S )

Image and.\ 20 Processing

Convolutional Networks for Image
Processing (Part Il)

Yao Wang
Tandon School of Engineering, New York University

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Outline (Part |)

Supervised learning: General concepts
Neural network architecture

Convolutional network architecture
— Why using convolution and many layers
— Multichannel convolution
— Pooling

Deep networks
Model training
— Loss functions
— Stochastic gradient descent: general concept
— Data Preprocessing and Regularization
Training, validation and testing and cross validation

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Outline (Part Il)

‘ « Neural Nets and Conv Nets and Model Training (Review)

» Receptive field of conv layers and some extensions
— Strided conv, dilated conv.

« Some important extensions:
— Residual connection, dense connection

« Popular classification models and transfer learning

* Image to image autoencoder (Denoising)

« Semantic Segmentation using Multiresolution Autoencoder (U-Net)
« Object detection and classification

* |nstance segmentation

* Interpretation of trained models

Yao Wang, NYU Deep Learning 2022 Autumn 3



Example Conv. Network

55

256
Max

pooling

 Alex Net

96
feature
maps of
size
55x55
each

Convolutional

For feature extraction

2D convolution with

Activation and

Fully connected layers
For Classification task

layers

Matrix multiplication &
activation

pooling / sub-sampling

« Each convolutional
layer has:

2D convolution
Activation (eg.
ReLU)

Pooling or sub-
sampling

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural
networks." Advances in neural information processing systems. 2012.

Yao Wang, 2022
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Training with Gradient Descent

« Given training data: (x;,y;),i=1,...,N
* Learn parameters: 8 = (Wy, by, W,, b,) (assuming a MLP with one
hidden layer)
— Weights and biases for hidden and output layers
— Wy are filter kernels in conv. layer

* Neural network training (like all training): Minimize loss function
N
0 = arg mgn L(B), L(B) = Z L;(0,x;,v;)
i=1

- L;(6,x;,y;) =loss on sample i for parameter 6
« Standard gradient descent:

N
pk+l — gk _ aVL(Hk) = gk — az VL; (6%, x;, )
=1

— Each iteration requires computing N loss functions and gradients
— But, gradient computation is expensive when data size N large
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Stochastic Gradient Descent

* |In each step:
— Select random small

I “mini-batch”
Full batch of ~ Randomly — Evalu radient on
s | N T e ot
e.g. 50,000 in e.g. 100
MNIST records . FOI' = 1 to Nsteps

v — Select random mini-

batch I c {1, ...,N}

— Compute gradient
approximation:

.1
g = mz VL(xiryir 9)
i€l
— Update parameters:
9t+1 — Ht _ atgt

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Backpropagation: layer i

* Layer 1 has two inputs (during training)
Xi-1 (48
l:i+1 _ o"xl.
gc ° Forlayer i, we need the derivatives:
X ox, or(x,_;,w,) oF(x, W)
X,y ow;
* We compute the outputs

Hidden layer i

x, =F(x,_,w)
JC  9C IF(x, W)
F, ox, B ox. ox;_

l 11—

Forward Backward . Tpe weight update equation is:
pass pass dC  IC JF(x,,.w)
ow, dx,  ow,
oF (sum over all

k
< W i + 7] PR training examples
to get E)

k+1

i

w

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural _nets.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Tensor gradient

« Generally, you may take gradient of a variable of dimension N, y =
[V1, ¥2,-.., Yn] With respect to a variable of dimension M, x = [x;,

X2yeuny XM]
Sy _ 5yn] -
el (a NxXM matrix)

* Previous example if it is a fully connected layer:
— C is the loss function, a scalar
- x; may have dimension N;, x;_; may have dimension N;_;, w; may
have dimension N;_;N;
* Previous example if it is a convolution layer:
- x; may contain L; feature maps of spatial dimension M; xN;, x;_; may
contain L;_, feature maps of spatial dimension M;_; xN;_; ,w; would

correspond to multichannel filters with dimension L;L;_,R;_,C;_, for
filter size of R;_{XC;_4

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Outline (Part Il)

* Neural Nets and Conv Nets and Model Training (Review)

‘ » Receptive field of conv layers and some extensions
— Strided conv, dilated conv.

« Some important extensions:
— Residual connection, dense connection

« Popular classification models and transfer learning

* Image to image autoencoder (Denoising)

« Semantic Segmentation using Multiresolution Autoencoder (U-Net)
« Object detection and classification

* |nstance segmentation

* Interpretation of trained models

Yao Wang, NYU Deep Learning 2022 Autumn 9



Rece pt|Ve F|e | d What is the receptive field of the last layer?

* Receptive field of the first layer is the filter size
RN * Receptive field (w.r.t. input image) of a deeper layer
depends on all previous layers’ filter size and strides

* Correspondence between a feature map pixel and
an image pixel is not unique

* Map a feature map pixel to the center of the
receptive field on the image in the SPP-net paper

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”. ECCV 2014.

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf

Yao Wang, NYU Deep Learning 2022 Autumn 10



Receptive Field

3x3 Conv without stride

Input Receptive field =
The number of pixels in the
R=3x3 input image that affects one
pixel at the output at (also
R=5x5 called perceptive field)
R=7x7

A large receptive field is desired
to use global information for
decision making.

3x3 Conv with stride 2

With stride 2 (or stride 1 followed
by max pool), we can reach a

R=3x3 receptive field of 15 with 3 layers.
Without stride, it will take 7 Layers!
R=7x7 The two networks have the same

number of parameters

R=15x15

Yao Wang, 2023 ECE-GY 6123: Image and Video Processing 11



» Large receptive field is important to incorporate global information

Dilated Convolution

* How to increase the receptive field

Yao Wang, 2022

Larger filter

More layers of small filters
Strided conv.

Dilated conv.

Figure from Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf

ECE-GY 6123: Image and Video Processing
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Dilated Conv in 1D

Actual Dilated Casual Convolutions Dilation rate  Receptive field

= v D
SV

Figure from https://i.stack.imgur.com/RmJSu.png

Multiscale processing while maintaining original resolution!
Used for speech waveform generation (\WaveNet).

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 13



Dilated Conv. In 2D

(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) Fj is produced from Fy by a 1-dilated convolution; each element in F}
has a receptive field of 3 x 3. (b) F3 is produced from F; by a 2-dilated convolution; each element
in F5 has a receptive field of 7x 7. (c) F3 is produced from F; by a 4-dilated convolution; each
element in F3 has a receptive field of 15 x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." arXiv preprint

Xiv:1511.07122 (2015). : . . N . :
ariv (2015) Multiscale processing while maintaining original resolution!
Good for dense prediction: image to image

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 14



Some Important Extensions

 Residual connections
e Dense connections

Yao Wang, 2022

ECE-GY 6123: Image and Video Processing
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Residual Connections (ResNET)

Really, really deep convnets don't train well

— Gradient of final loss does not propagate back to earlier layers

(vanishing of gradients)

propagation

64-d

Figure 5. A deeper residual function F for ImageNet. Left: a

Key idea: introduce “pass through” into each layer for back g eneck

256.q layer

A

A
1x1, 64

l relu

3x3, 64 |

l relu

1x1, 256

building block (on 5656 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck’ building block for ResNet-50/101/152.

He, Kaiming, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. "Deep residual learning for image recognition." In Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

http://openaccess.thecvf.com/content cvpr 2016/papers/He Deep Residual Learning CVPR 2016 paper.pdf

Yao Wang, 2022

ECE-GY 6123: Image and Video Processing
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¥ 3
3x3 conv, 512 33 cony, 512
3x3 conv, 512 3x3conv,512 |
¥ 2
3x3 conv, 512 33 conv, 512
3x3 conv, 512 33 conv, 512
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fc 4096 avg pool avg pool
v
| fc 4096 | | fc 1000 ] [ fc 1000 |
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Yao Wang, 2022

Benefit of residual connection

0@ — — "~ —— — — — — — — = - = - — == - = - -
ResNet-20
ResNet-32
~ResNet-44
= ResNet-56
=—ResNet-110
e
QE 10 - — — WU— & YV SR — — — — — — — — — — — -
:
sk— — — — = \ _______ 110-layer _
00 1 2 4 5 6

3
iter. (1e4)

W/o residual layer: deeper networks perform worse even for
the training data.
W/ residual layer: deeper networks perform better!

Using shortcut 2 is theoretically optimal

Demystifying ResNet
https://arxiv.org/abs/16

ECE-GY 6123: Image and Video Processing

11.01186
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Revolution of Depth

Case Studies

D E
16 weight 19 weight
layers layers
©)
conv3-64 conv3-64
conv3-64 conv3-64
conv3-128 | conv3-128
conv3-128 | conv3-128
conv3-256 | conv3-256
conv3-256 | conv3-256
conv3-256 | conv3-256
conv3-256
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512 | conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max

(2014)

VGG  GooglLeNet
(2014)

Revolution of Depth

152 layers
A

\

\
\
\

3.57

ILSVRC'15
ResNet

%1CCV

[ 22 layers ‘ 19 Iayers
e
v 6.7

I_‘ " I | 8layers ‘ 8Iayers

shallow

ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10

GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

e, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning fo

Research

ResNet
(2015)

From: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

Yao Wang, 2022

ECE-GY 6123: Image and Video Processing
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A variation of residual connection:
Concatenation (DenseNet)

* Feature maps of all
preceding layers are
concatenated and
used as input for the
current layer.

« Facilitate gradient back
propagation, as with
residual connection

« Strengthen feature
forward propagation
and reuse

Figure 1: A 5-layer dense block with a growth rate of £ = 4.
Each layer takes all preceding feature-maps as input.

From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional networks."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708. 2017.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 19



Stacking Dense Blocks

Input

Prediction

Dense Block 1 Dense Block 2 Dense Block 3

= =

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

‘horse”

(@) 9] O
o e} e}
= = =)
< < <
=X =} S
c c c
o o o
= = 5

Buijood

Use bottleneck layer (1x1 conv) to reduce the number of feature maps between blocks

16 T T T
: : : 2 — ResNet
« Can use fewer layers to achieve Mg\ oo T DenseNetBC jy
same performance as ResNET <2}
Em-
(0}
7]
2 8f
From: Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. 6l
Weinberger. "Densely connected convolutional networks." In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4 ' ' ' ' ' '
4700-4708. 2017. o 1 2z 3 4 5 6 7 8
#parameters x10

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 20



Pop Quizzes

 \What is the benefit of dilated convolution?
 \What is the benefit of residual connection?
« What is dense connection?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Pop Quizzes

« What is the benefit of dilated convolution?
— Obtain large receptive field w/o downsampling

 \What is the benefit of residual connection?
— Enable gradient backpropagation

— Each layer learn the residual from the previous layer
— Critical for deep networks

« What is dense connection?

Yao Wang, 2022

— Use multiple skip connections, also facilitate gradient
backpropagation

— Concatenating output from past layers instead of using addition

— Enable feature reuse

ECE-GY 6123: Image and Video Processing
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Outline (Part Il)

Neural Nets and Conv Nets and Model Training
(Review)

Some important extensions of conv. layers
Popular classification models and transfer learning

Image to image autoencoder

— Denoising

Semantic Segmentation using Multiresolution
Autoencoder

Obiject detection and classification
Instance segmentation
Interpretation of trained models

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 23



Well-Known Models

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 282
First CNN-based winner 152 layers| [152 layers| |152 layers
25
/ ocnsmey s A
20
16.4
15 /,
11.7 |19 layers| |22 layers|
10 :
- 6.7
5 3.6 o
shallow 8 layers 8 layers .
y - c - -3 2.3 .
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & | Krizhevsky etal| Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture09.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 24



Performance vs. Complexity

Inception-v4
80 1 80 1 : J
Inception-v3 ‘ ResNet-152
ResNet-SO‘ : VGG-16
751 751 ResNet-101
ResNet-34
5 <
E‘ 70 E 70 °~ ResNet-18
® © GooglLeNet
3 3 ENet
3 651 g 651
7 =z © BN-NIN
o (o]
F 60+ F 60+ 5M 35M 65M 95M 125M - -155M
BN-AlexNet
55 4 55 AlexNet
e N X A% 40 A0 ak <O Vgl B b s 5 10 15 20 25 30 35 40
\ e\ Y D DN AQ> 4Bk N9 N
\e"ﬁ e*\*\ V\$ V\ \*\ “e 6\\66 $e \\\e\, e‘_,'\ e‘,‘\-{\o(\ {)0(\ Operations [G-Ops]
P‘%‘“\ e eq\es“q\e&(\c Q e®

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture09.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 25



Transfer Learning

» For image classification or other applications, training from scratch
takes tremendous resources and requires a lot of training data

* |nstead, can refine the VGG or other well trained networks

« Can use VGG convolutional layers, and retrain only the fully
connected layers (possibly some later convolutional layers) for
different classification problems.

* Orcan use VGG conv layers as the “initial model” and further
refine.

« Deep learning platforms allow you to download public pretrained
models, and set certain layers as “frozen”, only update parameters
in other layers

— PyTorch: https://github.com/pytorch/vision
— TensorFlow: https://github.com/tensorflow/models

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 26
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e From the Visual

Geometry Group
— Oxford, UK
28 x 28 x 512 TxTx512

W I Net P2 L 1x1x4096_1x1% 1000
. on ImageiNe ~

ILSVRC-2014 4 .

@ ru.ml'nlm1('||H'»va.l

- Remains a very good D Al conbamiad Ral

network ) softma

« Lower layers are often
used as feature

. 16-layer 7.5% 7.4%
extraction layers for 15 ayer o 3
Oth er taS kS model fusion 7.1% 7.0%

http://www.robots.ox.ac.uk/~vga/research/very deep/

K. Simonyan, A. Zisserman

Very Deep Convolutional Networks for Large-Scale Image
Recognition

arXiv technical report, 2014

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 27


http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://arxiv.org/pdf/1409.1556
http://arxiv.org/pdf/1409.1556

Transfer Learning

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs e St ooy ool worars

2014

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

" (I

\Reinitialize <— Train these

s o i
MaxPool MaxPool MaxPool
Conv-512 Conv-512 Conv-512 W|th blgger
Conv-512 Conv-512 Conv-512 dataset train
MaxPool MaxPool MaxPool more Ia’yers
Conv-512 Conv-512 Conv-512
Conv-512 Conv-512 Conv-512
MaxPool MaxPool > Freeze these MaxPool
Conv-256 Conv-256 Conv-256 Freeze these
Conv-256 Conv-256 Conv-256
MaxPool MaxPool MaxPool ]
Conv-128 Conv-128 Conv-128 Lower learning rate
Conv-128 Conv-128 Conv-128 when finetuning;
MaxPool MaxPool MaxPool 1/10 of original LR
Conv-64 Conv-64 Conv-64 i i

is good startin

Conv-64 Conv-64 ) Conv-64 j p Oignt g

From http://cs231n.stanford.edu/slides/2018/cs231n_2018 lecture07.pdf
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 28



Pop quizzes

« What does transfer learning mean?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Pop quizzes

« What does transfer learning mean?

— Take a popular well trained model for a different task but with
the same type of input (e.g. images)

— Reuse some of the feature extraction layers, only train the fully
connected layers

— Or also refine some of the convolution layers for feature
extraction, depending on available training samples

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Outline (Part Il)

* Neural Nets and Conv Nets and Model Training
(Review)

* Some important extensions of conv. layers
« Popular classification models and transfer learning

) . Image to image autoencoder
— Denoising

« Semantic Segmentation using Multiresolution
Autoencoder

* QObject detection and classification
* |Instance segmentation

 Interpretation of trained models

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 31



Beyond Image Classification ...

Semantic Classification Obiject Instance
Segmentation + Localization Detection Segmentation
GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT
U TREE, SKY U W y
Y Y , .
No objects, just pixels Single Object Multiple Object T —

From: http://cs231n.stanford.edu/slides/2018/cs231n 2018 lecture11.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 32


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf

Image to Image Autoencoder

* Denoising and other applications
« Upsampling through learnable filters

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Autoencoder

CNN is not limited for
classification! 400 x 400 x 3 400 x 400 x 3

When all the layers are
convolution, the output can
have the same shape as
the input (speech-

>speech, image->image)

200 x 200 x 3

P ¢

100 x 100 x 3

Autoencoder= “latent features”
Encoder+Decoder Featurs vector

. _ Latent Channel
Encoder: image-> tent Chanr
features (AKA Bottleneck)
Decoder: features ->
image From http://warp.whoi.edu/content/images/2017/08/caearch_shallow.png
Fully convolutional Can be applied at the whole image level, or
network (FCN) (overlapped) block level.

Output size could be bigger or smaller than the

input image

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 34



How to perform upsampling?

« Using default
upsampling filter
(nearest, linear)

 Learnthe
interpolation filter
(transposed
convolution or
deconvolution)

— First generate zero-
filled image (inserting
zeros between known
samples)

— Then apply the filter

Yao Wang, 2022

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overtaps
> Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x 4

From http://cs231n.stanford.edu/slides/2018/cs231n 2018 lecture11.pdf

Also known as “Deconvolution” (not a proper name!)

ECE-GY 6123: Image and Video Processing 35
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How to perform upsampling?

« Up-sampling by factor of S

— First generate zero-filled image (inserting S-1 zeros between known
samples for upsample by a factor of S). Then apply the interpolation filter
(ideally low pass filter with cutoff at 1/(2S))

— Nyquist filter: Keep the known values intact: h[0]=1, h[kS]=0
— Example filters for S=2:
* Linear: [1/2, 1, V%]
- Cubic filter: [-1/8, 0, 5/8, 1, 5/8, 0, - 1/8]
* In 2D: row by row, then column by column. Equivalent 2D filter: HAT H
« Can also learn the interpolation filters as network parameters, no
guarantee on satisfying the Nyquist condition

* |In deep learning, this is known as “Transposed convolution” (first insert
zero, then convolve”) 5/8

To interpolate the value here

-1/8
-1/8
‘ 5/8 ‘
O ‘ @

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 36




Autoencoder for image denoising

« Input: noisy image; Output= denoised image

* Need pairs of clean and noisy images as training samples, normalized to
range (0,1)

* Following from a simple network (with only three conv layers in encoder with
stride 2 after each, and two conv layers in decoder with upsampling)

3,,

« Better image denoising networks:

Zhang, Kai, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. "Beyond a gaussian denoiser: Residual
learning of deep cnn for image denoising." IEEE Transactions on Image Processing 26, no. 7 (2017): 3142-3155.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 37



Image Denoising / Super Resolution: DnCNN

» Best performing denoising networks do not use downsampling, to keep
the image details. Just use many convolution layers. Learn the
residual from the noise-free image.

— Can also be used for super-resolution, starting with a linearly interpolated image

Noisy Image Nonlinear Mapping Residual Image

Conv + RelU
\ 4
Conv + BN + RelLU
Conv + BN + RelLU
Conv + BN + RelLU
Conv

Figure from Zhang, Kai, et al. "Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising." IEEE transactions on image processing 26.7
(2017): 3142-3155. [DnCNN]

Yao Wang, NYU Deep Learning 2022 Autumn 38



Sample Denoising Results

Noise added Denoised by DnCNN Original
(fine textures are lost)

Figure from https://github.com/cszn/DnCNN
Yao Wang, NYU Deep Learning 2022 Autumn 39



https://github.com/cszn/DnCNN

Sample PyTorch implementation for denoising
(no down sampling or upsampling no residual connection)

import torch
import torch.nn as nn

class DenoiserCNN(nn.Module):
# small DnCNN Architecture, 4 conv layers

def __init__(self, nc, nf):
super(self, DenoiserCNN).__init__()
self.main = nn.Sequential(
nn.Conv2d(nc, nf, 3, pad=1, bias=False),
nn.BatchNorm2d(nf),
nn.ReLU(inplace=True),

nn.Conv2d(nf, nf, 3, pad=1, bias=False),
nn.BatchNorm2d(nf),
nn.ReLU(inplace=True),

nn.Conv2d(nf, nf, 3, pad=1, bias=False),
nn.BatchNorm2d(nf),
nn.ReLU(inplace=True)

nn.Conv2d(nf, nc, 3, pad=1, bias=False),

)

def forward(self, x):
return self.main(x)

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Applications of autoencoders

* OQutput type = input type:

— Denoising
Image completion (filling missing parts)
Super resolution

For unsupervised learning: to learn features that can represent an
image with reduced dimension

For compression: use the quantized latent features to represent an
image

* Qutput type # input type

Segmentation

— Visual Saliency detection
« Autoencoder loss depends on the underlying application

Yao Wang, NYU

Using adversarial loss can help to make the output have the same
distribution as the target output (beyond this class)
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Pop Quizzes

« What is a fully convolutional network (FCN)? What are
they used for?

« What is an auto-encoder?

« What is the benefit of using down sampling in the
encoder?

« How do we upsample in the decoder?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Pop Quizzes

 What is a fully convolutional network (FCN)? What are they used
for?
— Only convolutional layers
— Used for mapping an input image to an output image

 What is an auto-encoder?
— Encoder generate multi-channel downsampled features

— Decoder reconstruct an image by upsample the features and
additional convolution

— Down-sampling / Up-sampling is not necessary
 What is the benefit of using down sampling in the encoder?

— Enlarge receptive field with fewer layers to enable more efficient
gathering of global information

— Produce more compact latent features
 How do we upsample in the decoder?

— Using transposed convolution (insert zeros, than filter), with fixed or

learnable interpolation filters
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 43



Outline (Part Il)

* Neural Nets and Conv Nets and Model Training
(Review)

* Some important extensions of conv. layers
« Popular classification models and transfer learning

* Image to image autoencoder
— Denoising
mm) - Semantic Segmentation using Multiresolution
Autoencoder

* QObject detection and classification
* |Instance segmentation
 Interpretation of trained models

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 44



Semantic Segmentation

Each pixel is classified into one object class. Same type of object has the same color

From http://cs231n.stanford.edu/slides/2018/cs231n 2018 lecture11.pdf
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Loss function for segmentation

« Semantic segmentation:

Yao Wang, 2022

— Label each pixel as one of the classes

— Treat as multi-class classification at each pixel

« Generate multiple segmentation maps as output, one probability
map for each class. The probabilities for all classes at each pixel
sum to 1

— Loss:

« Sum of categorical cross entropy over all pixels for each image,
and over all training images

» DICE = Intersection over union (Non-differentiable)
« Soft DICE: defined in terms of predicted probability

ECE-GY 6123: Image and Video Processing
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DICE Loss for Evaluating Binary Segmentation

Yao Wang, 202

Intersection of A and B Union of A and B
A: Ground truth foreground, B: predicted foreground,
g;=1 p;: probability of pixel i is foreground
area of AnB

DICE = “rea o AGB (Intersection over union or loU, evaluating after
thresholding the probability, non-differentiable)

_ 2 2ipigi : :
Soft DICE = TS (differentiable)

— (numerator ~ intersection, denominator ~ union)
— maximize Soft DICE. Loss = - Soft DICE

Overcomes the difficulty of using cross entropy loss when the

foreground object is much smaller than the bac,kground
2 ECE-GY 6123: Image and Video Processin

47



Multi-resolution auto encoder: U-Net

Skip connection helps
to retain fine details

Concatenate encoded
features at the same

I

resolution and the R - | Used cross entropy loss
decoded features I.l... , - 3 l.l.l DR
upsampled from the WANOE s e g «+ copy and crop
lower layer for decoding -_Iv.-g’ — ,—-—- :max pool 2x2
i . & 2 1004 ; ) up-conv 2x2
at a particular resolution L 1 Renpnilig; o6,

From: https://Imb.informatik.uni-freiburg.de/research/funded_projects/bioss_deeplearning/unet.png

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241).
Springer, Cham. https://Imb.informatik.uni-freiburg.de/people/ronneber/u-net/. Watch the video!
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V-Net for Volumetric Image Segmentation

32 Channels n
128x 128 x64 (o]
N =2
i3
1 Ch. (Input) ® @ ® gg
o |x‘lx1} g
fitter S
& [ R
2 "Down’” Conv. 64 Channels
64 x64x32
16 Channels A Softmax
Up" Conv.

®@ %e@

128x128x64 ®)@®@® \ !
@ ®

B 128 Ch |
32 6S)hﬁzjngzels -
®i
®E ®>i ®>’ Y <
: g Down Conv 2561((3:?”26'3
Often used for o4 et ®,D %
medical image D D D
&
VOl U me ®} = & Do@ gw @ @ Convolutional Layer
ﬂ “Down* Conv. 2x2 filters, stride: 2
128“9;:??:'6'3 @ De-convolutional Layer
I ntrOd uced Soft Up* @ 2x2 filters, stride: 2

DICE loss

Up Conv

X

256 Channels

Fine-grained features
forwarding

Convolution using a
5x5x5 filter, stride: 1

Element-wise sum

PRelu non-linearity

Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-net: Fully convolutional neural networks for volumetric
medical image segmentation." 2016 Fourth International Conference on 3D Vision (3DV). IEEE, 2016.

https://arxiv.org/pdf/1606.04797 .pdf
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Work at NYU Video Lab: Segmentation of High
Frequency Ultrasound Images of Mouse Embryos

 Mouse embryo —
development is a good ﬁ;
animal model for rr—
studying human brain —
development. —

* High frequency fﬁ’ﬁ
ultrasound (HFU) can ——md

image embryos in vivo.
But image quality is poor
and pose of the embryo
varies greatly.

* Accurate segmentation
of the brain ventricles
(BVs) and embryo body
from 3D HFU image is
essential for assessing
the development of
mouse embryos and Joint work with Riverside Research and NYU SOM. Supported by
impact of gene mutation. NIH RO1. Video lab students: Ziming Qiu (PhD 2022), Tongda Xu,

Jack Langerman, Nitin Nair

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 50



Challenges

» The variety of body posture, orientation and image contrast.
» The class imbalance between foreground and background.
* Presence of missing boundaries and motion artifacts.

Different Motion

Missing

Brain
Ventricle

Body

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 51



Deep-learning based segmentation

O Low resolution coarse segmentation to localize regions of interest for both BV

and Body.

O Full resolution refined segmentation in each detected region of interest.
O Jointly trained end to end.

Downsample

Original Image
[

Low-Resolution

Segmentation (VNet I)

) Loc-Con Module

(See Fig. 3)

Loc-Con Module
(See Fig. 3)

Loss I:

Downsample

==
Low-Resolution 4

j
s —
L

Downsampled Labels

Refined Body
Segmentation in body

bounding box (VNet II)

41

Refined Label: Body

Refined BV
Segmentation in BV

7—" =
bounding box (VNet III) /

» _V/
class: BV

Full Resolution Auto-context

Refined Label: B[V

Loss II: Body < >
Loss [II: BV «——2

|
Zero Pad

Original Labels
—  Forward Pass

Yao Wang, 2022

Predicted Whole Image Labels

<«— Backward Pass

Fig. 2: Diagram of overall pipeline.
ECE-GY 6123: Image and Video Processing
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m Table 1: The Dice Similarity Coefficient (DSC) and inference m
time averaged over 46 test volumes for different methods.

‘ , nestle BV DSC | Body DSC | Inference
Body: 91.8: BV: 89.2  Body: 93.8: BV: 90.3 Methods .
- Time *
Benchmark 0.904 [7] | 0.932 [8] 102.36s
Initial  Segmenta- | 0.818 0.918 0.006s
tion
Refinement w/o 0.878 0.922 0.08s
Body: 89.2: BV: 86.1 Body: 91.5: BV: 92.5 AutO_ConteXt lnput
Refinement w/ 0.894 0.924 0.09s
Auto-Context Input
Refinement 0.906 0.934 0.09s
End-to-end

Tongda Xu*, Ziming Qiu*, William Das, Chuiyu Wang, Jack
Langerman, Nitin Nair, Orlando Aristizabal, Jonathan Mamou,
Daniel H. Turnbull, Jeffrey A. Ketterling, Yao Wang, “Deep
Mouse: An End-to-end Auto-context Refinement Framework

Body: 79.5: BV: 64.5 Body: 82.2: BV: 68.8 ) . . . . .
- N . Body OBV ® for Brain Ventricle & Body Segmentation in Embryonic Mice
Image Slice Ground Truth Rough Segmentation Refined Segmentation Ultrasound Volumes.” in 2020 IEEE 17th ISBI 2020, * equa|

contribution.
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Pop Quizzes

« What loss functions to use for segmentation
 How does U-Net differ from the generic auto-encoder
« Why are the benefits of U-Net structure?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Pop Quizzes

« What loss functions to use for segmentation

— Treat as classification problem at each pixel, sum the Cross
entropy at all pixels

— Soft DICE: similar to intersection over union

 How does U-NET differ from the generic auto-encoder

— Has skip connection
— Skip connection ensures high resolution information are
preserved
 What are the Benefits of U-Net structure?

— Multi-resolution processing to ensure both global and local
information are considered

— Can be used for all image to image tasks, beyond
segmentation

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 55



Outline (Part Il)

* Neural Nets and Conv Nets and Model Training
(Review)

* Some important extensions of conv. layers
« Popular classification models and transfer learning

* Image to image autoencoder
— Denoising

« Semantic Segmentation using Multiresolution
Autoencoder

- . Object detection and classification
* |Instance segmentation
 Interpretation of trained models

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 56



Object Localization and Classification

person : 0.992

!.}:

person :0.97

From: Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster r-cnn: Towards real-time object detection with region
proposal networks." In Advances in neural information processing systems, pp. 91-99. 2015.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Faster R-CNN

classifier

* A backbone network generate
features

* A region proposal network (RPN) goes
through each location in the feature
maps, examines multiple anchor

Rol pooling

boxes and classify it as Object or not proposals

and furthermore predict deviation of

the actual object box location and size ’
from the anchor Region Proposal Network,

» Overlapping proposals go through feature maps

non-maximum suppression to select
boxes with high “object-like” score 1}

» Features in remaining boxes further
go through a classification and

regression layer (Post-RPN), to conv layers
classify the object and further refine /

. . y
the box location and size Py % & S 4 4

B

PRSP E O

Figure from Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster r-cnn: Towards real-time object detection with
region proposal networks." In Advances in neural information processing systems, pp. 91-99. 2015.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 58



Region Proposal Network

2k scores 4k coordinates S — k anchor boxes
cls layer reg layer .
(Object (Xe, Yo, W, D)
or not)
256-d )

intermediate layer

sliding window

conv feature map

Figure from Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster r-cnn: Towards real-time object detection with
region proposal networks." In Advances in neural information processing systems, pp. 91-99. 2015.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing



Training of Faster R-CNN

Faster R-CNN: R | e |

Make CNN do proposals!

Insert Region Proposal v ——— '
Network (RPN) to predict los: egression loss | Rol pooling

proposals from features [ ' 3 p P

" proposaV , /
Jointly train with 4 losses: , ' ,

1. RPN classify object / not object Region Proposal Network 2

2. RPN regress box coordinates H

3. Final classification score (object Tt e -
classes)

4. Final box coordinates

CNN
P /

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 el T 4 A
Figure copyright 2015, Ross Girshick; reproduced with permission

From http://cs231n.stanford.edu/slides/2018/cs231n 2018 lecture11.pdf
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Sample Results

Figure from Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster r-cnn: Towards real-time object de{éction with region
proposal networks." In Advances in neural information processing systems, pp. 91-99. 2015.
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Do we really need the second stage?

Classification Bounding-box

loss | ﬁ regression loss

A

| Classification | !
Faster R-CNN is a loss B oss ‘ pooling
Two-stage object detector R U/ ya /

Faster R-CNN:

Make CNN do proposals!

proposals

First stage: Run once per image
- Backbone network Region Proposal Network
- Region proposal network

feature map

Second stage: Run once per region
- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset y

From: http://cs231n.stanford.edu/slides/2020/lecture_12.pdf
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 62



Single Stage Object Detectors:
YOLO / SSD / RetinaNet

Within each grid cell:

- Regress from each of the B
base boxes to a final box
with 5 numbers:

(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

- Looks a lot like RPN, but
category-specific!

Input image Divide image into grid

3xHxW 7x7
Redmon ot ol “You Onlv Look Image a set of base boxes OUtp:’lt'
eamon et al, You On 00 nce: .
Unified, Real-Time Object Detection", CVPR 2016 centered at each grid cell 7 X7 X (5 B+ C)

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016 Here B = 3
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

From: http://cs231n.stanford.edu/slides/2020/lecture 12.pdf

» Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified, real-time object detection.”
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788. 2016.

* Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. "SSD: Single
shot multibox detector." In European conference on computer vision, pp. 21-37. Springer, Cham, 2016. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 779-788. 2016.
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Multiresolution for Object Detection

predict

Used by earlier
4 object

y_ - -4 detection

: networks

(a) Featurized image pyramid (b) Single feature map

(d) Feature Pyramid Network

(c) Pyramidal feature hierarchy

Feature pyramid enables detection of objects of various sizes: Coarse resolution good for
detecting large objects, fine resolution good for detecting small objects
Figure from Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2017.

Yao Wang, NYU Deep Learning 2022 Autumn 64



YOLO v3 Using Feature Pyramid Network
= YoloV3 -

‘ Lots of convs and skips concat concat

608x608
Darknet53

An efficient model widely adopted in practice!

Figure from https://towardsdatascience.com/yolo-v3-explained-

ff5p850390f#:~:text=Y OLO%2DV3%20Architecture,at%20a%20different%20spatial%20compression, Source:
Uri Almog

Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint 628 arXiv:1804.02767 (2018)

Yao Wang, NYU Deep Learning 2022 Autumn 65
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Anchor-Free Object Detection: CenterNet

* No anchors

* No non-maximum suppression

« Duan, Kaiwen, et al. "Centernet: Keypoint triplets for object
detection." Proceedings of the IEEE/CVF international conference on
computer vision. 2019.

Yao Wang, NYU Deep Learning 2022 Autumn 66



Object Detection: Lost of Variables ...

Backbone “Meta-Architecture”

Network

Two-stage: Faster R-CNN

VGG16 Single-stage: YOLO / SSD
ResNet-101 Hybrid: R-FCN

Inception V2

Inception V3 Image Size

Inception # Region Proposals
ResNet

MobileNet

Takeaways
Faster R-CNN is slower
but more accurate

SSD is much faster but
not as accurate

Bigger / Deeper
backbones work better

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
Zou et al, “Object Detection in 20 Years: A Survey”, arXiv 2019

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2: loffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, ICML 2015
Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016
MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017

Yao Wang, 2022

From: http://cs231n.stanford.edu/slides/2020/lecture 12.pdf

ECE-GY 6123: Image and Video Processing
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Work at NYU Video Lab: Robust Vehicle Tracking
at Urban Intersections

Venhicle detection and tracking at very congested urban intersections

Traffic accidence analysis based on vehicle trajectory data
Joint project with NYU Center for Urban Science + Progress (CUSP)

Challenges
* Low resolution NYC Dept of Transportation surveillance videos
Severe occlusion in dense traffic
Vanishing point (non-bird eye view) viewing angles
Shadows and illumination changes
Developing a deep learning network that can simultaneously detect and
track a video object

« Detect bounding tubes that cover moving objects in short video segments

« Extension of faster region-CNN, which detects bounding boxes in
individual frames

Video Lab Student: Chenge Li (Ph.D. 2019)

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 68



TrackNet Model Overview

2D convolution

] Tube Proposal Network
Spatial Transformer

HH q FC layers
To(G \ﬁ Y
il y /B%LB]:;H

v Tube Pooling
Spatial-temporal ctonvolution Post-TPN

Feature Extraction Transform feature At each candidate For each proposal tube

maps so that traffic location, test multiple with high “objectness
We found using videos from different anchor tubes: score”, further refine
C3D alone is not view angles have generate a the tube parameters,
as good as using similar feature “objectness score” and and classify it into one
both C3D and representation the offset from the of predefined object
VGG original anchor tube category

location and shape

Chenge Li, Gregory Dobler, Xin Feng, Yao Wang "TrackNet: TrackNet: Simultaneous Detection and Tracking of
Multiple Objects”, https://arxiv.org/abs/1902.01466
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Sample Results: Video

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Outline (Part Il)

Neural Nets and Conv Nets and Model Training
(Review)

Some important extensions of conv. layers
Popular classification models and transfer learning

Image to image autoencoder

— Denoising

Semantic Segmentation using Multiresolution
Autoencoder

Obiject detection and classification
Instance segmentation
Interpretation of trained models

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 72



Semantic vs. Instance Segmentation

Semantic segmentation: Each pixel is labeled Instance segmentation: Each instance of
into one object class. The two cows have the the same type of object is given a different
same color! color!

Image From: He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask r-cnn." In Proceedings of the IEEE
international conference on computer vision, pp. 2961-2969. 2017. https://arxiv.org/pdf/1703.06870.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 73



Mask R-CNN: Running a segmentation network
for each detected object

Faster R-CNN |

class |
box |
A r———-
|
A
1 |
) : |
RolAlign .

conv conv

Applying semantic
segmentation for binary
classes in each detected ROI

From: He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask r-cnn." In Proceedings of the IEEE international
conference on computer vision, pp. 2961-2969. 2017. https://arxiv.org/pdf/1703.06870.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 74



Mask-RCNN: Sample Results

From: He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask r-cnn."
In Proceedings of the IEEE international conference on computer vision, pp. 2961-2969. 2017.
https://arxiv.org/pdf/1703.06870.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 75



Mask RCNN: Also estimate the human pose

From: He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask r-cnn."
In Proceedings of the IEEE international conference on computer vision, pp. 2961-2969. 2017.
https://arxiv.org/pdf/1703.06870.pdf

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 76



Pop Quizzes

 How does faster R-CNN work?

 How does YOLO work?

 How does instance segmentation work?
 How does feature pyramid work?

Yao Wang, NYU Deep Learning 2022 Autumn
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Pop Quizzes (w/ Answers)

» How does faster R-CNN work?

— Backbone: Generate features

— Region proposal network: for each possible location, evaluate multiple possible
proposals by regressing the box shape and classify between object/non-object

— Region refinement and classification: for each proposal with high object scores,
further refine location and classify among many object classes

« How does YOLO /SSD work?

— One pass: for each possible location and box shape, directly classify and
regress the box shape

— Less accurate but much faster
* How does instance segmentation work (Mask-RCNN)?
— Further apply segmentation on each detected object region
» How does feature pyramid work?

— Use features from the current resolution and upsampled features from the
lower resolution for object detection at each resolution

— Combine results from all resolutions using non-maximum suppression

Yao Wang, NYU Deep Learning 2022 Autumn 78
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Outline (Part Il)

Neural Nets and Conv Nets and Model Training
(Review)

Some important extensions of conv. layers
Popular classification models and transfer learning

Image to image autoencoder

— Denoising

Semantic Segmentation using Multiresolution
Autoencoder

Obiject detection and classification
Instance segmentation
Interpretation of trained models

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 79



What is going on inside ConvNet?

95

« What filters are used in each layer?
« What features are extracted after each layer?

« What regions/features the network uses to make
classification decisions?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 80



First layer: Visualize Filters

~Sd 4 0] )]
nHa=5ER e

1 d-1 L
" ERNER=]
BESEEaS

=Tranv.e

ResNet-18: ResNet-101: DenseNet-121:

B4 X3 xFx( 64x3x7x7 64 x3IXFXT
AlexNet: From: http://cs231n.stanford.edu/slides/2020/lecture_13.pdf

64 x3x1lx11

Since first layer input is 3 color channels, we can visualize the filters in color.
The filters in different networks are similar: extract edges in different directions and other basic
patterns, different color transitions.

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 81



Filters at other layers?

 Much harder to interpret

e Multi-channel input

* Instead look at what features / patterns generate high
response in each output channel at each layer

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing

82



Features Detected at Intermediate Layers

Maximally Activating Patches nﬁ ﬂ ‘V‘d

D ﬁ
DX

i»

Pick a layer and a channel; e.g. conv5 is
128 x 13 x 13, pick channel 17/128

Run many images through the network,

record values of chosen channel w . k,

Visualize image patches that correspond | ;h _ "

to maximal activations S‘“"{V’;&F e
B X o~ V- A
AN : | -

Springenber: g et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

From: http://cs231n.stanford.edu/slides/2020/lecture_13.pdf iz e serarben e bty e s e s 2

Different row corresponds to different feature channels
Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 83



Which pixels contribute to the classification
decision?

* Described by a saliency map
« How to derive the saliency map?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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schooner

Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

iy

el

poalng

iy

’:.“. \ {‘ ﬂ

poolng

Boatimage is ;.mm.c_dsmm
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephantimage is CCO public domain
Networks” ECCV 2014 Go-Kards image is CCO Duhl ¢ domain

) Negative change indicates this pixel is
From: http://cs231n.stanford.edu/slides/2020/lecture_13.pdf  very important for recognizing the class

Very slow: has to run the model with one pixel occluded at a time, for all pixels

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 85



Saliency by Computing Gradients with Respect
to Input (Backprop to input)

Compute the gradient of the predicted class score (unnormalized) for each class with
respect to each input pixel and each color. Take the absolute value and max over
gradients over RGB channels. Average over all test images.

Generally, the results are noisy.

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps”, ICLR Workshop 2014.

Yao Wang, NYU Deep Learning 2022 Autumn 86



Saliency via Guided Backprop

a) Forward pass 1o | b) 1l e
i o o L et ) |
Input image f f =i 1> f | Forward pass 1sl71 — 510
Feature map | 312]4 012
Backward pass
Reconstructed J= o ofo o I Tl T
. 0 — o LN ey r— - -
Image R 012 ! Backward pass:
| backpropagation | .2 1°%1° < B 3
———————————————————— | o|l-1]3 2 |1
C) " I+1 l ! |
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Only gradients that are positive and where the features are positive are backpropagated!

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
"Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).
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corresponding image crops

guided backpropagation

Layer 6: Low
level features

guided backpropagation
Layer 9: High |
level features

Figure 3: Visualization of patterns learned by the layer conv6 (top) and layer conv9 (bottom) of the
network trained on ImageNet. Each row corresponds to one filter. The visualization using “guided

backpropagation” is based on the top 10 image patches activating this filter taken from the ImageNet
dataset. Note that image sizes are not preserved (in order to save space).

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
"Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).
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Saliency vis Class Activation Map (CAM)
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class

activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

From: Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep features for
discriminative localization." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921-2929.

2016. https://www.cv-

foundation.org/openaccess/content_cvpr 2016/papers/Zhou_Learning Deep Features CVPR 2016 paper.pdf

Only applicable for the global average pooling of feature maps before one fully connected layer.

Yao Wang, 2022
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Sample Class Activation Maps (CAM)

e A T

Figure 3. The CAMs of two classes from ILSVRC [21]. The maps

highlight the discriminative image regions used for image classifi-
cation, the head of the animal for briard and the plates in barbell.

From: Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep features for
discriminative localization." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921-2929.

2016. https://www.cv-
foundation.org/openaccess/content_cvpr_2016/papers/Zhou_Learning_Deep_ Features_ CVPR_2016_paper.pdf
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Grad-CAM, Guided Grad-CAM
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Figure 2: Grad-CAM overview: Given an image and a class of interest (e.g., ‘tiger cat’ or any other type of differentiable output) as input, we forward propagate the image
through the CNN part of the model and then through task-specific computations to obtain a raw score for the category. The gradients are set to zero for all classes except the

desired class (tiger cat), which is set to 1. This signal is then backpropagated to the rectified convolutional feature maps of interest, which we combine to compute the coarse

Grad-CAM localization (blue heatmap) which represents where the model has to look to make the particular decision. Finally, we pointwise multiply the heatmap with guided
backpropagation to get Guided Grad-CAM visualizations which are both high-resolution and concept-specific.

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. "Grad-

cam: Visual explanations from deep networks via gradient-based localization." In Proceedings of the IEEE international

conference on computer vision, pp. 618-626. 2017. https://openaccess.thecvf.com/content ICCV_2017/papers/Selvaraju_Grad-
CAM_Visual_Explanations_ICCV_2017_paper.pdf

Applicable to more general architectures. CAM is a special case of Grad-CAM.

Yao Wang, 2022
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(b) Guided Backprop ‘Cat’ (c) Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’  (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (I)ResNet Grad-CAM ‘Dog’

Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG-16 and ResNet. (b) Guided Backpropagation [42
highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives higl
resolution class-discriminative visualizations. Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e

while being orders of magnitude cheaper to compute. (f, 1) are Grad-CAM visualizations for ResNet-18 layer. Note that in (c, f, i, 1), red regions corresponds to high score fo
class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. "Grad-
cam: Visual explanations from deep networks via gradient-based localization." In Proceedings of the IEEE international

conference on computer vision, pp. 618-626. 2017. https://openaccess.thecvf.com/content ICCV_2017/papers/Selvaraju_Grad-
CAM _Visual_Explanations_ICCV_2017_paper.pdf
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Pop Quizes

« What is saliency map?

« What are different methods for visualizing saliency
maps and their pros/cons?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Pop Quizzes

 What is saliency map?
— A map indicating the contribution of different pixels for the

classification/regression results (what part of the image leads to the
classification label or regression value?)

« What are different methods for generating saliency maps and their
pros/cons

Yao Wang, 2022

Occlusion (too slow!)
Back prop gradient with respect to the input image (noisy!)

Guided back prop: Back prop gradient only if the gradient is positive
and the activation is positive (less noisy but not very class specific)

Class activation map (CAM) (very good in locating the object, but only
work for certain network architecture)

Guided Grad CAM (more general than CAM, most promising)

ECE-GY 6123: Image and Video Processing 94



Summary

Some important extensions of conv. layers
— Residual connection
— Dense connection
— Dilated convolution
Popular classification models and transfer learning

Image to image autoencoder for denoising
— Upsampling: learnable interpolation filters

Semantic Segmentation using Multiresolution Autoencoder (U-Net)
— Combine features at multiple resolutions

Object detection and classification (faster R-CNN, YOLO)
— Simultaneous region detection and labeling, two pass vs. single pass

Instance segmentation
— Detecting regions corresponding to different objects, followed by segmentation of detected objects

Interpretation of trained models
— Interpretation of filters and features at different layers
— Saliency maps for classification

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 95



What you should know?

* Be able to answer all the quizzes

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing
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Recommended Readings

» General Reference: Stanford course by Feifei Li, et al: CS231n: Convolutional Neural Networks
for Visual Recognition, http://cs231n.stanford.edu/

* Image processing applications

Zhang, Kai, et al. "Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising." IEEE transactions on
image processing 26.7 (2017): 3142-3155. [DnCNN]

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). [U-Net]

*  Objection detection and segmentation:

Yao Wang, NYU

http://cs231n.stanford.edu/slides/2020/lecture 12.pdf

https://towardsdatascience.com/12-papers-you-should-read-to-understand-object-detection-in-the-deep-learning-
era-3390d4a28891

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster r-cnn: Towards real-time object detection with
region proposal networks." In Advances in neural information processing systems, pp. 91-99. 2015.

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask r-cnn." In Proceedings of the IEEE
international conference on computer vision, pp. 2961-2969. 2017. https://arxiv.org/pdf/1703.06870.pdf
[maskRCNN]

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified, real-time object
detection." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788. 2016.
Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. "SSD: Single shot multibox detector." In European conference on computer vision, pp. 21-37. Springer,
Cham, 2016. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788.
2016.

Lin, Tsung-Yi, et al. "Feature pyramid networks for object detection." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017.

Duan, Kaiwen, et al. "Centernet: Keypoint triplets for object detection." Proceedings of the IEEE/CVF international
conference on computer vision. 2019.
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Recommended Readings (Cnt'd)

*  Visualization

— Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.

—  Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep features for
discriminative localization." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2921-2929. 2016. [CAM]

—  Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. "Grad-cam: Visual explanations from deep networks via gradient-based localization." In Proceedings of the
IEEE international conference on computer vision, pp. 618-626. 2017 [GradCAM]
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Written Assignment (1)

1. Consider the following "very simple” segmentation network. Assuming we use SOFT Dice as the loss function.
1) Define the SOFT DICE loss function mathematically
2) Let the j-th feature map for the i-th input image after Layer 1 (before output) be described by z; j(m,n). The filters

in Layer 2 are denoted by h;(m,n) and the biases by b, where j is the index of the input feature map. Express the
output $;(m, n) as a function of z; ;(m, n), hj(m,n), b.

3) Derive the gradients with respect to the filter weights h;(m, n) and bias b of the last layer.

Input Image z;j(m,n) 2-class Segmentation Map
xi(m,n) Pi(m,n)

hj(m, n;

\

= 3/]_\/
———— | 3‘&/

I

W

3x3 filters (2 input
channel, 1 output
channel) with bias
followed by Sigmoidal

3x3 filters (1 input
channel, 2 output
channel) w/ bias followed
by Relu
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Written Assignment (2)

2. Consider a network with 3 convolutional layers. 1) Suppose each layer uses 3x3 filters without dilation, what is the
receptive field size of each output pixel? 2) Suppose the first layer uses 3x3 filter without dilation, and the second and
the third layer each uses 3x3 filters with a dilation rate of 2. What is the receptive field of each output pixel? 3) Now

suppose each layer uses 3x3 filters without dilation, but there is a 2x2 downsampling after each layer layer. What is
the receptive field? Discuss the pros and cons of these methods.

3. Why does the skip connection facilitates gradient backpropagation?

4. Why does U-Net helps to exploit both global and local information in its decision? In the final out layer, the input
consists of skipped connection from a high resolution layer and upsampled signals from a lower layer. Which one
brings global information, which one brings local information?

Yao Wang, 2022 ECE-GY 6123: Image and Video Processing 101



