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The scalar problem
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» The minimizer of f(z), denoted by x*, satisfies 0 € 9 f(z*).

0 (y— ) =2(z —y).
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The scalar problem
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minimize f(z) minimize 2(y )% 4+ Mz

» The minimizer of f(z), denoted by x*, satisfies 0 € 9 f(z*).

> 2y o) =2 —y)

> |z| is differentiable except at © = 0 i.e. 9|x| = sgn () for z # 0.
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The scalar problem

1 2
. — minimize (v — \
minimize f(z) minimize 2(y )% 4+ Mz

» The minimizer of f(z), denoted by x*, satisfies 0 € 9 f(z*).
0
> o2 =2z —y)
> |z| is differentiable except at © = 0 i.e. 9|x| = sgn () for z # 0.

> ¥ —y+Asgn(z¥) =0=y=2z"+ Asgn(z”)

Soft-thresholding



The scalar problem

let's plot y = ™ + Asgn (z*)
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The scalar problem

let's plot y = ™ + Asgn (z*)

y=c y = sgn () y = +sgn (2)
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. I | 2
minimize fz) = minimize 2(y — )"+ Az

y =+ sgn (x)
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. I | 2
minimize fz) = minimize 2(y — )"+ Az

y =+ sgn (x) a*

> z* =sgn(y) x max{|y| — A, 0}
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Dual decomposition

» convex equality constrained optimization problem

minimize f(z)

subject to, Az =10
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Dual decomposition

» convex equality constrained optimization problem

minimize f(z)

subject to, Az =10

» Lagrangian: L(z,u) = f(z) +u' (Az —b).
» dual function: g(u) = inf, L(x,u).
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Dual decomposition

» convex equality constrained optimization problem

minimize f(z)

subject to, Az =10

v

Lagrangian: L(z,u) = f(z) +u' (Az —b).
» dual function: g(u) = inf, L(x,u).
» dual problem: maximize g(u).

> recover x* = arg min, L(z,u*).
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Dual ascent

» apply gradient method to the dual problem: u**! = u* 4+ aVg(u*).
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» apply gradient method to the dual problem: u**! = u* 4+ aVg(u*).
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Dual ascent

» apply gradient method to the dual problem: u**! = u* 4+ aVg(u*).
> Vg(u*) = A3 — b with & = argmin, L(z,u").
» algorithm:

k+1

2F*1 = arg min L(z, u¥)
xT

uFt = o 4 aAxPt — .
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Dual ascent

» apply gradient method to the dual problem: u**! = u* 4+ aVg(u*).
> Vg(u*) = A3 — b with & = argmin, L(z,u").
» algorithm:

k+1

2F*1 = arg min L(z, u¥)
xT

uFt = o 4 aAxPt — .

» barely works in practice! needs lots of strong assumptions!
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Dual decomposition

> what if f is separable? f(x) = fi(x1)+ -+ fn(zn)
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Dual decomposition

> what if f is separable? f(x) = fi(x1)+ -+ fn(zn)

> algorithm:
k+1 _ . k
;" = argmin L(z;,u”)
n
uF =k + o Z Azhtt —p,
i=1
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Dual decomposition

> what if f is separable? f(x) = fi(x1)+ -+ fn(zn)

» algorithm:

= arg min L(z;, u¥)

x;

k+1
2

n
uF Tt =k o Z Azhtt —p,
i=1

» solves large problems! often slow, needs lots of strong assumptions!

Alternating direction method of multipliers
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Alternating direction method of multipliers

» constrained optimization problem

minimize f(z) + g(2)
subject to, Az + Bz = ¢
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Alternating direction method of multipliers

» constrained optimization problem
minimize f(z) + g(2)
subject to, Az + Bz = ¢

> two sets of variables, with separable objective
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Alternating direction method of multipliers

» constrained optimization problem

minimize f(z) + g(2)
subject to, Az + Bz = ¢

> two sets of variables, with separable objective

» augmented Lagrangian:

Liz,zu) = f(x) + 9(z) +u' (Az+ Bz — ) + £ Ax + Bz — |3
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Alternating direction method of multipliers

» augmented Lagrangian:

Liz,zu) = f(x) +9(z) +u' (Az+ Bz —c) + £ Ax + Bz — |3

» algorithm:

2" = argmin L(z, 2%, u¥)
x

k+1

2P = argmin L(z*
z
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uF = uF 4 Akt 4 BAT
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