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Notations

▶ x = [x1, · · · , xn]
⊤

▶ ∥x∥22 =
n∑

i=1

x2
i

▶ ∥x∥1 =
n∑

i=1

|xi|

▶ f(x) =
1

2
∥y − x∥22 + λ∥x∥1 =

n∑
i=1

1

2
(yi − xi)

2 + λ |xi|
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The scalar problem

minimize
x∈R

f(x) ≡ minimize
x∈R

1

2
(y − x)2 + λ |x|

▶ The minimizer of f(x), denoted by x∗, satisfies 0 ∈ ∂f(x∗).

▶
∂

∂x
(y − x)2 = 2(x− y).

▶ |x| is differentiable except at x = 0 i.e. ∂|x| = sgn (x) for x ̸= 0.

▶ x∗ − y + λ sgn (x∗) = 0 ⇒ y = x∗ + λ sgn (x∗)
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The scalar problem

let’s plot y = x∗ + λ sgn (x∗)

y = x

x

y = sgn (x)

x

y = x+ sgn (x)

x

Soft-thresholding 5



The scalar problem

let’s plot y = x∗ + λ sgn (x∗)

y = x

x

y = sgn (x)

x

y = x+ sgn (x)

x

Soft-thresholding 5



Soft-thresholding

minimize
x∈R

f(x) ≡ minimize
x∈R

1

2
(y − x)2 + λ |x|

y = x+ sgn (x)

x

x∗

y

▶ x∗ = sgn (y)×max{|y| − λ, 0}
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Dual decomposition

▶ convex equality constrained optimization problem

minimize f(x)

subject to, Ax = b

▶ Lagrangian: L(x, u) = f(x) + u⊤(Ax− b).

▶ dual function: g(u) = infx L(x, u).

▶ dual problem: maximize g(u).

▶ recover x∗ = argminx L(x, u
∗).
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Dual ascent

▶ apply gradient method to the dual problem: uk+1 = uk +α∇g(uk).

▶ ∇g(uk) = Ax̂− b with x̂ = argminx L(x, u
k).

▶ algorithm:

xk+1 = argmin
x

L(x, uk)

uk+1 = uk + αAxk+1 − b.

▶ barely works in practice! needs lots of strong assumptions!
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Dual decomposition

▶ what if f is separable? f(x) = f1(x1) + · · ·+ fn(xn)

▶ algorithm:

xk+1
i = argmin

xi

L(xi, u
k)

uk+1 = uk + α

n∑
i=1

Axk+1
i − b.

▶ solves large problems! often slow, needs lots of strong assumptions!
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Alternating direction method of multipliers

▶ constrained optimization problem

minimize f(x) + g(z)

subject to, Ax+Bz = c

▶ two sets of variables, with separable objective

▶ augmented Lagrangian:

L(x, z, u) = f(x) + g(z) + u⊤(Ax+Bz − c) +
ρ

2
∥Ax+Bz − c∥22
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