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Outline 

¨ Motivation: Edge-Assisted visual analytics for mobile devices

¨ Two camps of approaches 
¤ Compression->Decompression->Visual analytics

¤ Split computing and compress intermediate features

¨ Learnt feature compression for split computing 

¨ Learnt scalable feature compression

¨ Conclusion
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Visual Analytics for Mobile Devices

¨ Example applications: 
¤ Object detection and scene understanding to assist people who are blind or with 

low vision

¤ Augmented Reality (AR)

¨ Challenges:
¤ Deep learning models for visual analytics require high performing CPUs and 

GPUs

¤ Mobile devices have limited computing speed and battery energy, may not have 
GPUs

¤ Running the models on mobile devices may not satisfy the real-time processing 
requirement and can drain the device battery quickly
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Solution: Offload Computation to the Edge

¨ Mobile device transmits image/video to an edge or cloud server

¨ Server performs analytics tasks and sends the results back to the mobile

¨ The mobile device may execute the models locally when the network 
connection is poor

¨ Compression rate vs. local computing depends on the connection speed 
and battery status
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A wearable system for providing real-time navigation 
assistance for blind and low vision people 

¨ Z. Yuan, T. Azzino, Y. Hao, Yu, Y. Lyu, H. 
Pei, A. Boldini, M. Mezzavilla, M. 
Beheshti, M. Porfiri, Maurizio, T. Hudson, 
W. Seiple, Y. Fang, S. Rangan, Y. Wang, 
JR Rizzo, "Network-Aware 5G Edge 
Computing for Object Detection: 
Augmenting Wearables to ‘See’ More, 
Farther and Faster," in IEEE Access, vol. 
10, 2022.

¨ Visual analytics can be done via edge 
server or locally, on single or multiple 
views, based on available bandwidth 
and the wearable battery status

¨ Supported in part by the NSF Smart and 
Connected Community Program
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What to compress and send?

¨ Two options
¤ Mobile compress and send images to the server, server decompress images and 

run the analytics model

¤ Split the task model computation between mobile and server, and compress 
intermediate features

¨ Compression rate needs to be adapted to network throughput /mobile 
battery status

¨ Related work: MPEG video coding for machine, feature compression



7CfM@ICME2023

Compression-Decompression-Analytics 
Framework

¨ Option for compression
¤ Existing codec (e.g. JPEG, BPG): can only refine the analytics task model to handle 

compression artifacts 

¤ Learnt codec: can jointly train the codec (𝜃	) and task model (𝛽)

𝑋 "𝑌 "𝑌

Original 
Image

𝛽𝜃! 𝜃"
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Learnt Compression: Basic Framework of Ballé

J Ballé, V Laparra, EP Simoncelli , End-to-end Optimized Image Compression, ICLR 2017 (arXiv 2016)
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¨ Rate-distortion loss 𝐿 = 𝐷 + 𝜆𝑅
¤ 𝑅 = −∑! log(Pr( +𝐹!))

¤ Pr +𝐹! = CDF 𝐹! +
∆
#
− CDF 𝐹! −

∆
#

¨ Rate is approximated by the cross entropy between the actual 
probability distribution and estimated distribution.

¨ Accurate probability modeling is important so that the rate 
can be accurately estimated and minimized. 

¨ Assume all features in the same feature channel follow i.i.d. 
distribution, learnt during training.

¨ CDF described by a piecewise linear function [Balle2016] or a 
learnt MLP [Balle2018]
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Adding Hyperprior

¨ Hyperpriors are introduced for 
more accurate probability 
modeling for main features

¨ Assume each main feature element 
is Gaussian

¨ Entropy model: Use hyperprior 
features (side info) to predict the 
mean and STD of each main 
feature element

J. Ballé, D Minnen, S Singh, SJ Hwang, N Johnston , Variational image compression with a scale hyperprior, ICLR2018
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Adding Autoregressive Context

¨ Akin to Intra-prediction

¨ Entropy model use both hyperprior 
features and AR context to predict 
the mean and STD of each main 
feature

¨ Recursive generation of spatial 
context from decoded features 
prevents parallel processing using 
GPU – decoding very slow

¨ Channel-wise (ChARM) vs. Spatial 
recursive 

D Minnen, J Ballé, GD Toderici , Joint autoregressive and hierarchical priors for learned image compression, NeurIPS 2018
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R-D Performance

R-D results provided by InterDigital at https://github.com/InterDigitalInc/CompressAI/tree/master/results
Figure prepared by Yueyu Hu. 
Learnt coders optimized for perceptual quality metrics can do much better for those metrics!
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Why using learning for compression?

¨ Can optimize all components together for a given rate-quality objective
¤ Can learn the optimal nonlinear transform for a target bit rate

¨ For video: Can learn how to best exploit the temporal redundancy
¤ Explicit motion compensation to generate residual
¤ Code the current frame directly conditioned on prior frames

¨ Can be trained to optimize any differentiable perceptual quality metric 
or using adversarial loss (making decoded images have similar 
distribution as true images)

¨ Can also be trained to optimize a visual analytics task under rate 
constraints!
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Compression-Decompression-Analytics 
Framework

¨ Option for compression
¤ Existing codec: can only refine the task model to handle compression artifacts 

¤ Learnt codec: can jointly train the codec (𝜃	) and task model (𝛽):  

n 𝐿(𝑥; 𝜃2, 𝜃3, 𝛽) = 𝐿4567(+𝑥 +𝑦; 𝜃3 ; 𝛽) + 𝜆𝑅(+𝑦(𝑥; 𝜃2))	
(Task-aware image compression)
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Rate-Accuracy Performance

Object detection using YOLO Image classification using ResNet18

Jointly refine the compression model and the analytics model can significantly improve analytics 
performance at lower rates!
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Problem with the compression-decompression-
analytics pipeline

¨ Compression network is itself complex!
¤ Also hard to remove information not relevant for the task

¨ Decompressing back to image is not necessary!
¤ Analytics network will take decompressed images and generate features
¤ Why not generate intermediate features and compress them?
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Split Computing

¨ Split the visual analytics model into client (task encoder) and server (task decoder) models

¨ Compress and transmit intermediate features

¨ Task encoder and feature compressor should have low complexity

¨ Compression rate should be adaptable to link throughput

Computationally 
constrained

Variable b/w 
wireless link
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Split Computing for Object Detection

¨ Use the YOLOv5 model for object detection

¨ Mobile execute several feature extraction layers of YOLO (task encoder)
¤ The mobile should be assigned only a few layers to reduce its computation load (e.g. D3 or D4) 

¨ Mobile compress and send compressed intermediate features to the edge

¨ Edge server decompress intermediate features and complete remaining YOLO layers 
(task decoder)
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How to compress intermediate features?

• Original features are generated for object detection, not for compression!
• Significant correlation across channels, all channels with high variance.
• Learning transform across channels to reduce correlation and variance 

• End-to-end learnt task-aware PCA
• Only a small number of channels are necessary to maintain task performance!

Original 128 channels

32 channels 16 channels 8 channels

• There are also spatial correlations in large 
feature maps

• Reduce spatial correlation and dimension by 
strided convolution
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Feature Compression

Train the entire model (YOLO+ 
compression) end-to-end with rate-
detection loss

Perform a search over compression 
location {D3, D4}, channel numbers 
𝑁8,	and hyperparameter 𝜆

ImageOriginal 
Intermediate 
Features

Quantized 
Reduced 
feature

• Compression by reducing spatial and channel 
dimensions of intermediate feature maps

• Use hyperprior features for probability modeling 
[Balle2018]



Detection Accuracy vs. Rate

Full COCO Dataset (80 classes) COCO-Traffic Dataset (9 classes)

• For applications interested in detecting a small 
number of object types, feature compression is 
significantly better (can choose to only retain a 
few relevant features for selected objects)

• Slower accuracy reduction as the rate drops

• Feature compression is better than image 
compression followed by detection on 
decompressed images, even when compression is 
optimized for object detection.

• The number of feature channels can be significantly 
reduced while retaining acceptable detection 
accuracy



Runtime 
Comparison

¨ Measured using a 1.1 GHz CPU for mobile-side computation and an Nvidia RTX 8000 GPU for server-side computation. 
Runtime in millisecond per image (640x640). 

¨ Compared to running YOLO on the mobile, the mobile and total computation time reduced significantly! 

¨ Learnt image compression + YOLO baseline takes more time than running YOLO locally!

¨ BPG+YOLO takes about same time, but has lower detection performance. 
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Split computing for image classification

¨ Using ResNet18 for classification (deeper models may be used in 
practice to benefit from powerful servers at the edge
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Rate-Accuracy and Runtime
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Problems?

¨ Previous results are obtained by training a different set of models (task 
model and feature compression model) for each bit rate

¨ Saving multiple models requires significant storage at the mobile

¨ Switching between different models may be too slow to adapt to fast 
varying network environments

¨ In multi-cast scenario with different servers/receivers, multiple 
independent compressed feature streams need to be generated and 
sent
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Scalable Feature Compression

¨ Generate an ordered set of feature channels: 
¤ base layer contains first few channels, each enhancement layer contains next few 

channels

¤ Each additional layer improves the analytics performance

¨ Reduce memory cost and switching time between non-scalable models

¨ Adapt the number of layers based on the transmission throughput

¨ Facilitate multi-cast: mobile send all layers once, receivers with different 
bandwidths can receive different number of layers.
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Proposed Approach

¨ Generate each layer through a channel/spatial reduction layer (Ri ) 
¨ Features in each layer are separately entropy coded using their own hyperpriors

¨ Received feature layers at the server are expanded (Ei) and added together to form input for the 
task decoder

¨ Task encoder and decoder remain the same regardless how many layers are received. 
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How to train the model to generate scalable layers?

¨ One idea (borrowing from layered image compression):
¤ First train the task encoder and decoder and the feature reduction and 

expansion modules for the base layer to optimize the rate-task performance with 
the base layer only

¤ Train the feature reduction and expansion modules for the next layer successfully 
to optimize task performance improvement for additional rate

¨ Problem: The task encoder and decoder are optimized only for the base 
layer

¨ Solution: Train the task encoder, decoder and all feature reduction and 
expansion modules to optimize for average rate-task performance with 
different numbers of layers
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Rate-Accuracy Results for Object Detection

¨ Trained the model on the subset of 
COCO data with traffic-related 
classes

¨ Scalable model matched the 
performance of a set of single-
rate models in high rate range

¨ But at low bitrates, the scalable 
model underperformed 
significantly
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Improving the performance over the entire rate range

¨ It is difficult for the same task encoder and task decoder to operate 
with high performance over a large rate range

¨ Since computation resource is abundant at the server, we can train 
multiple task decoders for different rate ranges  

¨ A single task encoder is necessary for generating layered bit streams
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Using Two Task Decoders

• Split the original base layer into 8 small layers (1 channel each, with down sampling)
• Using a low-rate task decoder for up to 8 layers
• Using a high-rate task decoder (previously trained) for more than 8 layers
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Results with Two Task Decoders

¨ The model achieved 
comparable performance 
compared to non-scalable 
models throughout the entire 
bitrate range.

¨ The same task encoder is used 
for all points on the curve, while 
the task decoder is switched 
depending on the target rate.

Low-rate 
decoder

High-rate 
decoder
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Complexity Scalability

¨ The proposed model is 
also scalable in 
complexity 

¨ Each additional layer 
requires more 
computation and more 
battery energy 
consumption

¨ The number of layers 
can be tuned based on 
the mobile battery 
status in addition to 
transmission throughput
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Can we use PCA to generate layered features?

¨ Instead of training the feature reduction and expansion layers, can we use PCA on 
𝑦	to generate uncorrelated and scalable layers 𝑧9	?
¤ Given the number of channels, PCA minimizes MSE between '𝑦 and 𝑦	

¨ Since PCA reconstructs 𝑦 to optimize MSE, an additional 1x1 conv is introduced to 
transform 𝑦 into the expected input for the task decoder to see if it improves the task 
performance



PCA for Scalable Feature Compression

¨ With the same task encoder and 
decoder, PCA is significantly worse 
than the learnt transforms optimized 
for the task performance!  
¤ Transform optimized for MSE does not 

lead to optimal task accuracy

¤ Adding one learnt transform after PCA 
reconstruction provides improvement

¨ Jointly training task encoder/decoder 
and feature reduction/expansion 
layers is necessary for good task 
performance
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Can we reconstruct images from task features?

¨ Help the user at the server to visualize and verify the object 
detection result
¤ Low quality is acceptable
¤ Do not want to degrade object detection performance

¨ Train a convolutional network (reverse of the YOLO backbone) 
to recover the image from the compressed features

¨ Help us to understand what information is carried by the 
compressed features



Sample Image Reconstruction Results

Original BPG, 0.173bpp Learnt image 
compression 0.166bpp

Proposed (D3C16) 
0.177 bpp

Proposed (D3C48) 
0.449 bpp

At low rates, feature compression distorts the background but retains salient object characteristics
Task-aware learnt image compression spends unnecessary bits to retain background information



41CfM@ICME2023

Concluding Remarks

¨ For edge-assisted visual analytics, split computing appears more promising than 
compression-decompression-analytics framework
¤ Better rate-accuracy trade-off, at substantially lower complexity at the mobile

¨ Rate-and complexity scalable compression can achieve similar rate-analytics 
performance as non-scalable compression with multiple models

¨ Proposed feature compression through channel and spatial reduction is generally 
applicable for feature compression for different tasks and models 

¨ Open challenges:
¤ Can we learn and compress features that are good for all important analytics tasks 

-> perceptual quality models for visual understanding ?
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