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ABSTRACT 

 

Automated Respiratory Pattern Analysis for Dynamic MRI of the Lung 

of Post COVID-19 patients at 0.55 T 

by 

Prerna Luthra 

Advisor: Prof. Yao Wang, Ph.D. 
Submitted in Partial Fulfillment of the Requirements for 

the Degree of Master of Science (Electrical Engineering) 

May 2024 

 

Analyzing respiratory motion patterns in proton MRI for patients with lung 

diseases, including those with post-COVID-19 symptoms, poses a significant challenge, 

particularly in the context of non-invasive approaches. This study investigates the 

feasibility of classifying post-COVID-19 patients into categories of either long COVID-19 

or no symptoms through the analysis of motion fields within diverse regions of lung MRIs. 

Further, it introduces an automated framework designed to assist radiologists in swiftly 

discerning not only the presence but also the severity of long COVID-19. Importantly, the 

versatility of this framework can be extended to address diverse lung diseases. 
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1. Introduction 

1.1 Overview 

After recovering from COVID-19, some patients continue to experience lingering 

symptoms, including dyspnea, a condition commonly associated with long COVID-19. 

Patients with long COVID-19 exhibit different breathing patterns, which is valuable for 

analyzing the severity of the long COVID-19 patients.  

A study [1-2] previously examined the breathing patterns of long COVID-19 patients by 

introducing the concept of incoherence to quantitatively measure the periodicity of the 

change of lung’s surface area. These incoherence values are then used to categorize these 

patients into several groups with different severity of symptoms. However, the area based 

breathing pattern analysis is not sufficient to capture the regional breathing pattern as it 

requires manual segmentation of lungs to different regions, which presents a barrier for the 

clinical settings. 

In this study, we introduce an automated framework for automatic analysis of localized 

respiratory motion in lung MRI to allow efficient automated segmentation of the lungs into 

different regions while enabling localized breathing patterns analysis based on the 

incoherence calculated from the motion field. 

1.2 Outline 
 
The thesis is structured as follows: 

Chapter 2 provides a summary of the dataset. 

Chapter 3 presents an overview of the proposed automated pipeline for respiratory motion 

analysis. 
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Chapter 4 delves into two distinct lung segmentation techniques and their respective 

results. 

Chapter 5 explores motion field estimation and regional segmentation of lung masks. 

Chapter 6 focuses on quantitative analysis through incoherence computation. 

Chapter 7 covers the discussion of all incoherence box plots and statistical analyses for 

various groups. 

Chapter 8 presents additional results related to incoherence visualization. 

Finally, Chapter 9 examines the potential use of machine learning to classify patients as 

having long COVID or no symptoms. 
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2. Dataset Summary 
 

A total of 39 dynamic 2D lung MRI datasets acquired on a ramped down 0.55T MRI 

scanner (Aera, Siemens) were used. Each dataset has 250 motion frames with a matrix size 

of 256 x 256 or 92 x 112. For the sake of consistency and easier processing, these frames 

were either downscaled using nearest neighbor interpolation or upscaled by zero padding 

to a constant size of 128 x 128. It's important to note that ground truth lung masks were not 

available for any of the patients; only motion frames were accessible for analysis. 

39 patients were divided into 3 groups: Group 0 consisted of 11 patients with no symptom, 

Group 1 consisted of 14 with mild long COVID-19 symptoms and Group 2 consisted of 14 

patients with severe long COVID-19 symptoms.  

 

 

 

 

 

 

 
Figure 2.1: Visualization of Motion Frames for a patient 

 

Patient Severity Total Patients 

Group 0: No Symptom 11 

Group 1: Mild 14 

Group 2: Severe 14 

 

Table 2.1: Data Summary 



 4 

3. Pipeline Overview 
 

 
Figure 3.1: Automated Pipeline 

 
The proposed framework comprises of the Automatic Lung Segmentation module (ALS), 

the Motion Field Estimation module (MFE), and the Local Motion Quantitative Analysis 

module (LMQA) as shown in Figure 3.1.  

ALS utilized two distinct approaches for lung segmentation. In the first approach, a pre-

trained deep learning model named UniverSeg [3] was employed to perform segmentation 

tasks on the dataset. This model utilized a limited number of annotated images and labels 

to accomplish the segmentation. Additionally, ALS employed Firevoxel [5] segmentation 

as a comparative method. Firevoxel is an algorithm that performs lung mask segmentation 

using thresholding techniques, providing an alternative to the deep learning model for the 

segmentation process. 
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In the MFE module, the Symmetric Diffeomorphism [4] technique was employed to 

estimate the mapping or transformation matrices between the reference frame (e.g., frame 

1) and subsequent frames (e.g., 2, 3…). These mappings were then utilized to generate 

motion curves for different regions of the lung. To ensure consistent segmentation of the 

lung into upper and lower parts across frames, a line in the middle of the reference mask 

was estimated to divide the lung into two parts. The endpoints of this line were then tracked 

across frames by transforming the coordinates of the reference frame's endpoints to the 

destination frame using the corresponding mapping. The vertical (or Y) motion curve for 

different segmented regions is determined by calculating the average displacement of all 

Y-coordinate pixels between the reference frame and frame N. 

In the LMQA module, the incoherence for average Y motion curve specific to a particular 

region of the lung is calculated. The resulting incoherence value facilitates the 

classification of patients into three distinct groups based on the severity levels of their 

condition.  



 6 

4. Automatic Lung Segmentation Module 
 

4.1 Deep Learning Based Approach: UniverSeg Model 
 

 
Figure 4.1: UniverSeg Model Architecture 

 

Deep learning is a prevalent approach for organ segmentation in medical imaging, typically 

requiring a substantial amount of labeled ground truth data for training. In our unique 

situation, where labeled ground truth was not available, we had to resort to an alternative 

solution. Consequently, we opted to use a pre-trained model to address the segmentation 

challenge. 

The UniverSeg model [3] is a pre-trained universal medical image segmentation model 

designed for organ segmentation tasks across various modalities such as CT, X-Ray, and 

MRI, covering multiple organs. Illustrated in Figure 4.1, the UniverSeg network (left) takes 

a query image along with a support set comprising image and label-maps (concatenated in 

the channel dimension) as input. It employs multi-scale CrossBlock features for 

segmentation. A CrossBlock (right) takes as input representations of the query u and 

support set V, and interacts u with each support entry to produce u' and V’. 

In our specific application, each 2D lung frame is fed into the UniverSeg model, generating 
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lung segmentation masks for each frame. The model was trained using 17 2D lung MR 

support images and labels, each sized 128 x 128, which were distinct from the MR frames 

used for the final analysis of 39 patients. Manual segmentation of support labels was 

performed using Matrix User 2.2 [6]. 

The model was then tested on all 39 test patients (250 2D MR frames per patient). The 

model gave a soft prediction for these patients. These soft predictions were then clipped to 

a value of either 0 or 1 based on a certain threshold. These predictions were found to have 

some missing regions (or holes). These holes were filled by finding contours. The 

segmented lung masks were then used for motion estimation.  

  



 8 

4.2 Algorithmic Approach: Firevoxel 
 
The firevoxel [5] algorithm was introduced by Mikheev et al. It is a segmentation algorithm 

primarily developed for 4D lung segmentation. Setting certain initial parameters, such the 

radius, is necessary for this algorithm to work properly. The algorithm first applies an 

adaptive thresholding by setting radius. It then performs maximum component analysis on 

the binary mask to find connected components.  

A BodyMask(t) for at a particular time ‘t’ is generated using the above procedure. 

LungMask(t) is then constructed by applying a hole filling operator to BodyMask(t). Two 

largest connected components from LungMask(t) are extracted and all other components 

are removed. The BodyMask(t) is then updated by using following rule: BodyMask(t) := 

BodyMask(t) AND NOT LungMask(t).  

The average signals, Slung and Sbody, are measured from the two updated binary masks 

LungMask(t) and BodyMask(t). The lung upper threshold is then calculated as 

(SLung+SBody)/2, and the auxiliary lung mask Aux(t) is extracted from gray-scale images 

as voxels with signal intensity below this threshold. The lung masks are augmented using 

set union LungMask(t) AND Aux(t). Finally, the mask is decomposed into two distinct 

regions for the left and the right lung using a custom wavefront propagation algorithm that 

tracks the ancestors of each voxel of the wavefront. 
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4.3 Discussion of Segmentation Results 
 

 
Figure 4.2: Good Segmentation Results for UniverSeg and Firevoxel 
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The inability to get ground truth masks made it difficult to calculate DICE scores for the 

two methods. For every patient, however, a video was generated with masks superimposed 

on top. Upon manually examining the 39 videos for every patient, it was noted that the 

UniverSeg model did a decent job of segmenting the right lung. Firevoxel worked well on 

both the left and right lungs, but it is noted that when the lung region is rather vast 

in comparison to the entire body, it is unable to segment the lungs correctly.  Figure 4.2 

shows some of the good segmentation results for both methodologies. Figure 4.3 shows 

some poor results. 

  

Figure 4.3: Bad Segmentation Results for UniverSeg and Firevoxel 
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5. Motion Field Estimation Module 
 

5.1 Symmetric Diffeomorphism 
 

 
            Figure 5.1: Symmetric Diffeomorphism 

 
Symmetric diffeomorphic [4] registration is a technique used in medical imaging to align 

and match images of the same subject taken at different times.  

It solves the following image matching problem: Find a spatiotemporal mapping, φ, such 

that the cross correlation (a measure of similarity) between the image pair is maximized. 

φ!(#, %)' = 	φ"(z, 1 − t). 

In this equation, I and J are images that need to be matched, /1 and /2 are grid mappings, 

x and z are spatial coordinates and, t is time. Figure 5.1 illustrates the how images I and J 

converge to form grid mappings φ1 and φ2. 

To determine the mapping between two segmented lung masks, we employed symmetric 

diffeomorphic registration. In particular, the mask taken from frame 1 was used as the 

reference frame for each patient. This algorithm was then used to align the masks from all 
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subsequent frames to match the mask from the first frame. Aligning a pair of masks helps 

in tracking the respiratory motion of the lungs. 

 

5.2 Warping Results from Symmetric Diffeomorphism 
 

 

     Figure 5.2: (a) Sample warping result for a lung mask, (b) Overall DICE and RMSE score for warped 

masks 

 
Lung masks 2 through 250 were aligned to lung mask 1 for a specific patient in order to 

assess the efficacy of the symmetric diffeomorphism algorithm. To do this, a mapping 

between each pair of lung masks (/1_2, /1_3, /1_4 .. /1_250) was generated. Next, masks 2 

to 250 were transformed to mask 1 using these mappings.  

For instance, Mask30*( /1_30) = Warped Mask1. Here, mapping /1_30 is used to change 

Mask30 into Mask1. Note Warped Mask 1 is the result generated by applying this mapping. 
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This mask should ideally equal Mask 1. Figure 5.2 (a) gives an example of generated 

warped mask as well as corresponding mapping or grid transformations. 

Following the generation of the warped masks, the DICE score between two masks is 

calculated. The DICE score is given by 2 times the total number of pixels that overlap 

between Mask 1 and Mask N divided by total number of pixels in both masks. Note that 

the DICE score for a given patient is calculated as the average of all DICE scores across 

each pair of aligned masks. The DICE scores of the 39 patients vary from 0.97 to 0.99, 

with an average of 0.97988, as indicated in Figure 5.2 (b). In addition to DICE scores, the 

Root Mean Squared Error (RMSE) is computed by comparing the pixel values at 

corresponding locations in the warped mask and reference mask. The average RMSE 

across all patients and frames is determined to be 0.0306.  

These results show the outstanding performance of symmetric diffeomorphism, 

demonstrating its effectiveness in achieving accurate and precise alignment between 

masks. 

 

5.3 Motion Detection Using Symmetric Diffeomorphism 
 

In motion detection workflow, Mask 1 serves as the reference frame for subsequent 

analysis. To establish a connection between Mask 1 and other masks (ranging from 2 to 

250), a warped mapping is generated using symmetric diffeomorphism. This results in a 

series of mappings denoted as /1_2, /1_3, /1_4 .. /1_N. Notably, /1_N represents a mapping 

or a transformation grid that gives us new coordinate locations for mask N so that it aligns 

with mask 1. 
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 Our motion calculation methodology focuses predominantly on the Y coordinates, 

gauging the extent of their displacement from one image to the next. The Y Motion 

Displacement is specifically computed between Mask 1 and Mask N. This involves 

obtaining values such as: M12, M13, .. , M1N where M1N signifies the average Y motion or 

the average number of Y pixels moved (or displaced) between mask N and mask 1. 

The dataset comprising of M12, M13, .. , M1N is utilized to generate a curve. This curve 

represents the respiratory motion. Subsequently, the periodicity or incoherence of this 

curve is calculated, forming the basis for patient classification in our analysis. 
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5.4 Regional Segmentation: Splitting Lungs into left and right sides 
 

 
 

Figure 5.4: (left) Sum of pixels along Y axis, (right) Detected midpoint that separates left and right lung 

 
To split the lungs into left and right, the algorithm follows a series of steps: 

First, the midline along the Y-axis is found. This is done by summing the pixel values along 

the Y direction in the lung mask. Following that, within the array of summed pixels, the 

algorithm commences its search from the left side of the array and identifies the initial 

point where the sum becomes non-zero. The algorithm then locates the next point where 

the sum of pixels returns to zero. This point at which the sum of pixels is zero is the location 

of the midline or the line that splits the lungs into left and right. 
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5.5 Regional Segmentation: Splitting Lungs into upper and bottom region 
 

 
Figure 5.5: (left) Sum of pixels along X axis, (right) Detected midpoint that separates top and bottom lung 

 
5.5.1 Method 1: Random Midline Split  

 
To partition the lungs into top and bottom segments, the algorithm executes the following 

steps to find the midline along the X-axis: 

First, all pixel values along the X direction are summed as illustrated in Figure 5.5 (left). 

Following that, within the array of summed pixels, the algorithm identifies the starting and 

ending points of non-zero values. 

The midpoint between the determined start and end points serves as the division point for 

separating the top and bottom sections of the lungs. This approach is iteratively applied to 

all frames pertaining to a particular patient.  

It is essential to recognize that due to the dynamic nature of the frames, characterized by 

upward and downward movements caused by respiratory motion, the X midline does not 

remain constant across all frames. In other words, the position of the midline undergoes 

changes relative to the first frame. The inconsistency in midline tracking using this method 

can pose challenges in monitoring respiratory motion, especially when the lungs are 
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unevenly split. Hence, it is crucial to adopt an approach that ensures a balanced division of 

the lungs across all frames. 

5.5.2 Method 2: Two Point Midline Tracking 
 
To ensure an even division of the lungs across all frames, the initial and terminal points of 

the midline are identified in frame 1 using method 1.  

Subsequently, these two points are systematically tracked across successive frames through 

the application of Symmetric Diffeomorphism. In this process, warped mappings denoted 

as /1_2, /1_3, /1_4 .. /1_N are generated where /1_N is a mapping or a transformation grid, 

that establishes new coordinate locations for mask N and aligns it with mask 1.  

Here, /1_N is utilized to determine the updated coordinates for the start and end points of 

the midline, facilitating the identification of corresponding values in Mask N. 
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6. Local Motion Quantitative Analysis Module 
 

6.1 Incoherence Computation 
 
Incoherence serves as a metric for periodicity, indicating how far a curve is from being 

periodic. This measure of periodicity is particularly valuable in assessing the periodic 

nature of respiratory motion curves and is employed to differentiate between severity levels 

among long COVID-19 patients. Following equation defines incoherence: 

'01(%) = 	 ∑ |	45(6 ∗ 8%9:) − 45(6 ∗ 8%9: + %)|#$%&'$
()*

<8%9:8 ∗ =>?(45)  

Please note, here, MF is motion field in vertical or Y direction for a specific region of the 

lung. Nsteps is total number of frames (i.e. 250). step is the step size which is set to 1. t is 

the time period of motion curve. avg(MF) is the average of motion field. 

‘t’ is determined through the following process:  

An exhaustive search is conducted for the value of the inherent curve period, denoted as 

‘T’ (e.g. ranging from 0 to 130 with a step of 1). For each assessed value of t within the 

interval [0, 130], an Inc(t) calculation is executed. The time t at which Inc(t) is minimum 

is chosen to be the inherent curve period T. 
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6.2 Assessing long COVID-19 Severity through Incoherence Measurement 
 

 
 
Figure 6.1: Comparison of respiratory Y motion curve for patients from different groups 

 
Figure 6.1 above depicts the vertical (Y-axis) respiratory motion among patients belonging 

to three distinct groups. Group 0 with no symptoms, Group 1 includes those with mild 

symptoms, and Group 2 consists of patients with severe symptoms. Examining the figure 

reveals that the motion curve for patient from Group 0 exhibits a fairly periodic pattern, 

Group 1 displays a slightly irregular pattern, and Group 2 demonstrates a highly irregular 

pattern. This pattern is further confirmed by the corresponding incoherence values; 

specifically, the incoherence values increase with the level of irregularity. Therefore, 

incoherence serves as a valuable measure to assess the severity of long COVID-19 in 

patients. Elevated incoherence values signify an increased irregularity in respiratory 

motion. As a result, higher incoherence values suggest a heightened risk of the patient 

encountering severe long COVID-19. 
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7. Discussion of Incoherence Plots and Statistical 
Analysis 

 
7.1 Introduction 

 
The incoherence for vertical (or Y) motion is computed for various regions of the 

segmented lungs for patients in all three groups. 

Further, statistical significance test or the t-test is done to compare the means of two groups 

and determine if there is a significant difference between them. The t-test calculates a t-

statistic based on the sample data and its standard error, considering the means and 

variances of the two groups. It then assesses the p-value associated with the test statistic. 

If the p-value is below a predetermined significance level (commonly 0.05), it indicates 

that the observed difference is unlikely to have occurred by chance, and the null hypothesis 

of no difference between the groups is rejected. 
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7.2 Comparison between Y Motion Incoherence computed using UniverSeg 
and Firevoxel based right lung segmentations 

 

 

Figure 7.2: Comparison of Y motion incoherence for full, bottom and top right lung computed using 

UniverSeg (top row) and Firevoxel (bottom row) segmentation masks. 

 

                                                   

 

 

 

 

 

 

 

 

Table 7.2.1: Statistical Significance Results for 

UniverSeg based right lung segmentation 

Table 7.2.2: Statistical Significance Results for 

Firevoxel based right lung segmentation 
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The average Y motion for the right lung masks segmented using both UniverSeg and 

Firevoxel was calculated. Subsequently, incoherence was determined for each patient 

based on the average Y motion within a specific region of the lung. Figure 7.2 presents a 

comparative analysis through box plots, focusing on Y motion incoherence across the full, 

bottom, and top regions of the right lung segmented using UniverSeg and Firevoxel. Table 

7.2.1 and 7.2.2 presents the corresponding statistical analysis. Please note that the 

comparison is exclusively conducted on the right lung mask since UniverSeg's 

segmentation performance is suboptimal for the left lung.  

Examining both the plots and the results of the statistical significance test, we observe that 

the computed incoherence for the full and bottom right lung regions, using both UniverSeg 

and Firevoxel, effectively distinguishes between Group 0 and Group 2 patients. 

However, for distinguishing between Group 0 and Group 1, the incoherence calculated for 

the entire and bottom right lung regions using both segmentation methods is not deemed 

significant, as indicated by p-values greater than 0.05. If a slightly more lenient threshold 

of 0.1 was employed, a discernible difference in incoherence for the entire and bottom right 

lung regions between Groups 0 and Group 1 might have been identified. 

It is also crucial to note that the incoherence computed for the top right lung region does 

not exhibit statistical significance for any of the group comparisons using both 

segmentation methods. 

Finally, it is essential to highlight that there are differences in the incoherence values when 

comparing masks segmented using UniverSeg and Firevoxel. Despite both methods 

exhibiting satisfactory performance in segmenting right lung masks, it is crucial to 

recognize that the accuracy of incoherence computation is contingent upon the quality of 
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lung segmentation. The effectiveness of the segmentation directly influences the accuracy 

of the derived incoherence values. 
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7.3 Comparison between Incoherence for Area and Y Motion using both 
UniverSeg and Firevoxel based right lung segmentations 

 

 

Figure 7.3: Comparison of Y motion and area incoherence for full right lung computed using UniverSeg (top 

row) and Firevoxel (bottom row) segmentation masks 

Previous studies have demonstrated the feasibility of using lung surface area to calculate 

respiratory breathing pattern. In this section, we undertake a comparison between 

incoherence values derived from lung’s surface area and those computed using average Y 

motion. Further, this comparison was done using the masks generated using both 

UniverSeg and Firevoxel. It is important to note that the area is simply the sum of all pixels 

within a specific lung region, in this case, the entire right lung mask. 
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It should be acknowledged that a regional analysis, particularly for the top and bottom 

regions, is not conducted using the area-based approach. This omission is attributed to the 

inherent challenges associated with splitting the lungs into top and bottom regions based 

on area. The difficulty arises from the fact that a greater total number of pixels in a region 

results in a smoother respiratory motion curve. Consequently, an uneven split, for instance, 

the bottom region having fewer pixels, leads to a more noisy curve. The noise in the curve, 

in turn, contributes to larger incoherence values, emphasizing the impact of uneven pixel 

distribution on the overall noisiness of the generated respiratory motion curve. 

Figure 7.3 provides a comparative examination using box plots, specifically focusing on 

incoherence derived from area and Y motion across the entire right lung, segmented using 

UniverSeg and Firevoxel. The corresponding statistical analysis is presented in Figures 

7.2.1 and 7.2.2 in the preceding section. 

Upon scrutiny of both the plots and the outcomes of the statistical significance test, it 

becomes evident that, unlike Y motion incoherence, as elucidated in the previous section, 

the computed incoherence for area is not deemed significant in any of the three group 

comparisons using either UniverSeg or FireVoxel segmentations. This is indicated by p-

values exceeding 0.05. 

It is worth noting that if a more lenient threshold of 0.1 were applied, the area-based 

incoherence of the full right lung when comparing Group 0 and Group 2 might have 

reached significance. However, it is crucial to emphasize that Y motion serves as a more 

robust marker compared to area, as reflected by smaller p-values. 
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7.4 Comparison between Left and Right Lung Y Motion Incoherence using 
Firevoxel based lung segmentations 

 

 
Figure 7.4: Comparison of Y motion incoherence for full, bottom and top right lung (top row) and left lung 

(bottom row) computed using Firevoxel segmentation masks 

 

          

 

 

 

 

 

 

 

In this section, we conduct a comparison of the average Y motion incoherence for both the 

left and right lungs, utilizing masks segmented with Firevoxel. It is worth noting that 

Table 7.4.2: Statistical Significance Results for 

Firevoxel based left lung segmentation 

Table 7.4.1: Statistical Significance Results for 

Firevoxel based right lung segmentation 
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Firevoxel demonstrates effectiveness in segmenting both left and right masks, unlike 

UniverSeg, which is why these masks are employed for this particular analysis. Figure 7.4 

presents a comprehensive comparative assessment through box plots, emphasizing Y 

motion incoherence across the entire, bottom, and top regions of both the right and left 

lungs segmented using Firevoxel. Corresponding statistical analysis is detailed in Figure 

7.4.1 and 7.4.2. 

Upon examining both the plots and the outcomes of the statistical significance test, it is 

observed that the computed Y motion incoherence for the full and bottom regions of both 

the right and left lung effectively distinguishes between Group 0 and Group 2 patients. 

However, when distinguishing between Group 0 and Group 1, the incoherence calculated 

for the bottom regions of both the left and right lungs is not considered significant, as 

indicated by p-values exceeding 0.05. If a slightly more lenient threshold of 0.1 were 

applied, a noticeable difference in incoherence for the bottom left and right lung regions 

between Groups 0 and Group 1 might have been identified. 

Crucially, the incoherence computed for the top regions of both the left and right lungs 

does not exhibit statistical significance for any of the group comparisons. 

In summary, the performance of Y motion incoherence is similar for both the left and right 

lungs, suggesting that they can be effectively utilized for comparing different groups in 

this context. 
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7.5 Summary of Various Comparisons 
 
In this section, we provide a summary of the key findings from the various comparisons 

conducted.  

In essence, it has been established that the incoherence of Y motion serves as a valuable 

indicator of significance, effectively distinguishing between Group 0 and Group 2. 

Notably, the incoherence of Y motion in the bottom lung region is deemed more significant 

when compared to the top lung region. Moreover, both the left and right lungs prove to be 

suitable for computing Y motion incoherence, exhibiting similar performance across 

various lung regions.  

Contrary to this, the statistical analysis reveals that the incoherence of area does not exhibit 

significance in any of the three group comparisons, unless a slightly more lenient p-value 

threshold (0.1) is applied. Under this lenient threshold, it might have been capable of 

distinguishing between Group 0 and Group 2. Additionally, with a more lenient threshold, 

the Y motion incoherence for the bottom lung region could potentially distinguish not only 

between Group 0 and Group 2 (as previously indicated using a tighter threshold) but also 

between Group 0 and Group 1. 

In conclusion, the findings strongly suggest that Y motion incoherence emerges as a 

superior marker for the analysis of respiratory breathing patterns compared to area-based 

incoherence. Moreover, Y motion incoherence proves versatile in performing regional 

analysis, distinguishing between top and bottom regions, a capability not shared by the 

area-based approach. 
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8. Pixel-wise Incoherence Map Visualization 
 

 

Figure 8.1: Visualization of pixel-wise incoherence maps for patients with different severities 

In this section, visualizations of the incoherence of Y motion for each pixel are provided 

for patients with varying levels of severity. Although the expectation was to observe 

discernible differences in overall visualizations corresponding to increased patient severity, 

such distinctions are not readily apparent. However, a noteworthy observation is a 

prominent row of pixels near the bottom region of the lung, suggesting the region where 

incoherence is most pronounced. This further reinforces the notion, as illustrated in 

previous sections and reiterated here, that the bottom region of the lung can indeed be 

effectively utilized for computing Y motion incoherence. 
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The computation of incoherence for the Y motion of every pixel follows a methodology 

akin to the one elucidated in Chapter 5. Mask 1 acts a as the reference frame for subsequent 

analyses. To establish a coherent link between Mask 1 and other masks (ranging from 2 to 

250), a warped mapping is generated through symmetric diffeomorphism. This results in a 

series of mappings denoted as /1_2, /1_3, /1_4 .. /1_N where, /1_N signifies a mapping or 

transformation grid that provides new coordinate locations for mask N, aligning it with 

mask 1. 

The Y motion of every pixel in mask 1 is tracked across 250 frames using the 

aforementioned warpings. To elaborate, assuming there are p pixels in mask 1, p Y motion 

curves are generated. Subsequently, the incoherence and time period of each of these p Y 

motion curves are computed. The incoherence’s of all p curves are then averaged to yield 

the final incoherence value for a specific patient. 

Please note that the pixel-wise Y motion for visualization purposes was computed by first 

normalizing the Y motion field. The normalization is described by the following equation: 

45′	 = 	 45+ −A60(45′′)
A=#(45′′) − A60	(45′′) 

Please note here MF’ is Y motion field of a particular pixel whose incoherence is to be 

computed, MF’’ is Y motion field of all pixels within the whole right lung. Note that, 

max(MF’’) denotes the maximum Y motion field of a pixel (eg. p1) within the entire right 

lung; for instance, pixel p1 may have the highest Y motion field among all pixels in the 

right lung. Similarly, min(MF’’)  represents the minimum Y motion field of a pixel (eg. 

p2) within the entire right lung; for instance, pixel p2 may have the lowest Y motion field 

among all pixels in the right lung. It's important to note that p1 and p2 may or may not be 

the same. 
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Next, incoherence is computed using the following equation: 

'01(%) = 	∑ |	45′(6 ∗ 8%9:) − 45′(6 ∗ 8%9: + %)|#$%&'$
()*

<8%9:8  

Please note, here, MF’ is motion field in vertical or Y direction for a specific pixel of the 

lung. Nsteps is total number of frames (i.e. 250). Step is the step size which is set to 1. 't' 

represents the time period of the motion curve, and its computation follows a similar 

methodology as detailed in Chapter 6. 
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9. Machine Learning for Classification of long-
COVID Patients 

 
9.1 Feature Computation 

 
In this analysis, the Firevoxel left lung segmentation results were utilized to compute the 

average Y motion, which is then used to compute various features. The features considered 

in the study included Y motion incoherence, Coefficient of Variation, and Power Spectral 

Entropy (PSE).  

The computation of Y motion incoherence followed the established methodology outlined 

in previous sections. The Coefficient of Variation was specifically defined as the ratio of 

the standard deviation of the average Y motion to the mean of the average Y motion. To 

calculate Power Spectral Entropy, the average Y motion was transformed to the frequency 

domain through the application of the Fast Fourier Transform (FFT). The resulting 

complex Fourier coefficients had their magnitudes squared, generating the power spectrum 

that depicts power distribution across different frequencies. From this spectrum, the top 

seven power spectrals were chosen based on their magnitudes. Following this selection, 

Shannon Entropy was computed for the chosen power spectrals, offering a metric to assess 

the complexity or unpredictability of the Y motion curve. 

Once these features were defined, a Decision Tree model was employed for classification 

purposes. The Decision Tree model utilizes the defined features to make informed 

classification decisions. After the classification process, the evaluation was conducted 

using the Leave One Out (LOO) method, a suitable choice due to the relatively small size 

of the dataset, comprising 39 patients. In LOO, each data point is systematically used as a 

test set, while the model is trained on the remaining data points. This process is iterated 
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until every data point has been utilized as a test set exactly once. LOO serves as a rigorous 

evaluation technique, particularly effective for small datasets, as it minimizes bias and 

provides a comprehensive assessment of the model's performance. 

 

9.2 Discussion of Results 
 

       

 

 

 

 

 

 

 

 

 

In addition to assessing overall accuracy, weighted precision, recall, and F1 score were 

computed for each distinct group. The classification involved Group 0, comprising 11 

patients with no symptoms, Group 1 consisting of 14 patients with mild symptoms, and 

Group 2, which included 14 patients experiencing severe long COVID symptoms. 

As detailed in Table 9.2.1, the overall accuracy of classifying patients into three different 

groups was approximately 0.54. The recall value for Group 1 patients was notably low at 

0.36, contributing to the overall lower accuracy. 

Table 9.2.1: Classification Results for Group 0, 1 and 2 

Table 9.2.2: Classification Results for Group 0 

and combined Groups 1 and 2 

Table 9.2.3: Classification Results for Group 0 

and Group 2. Note Group 1 has been excluded. 
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Following this, patients from Group 1 and Group 2 were consolidated into a single group, 

simplifying the problem to classify patients as either having long COVID or exhibiting no 

symptoms. As indicated in Table 9.2.2, the overall accuracy of classifying patients into two 

groups (no symptom or long COVID) was approximately 0.74. It is important to note that 

the recall value for Group 0 (no symptom) classification was somewhat low at 0.54. This 

could be attributed to the relatively small sample size for Group 0, consisting of a total of 

11 patients, compared to the 28 patients in Group 1 and Group 2 combined. Overall, the 

classifier demonstrated effectiveness in classifying long COVID patients but was less 

proficient in classifying no symptom patients, suggesting a tendency to classify patients as 

having long COVID. 

Finally, recognizing the low recall score observed previously for Group 1, it was removed 

to evaluate the classifier's performance in classifying Group 0 (no symptom) versus Group 

2 (severe symptoms) patients. As outlined in Table 9.2.3, the overall accuracy was found 

to be 0.88, with a recall value of 0.82 for Group 0 and 0.93 for Group 2. This indicates that 

the classifier effectively classified patients as either having no symptoms or experiencing 

severe long COVID symptoms.  

As decision trees evaluate the importance of various features, the analysis reveals that 

incoherence is the most crucial feature, followed by power spectral entropy, and then the 

coefficient of variation. 
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