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Outline

Motivation: Edge-Assisted visual analytics for mobile devices

Two camps of approaches
O Compression->Decompression->Visual analytics

O Split computing and compress intermediate features

Learnt feature compression for split computing
Learnt scalable feature compression

Conclusion
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Visual Analytics for Mobile Devices

Example applications:

O Obiject detection and scene understanding to assist people who are blind or with
low vision

O Augmented Reality (AR)
Challenges:

O Deep learning models for visual analytics require high performing CPUs and

GPUs

O Mobile devices have limited computing speed and battery energy, may not have

GPUs

O Running the models on mobile devices may not satisfy the real-time processing
requirement and can drain the device battery quickly
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Solution: Offload Computation to the Edge

Mobile device transmits image /video to an edge or cloud server
Server performs analytics tasks and sends the results back to the mobile

The mobile device may execute the models locally when the network
connection is poor

Compression rate vs. local computing depends on the connection speed
and battery status
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A wearable system for providing real-time navigation
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What to compress and send?

Two options

O Mobile compress and send images to the server, server decompress images and
run the analytics model

O Split the task model computation between mobile and server, and compress
intermediate features

Compression rate needs to be adapted to network throughput /mobile
battery status

Related work: MPEG video coding for machine, feature compression
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Compression-Decompression-Analytics
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Option for compression

O Existing codec (e.g. JPEG, BPG): can only refine the analytics task model to handle
compression artifacts

O Learnt codec: can jointly train the codec (6 ) and task model ()
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Learnt Compression: Basic Framework of Ballé
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Input Image

Rate-distortion loss L = D + AR
Main features o R=-Y,log(Pr(F))

o Pr(F;)=CDF (Fi + %) — CDF (Fi - %)
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Rate is approximated by the cross entropy between the actual

E\a¢ probability distribution and estimated distribution.

| Accurate probability modeling is important so that the rate
Binary || | CDF per can be accurately estimated and minimized.

Bits channel

Assume all features in the same feature channel follow i.i.d.

AD |- distribution, learnt during training.

Decoded Image
CDF described by a piecewise linear function [Balle2016] or a

learnt MLP [Balle201 8]
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J Ballé, V Laparra, EP Simoncelli , End-to-end Optimized Image Compression, ICLR 2017 (arXiv 2016)
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Adding Hyperprior

Hyperpriors are introduced for
more accurate probability
modeling for main features

Assume each main feature element
is Gaussian

Entropy model: Use hyperprior
features (side info) to predict the
mean and STD of each main
feature element

%allé, D Minnen, S Singh, SJ Hwang, N Johnston , Variational image compression with a scale hyperprior, ICLR2018 o
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Adding Autoregressive Context
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5) Minnen, J Ballé, GD Toderici , Joint autoregressive and hierarchical priors for learned image compression, NeurlPS 2018

Akin to Intra-prediction

Entropy model use both hyperprior
features and AR context to predict
the mean and STD of each main
feature

Recursive generation of spatial
context from decoded features

prevents parallel processing using
GPU — decoding very slow

Channel-wise (ChARM) vs. Spatial
recursive
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R-D Performance
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R-D results provided by InterDigital at https://github.com/InterDigitalinc/CompressAl /tree /master /results
Figure prepared by Yueyu Hu.

Learnt coders optimized for perceptual quality metrics can do much better for those metrics!
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Why using learning for compression?

Can optimize all components together for a given rate-quality objective

O Can learn the optimal nonlinear transform for a target bit rate

For video: Can learn how to best exploit the temporal redundancy

O Explicit motion compensation to generate residual

O Code the current frame directly conditioned on prior frames

Can be trained to optimize any differentiable perceptual quality metric
or using adversarial loss (making decoded images have similar
distribution as true images)

Can also be trained to optimize a visual analytics task under rate
constraints!
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Compression-Decompression-Analytics

Framework
. Mobile : Edge Server
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Option for compression
O Existing codec: can only refine the task model to handle compression artifacts
O Learnt codec: can jointly train the codec (6 ) and task model (f):
L(x;0¢,04, B) = Ltask (X(¥; 04); B) + AR(P(x; 6,))
(Task-aware image compression)
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Rate-Accuracy Performance
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Object detection using YOLO Image classification using ResNet18
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Jointly refine the compression model and the analytics model can significantly improve analytics

performance at lower rates!
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Problem with the compression-decompression-

analvtics pipeline

. Mobile : Edge Server
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Compression network is itself complex!

O Also hard to remove information not relevant for the task

Decompressing back to image is not necessary!
O Analytics network will take decompressed images and generate features
O Why not generate intermediate features and compress them?
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Split Computing

®
Feature Feature

) Task > 3 Task
a Encoder Compression < o Decompression Decoder

% Client | \ X Server
Computationally Variable b/w
constrained wireless link

Split the visual analytics model into client (task encoder) and server (task decoder) models

Compress and transmit intermediate features
Task encoder and feature compressor should have low complexity

Compression rate should be adaptable to link throughput

CFM@ICME2023 17



Split Computing for Object Detection

Mobile Device Edge Server
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Use the YOLOvVS5 model for object detection

Mobile execute several feature extraction layers of YOLO (task encoder)

O The mobile should be assigned only a few layers to reduce its computation load (e.g. D3 or D4)

Mobile compress and send compressed intermediate features to the edge

Edge server decompress intermediate features and complete remaining YOLO layers
(task decoder)

CFM@ICME2023
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m How to compress intermediate features?
AB
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* Oiriginal features are generated for object detection, not for compression!
* Significant correlation across channels, all channels with high variance.

* Learning transform across channels to reduce correlation and variance
* End-to-end learnt task-aware PCA

*  Only a small number of channels are necessary to maintain task performance!

“I’l"“||\||l’|ﬂllﬂﬂﬂlﬂﬂmwm@u |

Original 128 channels

* There are also spatial correlations in large

feature maps

* Reduce spatial correlation and dimension by
strided convolution

Channeiindex ~ Channelindex

32 channels 16 channels 8 channels
CFM@ICME2023 20



Feature Compression

Train the entire model (YOLO+

Channel and ’ . @) : : Channel and o o
— spatial —p IO Ly m—» Althmellc » spaia —  compression) end-to-end with rate-
Reduction Decode Expansion .
- detection loss Quantized
‘ Reduced
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Analysi =P Synthesis
N::::rli =heeds BREedS Network L = LR + A Ldet /

Lr = Eynp,[—10gy p(2(y(2:0); 0))]

Laet = Lobj + Letass + Lbow-
* Compression by reducing spatial and channel - o e ot

dimensions of intermediate feature maps

* Use hyperprior features for probability modeling
[Balle201 8]

Original Image
Intermediate
Features

Perform a search over compression
location {D3, D4}, channel numbers
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Feature compression is better than image
compression followed by detection on
decompressed images, even when compression is
optimized for object detection.

The number of feature channels can be significantly
reduced while retaining acceptable detection
accuracy

mAP50
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For applications interested in detecting a small
number of object types, feature compression is
significantly better (can choose to only retain a
few relevant features for selected objects)
Slower accuracy reduction as the rate drops
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1 Measured using a 1.1 GHz CPU for mobile-side computation and an Nvidia RTX 8000 GPU for server-side computation.
Runtime in millisecond per image (640x640).

0 Compared to running YOLO on the mobile, the mobile and total computation time reduced significantly!
1 Learnt image compression + YOLO baseline takes more time than running YOLO locally!

o BPG+YOLO takes about same time, but has lower detection performance.



Split computing for image classification
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Mobile Device Edge Server

Using ResNet18 for classification (deeper models may be used in
practice to benefit from powerful servers at the edge
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Rate-Accuracy and Runtime
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Problems?

Previous results are obtained by training a different set of models (task
model and feature compression model) for each bit rate

Saving multiple models requires significant storage at the mobile

Switching between different models may be too slow to adapt to fast
varying network environments

In multi-cast scenario with different servers/receivers, multiple
independent compressed feature streams need to be generated and

sent
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Scalable Feature Compression

Generate an ordered set of feature channels:

O base layer contains first few channels, each enhancement layer contains next few
channels

O Each additional layer improves the analytics performance

Reduce memory cost and switching time between non-scalable models
Adapt the number of layers based on the transmission throughput

Facilitate multi-cast: mobile send all layers once, receivers with different
bandwidths can receive different number of layers.
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Proposed Approach
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Generate each layer through a channel /spatial reduction layer (R, )

Features in each layer are separately entropy coded using their own hyperpriors

Received feature layers at the server are expanded (E;) and added together to form input for the
task decoder

Task encoder and decoder remain the same regardless how many layers are received.
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m How to train the model to generate scalable layers?
AB
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One idea (borrowing from layered image compression):

O First train the task encoder and decoder and the feature reduction and
expansion modules for the base layer to optimize the rate-task performance with

the base layer only

O Train the feature reduction and expansion modules for the next layer successfully
to optimize task performance improvement for additional rate

Problem: The task encoder and decoder are optimized only for the base
layer
Solution: Train the task encoder, decoder and all feature reduction and

expansion modules to optimize for average rate-task performance with
different numbers of layers
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Rate-Accuracy Results for Object Detection

Trained the model on the subset of
COCO data with traffic-related

classes

Scalable model matched the
performance of a set of single-
rate models in high rate range

But at low bitrates, the scalable
model underperformed
significantly

31




m Improving the performance over the entire rate range
AB

It is difficult for the same task encoder and task decoder to operate

with high performance over a large rate range

Since computation resource is abundant at the server, we can train
multiple task decoders for different rate ranges

A single task encoder is necessary for generating layered bit streams
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Using Two Task Decoders

AB
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* Split the original base layer into 8 small layers (1 channel each, with down sampling)
* Using a low-rate task decoder for up to 8 layers
* Using a high-rate task decoder (previously trained) for more than 8 layers
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AB
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Results with Two Task Decoders
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decoder

The model achieved
comparable performance
compared to non-scalable
models throughout the entire
bitrate range.

The same task encoder is used
for all points on the curve, while
the task decoder is switched
depending on the target rate.
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O

The proposed model is
also scalable in
complexity

Each additional layer
requires more
computation and more
battery energy
consumption

The number of layers
can be tuned based on
the mobile battery
status in addition to
transmission throughput
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Can we use PCA to generate layered features?

Instead of training the feature reduction and expansion layers, can we use PCA on
Yy to generate uncorrelated and scalable layers z; ¢

O Given the number of channels, PCA minimizes MSE between y and y

Since PCA reconstructs y to optimize MSE, an additional 1x1 conv is intfroduced to
transform y into the expected input for the task decoder to see if it improves the task

performance
PCA Inverse
PCA Transforms Transforms
/ \ . ( \
Z1 Z1 g
> R »a 0 1
Input —— |2 @ Zy . Output
Image = | Mobile Network | ¥ [T Rz 1o > a0 ] & cov x| ¥ Server Network | Results
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24 z
- Ra a] &
./ _______/
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PCA for Scalable Feature Compression

With the same task encoder and
decoder, PCA is significantly worse
than the learnt transforms optimized
for the task performance!

O Transform optimized for MSE does not
lead to optimal task accuracy

O Adding one learnt transform after PCA
reconstruction provides improvement

Jointly training task encoder/decoder
and feature reduction/expansion
layers is necessary for good task
performance




m Can we reconstruct images from task features?
AB

NYU | Sraliame

Help the user at the server to visualize and verify the object
detection result

O Low quality is acceptable

O Do not want to degrade object detection performance

Train a convolutional network (reverse of the YOLO backbone)
to recover the image from the compressed features

Help us to understand what information is carried by the
compressed features
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Sample Image Reconstruction Results

Original BPG, 0.173bpp Learnt image Proposed (D3C16) Proposed (D3C48)
compression 0.166bpp 0.177 bpp 0.449 bpp

At low rates, feature compression distorts the background but retains salient object characteristics
Task-aware learnt image compression spends unnecessary bits to retain background information



Concluding Remarks

For edge-assisted visual analytics, split computing appears more promising than
compression-decompression-analytics framework

O Better rate-accuracy trade-off, at substantially lower complexity at the mobile

Rate-and complexity scalable compression can achieve similar rate-analytics
performance as non-scalable compression with multiple models

Proposed feature compression through channel and spatial reduction is generally
applicable for feature compression for different tasks and models

Open challenges:

O Can we learn and compress features that are good for all important analytics tasks

-> perceptual quality models for visual understanding ¢
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