi-resolution representation of an original
Image

o Still a transform coder

Yao Wang, 2022

— Block DCT is replaced by a full frame wavelet
transform

— Wavelet coefficients are coded bit plane by bit plane

— Spatial scalability can be achieved by reconstructing
from only low resolution (coarse scale) wavelet
coefficients

— Quality scalability can be achieved by decoding only
partial bit planes

ECE-GY 6123: Image and Video Processing
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JPEG2000 Codec Block Diagram

Source
Image Data

Reconstructed
Image Data

—b{ Compressed Image Data

Forward o .

Transform —®  Quantization ™ Entropy Encoding
(a)

Inverse ] Inverse . , ;

Transform Quantization Entropy Decoding

L 4
Store
or Transmit

‘_

Compressed Image Data

L

(h)

A 2. General block diagram of the JPEG 2000 (a) encoder and (b) decoder.

* Quantization: Each subband may use a different step-size. Quantization can be
skipped to achieve lossless coding
* Entropy coding: Bit plane coding is used, the most significant bit plane is coded

first. Uses sophisticated context-based arithmetic coding

» Quality scalability is achieved by decoding only partial bit planes, starting from the
most significant bitplane (MSB). Skipping one bit plane while decoding = Increasing
quantization stepsize by a factor of 2.

Yao Wang, 2022
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Lossless vs. Lossy

« Lossless * Lossy
— Use LeGall 5/3 filter — Use Daubechies 9/7 filter
— Use lifting — Use the conventional
RGB->YCbCr

implementation

— Use an integer version of
the RGB->YCbCr
transformation

— No quantization of
coefficients

transformation
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Preprocessing Steps

Tiling

DWT on Each Tile

Image __,|
Component

i i [ . T T
i i
i i
‘ . T T T
] ]
[ ]
] 1
: :
DC Level | ! Component i _[¥ = - =
: Shifting 1 Transformations ~
L}
: T a8 o
i
i
1
L}
L}
L}
L}

A 3. Tiling, dc-level shifting, color transformation (optional) and DWT of each image component.

» An image is divided into tiles, and each tile is processed independently
« Tiling can reduce the memory requirement and computation complexity
» Tiling also enable random access of different parts of an image

* The tile size controls trade-off between coding efficiency and complexity

Yao Wang, 2022
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Dividing Each Resolution into Precints

L

-i_

; |
_l 213k, Ly
/M | gh \

Tile Component

N\

A 9. Partition of a tile component into code blocks and precincts.

Precinct

« Each precint is divided into many code blocks, each coded independently.
» Bits for all code blocks in the same precint are put into one packet.
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Scalable

Yao Wang, 2022

Bit Stream Formation (not required)

Image Component

Tile

Precinct

Code Block

[]

| H | | I Code Stream

- H | | | Layer

First layer: LL
Other layer: LH, HL, HH of a

S
B
\1

|' H I I | | Packet
: : (bits for one precint)

[ | CodedCodeBlock

Note: H Stands for Header

spatial resolution)

A 11. Conceptual correspondence between the spatial and the bit stream representations.

ECE-GY 6123: Image and Video Processing
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Coding Steps for a Code Block (not required)

« The bit planes of each code block are coded
sequentially, from the most significant to the least
significant

« Each bit plane is coded in three passes

— Significance propagation: code location of insignificant bits with
significant neighbors

— Magnitude refinement: code current bit plane of coefficients
which become significant in previous bit planes

— Clean up: code location of insignificant bits with insignificant
neighbors

« Each pass is coded using Context-Based Arithmetic
Coding

— The bit of a current coefficient depends on the bits of its
neighboring coefficients (context)

— The current bit is coded based on the conditional probability of
this bit given its context

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing

62



Region of Interests (not required)

Allows selected regions be coded with higher accuracy (more bit planes)
— Ex: faces

M- PR

5| 59|

pln-’:>
ol

| il o .
| |

A 13. Wavelet domain ROl mask generation.

W
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Error Resilience (not required)

« By adding resynchronization codewords at the
beginning of each packet, transmission errors in one
packet will not affect following received packets

« The context model for each coding pass in a codeblock
can be reset to enhance error resilience

» Packet size and codeblock size and context model
reset periods can control tradeoff between coding
efficiency and error resilience
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Coding Results: JPEG vs. JPEG2K

(a) (b) (c)

A 20. Image “watch” of size 512 x 512 (courtesy of Kevin Odhner): (a) original, and reconstructed after compression at 0.2 b/p by
means of (b) JPEG and (c) JPEG 2000.

From [skodrasO1]
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Another Example

(a) (b)

A 2]. Reconstructed image “ski” after compression at 0.25 b/p by means of (a) JPEG and (b) JPEG 2000.

From [skodrasO1]
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JPEG2000 vs. JPEG: Coding Efficiency

46 =
% =
40 =

; Z=

= P

= W/l

7
=i

24

PSNR (dB)

I’ ~

0 0.5 1 1.5
bpp
+J2KR = J2KNR +JPEG +~VTC

A 19. PSNR results for the lossy compression of a natural image
by means of different compression standards. From [skodras01]

J2K R: Using reversible wavelet filters; J2K NR: Using non-reversible filter; VTC: Visual texture coding for MPEG-4 video
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Pop Quiz

 \What is the main difference between JPEG and
JPEG2K?

 How does JPEG2K achieve spatial scalability and
quality scalability, respectively?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Pop Quiz (w/ Answers)

 \What is the main difference between JPEG and
JPEG2K?

— JPEG use block wise transform, JPEG2K uses a frame wise
transform (wavelet)
 How does JPEG2K achieve spatial scalability and
quality scalability, respectively?
— Spatial scalability is afforded by the multiresolution
representation of wavelet transform

— Quality scalability is obtained through bit plane coding. Higher
quality is obtained by transmitting/decoding more bit planes (=
smaller quantization stepsizes).

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Summary

« Pyramid representation
— Gaussian pyramid: repeatedly down sample
— Laplacian pyramid: upsample and generate upsample error
— Redundant representation: more samples than the original image
« Wavelet transform
— Repeatedly splitting the low-low image to LL, LH, HL, HH
— Non-redundant representation, energy compaction
* |Image compression using wavelet
— Naturally offer spatial scalability
— Scalability enables progressive transmission
— Full frame transform -> No blocking artifacts
— Significantly better coding efficiency than JPEG
— Enable progressive transmission

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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w N

Written Homework

For the given image below, manually compute a 3-level Gaussian pyramid and corresponding
Laplacian pyramid. Use 2x2 averaging for the approximation filter, and use bilinear for the
interpolation filter (for pixels on the boundary, you can just use nearest neighbor).

(1 2 3 4]

5 6 7 8
F =

9 10 11 12

13 14 15 16]

From the Laplacian pyramid generated in Prob. 1, reconstruct the original image.

For the same image above, manually compute the wavelet transform (with 3-level) using the Haar

analysis filters. Comment on the differences between the residual pyramids generated in Prob. 1

with the wavelet transform generated here, in terms of number of samples and signal energy in

different levels/bands. Hint: use the simplified operation in Slide 29 for Haar wavelet.

Reconstruct the image from the wavelet transform in Prob. 3 using Haar synthesis filters, show the

reconstructed image at all levels. Do you get back the original image? Hint: use the simplified

operation in Slide 28 for Haar wavelet.

Quantize all the wavelet coefficients created in Prob. 3 by a stepsize of 2. Then reconstruct the 4x4

irpggeffrgm the quantized wavelet coefficients using Haar synthesis filter. Compare with the results

of Prof. 4.

Optional] Using MATLAB freqz( ) function to derive the frequency response of the low-pass and
igh-pass filters used in the following wavelet transforms: Haar, Daubechies 9/7, and LeGall 5/3.

Plot the magnitude response of each and comment on their pros and cons.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Computer Exercises (optional)

Learn how to use the following MATLAB functions through online help: dwt, idwt, wavedec, waverec.

Write a function that i) applies 3 level wavelet transform to an image using a specified wavelet transform; ii)
quantize all transform coefficients with a uniform quantizer with a given quantization stepsize (QS); iii)
Reconstruct the image (which we will call the quantized image) from the quantized transform coefficients; iv)
Count the number of non-zero coefficients after quantization and compute the PSNR of the quantized image
against the original image); v) Show the original and quantized image. The function should have the original
image, the filter name, and the QS as input, and the number of non-zeros and PSNR, and quantized image
as output, as follows:

[NonZeroNum,PSNR,outimg]=WaveletQuant(inimg,’'wname’,QS);

Test your program within a main program that read in a image, extract the grayscale version, and applies
your function to the grayscale image.

A note on quantization: for the lowest band, please assume the coefficient values have a mean value of
128. For all other bands, assume the coefficient values have a mean value of 0. Your quantizer should be
centered around the mean value. That is

Q(f)=floor( (f-mean+QS/2)/QS) *QS+mean.

3. Write a main program that applies the above function to an image using the Haar wavelet and a series of QS
including 1, 4, 16, 32, and record the NonZeroNumber and PSNR corresponding to different QS. It then
applies the above function to the same image with another more complicated wavelet filter (e.g. ‘db4’) with
the same set of QS. Plot in the same figure, the PSNR vs. NonZeroNum curves, obtained by the two
different wavelet filters. You should include this figure in the report, and explain the pros and cons of
different filters. Which filter is likely to yield higher coding efficiency (i.e. produced better quality at the same
bit rate, or reduces low bit rate to achieve the same quality)? Note that you may assume that the number of
bits needed to code the quantized wavelet coefficients is proportional to the number of non-zero coefficients.

Therefore, each of the two curves represent the achievable rate-quality performance by a wavelet-based
image coder using the corresponding filter.

N —
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Computer Exercises (optional)

The following assignments are all OPTIONAL.

1.Write a program that can generate 1-level 1D wavelet transform of a finite length 1D sequence
using a given pair of wavelet analysis filters. Your program should have a syntax

[CA,CD] = MYDWT(X,Lo_D,Hi_D)

You can call the conv( ) function of MATLAB. For simplicity, you could choose the “same” option
for boundary treatment. This way, each the resulting subsignal should be half length of your
original signal (make your original sequence has even length). Test your program on any 1D
sequence (manually generated, for example, or 1 row of an image) and different wavelet filters.
You can generate different wavelet filters (e.g. Haar and db4) using “wfilters()” function.

2. Write a program that can reconstruct a 1D sequence from its 1-level 1D wavelet transform
using a given pair of wavelet synthesis filters. Your program should have a syntax

X =MYIDWT(CA,CD,Lo_R,Hi_R)
Apply this program to the subband signals generated in Prob. 1 and you should get back the

original sequence approximately. Note that your program may not generate exact reconstruction
at boundaries because of simplified boundary treatment.

3. Write a program that can generate 1-level 2D wavelet transform of an image by using your
function MYDWT() or the dwt( ) function of MATLAB, if your program does not work well.
Basically, you need to apply dwt( ) to rows and columns separately, and you need to organize
your data structure properly. You should save the four subbands in a single image (all in floating
ﬁoint) so that the LL band is in the top-left, HL band is in the top-right, etc. Your program would

ave a syntax WIMG= MYDWT2(IMG,Lo_D,Hi_D). Use your program to generate the wavelet
transform of a gray scale image (or a croped to a smaller size) using two wavelet filters: Haar
and db4. Display the resulting transform images and comment on their differences.
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Computer Exercises (optional)

4. Write a program that can reconstruct an image from its 1-level 2D wavelet transform
image using your function MYIDWT() or the idwt( ) function of MATLAB. Basically, you need
to apply idwt( ) to rows and columns of the wavelet transform image separately. Apply your
program to the results from Prob. 3.

5. Quantizé the wavelet coefficients you obtained in Prob. 3 using a uniform quantizer with a
user-given step size, and then reconstruct the image from quantized coefficients using the
program in Prob. 4. Show the reconstructed images with two different quantization stepsizes,
4 and 16. If you cannot get your programs working for Prob. 3 and 4, you could use the dwt2()
and idwt2() functions instead.

7. Develop MATLAB codes that implement 2-level 2D wavelet transform and reconstruction.
Basically you can apply the 1-level program you have developed on the LL-band of 1-level
transform to produce 2-level transform. Show the decomposed images and reconstructed
images at different stages.
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