
Coding and Streaming System Design for Interactive 360◦ Video

Applications and Scalable Octree-based Point Cloud Coding

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Electrical Engineering)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Yixiang Mao

May 2022

Coding and Streaming System Design for Interactive 360◦ Video
Applications and Scalable Octree-based Point Cloud Coding

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Electrical Engineering)

at the

NEW YORK UNIVERSITY
TANDON SCHOOL OF ENGINEERING

by

Yixiang Mao

May 2022

Approved:

Department Chair Signature

Date

University ID: N10158903
Net ID: ym1496

selesi
New Stamp

selesi
Typewritten Text
May 12, 2022

ii

Approved by the Guidance Committee:

Major: Electrical and Computer Engineering

Yao Wang
Professor
Electrical and Computer Engineering

Date

Yong Liu
Professor
Electrical and Computer Engineering

Date

Shivendra S. Panwar
Professor
Electrical and Computer Engineering

Date

5/12/2022

5/12/2022

05/12/2022

iii

Microfilm or copies of this dissertation may be obtained from

UMI Dissertation Publishing

ProQuest CSA

789 E. Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

iv

Vita

Yixiang Mao was born in Anhui, China in 1994. He received his B.S. degree in

Physics from Peking Univerisity, China in 2016. He received his M.S. degree in

Electrical Engineering from Tandon School of Engineering of New York Univer-

sity in 2018. He started his doctoral training in Tandon School of Engineering of

New York University in Fall 2018.

His PhD research focuses are coding and streaming for 360◦ video, point

cloud compression, video processing, computer vision, and machine learning.

During his PhD years, he also interned at Tencent America and Apple Inc. on

video related projects.

v

Acknowledgements

My PhD study and this thesis would not be possible without the help from peo-

ple who provided both academic and moral support over the years.

First and foremost, I would like to thank my PhD advisor, Prof. Yao Wang,

for her invaluable vision, support, and guidance throughout my doctoral stud-

ies. I would like to thank Prof. Yong Liu for the guidance and insightful advice

on computer networking and media streaming design throughout the collabo-

rated projects. I would also like to thank Prof. Shivendra S. Panwar for being

my PhD guidance committee member, and for his insightful comments and sug-

gestions.

Furthermore, I would like to thank my research collaborators: Fanyi Du-

anmu, Liyang Sun, Yueyu Hu, and Tongyu Zong.

Last but not least, I would like to express my sincere gratitude to my parents

for their support throughout my life. I would also like to thank my girlfriend

and my friends for their moral support and companionship.

Yixiang Mao, New York University, Tandon School of Engineering

May 12, 2022

vi

ABSTRACT

Coding and Streaming System Design for Interactive 360◦ Video

Applications and Scalable Octree-based Point Cloud Coding

by

Yixiang Mao

Advisor: Prof. Yao Wang

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

May 2022

Efficient coding and streaming of 360-degree video and point cloud video are

critical for the continued development of lifelike virtual reality (VR) experiences.

Interactive 360-degree video applications, e.g. video conferencing, require

an extremely low delay in video delivery and robustness to both network dy-

namics and field of view (FoV) prediction errors. We propose a frame-level FoV-

adaptive coding structure that varies the bit rates for different regions of a coded

frame based on the predicted FoV. Integrating such frame-level FoV adaptation

with temporal predictive coding is challenging due to the temporal variations

of the FoV. We propose novel ways for modeling the influence of FoV dynamics

on the quality-rate performance of temporal predictive coding. Compared with

other benchmark systems, our system shows significantly improved rendered

video quality, while achieving very low end-to-end delay and low frame-freeze

probability.

vii

Octree-based point cloud representation and compression have been adopted

by the MPEG G-PCC standard. However, it only uses handcrafted methods to

predict the probability that a leaf node is non-empty, which is used for entropy

coding. We propose a 3D convolution-based machine learning model to predict

such probabilities for geometry coding using the context information from the

previous and currently coded octree level. We further propose a convolution-

based model to upsample the decoded point cloud at a coarse resolution on

the decoder side. Integration of the two approaches significantly improves the

octree-based geometry coding performance. A key advantage of our work from

the prior related studies is that our octree-based entropy coding model is natu-

rally scalable. This benefits the future design of the point cloud streaming sys-

tem.

viii

Contents

Vita iv

Acknowledgements v

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Overview . 1

1.2 Introduction to 360◦ Video Interactive Streaming 2

1.3 Introduction to Point Cloud Geometry Coding 4

1.4 Organization of the thesis . 5

2 Frame-level FoV-adaptive 360◦ Video Coding using Spatial and Tem-

poral Prediction 6

2.1 Introduction . 6

2.2 The Proposed Video Coding Scheme 9

2.3 The Optimal Tile Size . 11

2.4 Quality-Rate Models . 13

2.4.1 Objective Quality Metric . 13

2.4.2 “Ideal” Quality-Rate Models For Different Coded Regions 14

ix

2.4.3 Rate-Increase Factor . 16

2.4.4 Quality-Decay Factor . 18

2.5 Optimizing Rate Allocation and Region Sizes 19

2.5.1 Expected Video Quality . 19

2.5.2 Optimization Problem Formulation and Solution 20

3 Frame-level FoV-adaptive 360◦ Video Interactive Streaming with Rate

and Region Size Adaptation 24

3.1 Introduction . 24

3.2 Proposed Streaming System Overview 25

3.3 Frame-Level FoV Prediction . 27

3.4 Segment-Level Bandwidth Prediction 28

3.5 Adaptation of Coding Rates and Region Sizes 31

3.5.1 Assigning the Total Bit Budget for a Segment Considering

Sending Buffer Status . 32

3.5.2 Frame-level Bit Budget Update 33

3.6 Trace-Driven Simulation Results 34

3.6.1 Test Sequences, Bandwidth and FoV Traces 34

3.6.2 Streaming System Benchmarks 36

3.6.3 Evaluation Metrics . 37

3.6.4 Evaluation Results . 38

4 Octree-based Scalable Point Cloud Geometry Coding with Learned En-

tropy Model and Resolution Enhancement 43

4.1 Introduction . 43

4.2 Related works . 45

4.3 Proposed Methods . 47

x

4.3.1 Context-Based Entropy Coding for Octree Geometry: No-

tation and Basic Ideas . 47

4.3.2 Conditional Probability Estimation through Denoising a

“Noisy” Context Cube . 49

4.3.3 Resolution Enhancement of Decoded Point Clouds 50

4.3.4 Loss Function . 52

4.4 Experiments . 53

4.4.1 Experimental Setup . 53

Datasets . 53

Evaluation Metric . 54

Baseline Methods . 54

4.4.2 Experiment Results . 55

4.4.3 Ablation Study . 56

Network Architecture . 56

Upsampling Strategies . 58

Context Cube Size . 59

5 Conclusion 61

Publication List 76

xi

List of Figures

2.1 The tiled ERP frame and different coding regions. Dark grey: tiles

to cover the PF region, coded at the rate Re. Light grey and or-

ange: tiles to cover PF+ and RI, coded at the rate Rb. Green: user’s

actual FoV, which may intersect with PF, PF+, RI, and un-coded

tiles. 7

2.2 Variable time lapses between the coded tiles inside the PF and

PF+ regions. The frame on the right is the current frame, its pre-

vious frames are on its left. The square region covered by a solid-

line border in each frame indicates the coded region in that frame.

Different tiles in the coded region in the current frame have dif-

ferent time lapses to the latest frame when the corresponding tiles

were coded. 8

xii

2.3 Total bit consumption under the same QP inside the FoV for 5

different tile sizes for 8K video. The horizontal axis indicates the

number of pixels in each side of the square tile. All the tiles are

coded in the inter-coding mode except the first frame. A constant

QP=30 was used. The resulting WS-PSNR in the FoV region are

reported in the figure legends. Different color bars are results for

FoVs in different directions. The results are for sequence “Trol-

ley", similar trends are observed for “Chairlift". 12

2.4 Q-R models for “Trolley” (a)-(d) and “Chairlift” (e)-(h). (a)(e):

WS-PSNR vs. normalized rate for the PF regions of six view-

ing orientations, and the averaged WS-PSNR vs. normalized rate.

(b)(f): WS-PSNR vs. normalized rate for the PF+ regions when its

size is 10◦. (c)(g): the averaged WS-PSNR vs. normalized rate for

different PF+ region sizes. (d)(h) WS-PSNR vs. normalized rate

for the RI region. 22

2.5 The rate-increase factor to maintain the same quality as a function

of the time lapse between the inter-coded frame and the reference

frame. Left: “Trolley", fixed camera. Right: “Chairlift", moving

camera. 23

2.6 The quality-decay factor of pixels due to frame copy as a function

of the time lapse between the last-coded frame and the current

frame. Left: “Trolley", fixed camera. Right: “Chairlift", moving

camera. 23

3.1 The LSTM model for FoV prediction, numbers of hidden units are

indicated in layer blocks. 29

xiii

3.2 Hit rate of predicted FoVs, using the LSTM model and the Trun-

cated Linear predictor, on the testing data. Error bar: 3× standard

error of the mean (SEM). 29

3.3 The proposed streaming system. 32

3.4 The top plot: the LTE bandwidth trace collected in real world (500

second long); Other plots: various performance indices within a

short time duration (90 second - 190 second). Horizontal axis is in

unit of second. 35

4.1 Network architectures for entropy coding: (a) Model A: the pro-

posed convolution only architecture, (b) Model B: the convolution

+ fully connected architecture. “Conv(n,l)" means a 3D convolu-

tional layer outputting n feature channels with a 3D filter of ker-

nel size of l × l × l. 48

4.2 Network architectures for upsampling: (a) the proposed convolution-

only architecture, (b) the convolution + fully connected architec-

ture. 51

4.3 Visualization of the ground truth, G-PCC, VCN, and ours. 55

4.4 Model A (fully convolutional network) vs. Model B (convolu-

tional+fully connected network). 57

4.5 Comparison between different postprocessing (upsampling) strate-

gies. For example, for the upsampling by 2 levels curve, the high-

est rate point is obtained by coding the octree to level 8 and up-

sample to level 10; while the next highest rate point is obtained

by coding the octree to level 7 and upsample to level 9. 58

4.6 R-D performances corresponding to different context sizes. The

experiments are conducted with Model B. 60

xiv

List of Tables

3.1 Streaming System Evaluation on Trolley (fixed camera) and Chair-

lift (moving camera). 40

4.1 Bits per point (bpp) used for losslessly coding 8i dense point clouds,

by MPEG G-PCC, VoxContextNet(VCN), and our Model A and

our Model B. (VCN, Model A and Model B all use k = 5) 54

4.2 Number of floating point operations (KFLOPS per node) for the

probability estimation (E) and the post-processing (P) procedures,

respectively, with different methods and at different voxel context

sizes for the Longdress sequence. B(3) means the proposed Model

B using context size with k = 3. 57

1

Chapter 1

Introduction

1.1 Overview

The application and the technology of Virtual Reality (VR) and Augmented Re-

ality (AR) is growing fast in recent years. One approach to facilitate the VR

experience is using the 360◦ video, where the video is recorded in every direc-

tion at the same time, and the viewer has control of the viewing in any direction

during playback. The users viewing the 360◦ video usually have 3 degrees of

freedom (3-DoF, or yaw, pitch, and raw). However, 6DoF is preferred for a true

VR experience, where the user also moves the physical locations in addition to

changing the view angles. In this case, the 3D modeling of the space is needed,

and point cloud representation is the foundation of 3D models for both VR and

AR applications. Point cloud is a set of data point in the space, where each point

has a coordinate in X, Y, Z and other attributes information (e.g. color, or trans-

parency). Our study of efficiently coding and streaming for both the 360◦ video

and the point cloud is critical to help the development of next-level VR and AR

experiences.

2

1.2 Introduction to 360◦ Video Interactive Streaming

Effectively coding and streaming 360◦ video is critically important for VR and

AR applications. However, to achieve similar viewing quality, the required net-

work bandwidth for sending the omnidirectional video is much higher than

that required for the traditional planar video. For example, the 360◦ video at

24K (23040 × 11520 pixels) resolution provides a similar premium quality as

8K (7680 × 4320 pixels) planar video. Previous study [1] showed that transmit-

ting such high-resolution video at 120 frames per second (fps) easily consumes

Gigabits-per-second bandwidth. FoV-adaptive streaming is an effective way to

reduce such high bandwidth requirement [2] [3] [4]. In a 360◦ video session,

a viewer only watches the content within a limited Field-of-View (FoV) at any

time, which is a small portion of the 360◦ scope. [5] A viewer’s FoV in each frame

can be predicted using various methods. FoV-adaptive streaming leveraging

tile-based coding refers to the strategy that encodes and transmits the tiles inside

the predicted FoV at premium quality, while discarding or encoding and trans-

mitting the remaining tiles at significantly lower quality. Such strategy has been

widely developed and evaluated in 360◦ video-on-demand systems [6–13,13–15]

and 360◦ live streaming systems [16–21]. However, this approach has not been

sufficiently investigated for interactive applications, such as VR cloud gaming,

VR video conferencing, and AR remote collaboration, etc. [22–24]. The major

challenges in interactive applications can be summarized as:

1. The 360◦ video must be coded and transmitted in real-time with extremely

low latency (e.g. ≤100ms). Hence, the 360◦ video should be coded and

delivered at the frame level.

3

2. The periodic intra-frame structure is not suitable for the interactive appli-

cations, because it leads to periodic rate spikes and consequently increased

delay.

3. The coded regions in each frame depend on the predicted FoV. User FoV

in successive frames are often not aligned, and this brings challenges to

integrate temporal predictive coding and to accurately estimate the rate

during streaming.

To address those challenges, we propose a novel low-latency FoV-adaptive

coding and streaming solution for interactive 360◦ video. The contribution of

our work can be summarized as:

1. We adopt motion-compensated temporal predictive coding to maximize

the quality-rate efficiency for the predicted FoV region and plus a sur-

rounding border.

2. To reduce the system latency, we propose using a rotating-intra region in

each frame to replace the periodic intra-frame.

3. We explicitly model the impact of the misalignment of coded regions on

the quality-rate performance of temporal predictive coding, to enable ac-

curate rate allocation among different regions.

4. We design a push-based frame delivery scheme that periodically adapts

the sizes and the target bit rates of different coding regions at both the

segment level and the frame level.

5. We adopt deep learning models for both FoV prediction and bandwidth

prediction.

4

1.3 Introduction to Point Cloud Geometry Coding

Efficient coding of point cloud data is critical for the continued development of

lifelike virtual reality (VR) experiences. For geometry-based point cloud com-

pression, in order to overcome the memory inefficiency from using uniform

voxel grids, the 3D space is typically recursively subdivided into smaller cubes

using octree where only non-empty nodes are further subdivided [25]. The oc-

tree coding mode in in the MPEG G-PCC standard uses a handcrafted context

table for context-based entropy coding [26].

To better explore the context information with deep learning models, while

still using the octree representation, we propose a novel entropy coding method

for the octree-based geometry coding. Our contribution can be summarized as:

1. To predict the probability that 8 children nodes of each non-empty parent

node are occupied , we propose a novel way to form an initial “noise”

context cube on the octree level of children nodes with values of 0, 1, or

0.5.

2. We propose to denoise the values in the cube using a 3D convolution-based

neural network and use the output values of the denoised cube at the cen-

ter 2 × 2 × 2 voxels as the predicted probability.

3. We further propose a 3D convolution-based neural network to upsample

the decoded point cloud if the decoder receives a bit-stream only including

a coarse (lossy) octree representation.

4. We also develop alternative probability estimation and upsampling mod-

els with significantly less complexity while maintaining comparable cod-

ing efficiency.

5

5. Compared with G-PCC [26] (using a handcrafted entropy model) and VoxContext-

Net [27] (using a machine learning method), our methods significantly im-

prove the quality of the reconstructed point cloud.

6. Our octree-based entropy coding model is naturally scalable and this scal-

able coding setting benefits the future design of streaming systems.

1.4 Organization of the thesis

Chapter 2 introduces the proposed 360◦ video coding framework and the opti-

mal tile size, and formulates the expected rendered quality considering FoV hit

rates and the frame delivery rate, and also describes the optimization problem

to maximize the expected rendered quality. Chapter 3 describes the proposed

FoV-adaptive streaming system for interactive applications, including the deep

learning models used for bandwidth prediction and FoV prediction, the adap-

tation of region size and rate allocation at the segment level and the bit budget

adjustment at the frame level, the setup of the trace-driven simulations, and the

system performance comparison with benchmarks using intra- or inter- coding.

Chapter 4 describes our proposed octree-based scalable point cloud geometry

coding with the learned entropy model and resolution enhancement model. The

last chapter summarizes the contributions and takeaways of our works.

6

Chapter 2

Frame-level FoV-adaptive 360◦ Video

Coding using Spatial and Temporal

Prediction

2.1 Introduction

A major challenge in interactive applications is that 360◦ video must be coded

and transmitted in real-time with extremely low latency (e.g. ≤100ms). To

achieve low latency, 360◦ video should be coded and delivered at the frame

level, and each frame should consume similar rates. To accomplish this, previ-

ous work on interactive 360◦ video [22] [28] intra-code all frames without using

motion-compensated temporal prediction. A big drawback of using such intra-

only coding mode is that it significantly reduces the coding efficiency, which

translates to significantly lower video quality under the same bandwidth. On

the other hand, integrating temporal predictive coding with frame-level FoV

adaptation faces the following challenges:

7

Figure 2.1: The tiled ERP frame and different coding regions. Dark grey: tiles to
cover the PF region, coded at the rate Re. Light grey and orange: tiles to cover
PF+ and RI, coded at the rate Rb. Green: user’s actual FoV, which may intersect
with PF, PF+, RI, and un-coded tiles.

1. The periodic intra-frame structure is not suitable for the interactive appli-

cations, because it leads to periodic rate spikes and consequently increased

delay. On the other hand, it is important to periodically update the entire

360◦ scope to limit error propagation after a frame loss due to transmission

errors, and to mitigate the quality degradation in un-coded regions, which

in turn affects temporal prediction accuracy for future frames.

2. The coded regions in each frame depend on the predicted FoV. User FoV

in successive frames are often not aligned. Such misalignment causes pro-

longed time lapse for temporal prediction for some tiles and leads to re-

duced coding efficiency. How to properly consider such reduced coding

efficiency is important for accurate rate control and essential for minimiz-

ing the latency, while optimizing for the rendering quality.

We propose a novel low-latency FoV-adaptive coding and streaming solu-

tion for interactive 360◦ video. We adopt motion-compensated temporal predic-

tive coding to maximize the quality-rate efficiency, and address the challenges

8

Figure 2.2: Variable time lapses between the coded tiles inside the PF and PF+
regions. The frame on the right is the current frame, its previous frames are on
its left. The square region covered by a solid-line border in each frame indicates
the coded region in that frame. Different tiles in the coded region in the current
frame have different time lapses to the latest frame when the corresponding tiles
were coded.

brought by temporal prediction in frame-wise FoV-adaptive coding. To reduce

the system latency, we propose using a rotating-intra region in each frame to

replace the periodic intra-frame. We also explicitly model the impact of the mis-

alignment of coded regions on the quality-rate performance of temporal pre-

dictive coding, to enable accurate rate allocation among different regions. The

salient features of our proposed solution include:

1. To achieve low latency, the sender codes and transmits video at the gran-

ularity of frames, instead of segments (e.g. groups of pictures) commonly

used for video-on-demand and live streaming.

2. For each new frame, the sender predicts the FoV of the receiver, and codes

only a region covering the predicted FoV (denoted PF) plus a surrounding

border (denoted PF+), with the border size adapted to the anticipated FoV

prediction errors. Both regions will be coded using temporal prediction

9

but at different rates. 1

3. We code a small rotating region using intra-coding for each frame using

spatial prediction only, enabling gradual refreshment of the entire 360◦

scope after a certain period. See Fig. 2.1. Such rotating-I (RI) regions re-

duce the frame size burstiness and hence reduces delay, while providing

robustness against FoV prediction errors and frame losses.

4. While modeling the quality-rate (Q-R) relations of coded regions, we take

into account the spatially and temporally varying time lapses in temporal

prediction due to FoV dynamics (see Fig. 2.2). We further model the decay

of the rendering quality of non-coded regions as a function of the time

lapse since these regions were last coded.

In this chapter, Sec. 2.2 introduces the proposed video coding framework

with three coding regions. Sec. 2.3 presents the experiment of choosing the op-

timal tile size that trades off the coding efficiency and the unused coded area.

Sec. 2.4 explores the quality-rate models, including the "ideal" quality-rate mod-

els, and the rate-increase and the quality-decay factor. Sec. 2.5 formulates the

expected rendered quality considering FoV hit rates and the frame delivery rate,

and also describes the process to optimize the region size and rate.

2.2 The Proposed Video Coding Scheme

A novel FoV-adaptive coding structure is proposed to replace the conventional

group of pictures (GOP) structure (periodic intra frames). We use the Equirect-

angular projection (ERP) to present the 360◦ video. In the proposed structure,

1When a remote site has multiple participants, we can take the union of the FoVs of all the
participants as the ground truth “FoV” of this site, and predict the future FoV union.

10

only the first frame of a video stream was encoded entirely using spatial pre-

diction (i.e. intra-coding) only. For each following frame, we first predict the

client’s FoV at that time. As illustrated in Fig. 2.1, we then code the predicted

FoV region (called “PF") and a small border around it (called “PF+") on the ERP

using temporal prediction (i.e. inter-coding) based on the previously decoded

reference frame. The border region is coded in case the PF is slightly off from

the client’s actual FoV. The normalized bit rate (in terms of bits/degree2) allo-

cated for the PF+ is lower than that for the PF. In addition to the PF and PF+,

we also code and send a rotating-I region (called “RI") using spatial prediction

only, to ensure all pixels on the EPR will be refreshed by intra coding at a certain

frequency. For each successive frame, the intra-coded RI region rolls to a new lo-

cation on the EPR (from top to bottom and left to right). The RI region refreshes

all pixels on the ERP at a certain rolls in successive frames from top to bottom

and left to right in the ERP. The RI is introduced to ensure that all pixels in the

ERP will be refreshed using intra-coding after a certain period. For instance, if

the size of the RI region is 1/36 of the ERP frame, the RI will refresh the entire

360◦ scope every 36 frames. This periodic refreshment makes the system robust

to both FoV prediction errors and frame losses due to packet losses. Since the RI

region has a low chance to be viewed, it is allocated with a rate lower than PF

and PF+ regions. Note that the first frame (entire 360◦ scope) needs to be intra-

coded at a lower rate (high quantization level) to reduce the bits of the initial

frame, and hence reduce the initial buffering time.

We use the tile-based coding that provides easy control of coding methods

and rates for different regions [29] [30]. The entire ERP frame is divided into

non-overlapping small tiles. All tiles covering the PF region are inter-coded

at the normalized rate Re, and all the remaining tiles covering the PF+ region

are inter-coded at the normalized rate Rb. Note that the shape of a PF or PF+

11

region on the EPR depends on its latitude, as shown in Fig. 2.1. Therefore, the

number of tiles needed to cover the PF or PF+ region may differ in each frame.

On the other hand, the RI is a rectangular region on the ERP consisting of a

fixed number of tiles, irrespective of FoV. To simplify the rate allocation, we

code the RI and PF+ region using the same normalized rate Rb. Since the RI

uses intra-coding and the PF+ uses inter-coding, the quality of RI is lower than

the quality of PF+, even though they share the same average allocated rate Rb.

Because the RI region rotates on the entire ERP, it may have overlap with the PF

or PF+ region in some frames. Those tiles in the RI that fall within the PF or PF+

region are treated as RI and coded using the intra-mode, in order to eliminate

the decoding error propagation caused by potential frame losses. The decoder

only decodes and updates the tiles in the PF, PF+, and RI regions. In the un-

coded regions, content from the latest decoded frames will be replicated. Other

more sophisticated error concealment methods can be incorporated in the future

to enhance the quality of these un-coded regions.

2.3 The Optimal Tile Size

In tile-based video coding, the tile size affects both the video coding efficiency

and transmission flexibility. Larger tile sizes provide higher coding efficiency.

However, it also leads to more unused areas outside the FoV and the bits for

coding those unused areas are wasted. Early work only explored this trade-off

for 1080p and 4K videos [31].

We conduct a similar experiment for the 8K resolution JVET 360◦ test videos

(the detail of the video coding set-up and the test sequences is described in

Sec. 3.6). The optimal tile size should minimize the total bit consumption of

all tiles needed to cover the FoV averaged over all possible viewports for a fixed

12

Figure 2.3: Total bit consumption under the same QP inside the FoV for 5 dif-
ferent tile sizes for 8K video. The horizontal axis indicates the number of pixels
in each side of the square tile. All the tiles are coded in the inter-coding mode
except the first frame. A constant QP=30 was used. The resulting WS-PSNR in
the FoV region are reported in the figure legends. Different color bars are results
for FoVs in different directions. The results are for sequence “Trolley", similar
trends are observed for “Chairlift".

quality. Fig. 2.3 illustrates the total bit rates needed when the tiles are coded

in the inter-coding mode at a constant quantization parameter (QP) to cover a

90◦ × 90◦ FoV for 5 different tile sizes. Generally, the number of tiles needed

differs depending on the viewport direction. We found for the 4 FoVs centered

on the equator, they achieve minimal bit rate consumption when using tiles of

size 512× 512 pixels, slightly better than using a tile size of 256× 256 pixels. For

the 2 FoVs facing the top or bottom directions, there are relatively more wasted

pixels in the boundary tiles. In this case, 256× 256 tile size is slightly better than

512 × 512. Given that a smaller tile size offers more granularity in varying the

sizes of RI and PF+, we choose 256 × 256 pixels as the tile size for the 8K video

sequences. Note that all coding experiments and streaming simulations in this

work are conducted using this tile size.

13

2.4 Quality-Rate Models

The proposed system adapts the region sizes and rates for each video segment (1

sec. long in our experiments) based on the expected quality-rate (Q-R) functions

in PF, PF+ and RI regions. The main challenge to model those Q-R relations is

that the FoV location and consequently the coded regions vary temporally on

the ERP. In this subsection, we first introduce the objective quality metric for the

360◦ video. Next, we model the “ideal” Q-R functions based on the coding ex-

periments on two standard 360◦ test videos. The “ideal" Q-R function for inter-

coding for a given FoV is determined by predicting the current frame from the

previous decoded frame, assuming the FoV is fixed over the entire video. Since

the FoV and hence the coded regions may change in each frame, some tiles may

be predicted from uncoded regions in the previous frame in real applications.

The quality of these uncoded regions depends on the time lapse since they were

last coded. We introduce the rate-increase factor to account for such time lapse

for temporal prediction. Furthermore, we use the quality-decay factor to model

the degraded quality of the non-coded tiles for the present frame.

2.4.1 Objective Quality Metric

Weighted-to-spherically-uniform peak-signal-to-noise ratio (WS-PSNR) is an ob-

jective quality metric to evaluate the 360◦ video recommended by JVET [32].

WS-PSNR is defined as:

WS-PSNR = 10 log10
MAXI

2

WS-MSE
, (2.1)

14

with

WS-MSE =
1

∑i,j w(i, j) ∑
i,j
[I(i, j)− K(i, j)]2w(i, j), (2.2)

where i, j is the coordinate of a pixel on the ERP frame, K(i, j) and I(i, j) are the

color intensity of the pixel (i, j) on the raw and the encoded ERP frames, respec-

tively. The weight w(i, j) = cos((i
m − 1

2)π) is a factor to model the geometric

distortion due to ERP projection along the pitch axis. To calculate the quality

of pixels inside an actual rendered FoV, we calculate WS-MSE of pixels inside

the projected FoV on the ERP and then derive the WS-PSNR of the FoV. This

metric is used to measure the rendered quality. The same method is applied to

calculate the quality of the PF, PF+, RI, or the remaining regions.

2.4.2 “Ideal” Quality-Rate Models For Different Coded Regions

Because the shapes and consequently the Q-R relations of the PF and PF+ re-

gions depend on the FoV location, we first empirically determine these Q-R re-

lations separately for six different FoV locations: front, left, right, back, top and

bottom. To model the “ideal” Q-R functions, we fix the FoV locations through

the entire sequences, so that all tiles in the regions are continuously updated

in each frame. We select two JVET 360◦ test sequences to represent different

video content: one stable video shot by a fixed camera and another dynamic

video captured by a moving camera. We conduct the coding experiments to de-

rive the Q-R functions for these videos. The reference HEVC Test Model (HM)

software [33] is used under JVET common test condition (CTC). Each tile in the

sampled PF and PF+ regions is encoded independently using low delay P (LDP)

configuration with IntraPeriod = -1, meaning only the first frame is I frame and

all the following frames are P frames. Each tile from the RI region is encoded us-

ing intra-only configuration with IntraPeriod = 1, meaning every frame is coded

15

as I frame. We determine the rate and the corresponding quality (WS-PSNR)

under four different quantization parameters (QP): 27, 32, 37, 42. Then, to gener-

ate the Q-R curve for a FoV region, we determine the tiles needed to cover this

FoV, and calculate the WS-PSNR for all the pixels inside the FoV and the total

bits of all tiles needed to cover the FoV, for each QP. Figures 2.4(a) and 2.4(e)

each shows six curves for the six sample FoV orientations. Here we assume the

FoV size is 90◦ × 90◦. The normalized bit rate (bits/degree2) is determined by

dividing the total bits by 90◦ × 90◦. We further determine the average “ideal"

Q-R curve for PF, by averaging the Q-R functions for the six FoVs, based on

their probabilities. From the statistics of the viewers’ FoV behavior [34], more

than 90% FoV centers are located in the range of equator±45◦. Therefore, we

assume that the probabilities for watching the front, left, right, back, top, and

bottom FoV are 0.2, 0.2, 0.2, 0.2, 0.1, 0.1, respectively. The average Q-R curves are

also shown in Fig. 2.4(a) and 2.4(e).

The PF+ region covers a border outside the PF region, and the number of tiles

needed to cover the PF+ region depends on the width of the border (in degree).

In our experiments, we set the border width to 10◦, 20◦, 30◦, 40◦, 50◦ (10◦ means

that the extended degree in each direction is 5◦). For each of the six FoV orien-

tations, we determine the WS-PSNR among pixels falling in the border region,

and count the total number of bits used by the tiles needed to cover the PF+

region, for each target PF+ size in degree. The normalized rate is determined by

dividing the total rate by the border size in square degree. For example, with

FoV size of 90◦ × 90◦, and border size of 10◦, the border area is approximated

by 100◦ × 100◦ − 90◦ × 90◦. The Q-R plots of the six FoV orientations and the

weighted average Q-R curve for the border width of 10◦ are shown in Figs. 2.4(b)

and 2.4(f). Figures 2.4(c) and 2.4(g) show the average Q-R curves for different

border widths. Note that the coding efficiency is higher for a wider border due

16

to the fact that lower percentage of pixels in the coded PF+ tiles are wasted in

such a case.

The RI region is coded using the intra-mode. The quality is the average WS-

PSNR of all pixels in a RI, while the rate is the total bits of all pixels in the RI

normalized to the average spherical area represented by RIs in different loca-

tions on the ERP. Fig. 2.4(d) and 2.4(h) show the average Q-R functions. Note

that the Q-R function is the same regardless the RI size, because all the tiles in a

RI are considered equally useful.

The normalized bit rate in the coding experiment and Fig. 2.4 is defined in

terms of bits/degree2, i.e. the number of bits needed to cover a unit area on the

sphere (the shape of FoV projection on ERP depends on the actual location of the

FoV). As shown in Fig. 2.4, we find that the weighted average Q-R curves for PF,

PF+ and RI regions can all be approximated well by the logarithmic model:

Q(R) = a + b log R. (2.3)

We will use QPF(R), QPF+(R) and QRI(R) to denote the “ideal" Q-R functions

for the PF, PF+ and RI regions, respectively. Similarly, aPF, bPF denote the pa-

rameters for QPF(R), aPF+, bPF+ for QPF+(R), and aRI, bRI for QRI(R). Since the

values of these parameters depend on the video content, we show the results of

two videos with different characteristics.

2.4.3 Rate-Increase Factor

The “ideal" Q-R models described in Sec. 2.4.2 are based on the assumption that

PF and PF+ never change their location over time, which is not true in actual

360◦ video viewing behavior. When the FoV changes between frames, a tile of

the PF (or PF+) region in the current frame may not be coded in the previous

17

frame, or even past several frames, as shown in Fig. 2.2. The coding time lapse

τ is defined as the frame distance from the frame that the tile was last coded

to the current frame. Generally in inter-coding, the accuracy of the temporal

prediction reduces when τ increases. In other words, more bits are required to

encode the frame at the same quality when τ is larger. Therefore, we define rate-

increase factor ρ(τ) to be the ratio of the rate needed for a given τ over the rate

for τ = 1 to achieve the same quality. Note that generally ρ(τ) depends on the

QP and the video content under the same τ.

In order to model ρ(τ), we code the testing videos using fixed QPs with

different time lapses to measure the additional bits needed to achieve the same

video quality. Fig. 2.5 shows the measured ρ(τ) for QP = 22, 27, 32, 37 for two

testing videos. As shown in the figure, the rate-increase factor can be well fitted

by a reverse exponential decay function:

ρ(τ) = 1 + c
(

1 − e−d(τ−1)
)

. (2.4)

The parameters c and d depend on the QP and the content.

To achieve a given quality Q, the rate needed when τ = 1 is given by the

“ideal” rate R(Q) determined using the “ideal” Q-R models of the PF or PF+

region. The rate corresponding to other τ is given by

R̃(Q; τ) = ρ(τ)R(Q). (2.5)

In reality, the time lapse of tiles are temporally and spatially variant due to the

FoV dynamics. To adapt the coding rates and the region sizes at the beginning

of each video segment, we adjust the Q-R functions derived in Sec. 2.4.2 for the

PF and PF+ regions based on the distribution of τ in the previous segment as

18

follows:

R̃(Q) =

(
∑
τ

p(τ)ρ(τ)

)
R(Q), (2.6)

where p(τ) is the probability of τ measured among all the tiles in the PF or PF+

region in the previous segment.

2.4.4 Quality-Decay Factor

As shown in Fig. 2.2, the PF, PF+, and RI regions may not cover the entire actual

FoV. For a tile in the actual FoV that is not be coded and updated, it will remain

the same as when this tile was last coded. The rendered quality depends on how

long ago (time lapse τ) when it was last coded, and also the quality of the last

coded tile. We define quality-decay factor κ(τ) as the ratio of the quality of such a

tile after time lapse τ over the quality of the last coded tile.

In our experiments, we estimate the decay factor through simulation. For

a given video sequence and a given QP, for each frame, we use the WS-PSNR

derived from the “ideal" experiment described in Sec. 2.4.2 as the WS-PSNR

with τ = 0, denoted as WS-PSNR(0). For the following τ-th frame, we cal-

culate the WS-PSNR between the coded first frame and the raw τ-th frame,

represented by WS-PSNR(τ). The quality-decay factor is defined by κ(τ) =

WS-PSNR(τ)/WS-PSNR(0). We repeat this experiment using each of the first

200 frames in each of the two videos as the initial frame, and use the average de-

cay factors for all the 200 samples as the decay factor for the given τ. We repeat

this process for τ between 1 and 100 to determine the κ(τ) function. As shown

in Fig. 2.6, the quality-decay factor can be well fitted by a modified exponential

decay model:

κ(τ) = e−gτh
. (2.7)

19

Note that the values of g and h also depend on the video content and QP. For a

given rate, if the quality of the tile when it was last coded is Q(R), the quality of

the rendered tile that is τ frames away is determined by

Q̃(R; τ) = κ(τ)Q(R). (2.8)

2.5 Optimizing Rate Allocation and Region Sizes

2.5.1 Expected Video Quality

The perceived quality of a rendered pixel depends on the coding region it falls

in. Let αPF denote the probability that a rendered pixel is in the PF region with-

out overlapping with the RI region, to be called the hit rate of the PF region.

Similarly, αPF+ and αRI denote the probabilities that a rendered pixel is in the

PF+ region (without overlapping with RI) and the RI region, respectively. Ob-

viously αPF, αPF+, and αRI depend on the accuracy of FoV prediction. αPF+ and

αRI also depend on the sizes of the PF+ and the RI regions.

When a pixel in the actual FoV falls in the PF, PF+, or RI region, with the

probability αPF, αPF+, and αRI, respectively, it is decoded with quality QPF(Re),

QPF+(Rb) and QRI(Rb), correspondingly. For pixels not covered by these re-

gions, they repeat the content last decoded. The quality for such a pixel is de-

noted as κ(τ)Qlast, where τ is the time lapse (frame distance) since it was last up-

dated and Qlast is quality when last coded, as explained in Sec. 2.4.4. Generally,

τ is varying in both space and time, and Qlast can be either QPF(Re), QPF+(Rb) or

QRI(Rb). In practice, since the rendered pixels have very small chance to fall in

the un-coded region (lower than 1% in our simulations), we can use the worst-

case κminQRI(Rb) to conservatively estimate its quality, where κmin = κ(τmax),

20

with τmax being the full-ERP intra-refresh time (inversely proportional to the RI

size). Hence, the rendering quality of the actual FoV can be written as

Q1 =αPFQPF + αPF+QPF+ + αRIQRI

+ (1 − αPF − αPF+ − αRI)κminQRI.
(2.9)

Q1 is the quality at the receiver when all the coded bits for this frame arrive

in time. When the bits for a frame arrive later than its display deadline, the

previously decoded frame is simply repeated and we can conservatively esti-

mate the average quality as Q2 = κminQRI. Let γ denote the frame delivery rate,

which is the probability of in-time delivery. The overall expected quality can be

expressed as

Q̄(Rb, Re, APF+, ARI) = γQ1 + (1 − γ)Q2

= γ(αPFQPF(Re) + αPF+QPF+(Rb) + αRIQRI(Rb))

+ (1 − γ(αPF + αPF+ + αRI))κminQRI(Rb),

(2.10)

where APF, APF+, and ARI are the sizes of the PF, PF+, and RI region (in unit of

the square degree), respectively. Note that αPF+ and QPF+(R) depend on APF+,

and αRI is determined by ARI. Therefore, Eq. (2.10) is a function of APF+, ARI,

Re, and Rb, for a given FoV prediction accuracy characterized by αPF, and the

frame delivery rate γ.

2.5.2 Optimization Problem Formulation and Solution

Given the target bit budget Bt of a frame, the region sizes APF, APF+, and ARI

and the corresponding normalized rates Rb and Re need to satisfy:

λPFAPFRe + (λPF+APF+ + ARI)Rb ≤ Bt, (2.11)

21

where λPF is the average ratio of tiles in the PF and not covered by the RI region,

and λPF+ is the same for the PF+. Both ratios are estimated by dividing the

number of the RI tiles by the number of all tiles on the ERP frame.

Since the PF size is fixed, the goal is to find the optimal region size combi-

nation (APF+, ARI) and corresponding rates (Rb and Re) to maximize the quality

shown in Eq. (2.10) subject to the target bit budget constraint in Eq. (2.11). Gen-

erally, αPF+ and αRI increase with larger APF+ and ARI, and κmin also increases

with larger ARI. However, the rates Re and Rb decrease with larger APF+ and

ARI due to the target bit budget constraint.

To simplify the practical system setting, we limit the possible sizes of the

PF+ and the RI within a finite candidate set. For each possible combination of

the PF+ and RI size, only Re and Rb in Eq. (2.10) are the free variables. Given

that the optimal solution lies when the bit budget is met exactly in Eq. (2.11), we

have Rb = (Bt − λPFAPFRe)/(λPF+APF+ + ARI). Then, the optimal Re can be

derived by setting ∂Q̄
∂Re

= 0. We apply the log Q-R model introduced in Sec. 2.4.2

and get the analytical solution as:

Re =
X

X + Y
Bt

λPFAPF
, Rb =

Y
X + Y

Bt

λPF+APF+ + ARI
, (2.12)

where

X = γαPFbPF,

Y = γαPF+bPF+ + γαRIbRI + κminbRI

−γκminbRI(αPF + αPF+ + αRI).

We enumerate all possible region sizes and the corresponding optimal rate com-

binations to find the optimal combination maximizing Q̄.

22

Figure 2.4: Q-R models for “Trolley” (a)-(d) and “Chairlift” (e)-(h). (a)(e): WS-
PSNR vs. normalized rate for the PF regions of six viewing orientations, and
the averaged WS-PSNR vs. normalized rate. (b)(f): WS-PSNR vs. normalized
rate for the PF+ regions when its size is 10◦. (c)(g): the averaged WS-PSNR vs.
normalized rate for different PF+ region sizes. (d)(h) WS-PSNR vs. normalized
rate for the RI region.

23

Figure 2.5: The rate-increase factor to maintain the same quality as a function
of the time lapse between the inter-coded frame and the reference frame. Left:
“Trolley", fixed camera. Right: “Chairlift", moving camera.

Figure 2.6: The quality-decay factor of pixels due to frame copy as a function
of the time lapse between the last-coded frame and the current frame. Left:
“Trolley", fixed camera. Right: “Chairlift", moving camera.

24

Chapter 3

Frame-level FoV-adaptive 360◦ Video

Interactive Streaming with Rate and

Region Size Adaptation

3.1 Introduction

Based on our frame-level FoV-adaptive 360◦ video coding structure with spa-

tial and temporal prediction, we further design a streaming system with region

size and rate adaption to maximize the quality and minimize the frame freeze

and delay. We design a push-based frame delivery scheme with short sender

and receiver buffers to avoid self-congestion. The streaming system adjusts the

frame-level bit budget in real-time and controls sender buffer overflow, to maxi-

mize the frame delivery rate before the display deadline. The streaming system

periodically adapts the sizes and the target normalized bit rates of different cod-

ing regions at the segment level, based on the predicted network bandwidth and

25

FoV prediction accuracy, guided by the developed Q-R models. Accurately pre-

dicting the FoV and the bandwidth is critical for FoV-adaptive 360◦ video inter-

active streaming. We develop LSTM-based deep learning models for frame-level

FoV prediction and segment-level bandwidth prediction, respectively. The FoV

and bandwidth prediction modules in the streaming system can be replaced by

more powerful prediction algorithms in the future.

In this chapter, Sec. 3.2 presents the push-based FoV-adaptive streaming sys-

tem. Sec. 3.3 and Sec. 3.4 describe the deep learning models used for bandwidth

prediction and FoV prediction. The adaptation of region size and rate alloca-

tion at the segment level and the bit budget adjustment at the frame level are

then presented in Sec. 3.5. Sec. 3.6 explains the setup of the trace-driven simula-

tions, describes the evaluation metrics, and compares system performance with

benchmarks using intra- or inter- coding.

3.2 Proposed Streaming System Overview

The proposed 360◦ video interactive streaming system uses the “server push" so-

lution, where the server (or Sender as in Fig. 3.3) controls the schedule of video

coding and packet sending. The system predicts the network bandwidth (B̃t)

and region hit rates (αPF, αPF+, αRI) for each segment at the beginning of encod-

ing the segment (each segment is 1 second long including 30 frames in our ex-

periments), based on the network throughput and the FoV history continuously

fed-back by the receiver. Using the estimated bandwidth and region hit rates,

the system performs the optimization described in Sec. 2.5 to calculate the sizes

and average rates of the RI and PF+ regions for this segment. The video frames

in the segment are sequentially coded. The bit stream for each encoded frame

is appended to the end of the sender buffer if the buffer is not full, as indicated

26

by Process 1 in Fig. 3.3. If the sender buffer reaches its maximum capacity Bmax,

this newly encoded frame will be dropped to reduce the accumulated delay. We

set Bmax = 10 frames in simulations. The server keeps pushing out as many

frames as possible in the sender buffer to fully utilize the available bandwidth,

as shown in Process 2 in Fig. 3.3.

Each newly received frame is decoded using the current reference frame in

the receiver and appended to the end of the display buffer, as indicated by Pro-

cess 3 in Fig. 3.3. The reference frame on the receiver will be updated to this

newly decoded frame. Even if a frame arrives later than its display deadline,

the receiver still decodes it to update the reference frame to avoid any possible

mismatch with the encoder.

The display checks the front of the display buffer every 1/3 frame interval.

If the next decoded frame exceeds the maximum display delay (20 frames in

our experiments), it will be dropped and the display checks the next frame in

the display buffer until a frame meets the display deadline. The viewport will

be rendered and displayed for each timely, shown as Process 4 in Fig. 3.3. If

there is no frame in the display buffer or all frames in the buffer are too late to

display, the last displayed frame will be repeated, leading to video freeze. Note

that in our trace-driven simulations, we assume encoding each frame takes a

constant 33.3ms and decoding a frame takes 11.1ms (33.3ms = 1 frame interval

for the 30fps test videos). The reported frame delays in Table 3.1 are already very

low (average < 100ms), and can be further shortened when a faster encoder or

decoder is available.

27

3.3 Frame-Level FoV Prediction

The performance of FoV-adaptive 360◦ video streaming highly depends on the

FoV prediction accuracy. Multiple time series prediction methods have been

applied on this topic in previous works, e.g. linear regression, weighted linear

regression, truncated linear prediction [7,9,11], and deep-learning (DL) methods

[35–38]. Although most methods predict the short-term FoV (within the future

1 second) well with the accuracy of more than 90% [11] [37], DL-based methods

still outperform conventional methods especially when the prediction horizon

is long [35].

We use the popular long short-term memory (LSTM) architecture, which is

one of the most suitable neural networks to make predictions based on time

series data. The input to the LSTM model consists of the FoV center locations

described by Cartesian coordinate (x, y, z) over the past 30 frames. Note that

we choose not to use the (yaw, pitch) angles to avoid the issue of 2π periodic-

ity of yaw. The hidden states corresponding to each future frame are mapped

to the predicted FoV center locations through two fully connected layers. The

predicted location for each new frame is recursively fed to the input for the next

frame time, until the desired prediction horizon is reached. We experimented

with LSTM models with single, two, and three fully connected LSTM layers.

We find the networks with two or three LSTM layers achieve similar prediction

accuracy in terms of the FoV hit rate, while they both outperform the single

layer model. Therefore, we adopt a model with two LSTM layers and the model

structure is shown in Fig. 3.1. The two LSTM layers have 128 and 64 hidden

units, and the two fully connected (FC) layers contain 64 and 30 hidden units,

respectively. This simple structure provides sufficiently accurate results for the

28

short prediction horizon of interests (typically under 300 ms or 10 frames), while

enjoying relatively low computational complexity.

We use the FoV hit rate to evaluate the prediction accuracy, which is de-

fined as the overlapping ratio of the predicted FoV and the ground truth FoV

on the unit sphere. We train our model using the FoV trace data from [39]. We

choose 20% of the traces as the testing set (including the traces used in the sys-

tem simulation). Then we split the remaining traces into a training set (80%)

and a validation set (20%). We choose the model’s hyper-parameters to maxi-

mize the FoV hit rate on the validation set. Figure 3.2 shows the FoV hit rate

on the test set. Compared to the truncated linear prediction method used in our

preliminary study [9], which uses the last few past samples among a maximum

number of past samples that can be approximated well by a linear function to

predict a future sample, the LSTM model is significantly more accurate.

3.4 Segment-Level Bandwidth Prediction

Bandwidth prediction is critical to the performance of rate-adaptive streaming

systems. Many methods have been proposed to predict the network bandwidth

in prior works, including Harmonic Mean [40], Recursive least square (RLS) [41],

Random Forest [42], and Hidden Markov Model [43]. More recently, deep learn-

ing models (including LSTM-based) have shown advantages over prior meth-

ods [44–46].

In our streaming system, we predict the average sustainable throughput

from the sender to the receiver over the next segment time (1 sec.) at the be-

ginning of the new segment, based on the measured throughput at the intervals

of 200ms in the past three segments (3 sec.) returned by the receiver. We use a

LSTM sequence-sequence model, with a structure very similar to that for FoV

29

Figure 3.1: The LSTM model for FoV prediction, numbers of hidden units are
indicated in layer blocks.

Figure 3.2: Hit rate of predicted FoVs, using the LSTM model and the Truncated
Linear predictor, on the testing data. Error bar: 3× standard error of the mean
(SEM).

30

prediction shown in Fig. 3.1, but with different numbers of hidden units in each

layer. The bandwidth prediction model has two LSTM layers with 96 and 64 hid-

den units, followed by two FC layers with 64 and 5 hidden units, respectively.

Note that we use the average throughput over a 200ms window as the input

feature at each time step, hence, the model has 15 input samples. The model

recursively predicts the throughputs for the five consecutive 200ms windows in

the next second. The sum of these five predicted throughputs is the predicted

total throughput for the next second, B̃t.

We train our model using the LTE packet traces collected in [41]. We choose

a trace named “att-downlink" as the testing trace and it is used in the following

simulation experiment. The remaining traces are divided into overlapping 4 sec.

long short sequences, and 80% of the short sequences from each trace are used to

form the training set, and the remaining 20% are used for validation. We choose

the model’s hyper-parameters and input window length (among 1 sec., 3 sec.

and 5 sec.) based on the prediction errors on the validation set. The window

length of 3 sec. was found to perform slightly better than the other choices.

We compare the performance of our model with RLS [41] using Mean Ab-

solute Percentage Error (MAPE) and normalized Mean Absolute Error (nMAE),

defined as

MAPE =
1
T ∑

t
min

(∣∣B̃t − Bt
∣∣

Bt
, 1.0

)
, (3.1)

nMAE =
∑t
∣∣B̃t − Bt

∣∣
∑t Bt

, (3.2)

where Bt and B̃t are the actual and the predicted bandwidth at segment t, respec-

tively. MAPE calculates the relative error at each segment and it is more mean-

ingful for our segmentation-level rate-adaptive streaming. We cap the relative

error to 1.0 to prevent the large error resulting from when the actual bandwidth

31

is very small to dominate the reported performance.

Compared to RLS, the MAPE of the proposed model is reduced from 21.1%

to 18.9% on our testing trace, while the nMAE of the proposed model is also

dropped from 14.1% to 13.7%.

3.5 Adaptation of Coding Rates and Region Sizes

We first determine the target bandwidth budget for the next segment based

on the predicted available bandwidth for the segment and the current sending

buffer occupancy. Then, we calculate the target sizes and bit rates of differ-

ent regions (PF, PF+, and RI) for all frames in the next segment by maximizing

the expected video quality of the segment formulated in Eq. (2.10), using the

method described in Sec. 2.5.2. The system measures the average FoV hit rates

of different regions and the frame delivery rate of the current segment and as-

sume the FoV hit rate and frame delivery rate remain unchanged when solving

the optimization problem for the next segment. The system also calculates the

time lapse distribution p(τ) in the current segment to determine the average

rate increase factor using Eq. (2.6) and correspondingly adjust the Q-R functions

derived in Section 2.4 for the next segment. Specifically,

1. Calculate the τ distribution of tiles in PF regions in the previous segment.

2. Locate the quality and rate values for each of the 4 QP values on the origi-

nal average Q-R functions in Figure 2.4.

3. For the rate in each sample point, calculate the rate-increase factor for each

τ value using equation (2.4) and hence the adjusted rate. Then determine

the average rate among all possible τ’s based on the distribution of τ. This

will form a new Q-R point, where Q is the same as before, but R increased.

32

Figure 3.3: The proposed streaming system.

4. Use the new Q-R points to fit a new average Q-R

The adjustment for the Q-R functions of PF+ region with variable region sizes

can be done similarly.

3.5.1 Assigning the Total Bit Budget for a Segment Considering

Sending Buffer Status

The packet can be occasionally backlogged in the sender buffer over time be-

cause of the error of the segment-level bandwidth prediction and the fluctuation

of the actual network bandwidth within a segment. To avoid those packets from

accumulating in the sending buffer, once we have the predicted bandwidth for

next segment s, obtained using the bandwidth prediction method described in

Sec. 3.4, we calculate the target bit budget by subtracting the bits qs currently left

in the sender buffer from the predicted bit budget of the segment b̂s. Moreover,

the bandwidth utilization ratio η is applied to further lower the probability of

exceeding the actual network capacity. Experimental work on real LTE traces

shows that this probability can be kept lower than 5% by setting η <= 66% [41].

33

The target bit budget to encode segment s is

bs = η(b̂s − qs). (3.3)

3.5.2 Frame-level Bit Budget Update

The bandwidth can be unstable within a segment, especially over the LTE or 5G

wireless connection. The bandwidth prediction model in Sec. 3.4 only predicts

the total bit budget inside a segment, so a more detailed adjustment at the frame

level is necessary. The system adapts this frame-level bit budget by checking the

space left in the buffer and the remaining bit budget of the segment. Each seg-

ment contains N frames (N = 30 in our simulation), on average n
N bs bits should

have been used at the time of coding the n-th frame in the segment (n = 0 for the

first frame). However, the actual bits already used S(n) in this segment when

coding the n-th frame could differ from this average. The streaming strategy

is designed to be conservative to reduce the risk of freeze and high delay, by

setting the remaining bit budget in the segment when coding the n-th frame as

bs(n) = bs − max
(

S(n),
n
N

bs

)
. (3.4)

The system further adjusts the rate of the n-th frame based on the sender buffer

occupation B(n). If the sender buffer is full (B(n) = Bmax), this frame would

not be coded or transmitted. If the buffer is nearly full, the target rate should be

reduced from the average rate bs(n)
N−n . The target rate to code the n-th frame when

the buffer is not full is determined by

Bt(n) =
bs(n)
N − n

a exp(−bB(n)/Bmax), (3.5)

34

where a and b are parameters that can be adjusted empirically. We choose a =

1.20, b = 1.00, and Bmax = 10 frames in our simulations.

3.6 Trace-Driven Simulation Results

3.6.1 Test Sequences, Bandwidth and FoV Traces

We performed trace-driven simulations to evaluate the proposed coding and

streaming system using real viewers’ FoV traces and LTE network bandwidth

traces. The LTE bandwidth traces are derived from the packet arrival time se-

quences collected in the real world as described in [41]. To challenge our system,

we run the simulation on a dynamic network trace (500 sec. long) with band-

width variance over mean ratio std/mean = 0.673, as shown in Fig. 3.4. This

trace includes periods where the bandwidth is high, low, and has sudden drops.

To match the rate range for the 8K testing video, we scale up the range of our

LTE bandwidth traces to have an upper-bound of 200 Mbps, which is realistic

under future 5G networks. We set the one-way propagation time to 15ms in our

simulations, which is typical for the network delay within the US [47].

We use two JVET 360◦ test sequences in 8K ERP format, “Trolley” and “Chair-

lift” [32], to evaluate the performance of our proposed and other benchmark

streaming systems. “Trolley” contains a stable scene where the background is

stationary, while “Chairlift” shows a more dynamic scene with a dynamic back-

ground. Each sequence has 300 frames in YUV 4:2:0 format with the resolution

of 8192×4096 at 30 frames per second. The bit-depths of “Trolley” and “Chair-

lift” are 8 and 10 bits, respectively.

We assume the category of the video content (e.g., fast-changing scene shot

35

Figure 3.4: The top plot: the LTE bandwidth trace collected in real world (500
second long); Other plots: various performance indices within a short time du-
ration (90 second - 190 second). Horizontal axis is in unit of second.

by a moving camera, or stable scene captured by a fixed camera) can be deter-

mined before or at the beginning of a video streaming session, and the param-

eters for the Q-R models for different categories can be pre-determined. Using

these predetermined parameters, the system can perform rate and region size

adaptation as introduced in Sec. 2.4 and 2.5. To handle the situation where the

video scene category changes dynamically within a streaming session, some au-

tomatic ways to periodically updating the scene category need to be developed.

Furthermore, we use the Q-R models introduced in Sec. 2.4 and 2.5 to deter-

mine the quality of each tile given the rate allocation, instead of doing the actual

video coding and decoding. For each frame, the simulation system updates a

table recording the time lapse and the quality of each tile when the tile was last

coded. As introduced in Sec. 2.4.3, the actual bit rate to inter-code a tile is in-

creased from the target rate by the rate increase factor ρ(τ) based on the time

36

lapse τ. To calculate the WS-PSNR of each tile in the displayed FoV of each

frame, we use the recorded time lapse and the quality when it is last coded to

determine its current quality by using the quality decay factor κ(τ) introduced

in Sec. 2.4.4.

Since each JVET test sequence only has a duration of 10 seconds, it is not

reasonable to collect viewers’ FoV trace only for such a short time period (it

will be highly affected by the default initial FoV). Therefore, we choose two

groups of representative traces from open-source FoV trace datasets [39, 48] for

360◦ videos. For the stable-scene video “Trolley”, we choose the traces col-

lected by [39] where participants watched a video shot by a fixed camera named

“Weekly Idol-Dancing”. For the dynamic-scene video “Chairlift”, we choose the

traces collected by [48] where participants watched a video captured by a mov-

ing camera named “GoPro VR-Tahiti Surf”. To remove the random jitters in the

raw collected traces, we apply Kalman filtering to the raw traces and use the

smoothed traces in our simulations. Since the bandwidth trace is longer than

the FoV trace, we extend each FoV trace by appending the temporally flipped

FoV trace to itself repeatedly to match the length of the bandwidth trace. The

reported results in Table 3.1 are the average results from simulations using 48

users’ FoV traces, each of which is repeated to a duration of 500 seconds.

3.6.2 Streaming System Benchmarks

We also simulated three tile-based state-of-art streaming systems as the bench-

marks for comparison, where BM1 and BM2 use intra-coding for all frames, and

BM3 uses inter-coding. BM1 follows the coding strategy in [22], which intra-

codes and sends non-overlapped vertical slices centered at the predicted FoV

center in each frame. The vertical slices cover a 140◦ × 180◦ region on the ERP

37

map while the actual FoV is 90◦ × 90◦. Note that such vertical slices cannot fully

cover the FoV when the FoV was facing the poles (up and down). BM2 uses

the same tile size as our proposed system, but it codes all tiles in both PF and

PF+ regions only using intra-coding. For BM2, the size of PF+ is fixed to cover a

50◦ border around the PF. Finally, BM3 applies inter-coding with periodic intra-

frames. Rather than using rotating intra regions in the proposed system, BM3

codes the entire ERP of the first frame in each segment as the I frame. The re-

maining frames in the segment are inter-coded in both PF and PF+ regions with

the same rate, and the size of the PF+ region is also fixed to cover a 50◦ border.

We use the Q-R models derived for the RI region (use intra-coding) to determine

the WS-PSNR of coded tiles for BM1, BM2, and the I frames in BM3 for a given

rate. We apply the Q-R models derived for the PF region (use inter-coding) for

the inter-coded regions in BM3. For BM3, the ratio of the I-frame bit rate and P-

frame rate is assumed to be equal to the average ratio measured from the actual

coding experiment over a range of QP. The normalized rate for the P-frame is

set so that the total bits for coding the I-frame and all P-frames in each segment

is equal or below the target rate budget. For a fair comparison, all benchmark

systems share the same elements with our proposed system, including the same

bandwidth and FoV prediction algorithms, the same segment- and frame-level

bit rate adjustments, and the same quality-decay model to calculate the quality

of the un-coded region in the displayed FoV.

3.6.3 Evaluation Metrics

We evaluate each streaming system on each test video and report the average

values of various metrics resulting from using the 48 extended FoV traces. Those

metrics include the average frame delay and delay standard deviation (STD),

38

the freeze frequency and duration, and the average rendering quality (average

WS-PSNR of all pixels in the actual viewport) of all displayed frames. We also

measure the spatial and temporal quality variation, since these quality disconti-

nuities can affect the perceptual quality. The temporal quality discontinuity is the

mean absolute difference between the rendering qualities of every two adjacent

frames. To calculate the spatial variance of each frame, we measure the mean ab-

solute difference between the rendering qualities of each tile and its neighboring

tiles in the displayed FoV. Then the spatial quality discontinuity is the average of

such spatial variance over every displayed frame.

3.6.4 Evaluation Results

The PF region is set to cover an FoV size of 90◦ × 90◦. The streaming system

adapts the sizes of FP+ and RI regions from the candidate sets. The candi-

date sizes of PF+ are {10◦, 20◦, 30◦, 40◦, 50◦}, while the candidate sizes of RI are

{4, 8, 16, 32, 64} tiles.

In Fig. 3.4, the first plot is the entire bandwidth trace of 500-second duration

we experimented on. The following plots are for a portion of the entire trace

to show the details. From the bandwidth and the FoV traces, we can see the

LSTM-based segment-level bandwidth prediction and the frame-level FoV pre-

diction is very accurate, especially when the trace does not have random sudden

changes. The accurate predictions lead to the high PF hit rate and the high frame

delivery rate. From the traces of the region rates and sizes, we can see our pro-

posed streaming system is able to adapt those parameters based on the FoV and

bandwidth dynamics. Specifically, we observe that the system tends to choose

small RI and PF+ regions when the recent FoV predictions are mostly accurate,

while it tends to use larger RI and PF+ region sizes when the recent prediction

39

accuracy drops. When the bandwidth suddenly drops to extremely low, we

see the predicted bandwidth needs time to converge to the correct bandwidth.

During the transient period, the frame delay increases, the frame delivery rate

drops, and a larger RI size is used to increase the refresh frequency of the entire

ERP. Note that better prediction algorithms can shorten this response time.

We compare the performance of the proposed and three benchmark systems

using the metrics introduced in Sec. 3.6.3. We report the average values over 48

users’ traces for “Trolley" and “Chairlift" in Table 3.1. Compared with BM1 and

BM2 using intro-coding only, we observe that the WS-PSNR of our proposed

system is significantly higher (6-10dB higher), because the proposed system uses

the region size/rate-adaptive inter-coding instead of using intra-coding only in

the compared systems. However, those adapted rates of PF and PF+ regions

bring a slightly higher spatial quality discontinuity (0.1-0.2dB higher) as a com-

promise. We observe BM2 leads BM1 in terms of the WS-PSNR because BM2’s

tile structure (same as the proposed) is finer and more flexible than BM1’s ver-

tical slice structure. When the PF center is close to the equator, this finer tile

structure allows the system to generally encode and transmit a smaller area sur-

rounding the predicted FoV. When the PF center is close to the north or south

pole, systems using the tile structure are able to encode all tiles needed to cover

the predicted FoV, while the fixed-width vertical slice of BM1 cannot cover the

FoV horizontally spanned across the ERP, which also leads to a low FoV hit rate

of BM1. BM1, BM2, and the proposed system achieve similar good performance

in terms of the average frame delay (< 100ms with low variance), the probabil-

ity of freeze (< 0.15%), and the duration of freeze (< 1 frame time), because

they share the same proposed bandwidth prediction and bit budget allocation

algorithms. However, due to the variable bit rates of frames inside each seg-

ment brought by the varying coding time lapses, one small compromise of the

40

Trolley
Metric BM1 BM2 BM3 Prop. Simp.
WS-PSNR in FoV (dB) 36.17 38.23 44.25 48.41 48.35
Temporal discontinuity (dB) 0.236 0.204 0.298 0.229 0.255
Spatial discontinuity (dB) 0.274 0.002 0.005 0.203 0.397
Average frame delay (ms) 89.04 89.05 119.02 90.95 90.72
Delay STD/Average 0.272 0.272 0.467 0.308 0.311
Percentage of freeze frames (%) 0.093 0.093 0.527 0.116 0.113
Average freeze duration (ms) 11.12 11.12 47.48 20.92 20.74
Display interval average (ms) 33.36 33.36 33.41 33.37 33.37
Display interval STD (ms) 11.93 11.92 19.07 12.46 12.49
Average hit rate, PF (%) N/A N/A N/A 91.48 91.50
Average hit rate, PF+ (%) N/A N/A N/A 7.04 7.55
Average hit rate, RI (%) N/A N/A N/A 0.87 0.88
Average hit rate, total (%) 54.33 99.86 99.90 99.39 99.93

Chairlift
Metric BM1 BM2 BM3 Prop. Simp.
WS-PSNR in FoV (dB) 37.19 38.69 42.92 45.34 45.29
Temporal discontinuity (dB) 0.177 0.146 0.277 0.159 0.177
Spatial discontinuity (dB) 0.192 0.001 0.006 0.199 0.274
Average frame delay (ms) 89.04 89.04 108.29 94.05 93.73
Delay STD/Average 0.270 0.270 0.392 0.312 0.309
Percentage of freeze frames (%) 0.087 0.086 0.289 0.115 0.112
Average freeze duration (ms) 11.11 11.11 41.47 30.23 24.49
Display interval average (ms) 33.36 33.36 33.39 33.36 33.36
Display interval STD (ms) 11.93 11.92 19.07 12.91 12.86
Average hit rate, PF (%) N/A N/A N/A 91.03 91.08
Average hit rate, PF+ (%) N/A N/A N/A 6.97 7.62
Average hit rate, RI (%) N/A N/A N/A 0.97 0.95
Average hit rate, total (%) 78.35 99.52 99.65 98.97 99.65

Table 3.1: Streaming System Evaluation on Trolley (fixed camera) and Chairlift
(moving camera).

41

proposed system is the slightly higher delay and freeze. Since the proposed sys-

tem predicts the time lapse distribution in the new segment based on that in the

previous segment, the prediction is not accurate for a segment when the FoV dy-

namics changes. This would increase the chance that the actual bit rate is higher

than the allocated rate, leading to slightly increased frame delay and freezing

probability.

Compared with BM3 using inter-coding, the proposed system achieves a sig-

nificantly lower probability of freeze (60-78% lower) and frame delay (14-28ms

lower), because BM3 uses the traditional GOP coding structure which experi-

ences periodic rate spikes when coding the I-frame in each segment. The pro-

posed system also has 2-4dB higher average WS-PSNR than BM3, because the

proposed system optimizes the sizes and rates of PF and PF+, and codes fewer

tiles using the intra-mode (determined by the adapted RI size and rate).

To evaluate the benefit from adapting the region sizes, we also simulate a

“simplified system", which uses fixed PF+ size of 50◦, and fixed RI size of 4 tiles,

which is noted as “Simp." in Table 3.1. We can see the performance degradation

from the proposed to the simplified system is very small. Therefore, this sim-

plified system might be more preferable for practical adoption, especially for

low-power mobile devices.

Our preliminary experiments reported in [49] used truncated-linear FoV pre-

diction and RLS bandwidth prediction. Compared to the results in [49], the cur-

rent system using LSTM-based bandwidth prediction reduces the average frame

delay by about 3-5ms and decrease the percentage of freeze frames by 60-70%,

and the total freeze duration by 10-15 ms. Meanwhile, the LSTM-based FoV

prediction leads to increased FoV hit rate (about 1% higher), which in turn re-

sults in better rendered quality (about 0.1dB increase in WS-PSNR). Note that

although the LSTM-based FoV prediction provides significant improvement in

42

FoV hit rate in long-term prediction as shown in Fig. 3.2, the proposed system

enjoys short frame delay and typically only needs to predict the FoV of future

3-5 frames, for which the gain from the LSTM-based FoV prediction is limited.

43

Chapter 4

Octree-based Scalable Point Cloud Ge-

ometry Coding with Learned Entropy

Model and Resolution Enhancement

4.1 Introduction

We first introduce our novel entropy coding method for the octree-based geom-

etry coding. For each non-empty parent node, to predict the probability that

each of its 8 children nodes is occupied , we form an initial “noise” context cube.

For example, if we use a context that includes 5 × 5 × 5 parent nodes (k = 5),

the context cube will include 10 × 10 × 10 children nodes. The nodes that have

been coded in the context cube will have context values of either 1 (occupied) or

0 (empty), nodes that have not been coded will have context values of 0 if they

correspond to empty parent nodes, and finally the uncoded nodes that corre-

spond to occupied parent nodes will be assigned a value of 0.5. We then apply

a 3D convolution-based neural network to denoise the values in the cube and

44

use the output values of the denoised cube at the center 2 × 2 × 2 voxels as the

predicted probability. As with G-PCC, we code the non-empty nodes from the

top level of the octree to the next level, sequentially, naturally yielding a scalable

bit-stream.

On the decoder side, if the received bit-stream only includes a partial rep-

resentation of the full octree, corresponding to a coarse (lossy) representation

of the original point cloud, we further propose a 3D convolution-based neural

network to upsample the reconstructed point cloud. We have found that such

upsampling at the decoder side can significantly improve the quality of the re-

constructed point cloud.

In addition to fully convolutional models, we also develop alternative prob-

ability estimation and upsampling models with significantly less complexity

while maintaining comparable coding efficiency. We train our proposed and

baseline models on a subset of ShapeNet [50], and evaluate the performance on

the 8iVSLF dataset recommended by MPEG [51]. Compared with G-PCC [26]

(using a handcrafted entropy model) and VoxContext-Net [27] (using a machine

learning method), our method saves around 80% bits for achieving the same

reconstruction quality during lossy compression (by stopping before the final

octree level), or saves around 30% bits when the point cloud is losslessly coded.

A key advantage of our work from the prior related studies is that our octree-

based entropy coding model is naturally scalable. The bitstream can be orga-

nized into segments, where each segment corresponds to an octree level. Hence,

decoding an octree level only requires the information from the earlier part of

the bitstream. This scalable coding setting benefits the future design of stream-

ing systems, enabling the streaming system to dynamically change the delivery

rate based on the channel conditions. It would also enable the streaming sys-

tems to perform intelligent prefetching and correction. For example, the system

45

may prefetch future video segments at a lower rate to prevent freeze, and fetch

additional bits to enhance the quality of the prefetched version at a later time

when more bandwidth is available.

In this chapter, we first summarize the related works on point cloud com-

pression in Sec. 4.2. Then, we present our proposed methods for point cloud ge-

ometry coding in Sec. 4.3, including our notation and basic ideas, the conditional

probability estimation model through denoising a “noisy" context cube, and the

resolution enhancement model of decoded point clouds. Next, we demonstrate

our experimental results in Sec. 4.4, including the comparison with benchmark

systems and ablation studies.

4.2 Related works

The point cloud compression (PCC) methods in the literature can be catego-

rized into two classes: video-based (V-PCC) and geometry-based (G-PCC) [52].

Video-based methods usually first generate 3D surface segments by dividing

the point cloud into some connected regions, called 3D patches. Then, each

3D patch is projected independently into a 2D plane, and those patches on the

2D plane are organized and coded by traditional video encoders. Video-based

methods are heavily investigated and the performance benefits from the well-

developed 2D video encoders. MPEG-PCC already released video-based PCC

standard (ISO/IEC 23090-5) in 2021 [53]. Meanwhile, geometry-based methods

encode the coordinates and colors of the points directly in 3D space. Geometry-

based methods are developing fast in recent years and experts are exploring

both traditional and deep-learning methods.

For the handcrafted geometry-based methods, tree structures are usually

used (e.g., octree [25] or KD-tree [54]) to recursively divide the 3D space. Since

46

the first work that uses the octree to present the 3D geometry [25], more tra-

ditional methods [55–59] emerged using octree variants or considering tempo-

ral information to further improve the coding efficiency. The MPEG group has

been developing a geometry-based PCC standard (G-PCC) [60] using a hand-

crafted entropy model, and its corresponding test model (TMC13) [26, 61] has

been made available and supports the octree coding mode. Another widely-

used open-source G-PCC software, Google’s Draco, uses a KD-tree compression

method [62].

Several prior studies also exploited geometry-based point cloud compression

using deep learning models. Some works construct the uniform voxel grids of

the entire 3D space to represent the point cloud [63–67]. Those works perform

the 3D convolution on the voxel grids and consume an extensive amount of

memory space to save the voxel grids, which leads to the inefficiency of pro-

cessing large or sparse point cloud data. A recent work [68] performs sparse

convolution on the voxel grids to reduce the time and space complexity. Another

work [69] improves the performance of G-PCC by both spatially and temporally

adapting to the optimal deep learning entropy model based on the characteris-

tics of the point cloud. However, switching between entropy models makes this

method not scalable. Previous study [70] introduces a set of improvements to

the entropy model and training strategy to achieve a lower rate but the codec is

also not scalable.

While the MPEG group is working on standardizing the G-PCC, using the

octree is recognized as a good approach with several benefits (e.g., saving mem-

ory consumption and being scalable). Recently, several studies apply the deep

learning model on the octree nodes [27, 71] that shows strong potential for per-

forming 3D convolution while still using octree structure. To predict the proba-

bility for the leaf nodes, the earlier work [71] forms the node’s context only from

47

the node’s ancestors (parent nodes); the later work, VoxContext-Net (VCN) [27]

uses the context from the spatial neighbors in the previous coded level (one level

above). However, none of them use the strong context information from the cur-

rently coded octree level. Additionally, the coordinate refine model proposed in

VCN [27] only adjusts the node location, which does not realize the full potential

of post-processing at the decoder side.

In this work, we propose to use the context information from the currently

coded octree level for the entropy coding model; we further propose to use the

upsampling as the post-processing step after lossy decoding. Both approaches

significantly improve the coding performance.

4.3 Proposed Methods

4.3.1 Context-Based Entropy Coding for Octree Geometry: No-

tation and Basic Ideas

To achieve scalability, we adopt the octree representation. A point cloud is rep-

resented in a sequence of L occupancy levels: X1, X2, · · · , XL. The octree is coded

from the first level occupancy X1 to the last level XL, sequentially and loss-

lessly. The point cloud can be reconstructed to level l if the coded bit-streams

for X1, X2, · · · , Xl are given. When the coded bit-streams for all occupancy levels

are given, we can losslessly reconstruct the original point cloud.

Each non-empty node xl−1,i at level l − 1, location i has 8 children at level

l, represented in occupancy ṽl
i = {vj ∈ {0, 1} : j = 1, 2, · · · , 8}. With context-

based entropy coding, we code ṽl
i into a bit-stream based on the conditional

probability mass function p(ṽl
i |C̃l

i), where C̃l
i represents the context. In general

C̃l
i may include nodes in X1, X2, · · · , Xl−1, as well as the adjacent nodes in Xl that

48

Figure 4.1: Network architectures for entropy coding: (a) Model A: the proposed
convolution only architecture, (b) Model B: the convolution + fully connected
architecture. “Conv(n,l)" means a 3D convolutional layer outputting n feature
channels with a 3D filter of kernel size of l × l × l.

49

have been coded. With the same context available at the decoder, the decoding

process is to map the bit-stream back to ṽl
i .

4.3.2 Conditional Probability Estimation through Denoising a

“Noisy” Context Cube

The main challenge in context-based entropy coding is how to form the context

C̃l
i) and how to estimate the probability distribution p(ṽl

i |C̃l
i). To accurately es-

timate the probability distribution, it is important to design a context that fully

utilizes all the information from previously decoded nodes. When coding an

octree node at the current level Xl, the context should take into account of both

the information at the upper level Xl−1 and the current level. However, since not

all the information at the current level is known when the current node is being

coded, we need to treat the known and the unknown part separately to ensure

that the context for probability estimation used during the encoding is available

during the decoding process.

In the proposed probability estimation method, we code the nodes ṽl
i follow-

ing a fixed spatial order. We ensure that when a node at the spatial position

(xi, yi, zi) is being coded, nodes at the same level with coordinates c ∈ {(x, y, z) :

z < zi} ∪ {(x, y, z) : y < yi, z = zi} ∪ {(x, y, z) : x < xi, y = yi, z = zi} have al-

ready been coded. When coding ṽl
i , we form a context cube C̃l

i of size 2k× 2k× 2k

centered at ṽl
i , corresponding to a cube of size k × k × k at the level l − 1. The

known half of the context cube is filled with the true occupancy, i.e. 0 for empty

voxels and 1 for occupied ones. For the other half of C̃l
i that has not been coded,

we fill them with 0 if their parent nodes indicate that these children nodes are

empty, and 0.5 if their parent nodes indicate that the unknown voxel can be po-

tentially non-empty. Since this context involves uncertainty in signal values in

50

the uncoded voxels, we call it “noisy” context. We propose to use a convolution

neural network to “denoise” this context, so that the output of the network rep-

resents p(ṽl
i |C̃l

i), the predicted probabilities that the center 2 × 2 × 2 voxels are

non-empty. These predicted probabilities will then be used by an entropy coder.

To reduce the complexity, we train one neural network for probability esti-

mation at all octree levels. To make use of the level information, along with the

original noisy context we add another 3D input channel with the same size of

2k × 2k × 2k, and all elements in this channel are set to the level index l. The

resulting 3D tensor provides the information about the neighboring voxels’ oc-

cupancy (which is noisy for the unknown half) and the level in the octree. In-

spired by the architecture of DnCNN for image denoising [72], we design the

network architecture shown in Fig. 4.1(a). The network takes the context cube

and the octree level channel as input. A sigmoid activation is used at the fi-

nal layer to generate the probability distribution p ∈ R8, with each element

pj ∈ [0, 1], j = 1, 2, · · · , 8, where pj := Pr{vj = 1}.

Compared to the network used in VoxelContext-Net [27], this network does

not have fully connected layers at the end in order to preserve more spatial in-

formation. We also develop another probability estimation network with fully

connected layers, similar to the one used in the VoxelContext-Net [27], shown in

Fig. 4.1(b). However, the context in [27] only uses the occupancy information in

the parent level. We will provide performance comparison of these two network

architectures in Sec. 4.4.3.

4.3.3 Resolution Enhancement of Decoded Point Clouds

When the bit-rate is restricted due to the network throughput constraint, the

51

Figure 4.2: Network architectures for upsampling: (a) the proposed
convolution-only architecture, (b) the convolution + fully connected architec-
ture.

point cloud cannot be transmitted in full precision. With the proposed scal-

able coding method, the bitstream may only contain information up to level l

of the octree. To further enhance the quality of the reconstructed point cloud,

we propose to estimate a finer resolution representation of the point cloud at

the decoder side. After losslessly decoding the bitstream to the l-th level of the

octree, we upsample each octree node at the l-th level, to a 4 × 4 × 4 voxel grid,

to generate a lossy reconstruction of the original octree up to level l + 2 without

using additional bits.

We upsample a node based on its neighboring context. For a node at location

i from the decoded l-th level point cloud, a local voxel context Cl
i centered at

this node is formed. The network takes Cl
i as the input and maps it to ṽl+2

i

that is 4 times larger along each dimension than the input. The center 4 × 4 × 4

voxels of the Cl+2
i are then binarized and used to form the upsampled point

52

cloud at level l + 2. This model is repeatedly applied to each node at the l-th

level without conditional dependency. Thus, the upsampling of all nodes can

run simultaneously on a multi-threaded processing unit (e.g., a GPU) to vastly

reduce the processing time.

The network architecture is shown in Fig. 4.2 (a). The network takes an input

tensor with size of k × k × k, and maps it to a tensor with size 4k × 4k × 4k. From

the output tensor, the center 4 × 4 × 4 cube is cropped, and binarized with a

threshold t to the final predicted occupancy voxel grid.

Since the density and pattern of points at different levels on the octree are

diverse, we train the upsampling network separately for every depth level. Note

that the model upsamples the octree by two levels only when the decoded point

cloud level l ≤ L − 2, where L is the maximal level of the original point cloud.

When l = L − 1, a similar model with only one upsampling layer is used to

estimate the decoded point cloud from the l-th level to the full levels. When

l = L (lossless coding), no post-processing model is applied.

For comparison, we also develop an alternative architecture with fully con-

nected layers at the end to predict the upsampled points, similar to the one used

in the VoxelContext-Net [27], as shown in Fig. 4.2 (b). The performance compar-

ison is provided in Sec. 4.4.3.

4.3.4 Loss Function

We train the probability estimation network to directly minimize the expected

bits needed to code the occupancy. This is equal to the binary cross entropy (BCE)

loss function over the ground truth occupancy and the predicted probability.

The loss for each training sample (corresponding to one non-empty parent node)

53

is

Le(x, q) = −
8

∑
j=1

xj log qj + (1 − xj) log(1 − qj), (4.1)

where xj ∈ {0, 1} denotes the occupancy ground truth and qj is the estimated

probability, qj = Pr{vj = 1}.

We adopt the same loss function for the training of the upsampling network,

which upsamples the decoded point cloud from level l to level l + 2 (when

l < L − 1). The loss function is calculated between the ground truth and the

predicted probabilities both at the target upsampled level.

4.4 Experiments

4.4.1 Experimental Setup

Datasets

We train the network based on point clouds sampled from the ShapeNetCore [50]

dataset. The dataset consists of a total number of 51,300 3D object models in 55

categories, each with mesh and texture. We randomly choose 1024 objects across

all categories from ShapeNetCore, and densely sample point clouds on the mesh

given by the models. The coordinates of the sampled points are quantized to a

bit-depth of 10, with duplicate points removed. We build voxel grids and oc-

trees of depth 10 on the point clouds. The voxel grids and octrees are used to

train the proposed networks.

To ensure that our trained networks generalizes to other dense point clouds

besides the simple objects in the training set, we evaluate the proposed method

on the 8i Voxelized Surface Light Field (8iVSLF) dataset [51], which is recom-

mended by MPEG for dense point cloud coding experiments. We compare

54

Table 4.1: Bits per point (bpp) used for losslessly coding 8i dense point clouds,
by MPEG G-PCC, VoxContextNet(VCN), and our Model A and our Model B.
(VCN, Model A and Model B all use k = 5)

Models G-PCC VCN Model A Model B
Longdress 1.02 1.25 0.67 0.72
Loot 0.95 1.23 0.65 0.69
Redandblack 1.08 1.31 0.77 0.82
Soldier 1.01 1.28 0.69 0.74
Average (bpp) 1.02 1.26 0.69 0.74
Rate reduction 0 +23.5% -32.1% -27.3%

with two baseline methods, G-PCC and VCN, on the four 10-bit point cloud

frames: longdress_vox10_1300, loot_vox10_1200, redandblack_vox10_1550, and sol-

dier_vox10_0690.

Evaluation Metric

We measure the quality of the reconstructed point cloud with the point-to-point

(D1) PSNR [73,74], calculated using the MPEG PCC DMetrics software [75]. The

bit-rate is given in bit-per-point (bpp), calculated by dividing the number of bits

over the total point number in the original point cloud.

Baseline Methods

The first baseline method is MPEG standard Geometry Point Cloud Compres-

sion (G-PCC) [26]. We follow the common test conditions (CTC) [52] to generate

the baseline G-PCC Rate-distortion (R-D) curve. We use the TMC13 [61] and en-

able the G-PCC octree codec to code the dense point cloud. In order to generate

the R-D points for variable bit rates, we set the G-PCC to code the octree level

by level and truncate at different levels.

The second baseline method is VoxelContext-Net [27]. In this work, the au-

thor did both training and testing on the same ScanNet dataset, which may lead

55

Figure 4.3: Visualization of the ground truth, G-PCC, VCN, and ours.

to model overfitting to the specific dataset and its performance on the MPEG

G-PCC standard dataset is unclear. To fairly compare the performance, we train

this baseline method on the same subset of the ShapeNetCore dataset and test

the it on 8iVSLF dataset. Since there is no publicly available source code of

VoxelContext-Net, the training code is reproduced by ourselves.

4.4.2 Experiment Results

For lossless compression, we calculate the bpp for G-PCC, VoxContext-net and

the proposed method, on the test point clouds, the results are shown in Table 4.1.

For the proposed method, we show the results using both Model A, shown in

Fig. 4.1(a), and Model B, shown in Fig. 4.1(b). The context size is k = 5. Note

that the upsampling model is not used for the lossless compression. As shown,

Model A and Model B both outperform the baseline methods. Compared to

G-PCC, Model A and Model B reduce the number of bits by 32.1% and 27.0%,

56

respectively, on average. For the VoxContext-net model, we observe that it re-

quires more bits than G-PCC to compress the dense 8iVSLF point cloud. This

differs from the performance gain over G-PCC reported in [27]. This could

be caused by several reasons: Firstly, we train the model on a subset of the

ShapeNet dataset and test on the 8iVSLF dataset for a fair comparison, whereas

the original paper [27] reports the testing results on the ShapeNet dataset; Sec-

ondly, we used only a subset of the ShapeNet dataset for training whereas the

work in [27] used the entire training set of the ShapeNet; Finally, the hand-

crafted G-PCC explores the previously coded neighbors in the current coding

level while VoxContext-net does not, and such information could be especially

useful for the dense point cloud data.

The rate-distortion (RD) curves of lossy compression by these methods are

shown in Fig. 4.4. Compared with G-PCC and VoxContextNet, both our Model

A and Model B save around 80% of bit rate. Model A uses the fully convolu-

tional network in Fig. 4.1(a) for probability prediction, and the fully convolu-

tional network in Fig. 4.2(a) for upsampling. Model B uses the architectures in

Fig. 4.1(b) and Fig. 4.2(b), for probability prediction and upsampling, respec-

tively. Visualization results of longdress_vox10_1300 for our proposed method

and baseline methods are shown in Fig. 4.3.

4.4.3 Ablation Study

Network Architecture

For both the probability estimation and point cloud upsampling tasks, the archi-

tecture with fully-connected layers (Model B) is slightly less efficient in terms of

rate-distortion trade-off than the fully convolutional one (Model A), as shown

57

Figure 4.4: Model A (fully convolutional network) vs. Model B (convolu-
tional+fully connected network).

Table 4.2: Number of floating point operations (KFLOPS per node) for the prob-
ability estimation (E) and the post-processing (P) procedures, respectively, with
different methods and at different voxel context sizes for the Longdress se-
quence. B(3) means the proposed Model B using context size with k = 3.

VCN(5) A(5) B(3) B(5) B(9)
E 93.2 559.7 30.1 30.4 206.9
P 149.4 404.9 33.2 60.4 73.0

58

Figure 4.5: Comparison between different postprocessing (upsampling) strate-
gies. For example, for the upsampling by 2 levels curve, the highest rate point
is obtained by coding the octree to level 8 and upsample to level 10; while the
next highest rate point is obtained by coding the octree to level 7 and upsample
to level 9.

in Fig. 4.4. However, Model B significantly reduces the computational complex-

ity. Table 4.2 compares the number of floating point operations (FLOPS) of these

two models. As shown, inference using Model B takes only about 15% of the

FLOPS compared to Model A. Given that the coding efficiency of using Model

B does not drop significantly compared to Model A, Model B may be preferred

for practical applications.

Upsampling Strategies

In this ablation study, we compare the proposed scheme with two alternative

upsampling strategies: 1) upsample by one level only; 2) recursively upsam-

ple by one level until the final level (different models are used at different lev-

els). Fig. 4.6 compares their R-D performances . The experiments are conducted

on longdress_vox10_1300. Compared with upsampling by one level, the model

59

that directly upsamples by two levels has consistent and significant gain in

reconstruction quality. However, recursively upsampling by one level some-

times leads to worser quality. This is because the upsampling error at an earlier

level propagates, and negatively affects the upsampling for the following levels.

Therefore, we adopt the two-level upsampling strategy.

Context Cube Size

The dimensionality of the context cube affects the probability estimation ac-

curacy and upsampling accuracy. To determine the best size of the context,

we train Model B using different context sizes, and compare their R-D perfor-

mances on the longdress_vox10_1300 point cloud in Fig. 4.6. The performance

gain of using a larger context cube diminishes when the context size k exceeds

5 (corresponding to a context cube of 10 × 10 × 10 for probability estimation,

and 5 × 5 × 5 for upsampling). The FLOPS of the models with different con-

text sizes are given in Table 4.2. To balance the performance and the complexity,

k = 5 is the preferred choice and is used in the results shown in Fig. 4.4, Fig. 4.6

and Table 4.2 . For complexity-sensitive applications, a context size of k = 3

could also be used, which only suffer from slight degradation in rate-distortion

performance, as shown in Fig. 4.6.

60

Figure 4.6: R-D performances corresponding to different context sizes. The ex-
periments are conducted with Model B.

61

Chapter 5

Conclusion

In this thesis, we first explore the coding and streaming system design of 360◦

video for interactive applications in Chapter 2 and Chapter 3. Then, we ex-

plore an octree-based scalable point cloud geometry coding with learned en-

tropy model and resolution enhancement in Chapter 4.

For interactive 360◦ video streaming, we addressed the challenges of inte-

grating temporal predictive coding into low-latency, FoV-adaptive coding and

streaming of interactive 360◦ video. Through accurate quality-rate modeling

that explicitly considers the reduced coding efficiency due to the prolonged tem-

poral prediction time lapse, the proposed system can achieve accurate rate con-

trol at both the segment and frame levels and optimize rate allocation to maxi-

mize the rendering quality. By introducing rotating intra-regions, the system can

periodically stop error propagation due to frame losses as well as quality degra-

dation in un-coded regions, without causing bit rate spikes that increase frame

delay. Together with push-based frame delivery and target rate adaptation at

both segment and frame levels, the proposed system has been shown to be ca-

pable of reducing the mean end-to-end delay to below 100ms under challenging

62

bandwidth traces. Compared to benchmark systems, the proposed system im-

proves the average WS-PSNR by 2 to 10 dB, and also reduces the frame delay by

up to 20ms, which should correspond to substantial improvement in the overall

user quality of experience.

For point cloud compression, we propose an octree-based point cloud geom-

etry compression method using machine learning models. Our first contribu-

tion considers context-based entropy coding of octree nodes. We form a “noisy”

context using the occupancy information at the currently coded octree level, and

use 3D convolution-based “denoising" networks to predict the probability that

an octree node is non-empty. The second contribution considers decoder post-

processing and proposes convolutional networks to upsample a low-resolution

point cloud (corresponding to a low bit rate resulting from coding to a low level

of the octree) to a higher resolution (corresponding to a higher octree level). The

combination of the probability estimation and the upsampling approaches sig-

nificantly improves the rate-distortion performance of octree-based geometry

coding over the current MPEG standard G-PCC as well as several prior works

leveraging machine learning. We further compare different network structures

for both the probability estimation task and the upsampling task in terms of both

the rate-distortion performance and computational complexity. Being an octree-

based geometry coding solution, our method naturally leads to a scalable bit

stream and has strong potential to be adopted in future point cloud streaming

platforms. For the future work, this approach can also be extended to the color

of the point cloud to develop a completely scalable point cloud compression

solution.

In summary, our interactive 360◦ video streaming system shows significantly

improved rendered video quality, while achieving very low end-to-end delay

63

and low frame-freeze probability. Our learning-based entropy model and reso-

lution enhancement model for point cloud geometry coding utilize the advan-

tage of octree’s scalability, while significantly improving the efficiency of coding

the geometry of dense point cloud. Overall, our coding and streaming system

design for interactive 360-degree video applications and scalable point cloud ge-

ometry coding will benefit the continued development of lifelike virtual reality

experiences.

64

Bibliography

[1] HUAWEI TECHNOLOGIES CO., “Whitepaper on the vr-oriented bearer

network requirement (2016),” .

[2] Jiarun Song, Fuzheng Yang, Wei Zhang, Wenjie Zou, Yuqun Fan, and

Peiyun Di, “A fast fov-switching dash system based on tiling mechanism

for practical omnidirectional video services,” IEEE Transactions on Multime-

dia, vol. 22, no. 9, pp. 2366–2381, 2020.

[3] Jinyu Chen, Xianzhuo Luo, Miao Hu, Di Wu, and Yipeng Zhou, “Sparkle:

User-aware viewport prediction in 360-degree video streaming,” IEEE

Transactions on Multimedia, pp. 1–1, 2020.

[4] Fanyi Duanmu, Eymen Kurdoglu, Yong Liu, and Yao Wang, “View direc-

tion and bandwidth adaptive 360 degree video streaming using a two-tier

system,” in 2017 IEEE International Symposium on Circuits and Systems (IS-

CAS), 2017, pp. 1–4.

[5] Fanyi Duanmu, Yixiang Mao, Shuai Liu, Sumanth Srinivasan, and Yao

Wang, “A subjective study of viewer navigation behaviors when watch-

ing 360-degree videos on computers,” in 2018 IEEE International Conference

on Multimedia and Expo (ICME), 2018, pp. 1–6.

65

[6] Pantelis Maniotis, Eirina Bourtsoulatze, and Nikolaos Thomos, “Tile-based

joint caching and delivery of 360° videos in heterogeneous networks,” IEEE

Transactions on Multimedia, vol. 22, no. 9, pp. 2382–2395, 2020.

[7] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski,

“Viewport-adaptive navigable 360-degree video delivery,” in 2017 IEEE

international conference on communications (ICC). IEEE, 2017, pp. 1–7.

[8] Xavier Corbillon, Alisa Devlic, Gwendal Simon, and Jacob Chakareski,

“Optimal set of 360-degree videos for viewport-adaptive streaming,” in

Proceedings of the 25th ACM international conference on Multimedia, 2017, pp.

943–951.

[9] Liyang Sun, Fanyi Duanmu, Yong Liu, Yao Wang, Yinghua Ye, Hang Shi,

and David Dai, “A two-tier system for on-demand streaming of 360 degree

video over dynamic networks,” IEEE Journal on Emerging and Selected Topics

in Circuits and Systems, vol. 9, no. 1, pp. 43–57, 2019.

[10] Duc V Nguyen, Huyen TT Tran, Anh T Pham, and Truong Cong Thang,

“An optimal tile-based approach for viewport-adaptive 360-degree video

streaming,” IEEE Journal on Emerging and Selected Topics in Circuits and Sys-

tems, vol. 9, no. 1, pp. 29–42, 2019.

[11] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan, “Optimizing

360 video delivery over cellular networks,” in Proceedings of the 5th Work-

shop on All Things Cellular: Operations, Applications and Challenges, 2016, pp.

1–6.

[12] Xueshi Hou, Sujit Dey, Jianzhong Zhang, and Madhukar Budagavi, “Pre-

dictive adaptive streaming to enable mobile 360-degree and vr experi-

ences,” IEEE Transactions on Multimedia, vol. 23, pp. 716–731, 2020.

66

[13] Fanyi Duanmu, Eymen Kurdoglu, S. Amir Hosseini, Yong Liu, and Yao

Wang, “Prioritized buffer control in two-tier 360 video streaming,” in Pro-

ceedings of the Workshop on Virtual Reality and Augmented Reality Network,

New York, NY, USA, 2017, VR/AR Network ’17, pp. 13–18, ACM.

[14] Yuwen He, Xiaoyu Xiu, Philippe Hanhart, Yan Ye, Fanyi Duanmu, and Yao

Wang, “Content-adaptive 360-degree video coding using hybrid cubemap

projection,” in 2018 Picture Coding Symposium (PCS), 2018, pp. 313–317.

[15] Liyang Sun, Fanyi Duanmu, Yong Liu, Yao Wang, Yinghua Ye, Hang Shi,

and David Dai, “A two-tier system for on-demand streaming of 360 degree

video over dynamic networks,” IEEE Journal on Emerging and Selected Topics

in Circuits and Systems, vol. 9, no. 1, pp. 43–57, 2019.

[16] Omar Eltobgy, Omar Arafa, and Mohamed Hefeeda, “Mobile streaming of

live 360-degree videos,” IEEE Transactions on Multimedia, vol. 22, no. 12, pp.

3139–3152, 2020.

[17] Ridvan Aksu, Jacob Chakareski, and Viswanathan Swaminathan,

“Viewport-driven rate-distortion optimized scalable live 360° video net-

work multicast,” in 2018 IEEE International Conference on Multimedia & Expo

Workshops (ICMEW), 2018, pp. 1–6.

[18] Carsten Griwodz, Mattis Jeppsson, Håvard Espeland, Tomas Kupka, Rag-

nar Langseth, Andreas Petlund, Peng Qiaoqiao, Chuansong Xue, Kon-

stantin Pogorelov, Micheal Riegler, et al., “Efficient live and on-demand

tiled hevc 360 vr video streaming,” in 2018 IEEE International Symposium on

Multimedia (ISM). IEEE, 2018, pp. 81–88.

67

[19] Xing Liu, Bo Han, Feng Qian, and Matteo Varvello, “Lime: understanding

commercial 360° live video streaming services,” in Proceedings of the 10th

ACM Multimedia Systems Conference, 2019, pp. 154–164.

[20] Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu, and Yao Wang,

“Flocking-based live streaming of 360-degree video,” in Proceedings of the

11th ACM Multimedia Systems Conference, 2020, pp. 26–37.

[21] Cong Zhang, Qiyun He, Jiangchuan Liu, and Zhi Wang, “Exploring viewer

gazing patterns for touch-based mobile gamecasting,” IEEE Transactions on

Multimedia, vol. 19, no. 10, pp. 2333–2344, 2017.

[22] Marko Viitanen, Jarno Vanne, Timo D Hämäläinen, and Ari Kulmala, “Low

latency edge rendering scheme for interactive 360 degree virtual reality

gaming,” in 2018 IEEE 38th International Conference on Distributed Computing

Systems (ICDCS). IEEE, 2018, pp. 1557–1560.

[23] Liyang Zhang, Syed Obaid Amin, and Cedric Westphal, “Vr video confer-

encing over named data networks,” in Proceedings of the Workshop on Virtual

Reality and Augmented Reality Network, 2017, pp. 7–12.

[24] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury Degt-

yarev, Sergey Grizan, Alec Wolman, and Jason Flinn, “Outatime: Using

speculation to enable low-latency continuous interaction for mobile cloud

gaming,” in Proceedings of the 13th Annual International Conference on Mobile

Systems, Applications, and Services, 2015, pp. 151–165.

[25] Donald Meagher, “Geometric modeling using octree encoding,” Computer

graphics and image processing, vol. 19, no. 2, pp. 129–147, 1982.

68

[26] “MPEG Point Cloud Compression,” https://mpeg-pcc.org/index.php/

public-contributions/g-pcc-codec-description.

[27] Zizheng Que, Guo Lu, and Dong Xu, “Voxelcontext-net: An octree based

framework for point cloud compression,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp. 6042–6051.

[28] Mikko Pitkänen, Marko Viitanen, Alexandre Mercat, and Jarno Vanne, “Re-

mote vr gaming on mobile devices,” in Proceedings of the 27th ACM Interna-

tional Conference on Multimedia, 2019, pp. 2191–2193.

[29] Vamsidhar Reddy Gaddam, Michael Riegler, Ragnhild Eg, Carsten Gri-

wodz, and Pål Halvorsen, “Tiling in interactive panoramic video: Ap-

proaches and evaluation,” IEEE Transactions on Multimedia, vol. 18, no. 9,

pp. 1819–1831, 2016.

[30] Kaixuan Long, Ying Cui, Chencheng Ye, and Zhi Liu, “Optimal wire-

less streaming of multi-quality 360 vr video by exploiting natural, rel-

ative smoothness-enabled and transcoding-enabled multicast opportuni-

ties,” IEEE Transactions on Multimedia, pp. 1–1, 2020.

[31] Mengbai Xiao, Chao Zhou, Yao Liu, and Songqing Chen, “Optile: Toward

optimal tiling in 360-degree video streaming,” in Proceedings of the 25th

ACM international conference on Multimedia. ACM, 2017, pp. 708–716.

[32] Jill Boyce, Elena Alshina, Adeel Abbas, and Yan Ye, “Jvet common test

conditions and evaluation procedures for 360 video,” Joint Video Exploration

Team of ITU-T SG, vol. 16, 2017.

https://mpeg-pcc.org/index.php/public-contributions/g-pcc-codec-description
https://mpeg-pcc.org/index.php/public-contributions/g-pcc-codec-description

69

[33] IK Kim, K McCann, K Sugimoto, B Bross, WJ Han, and G Sullivan, “High

efficiency video coding (hevc) test model 14 (hm 14) encoder description.

document: Jctvc-p1002,” JCT-VC, Jan, 2014.

[34] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang, “A dataset for

exploring user behaviors in vr spherical video streaming,” in Proceedings of

the 8th ACM on Multimedia Systems Conference. ACM, 2017, pp. 193–198.

[35] Chenge Li, Weixi Zhang, Yong Liu, and Yao Wang, “Very long term field of

view prediction for 360-degree video streaming,” in 2019 IEEE Conference

on Multimedia Information Processing and Retrieval (MIPR). IEEE, 2019, pp.

297–302.

[36] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli, and Xin Liu,

“Shooting a moving target: Motion-prediction-based transmission for 360-

degree videos,” in 2016 IEEE International Conference on Big Data (Big Data).

IEEE, 2016, pp. 1161–1170.

[37] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen,

and Cheng-Hsin Hsu, “Fixation prediction for 360 video streaming in head-

mounted virtual reality,” in Proceedings of the 27th Workshop on Netwbibliog-

raphyork and Operating Systems Support for Digital Audio and Video. ACM,

2017, pp. 67–72.

[38] Ching-Ling Fan, Shou-Cheng Yen, Chun-Ying Huang, and Cheng-Hsin

Hsu, “Optimizing fixation prediction using recurrent neural networks for

360◦ video streaming in head-mounted virtual reality,” IEEE Transactions

on Multimedia, vol. 22, no. 3, pp. 744–759, 2020.

[39] Yanyu Xu, Yanbing Dong, Junru Wu, Zhengzhong Sun, Zhiru Shi, Jingyi

Yu, and Shenghua Gao, “Gaze prediction in dynamic 360 immersive

70

videos,” in proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2018, pp. 5333–5342.

[40] Junchen Jiang, Vyas Sekar, and Hui Zhang, “Improving fairness, efficiency,

and stability in http-based adaptive video streaming with festive,” in Pro-

ceedings of the 8th international conference on Emerging networking experiments

and technologies, 2012, pp. 97–108.

[41] Eymen Kurdoglu, Yong Liu, Yao Wang, Yongfang Shi, ChenChen Gu, and

Jing Lyu, “Real-time bandwidth prediction and rate adaptation for video

calls over cellular networks,” in Proceedings of the 7th International Conference

on Multimedia Systems, 2016, pp. 1–11.

[42] Chaoqun Yue, Ruofan Jin, Kyoungwon Suh, Yanyuan Qin, Bing Wang,

and Wei Wei, “Linkforecast: cellular link bandwidth prediction in lte net-

works,” IEEE Transactions on Mobile Computing, vol. 17, no. 7, pp. 1582–1594,

2017.

[43] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang,

Tao Liu, and Bruno Sinopoli, “Cs2p: Improving video bitrate selection and

adaptation with data-driven throughput prediction,” in Proceedings of the

2016 ACM SIGCOMM Conference, 2016, pp. 272–285.

[44] Lifan Mei, Runchen Hu, Houwei Cao, Yong Liu, Zifan Han, Feng Li, and

Jin Li, “Realtime mobile bandwidth prediction using lstm neural network

and bayesian fusion,” Computer Networks, vol. 182, pp. 107515, 2020.

[45] Jinsung Lee, Sungyong Lee, Jongyun Lee, Sandesh Dhawaskar Sathya-

narayana, Hyoyoung Lim, Jihoon Lee, Xiaoqing Zhu, Sangeeta Ramakrish-

nan, Dirk Grunwald, Kyunghan Lee, et al., “Perceive: deep learning-based

71

cellular uplink prediction using real-time scheduling patterns,” in Proceed-

ings of the 18th International Conference on Mobile Systems, Applications, and

Services, 2020, pp. 377–390.

[46] Abdelhak Bentaleb, Ali C. Begen, Saad Harous, and Roger Zimmermann,

“Data-driven bandwidth prediction models and automated model selec-

tion for low latency,” IEEE Transactions on Multimedia, pp. 1–1, 2020.

[47] Peter L Dordal, “An Introduction to Computer Networks,” http://

intronetworks.cs.luc.edu/1/html/packets.html.

[48] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang, “A dataset for

exploring user behaviors in vr spherical video streaming,” in Proceedings of

the 8th ACM on Multimedia Systems Conference, 2017, pp. 193–198.

[49] Yixiang Mao, Liyang Sun, Yong Liu, and Yao Wang, “Low-latency fov-

adaptive coding and streaming for interactive 360° video streaming,” in

Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp.

3696–3704.

[50] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-

ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,

et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint

arXiv:1512.03012, 2015.

[51] Maja Krivokuca, Philip A Chou, and Patrick Savill, “8i voxelized surface

light field (8ivslf) dataset,” ISO/IEC JTC1/SC29/WG11 MPEG, input docu-

ment m42914, 2018.

http://intronetworks.cs.luc.edu/1/html/packets.html
http://intronetworks.cs.luc.edu/1/html/packets.html

72

[52] D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki, and A Tabatabai,

“An overview of ongoing point cloud compression standardization activi-

ties: video-based (v-pcc) and geometry-based (g-pcc),” APSIPA Transactions

on Signal and Information Processing, vol. 9, 2020.

[53] “Information technology–coded representation of immersive media – part

5: Visual volumetric video-based coding (v3c) and video-based point cloud

compression (v-pcc),” ISO/IEC, pp. 23090–5, 2021.

[54] Olivier Devillers and P-M Gandoin, “Geometric compression for inter-

active transmission,” in Proceedings Visualization 2000. VIS 2000 (Cat. No.

00CH37145). IEEE, 2000, pp. 319–326.

[55] Jingliang Peng and CC Jay Kuo, “Octree-based progressive geometry en-

coder,” in Internet Multimedia Management Systems IV. SPIE, 2003, vol. 5242,

pp. 301–311.

[56] Diogo C Garcia and Ricardo L de Queiroz, “Intra-frame context-based oc-

tree coding for point-cloud geometry,” in 2018 25th IEEE International Con-

ference on Image Processing (ICIP). IEEE, 2018, pp. 1807–1811.

[57] Yan Huang, Jingliang Peng, C-C Jay Kuo, and M Gopi, “A generic scheme

for progressive point cloud coding,” IEEE Transactions on Visualization and

Computer Graphics, vol. 14, no. 2, pp. 440–453, 2008.

[58] Julius Kammerl, Nico Blodow, Radu Bogdan Rusu, Suat Gedikli, Michael

Beetz, and Eckehard Steinbach, “Real-time compression of point cloud

streams,” in 2012 IEEE International Conference on Robotics and Automation.

IEEE, 2012, pp. 778–785.

73

[59] Ruwen Schnabel and Reinhard Klein, “Octree-based point-cloud compres-

sion.,” in PBG@ SIGGRAPH, 2006, pp. 111–120.

[60] “Information technology — coded representation of immersive media —

part 9: Geometry-based point cloud compression,” ISO/IEC, pp. 23090–9,

Under development.

[61] “MPEG G-PCC TMC13,” https://github.com/MPEGGroup/

mpeg-pcc-tmc13.

[62] “Google Draco,” https://github.com/google/draco.

[63] Daniel Maturana and Sebastian Scherer, “Voxnet: A 3d convolutional neu-

ral network for real-time object recognition,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 922–928.

[64] Tianxin Huang and Yong Liu, “3d point cloud geometry compression on

deep learning,” in Proceedings of the 27th ACM international conference on

multimedia, 2019, pp. 890–898.

[65] Bin Yang, Wenjie Luo, and Raquel Urtasun, “Pixor: Real-time 3d object de-

tection from point clouds,” in Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2018, pp. 7652–7660.

[66] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux, “Learning con-

volutional transforms for lossy point cloud geometry compression,” in 2019

IEEE international conference on image processing (ICIP). IEEE, 2019, pp. 4320–

4324.

[67] Yin Zhou and Oncel Tuzel, “Voxelnet: End-to-end learning for point cloud

based 3d object detection,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 4490–4499.

https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/google/draco

74

[68] Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma, “Multiscale point

cloud geometry compression,” in 2021 Data Compression Conference (DCC).

IEEE, 2021, pp. 73–82.

[69] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira, “Adaptive

deep learning-based point cloud geometry coding,” IEEE Journal of Selected

Topics in Signal Processing, vol. 15, no. 2, pp. 415–430, 2020.

[70] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux, “Improved

deep point cloud geometry compression,” in 2020 IEEE 22nd International

Workshop on Multimedia Signal Processing (MMSP). IEEE, 2020, pp. 1–6.

[71] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun,

“Octsqueeze: Octree-structured entropy model for lidar compression,” in

Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-

tion, 2020, pp. 1313–1323.

[72] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang, “Be-

yond a gaussian denoiser: Residual learning of deep cnn for image denois-

ing,” IEEE transactions on image processing, vol. 26, no. 7, pp. 3142–3155,

2017.

[73] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony

Vetro, “Geometric distortion metrics for point cloud compression,” in

2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017, pp.

3460–3464.

[74] Rufael Mekuria, Sebastien Laserre, and Christian Tulvan, “Performance as-

sessment of point cloud compression,” in 2017 IEEE Visual Communications

and Image Processing (VCIP). IEEE, 2017, pp. 1–4.

75

[75] “MPEG PCC DMetrics,” http://mpegx.int-evry.fr/software/MPEG/

PCC/mpeg-pcc-dmetric.git.

http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git
http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git

76

Publication List

• Yixiang Mao, Liyang Sun, Yong Liu, and Yao Wang, “Low-latency fov-adaptive

coding and streaming for interactive 360° video streaming”. In Proceedings of

the 28th ACM International Conference on Multimedia, pages 3696–3704,

2020

• Yixiang Mao, Yueyu Hu, and Yao Wang.“Learning to predict on octree for

scalable point cloud geometry coding”. Submitted to 2022 IEEE Conference on

Multimedia Information Processing and Retrieval (MIPR).

• Yixiang Mao, Liyang Sun, Yong Liu, and Yao Wang, “Interactive 360◦ Video

Streaming with Frame-Level FoV-Adaptive Coding Using Temporal Prediction”.

Submitted to ACM Transactions on Multimedia Computing, Communica-

tions, and Applications.

• Fanyi Duanmu, Yixiang Mao, Shuai Liu, Sumanth Srinivasan, and Yao

Wang, “A subjective study of viewer navigation behaviors when watching 360-

degree videos on computers”. In 2018 IEEE International Conference on Mul-

timedia and Expo (ICME), pages 1–6. IEEE, 2018

77

• Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu, and Yao Wang, “Flocking-

based live streaming of 360-degree video”. In Proceedings of the 11th ACM

Multimedia Systems Conference, pages 26–37, 2020.

• Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu, and Yao Wang, “Live

360 degree video delivery based on user collaboration in a streaming flock”. IEEE

Transactions on Multimedia, 2022

• Angelica M Guercio, Yixiang Mao, Victor ND Carvalho, Jiazhen Zhang,

Changyuan Li, Zheng Ren, Winnie Zhao, Yao Wang, and Eric D Brenner,

“Plant tracer: A program to track and quantify plant movement from cell-phone

captured time-lapse movies”. Bioscene: Journal of College Biology Teaching,

45(3):14–21, 2019

	Vita
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Overview
	Introduction to 360 Video Interactive Streaming
	Introduction to Point Cloud Geometry Coding
	Organization of the thesis
	Frame-level FoV-adaptive 360 Video Coding using Spatial and Temporal Prediction
	Introduction
	The Proposed Video Coding Scheme
	The Optimal Tile Size
	Quality-Rate Models
	Objective Quality Metric
	``Ideal'' Quality-Rate Models For Different Coded Regions
	Rate-Increase Factor
	Quality-Decay Factor
	Optimizing Rate Allocation and Region Sizes
	Expected Video Quality
	Optimization Problem Formulation and Solution
	Frame-level FoV-adaptive 360 Video Interactive Streaming with Rate and Region Size Adaptation
	Introduction
	Proposed Streaming System Overview
	Frame-Level FoV Prediction
	Segment-Level Bandwidth Prediction
	Adaptation of Coding Rates and Region Sizes
	Assigning the Total Bit Budget for a Segment Considering Sending Buffer Status
	Frame-level Bit Budget Update
	Trace-Driven Simulation Results
	Test Sequences, Bandwidth and FoV Traces
	Streaming System Benchmarks
	Evaluation Metrics
	Evaluation Results
	Octree-based Scalable Point Cloud Geometry Coding with Learned Entropy Model and Resolution Enhancement
	Introduction
	Related works
	Proposed Methods
	Context-Based Entropy Coding for Octree Geometry: Notation and Basic Ideas
	Conditional Probability Estimation through Denoising a ``Noisy'' Context Cube
	Resolution Enhancement of Decoded Point Clouds
	Loss Function
	Experiments
	Experimental Setup
	Datasets
	Evaluation Metric
	Baseline Methods
	Experiment Results
	Ablation Study
	Network Architecture
	Upsampling Strategies
	Context Cube Size
	Conclusion
	Publication List

