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ABSTRACT

Machine Learning Application to Study Human Brain: The

Investigation of Brain Microstructure and Speech Decoding based on

Cortical Neural Activity

by

Junbo Chen

Advisor: Yao Wang, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

January 2024

Machine learning and deep neural networks have succeeded in various computer

vision tasks involving modalities ranging from natural to medical images. The

advancement of machine learning can shed light on studying the human brain.

This thesis leverages machine learning to study the human brain from two aspects:

understanding the microstructure of the brain and designing a neural activity

decoder to predict human speech.
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For the investigation of brain microstructure, we leverage the multi-shell di↵usion

MRI to capture the brain structure at the microscopic level. We first investigate the

microstructural alteration caused by repeated head impacts (RHI). We propose a

classification and feature selection pipeline as a means towards identifying important

di↵usion metrics associated with RHI. The results support the notion that there are

detectable white matter microstructure changes in the setting of RHI and pinpoint

influential di↵usion metrics. The work serves as an example of methods that lead

to a better understanding of the myriad of di↵usion metrics as they relate to injury

and disease. We also investigate the sex-related (biological sex assigned at birth)

di↵erences at the microscopic level in the human brain by classifying sex with deep

neural networks based on registered di↵usion metrics, which can pave the way for

understanding brain disorders that manifest di↵erently in di↵erent sexes. The study

designs 3D CNN, 2D CNN, and Vision Transformer sex classifiers based on multiple

volumetric di↵usion metrics to capture complementary information. Given models

with promising accuracy, occlusion analysis is applied to determine which white

matter regions contribute most to sex-related di↵erences. The results provide new

insight supporting di↵erences between male and female brain cellular-level tissue.

For decoding speech from human neural activity, we design a novel neural

network architecture to decode speech from electrocorticography (ECoG) recordings

and a semi-supervised pretraining method for this ECoG decoder. We first propose

a novel ECoG speech decoder, named SwinT. Instead of relying on any grid index,

the SwinT leverages each electrode’s anatomical position and brain parcellation to

decode human speech, enabling the model architecture to accommodate arbitrarily

positioned electrodes. The proposed model achieved state-of-the-art performance

based on the same grid electrodes used in the previous studies. It also achieved



ix

further performance increases by leveraging o↵-grid electrodes. More importantly,

instead of relying on subject-specific ECoG decoders, our SwinT can be trained with

ECoG signals from multiple subjects. The SwinT trained with multiple subjects not

only achieved performance increase but also demonstrated generalizability to unseen

subjects outside of the training set. For subjects included during training, to further

improve speech decoding, we propose a novel semi-supervised pretraining approach

for feature extraction part of the SwinT decoder. The study aims to simplify

the complex neural activity associated with speech production by decomposing

the latent representation into word-level semantics and trial-level dynamics. The

pretraining framework combines the pretasks of neural signal reconstruction and

contrastive learning to guide the decomposition. Refining the pretrained network

with the decoding loss led to improved speech decoding performance compared to

training from scratch.
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Chapter 1

Introduction

1.1 Overview

The machine learning and deep neural networks have achieved successes in

various computer vision studies involving modalities from natrual [39, 57, 58, 77,

78, 79] to medical images [52, 59, 61, 131]. The advancement of machine learning

can shed light on studying the human brain. This thesis leverages machine learning

to study the human brain from two aspects: understanding the microstructure of

the brain and designing a neural activity decoder to predict human speech.

For the investigation of brain microstructure, we study the microstructural

alteration caused by repeated head impacts (RHI), and the sex-related (biological

sex assigned at birth) di↵erences in the human brain at the microscopic level. We

leverage the multi-shell di↵usion MRI to capture the microstructure of brain tissue.

In the study of RHI, we propose a classification and feature selection pipeline as a

means towards identifying important di↵usion metrics associated with the RHI. In

the study of sex-related di↵erences, we design 2D convolutional neural networks
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(CNN) [58], 3D CNN [22], and Vision Transformer (ViT) [39] sex classifiers based

on multiple volumetric di↵usion metrics to capture complementary information.

The ViT is pretrained with masked auto-encoding pratask [57]. Given models with

promising accuracy, occlusion analysis is applied to determine which brain regions

contribute most to sex-related di↵erences.

For decoding speech from human neural activity, we design a novel neural net-

work architecture to decode speech from electrocorticography (ECoG) recordings

and a semi-supervised pretraining method for this ECoG decoder. We first propose

a novel ECoG speech decoder, named SwinT. Instead of relying on any grid index,

the SwinT leverages each electrode’s anatomical position and brain parcellation to

decode human speech, enabling the model architecture to accommodate arbitrarily

positioned electrodes. The proposed SwinT can leverage o↵-grid electrodes. Besides,

the SwinT can be trained with ECoG signals from multiple subjects and achieve

generalizability to unseen subjects outside of the training set. To further improve

speech decoding with limited training data, we propose a novel semi-supervised

pretraining approach for the feature extraction part of the SwinT decoder. The

pretraining method aims to simplify the complex neural activity associated with

speech production by decomposing the latent representation into word-level seman-

tics and trial-level dynamics. The pretraining framework combines the pretasks of

neural signal reconstruction and contrastive learning to guide the decomposition.

1.2 Problem Statement

For the investigation of brain microstructure, we focus on leveraging classification

as means of identifying microstructural di↵erences of the target cohorts. Specifically,
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we design models to classify the target cohorts based on di↵usion MRI. Given

classifiers achieving promising classification performance, we interpret the models by

analyzing the learned weights or conducting occlusion analysis to pinpoint important

di↵usion metrics or brain regions for the classification tasks. The findings are then

used to provide new insights into the microstructural di↵erences of the target cohorts.

The study of microstructure alteration associated with RHI has the challenges

of limited data, the subtlety of microstructural di↵erences, and insu�cient prior

knowledge. We solve the challenges by designing a classification pipeline with hand-

crafted features and wrapper-based feature selection to distinguish RHI subjects,

with the learned weights of promising models being analysed for clinical insights.

The study of sex-related di↵erences also has the challenges of limited data and

insu�cient prior knowledge, with findings not entirely consistent across previous

studies. In our study, we leverage multiple distinctive neural network architectures

to capture complementary sex-related di↵erences, with self-supervised pretraining

applied to the data-demanding classifier. Occlusion analysis is applied for clinical

insights.

For decoding speech from human neural activity, we design ECoG decoder that

can predict speech parameters at every time frame from ECoG recordings collected

from patients. The speech signals generated from the predicted speech parameters

are evaluated and compared with the ground truth. The study has many challenges:

the dataset is limited, the layout of ECoG electrodes does not follow grid-topology,

and the placement of electrodes has di↵erences among subjects. To solve these

challenges, we design a grid-free ECoG decoder to leverage electrodes that can not

fit into a grid and leverage ECoG signals from multiple subjects. As the dataset is

limited, we also design a semi-supervised pretraining method consisting of neural
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signal reconstruction and contrastive learning to improve the speech decoding

performance of subjects in the training set.

1.3 Contributions

In the study of microstructural di↵erences of RHI, the proposed classification and

feature selection pipeline achieved promising results in classifying RHI subjects. The

results support the notion that there are detectable white matter microstructural

changes in the setting of RHI due to playing contact sports. The learned weights

of classifiers are used to pinpoint influential di↵usion metrics associated with RHI.

The work serves as an example of methods that leveraging machine learning to

gain a better understanding of the myriad of di↵usion metrics as they relate to

injury and disease.

In the study of sex-related di↵erences at the microscopic level, the designed 3D

CNN, 2D CNN, and Vision Transformer sex classifiers can achieve promising sex

classification performance based on multiple volumetric di↵usion metrics. Occlusion

analysis is applied to determine which white matter regions contribute most to

sex-related di↵erences. The results indicate that distinctive neural networks can

capture complementary information regarding sex-related di↵erences. And the

results provide new insight supporting di↵erences between male and female brain

cellular-level tissue.

For decoding speech from human neural activity, we first propose a novel

ECoG speech decoder, named SwinT. Instead of relying on any grid index, the

SwinT leverages each electrode’s anatomical position and brain parcellation to

decode human speech, enabling the model architecture to accommodate arbitrarily
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positioned electrodes. The proposed model achieved state-of-the-art performance

based on the same grid electrodes used in the previous studies. It also achieved

further performance increases by leveraging o↵-grid electrodes. More importantly,

instead of relying on subject-specific ECoG decoders, our SwinT can be trained with

ECoG signals from multiple subjects. The SwinT trained with multiple subjects

not only achieved performance increase but also demonstrated generalizability to

unseen subjects outside of the training set.

We further propose a novel semi-supervised learning method to pretrain the

SwinT with selected pretasks: neural signal reconstruction, contrastive learning,

and word classification. Refining the pretrained network with the decoding loss

is shown to lead to improved speech decoding performance compared to training

from scratch.

1.4 Organization of the Thesis

In the following chapters, we first introduce our studies about the brain mi-

crostructure: the study of RHI is introduced in Chapter 2, and the study of

sex-related microstructural di↵erences is introduced in Chapter 3. We then intro-

duce the studies of speech decoding based on ECoG recordings. In Chapter 4, we

introduce our non-grid ECoG speech decoder SwinT. In Chapter 5, we introduce

the proposed semi-supervised learning method to pretrain the SwinT to improve

speech decoding performance. We finally summarize our works in Chapter 6.
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Chapter 2

Identifying Relevant Di↵usion

MRI Microstructure Biomarkers

Relating to Exposure to Repeated

Head Impacts in Contact-Sport

Athletes

2.1 Introduction

Recently, exposure to repeated head impacts (RHI) due to playing contact

sports has emerged as a potential health concern [107]. This is true even in the

absence of frank concussion. RHI exposure sustained over a long period is associated

Junbo Chen is the main driver of this study. Acknowledgment to Prof. Sohae Chung, Tianhao
Li, Prof. Els Fieremans, Prof. Dmitry S. Novikov, Prof. Yao Wang, and Prof. Yvonne W. Lui for
their collaboration and advice.
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with negative downstream e↵ects on cognition [114] as well as increased risk of

neurodegenerative disorders including movement disorders such as Parkinson’s

disease [80] and behavioral disorders such as chronic traumatic encephalopathy [11].

Di↵usion MRI has been used to study the in vivo changes to brain microstructure

after RHI [7, 12, 21, 30, 35, 46, 86, 87, 107]. Published studies rely almost uniformly

on conventional statistical methods to analyze group-level di↵erences of individual

di↵usion metrics separately such as fractional anisotropy (FA) [7, 12, 21, 30, 35,

46, 86, 107], mean di↵usivity (MD) [12, 21, 46, 86, 107], and mean kurtosis (MK)

[30, 35]. With advances in non-Gaussian approaches and compartment modeling

of di↵usion signal, our ability to characterize biophysical characteristics of white

matter has progressed; however, as a result, di↵usion MRI has become ever more

challenging to interpret because of the sheer variety and number of metrics (both

empiric and modeled) that can be used. There is a growing need to hone in on

which of many metrics are really relevant to disease and injury. In this work, we

employ a classification task not as an end but as a means to highlighting the most

relevant di↵usion MRI metrics to try to better understand the pathophysiology of

RHI and to provide a proof-of-concept method towards parsing multidimensional

di↵usion data in a limited study cohort.

The purpose of this study is to investigate white matter (WM) microstructure

in collegiate contact sport athletes exposed to subconcussive RHI by identifying

di↵usion metrics across a combination of di↵usion methods that are most useful

in discriminating between athletes with exposure to RHI and non-contact sport

controls. We include metrics from standard empiric methods of di↵usion MRI

(di↵usion tensor imaging (DTI), di↵usion kurtosis imaging (DKI)) as well as modeled

metrics which have become increasingly popular to uncover biophysically meaningful
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di↵usion information, specifically the two-compartment model of di↵usion signal

(white matter tract integrity (WMTI)). In this work, we develop the classifier not

as a goal itself but instead to identify the most relevant di↵usion MRI biomarkers

that may be important in detecting/quantifying microstructural changes due to

RHI exposure.

2.2 Methods

2.2.1 Feature Generation

We study both global and regional WM features. Global WM features were

calculated based on the standard FA template (Montreal Neurological Institute

152 space) [85] using 2 methods: whole brain WM volume as well as WM skeleton

derived from the FSL Tract-based Spatial Statistics analysis (TBSS) [110]. For

regional analysis, 7 WM regions were defined and used to generate regional features

(corpus callosum, supratentorial hemispheric WM divided into rostral, middle,

and caudal regions based on the John Hopkins University ICBM-DTI-81 WM

atlas (shown in Figure 2.1) [89]). Each subject’s FA map was registered to the

standard FA template in FMRIB Software Library (FSL) [111], followed by a

reversed warping process to generate atlas labels in each unique subject space.

Di↵usion maps were thresholded at FA of 0.4 to restrict the analysis to WM

regions consisting primarily of single-fiber orientations as has been previously

recommended for WMTI metrics [31, 43], the same threshold was applied to DTI

and DKI metrics to make all metrics have consistent regions. For regional features,

to compactly represent the statistical distribution of di↵usion metrics within regions,

3 basic statistical features (mean, standard deviation and skewness) are generated
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Figure 2.1: Seven major WM regions of interest (ROI) used in this study to
calculate di↵usion features: The corpus callosum plus supratentorial hemispheric
WM divided into rostral, middle, and caudal hemispheric segments divided based
on boundaries from John Hopkins University (JHU) ICBM-DTI-81 WM atlas.

for each region and each di↵usion metric, yielding a total of 147 features for each

scan. For the 2 types of global WM features, the same 3 statistics were calculated

for each di↵usion metric, yielding 21 features in each case.

2.2.2 Classification Pipeline

2.2.2.1 Feature Selection

As the dataset is relatively small and each sample has a multiple-dimensional

array of di↵usion metrics, feature selection was applied to address any potential

issues of overfitting. A wrapper-based method was selected as a high performance

[127] and flexible feature selection method that generally is adaptable to any

classifier. For each candidate feature subset, a classifier (see next section for details

on classifiers) was trained and performance on validation samples was used as
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the goodness metric for this feature subset. The best feature subset for each

classifier was derived by cycling through possible feature subsets and a greedy

search [72] with a crossover operator [127] was used when the number of feature

combinations was too large to be e�ciently traversed exhaustively. Using this

approach enabled us to identify the most promising feature subset based on cross-

validation performance ending when the performance was not improved upon

over 100 iterations. Furthermore, the crossover operator inspired from the genetic

algorithm [74] was employed, e↵ectively and e�ciently generating promising features

at a low computational cost [127].

2.2.2.2 Classifier and Feature Importance

Five classifiers are tested in this study. These classifiers are selected based on

1) interpretability with embedded ability to identify influential di↵usion metrics

(the purpose of the study), 2) robustness against overfitting given relatively small

dataset, and 3) the array of 5 classifiers included represent the 5 most widely used

types of classification algorithms: logistic regression [16], linear support vector

machine (SVM) [16], SVM with radial basis function (RBF) kernel [16], gradient

boosting trees (GBT) [26, 44] and multi-layer perceptron (MLP) [55]. SVM with

nonlinear kernel, GBT and MLP are all nonlinear approaches and have higher

learning capacity, but also a tendency to overfit in the case of limited data. These

five approaches to classification provide a good representation of the range of

learning capacities across classic classifiers to help us define the optimal trade-o↵

between learning capacity and generalizability for this particular question.

As noted, all 5 of these classifiers benefit from good interpretability and feature

importance can be derived from them. With logistic regression and linear SVM, the
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weight associated with each feature directly reflects the feature’s importance. GBT

is an ensemble model by boosting decision trees and provides feature importance

based on average performance gain from each feature among all the trees. In the

MLP classifier, feature importance can be inferred from the gradient of the classifier

output to the input using a process similar to guided-backpropagation [112].

2.2.2.3 Experimental Details, Metric and Brain Region Importance

For each cohort, 28 studies from 7 randomly selected players (4 separate scans

per individual collected at di↵erent visits throughout the season) were held out as

unseen data for testing with balanced class distribution. All remaining data were

used for classifier training and validation. Subject-wise data split was applied to

prevent data leakage. Statistical features of all samples were preprocessed with Z-

score normalization based on mean and standard deviation of each feature calculated

from the training set. Area under the receiver operating characteristic curve (AUC)

for the learned classifier are reported as an overall measure of reliability and

predictive power; metrics such as classification accuracy, sensitivity and specificity

are not reported here as the purpose of the classification task in this project is for

identification of relative feature importance and thus there was no need to select

thresholds on the predicted probability of each class.

An overall schematic of the experimental pipeline can be found in Figure 2.2.

We use average AUC from 10 random repetitions of stratified 5-fold cross-validation

as the validation performance. For each repetition, the training set is split randomly

into 5 non-overlapping folds subject-wisely, with the same distribution of labels

among subjects in each fold, and each fold is used as the validation set once while

the other 4 folds are used for training. Such subject-wise stratified 5-fold cross-
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validation is repeated 10 times and the averaged AUC from these 50 experiments is

then used to evaluate the goodness of each feature subset. The hyperparameters of

classifiers are tuned based on cross-validation using the training set as well. For

MLP, we find that using two layers with 8 hidden nodes and ReLU activation has

the best cross validation AUC, with Adam optimizer (�1=0.9, �2=0.999), learning

rate as 0.001 and weight decay as 0.0001. Maximum depth as 2 and estimator

number as 100 are used for GBT. The regularization term C=0.1 and C=0.5 are

used for logistic regression and linear SVM respectively. For SVM with the RBF

kernel, C=0.1 is used. The hyperparameter tuning is done outside the feature

selection loop. That is, for each candidate hyperparameter setting, the best feature

subset is chosen using the above wrapper-based feature selection method, with its

corresponding goodness measure. The Scikit-learn package is used to implement

the included classifiers [95]. For the top performing classifiers in the test set (test

AUC�0.8), we evaluate feature importance to help identify influential di↵usion

metrics and brain regions towards the characterization of WM alteration relating to

subconcussive RHI. Given the feature importances derived from the top performing

classifiers, rankings of di↵usion metrics are derived by summing the importance of

all chosen features associated with each di↵usion metric. Similarly, importance of

each ROI is evaluated by summing over all selected features associated with this

ROI.
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Figure 2.2: Schematic of the experimental pipeline: we conduct wrapper-based
feature selection using training data for each classifier, with average AUC from 10
random repetitions of stratified 5-fold cross-validation as the validation performance.
Hyperparameters are tuned based on cross-validation using the training set; for
each classifier type, feature subset and hyperparameters with best average cross-
validation AUC are selected;, each classifier is trained using the entire training set
and finally tested on the held-out test set.

2.2.3 Results

2.2.3.1 Di↵usion MRI Acquisition and Processing

The study includes 125 di↵usion images from 36 contact sport athletes (sub-

concussive RHI subjects with history of head impact exposure) and 153 di↵usion

images from 45 non-contact sport controls (control subjects without a history of

head impact exposure) from National Collegiate Athletic Association-Department

of Defense Concussion Assessment, Research and Education (CARE) Consortium

dataset [19], obtained over the course of three competitive collegiate athletic sea-

sons. These data are available through the Federal Interagency Traumatic Brain

Injury Research registry (FITBIR) and are part of the CARE study. Institutional

review board approval and participants’ informed consent were obtained at the
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participating institutions. Participants were scanned up to 4 times throughout

each season. Inclusion criteria for this study are: male sex, multi-shell di↵usion

MRI performed using 3T Prisma scanner (Siemens Medical Solutions, Erlangen,

Germany), no history of concussion throughout the relevant seasons. Control

subjects do not have a history of head impact exposure. Classification of contact

versus non-contact sport followed the classification from the primary study and

separate subjects based on the exposure to RHI. Contact sports include football,

soccer, lacrosse. Non-contact control sports include baseball, cross country, track

and field, basketball. Individuals with documented concussion during the study

period were excluded. Demographic details are summarized in Table 2.1.

Table 2.1: Study Cohort

Non-contact sport controls Subconcussive RHI
subject number 45 36
scan number 153 125
Sex (M/F) 45/0 36/0

Age 19.9±1.3 19.6±1.2
Sport: subject (scan)

Baseball 26 (85)
Cross Country 15 (56)
Tract and Field 3 (9)

Basketball 1 (3)
Football 29 (101)
Soccer 6 (20)
Lacrosse 1 (4)

Specifics of the di↵usion MRI acquisition have been previously detailed in Broglio

et al [19]. In brief, multi-shell di↵usion images used the following parameters: 2

b-values (1000, 2000 s/mm2), 30 di↵usion directions, 8 b0 (b-value = 0) images,

2.7 mm isotropic image resolution, field of view = 243 mm x 243 mm, acquisition
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matrix = 90 x 90, number of slices = 64, TR/TE = 7900/98 ms.

Preprocessing of the di↵usion data includes Marchenko-Pastur principal compo-

nent analysis based denoising [118], Gibbs correction [69], eddy current distortion,

motion correction and outlier detection [33]. DESIGNER is used as the image-

processing pipeline to preprocess di↵usion data and generate di↵usion metrics (DTI,

DKI and WMTI metrics) as it demonstrated improved preprocessing accuracy

compared to other processing methods [2]. We include 7 representative di↵usion

metrics: 2 DTI metrics (FA, MD), 1 DKI metric (MK), and 4 WMTI metrics

(AWF, Daxon, De,k and De,?).

2.2.3.2 Classification Performance in the Context of Feature Selection

With region-based features, logistic regression achieved highest test AUC at 0.81

and second highest mean validation AUC at 0.83, whereas linear SVM achieved

slightly lower test AUC at 0.80 and highest mean validation AUC at 0.86. The other

3 classifiers had substantially lower test AUC (0.48-0.67) as well as validation AUC

(0.70-0.79). Use of the regional features showed substantially better performance

over both whole WM-based features across all classifiers except for GBT. Details

are summarized in Table 2.2.

2.2.3.3 Di↵usion Metric Importance in the Identification of Subconcus-

sive RHI

For the best performing 2 classifiers that achieved test AUC at 0.80-0.81 (logistic

regression and linear SVM trained on region-based features), MD and MK are

identified as the top 2 most important di↵usion metrics across all regions for both

classifiers (Figure 2.3), followed by the 4 WMTI metrics in the following order:
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Table 2.2: Test AUC of 5 di↵erent classification models using selected features
based on regional ROIs, WM skeleton, and whole WM. (The numbers in parenthesis
are the mean and standard deviation of AUC among validation folds)

Classifiers Regional ROIs WM Skeleton Whole Brain WM
Logistic Regression 0.81 (0.83±0.08) 0.63 (0.74±0.09) 0.81 (0.76±0.10)

Linear SVM 0.80 (0.86±0.07) 0.62 (0.75±0.10) 0.51 (0.75±0.10)
MLP 0.71 (0.79±0.08) 0.59 (0.77±0.10) 0.48 (0.79±0.08)

SVM RBF Kernel 0.64 (0.77±0.09) 0.59 (0.70±0.11) 0.49 (0.74±0.10)
GBT 0.64 (0.79±0.07) 0.67 (0.77±0.11) 0.58 (0.79±0.08)

De,?, De,k, Daxon, AWF.

2.2.3.4 Brain Region Importance in the Identification of Subconcussive

RHI

The best performing 2 classifiers on the test set (logistic regression and linear

SVM trained on region-based features) lack clear consistency in ranking relevant

importance of the di↵erent ROIs (Figure 2.4).

2.2.4 Discussion

In this work, by finding the relative importances of an array of di↵usion MRI

metrics for the classification of individuals with and without exposure to RHI, we

are able to identify the metrics that may be most relevant to RHI. The two best

performing classifiers show relative consistency in identifying the most influential

di↵usion metrics (Figure 2). Namely, MD and MK are considered the top two most

important features by both these classifiers. MD represents the mean di↵usivity

in the area and MK is a marker of brain microstructure complexity. Overall, the

current findings are in keeping with previous reports which reveal di↵erences in MD
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Figure 2.3: Relative importance of selected di↵usion metrics in identifying RHI-
related di↵usion changes, derived from the sum of feature importance scores for
each di↵usion metric across all regions-of-interest and all statistics: (a) logistics
regression; (b) linear SVM.
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Figure 2.4: Relative importance of ROIs in identifying RHI-related di↵usion changes;
derived from the sum of the importance scores for each ROI across all di↵usion
metrics and all statistics: (a) logistic regression; (b) linear SVM. The relative
importance of the various ROIs is not consistent between the two classifiers.
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in such a population [12, 21, 46, 86, 107] as well as an association between altered

MK and an athlete’s cumulative impact exposure [30, 35]. In the current study,

WMTI metrics are found to be moderately important by both top-performing

classifiers. Among WMTI metrics, relative importance of De,? was consistently

noted to be the highest, suggesting characteristics of the extracellular compartment

as well as myelination are important rather than specific e↵ects on neuronal axons

themselves [66]. This seems reasonable, given that RHI are not associated with

measurable, immediate focal neurological deficits though clearly requires further

study.

Of note, for the top 2 classifiers, FA was not found to be especially informative

despite prior reports associating FA changes with RHI [7, 12, 21, 30, 35, 46, 87, 107],

(Figure 2). This may relate to known time-dependence of FA changes after injuries

[124]: FA has been documented to change from elevated in the acute stage after

MTBI to decreased in more chronic stages. The low importance of FA here may

also be an artifact of dependency between FA and information already reflected in

some of the other metrics.

In terms of brain regions and their relative importance in RHI, it appears that

a regional approach leads to substantially better classification than merely using

statistics computed over the whole brain WM. Despite the rather gross delineation

of ROIs, we show that a region-based analysis adds value. This may be because

localized changes are more di�cult to detect once averaged across the entire WM.

We also see that unlike the di↵usion metrics, the relative importances of the 7 ROIs

lack clear consistency between classifiers. In fact, 6 of the 7 ROIs show moderate

importance in at least one of the top 2 performing classifiers. This may be due

to the inherent heterogeneity of RHI in terms of location [30]. All 7 ROIs show
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similar importance for the classification task, suggesting that the e↵ects of RHI may

be heterogeneous across individuals. Our finding is consistent with prior studies

where various di↵erent brain regions have independently been associated with WM

alterations relating to RHI [21, 30, 107].

The classifiers tested here were selected because they represent a range of

types of classification algorithms as well as the span of learning capacity. We

find that the two simple, linear classifiers (logistic regression and linear SVM)

yield the best results, outperforming all nonlinear classifiers in both test AUC and

cross-validation AUC by significant margins. The two trained linear classifiers

also showed much smaller gaps between test and validation AUC, indicating good

generalizability. If care is taken in the selection of classifiers, applying classic

classifiers to medical imaging problems with limited but high-dimensional training

data, good generalizability with robustness against overfitting can be achieved.

Non-linear classifiers have the benefit of higher learning capacity but fail in this

particular task due to poor generalizability on unseen data.

Using the wrapper-based feature selection method described and this repre-

sentative group of complementary classifiers, despite the limitations of a small

dataset and a high-dimensional feature space, our pipeline achieves AUC of 0.81 on

a held-out test set. Pushing incrementally higher classification performance is not

a focus of this work because the classification task is merely used here as a conduit

to identify and understand important features of brain microstructure that may

characterize exposure to RHI. We do, nevertheless, infer from an AUC of 0.81 that,

in fact, there do exist some microstructural WM di↵erences between contact sport

athletes exposed to RHI and non-contact sport control athletes and that these

di↵erences can be detected using a simple linear classifier. This is in keeping with
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a previous report examining statistical di↵erences between these populations [30].

Limitations of this study include the small dataset in terms of number of subjects;

however, we show proof of concept that the explicit feature selection through cross-

validation approach used here can be e↵ective and add to our understanding of

underlying patterns even in a small medical imaging dataset. This may be a

useful approach to study other practical questions in clinical cohorts. We find that

simple linear classifiers are more appropriate given such a dataset, alleviating the

potential of overfitting while still able to learn discriminative features [74]. Other

limitations include heterogeneity of study athletes from a range of sports which are

clearly not entirely equivalent in RHI exposure and RHI exposure was not directly

quantified in these participants. Future work is already underway in the scientific

community to better quantify RHI using helmet accelerators as well as machine

learning computer vision models to analyze game videos [45, 101]. Future work

could divide sports to subgroups based on quantitative RHI measurement once

the RHI measurement and more subjects per sport become available. In addition,

this study explicitly does not address RHI in female athletes as there were an

insu�cient number of appropriate female participants to account for sex-related

di↵erences. Female athletes are an important group to study as the e↵ects of RHI

may di↵er. Here, we did not use an exhaustive list of di↵usion MRI metrics. The

study serves as a pilot to show feasibility of using a classifier / feature-selection

pipeline to better understand multidimensional and complex di↵usion MRI. For the

sake of this pilot, the di↵usion model selected is a relatively simple yet established

one that incorporates only a few general assumptions [111]. Finally, regional ROIs

were based on a somewhat blunt division of 7 major WM regions so as to reduce

dimensionality of the task. This may result in reducing the spatial specificity of the
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di↵usion measures. Future work could include smaller regions given larger datasets;

nevertheless, this study presents the benefit of regional classifiers which show better

performance than those using whole brain WM metrics.

2.2.5 Conclusion and Contributions

Our approach utilizes a classification and feature selection pipeline to unveil WM

microstructural characteristics of RHI and identify important di↵usion metrics. In

this study, we have found measures of mean di↵usivity, brain tissue microstructural

complexity, and radial extra-axonal di↵usion (MD, MK, and De,?) to be the three

most relevant metrics that characterize subconcussive RHI. These pilot results do

support the notion that there are detectable WM microstructure changes in the

setting of subconcussive RHI exposure related to collegiate-level contact sport par-

ticipation and that such changes may a↵ect the extracellular space specifically. The

type of approach taken here may be useful to better understand multidimensional,

complicated di↵usion MRI and the pathophysiologic ramifications in injury and

disease.
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Chapter 3

Deep Learning with Di↵usion MRI

as in vivo Microscope Reveals

Sex-related Di↵erences in Human

White Matter Microstructure

3.1 Introduction

Biological sex (throughout this manuscript, sex, male and female refer to

biological sex assigned at birth) is a crucial variable in neuroscience studies, for

example, the National Institute of Health began to require reports of di↵erences

between males and females in all preclinical trials in 2014 [32]. Sex di↵erences have

been documented across a variety of cognitive functions such as motor cognitive

performance [38, 88, 105], nonverbal reasoning [105], verbal working memory

Junbo Chen is the main driver of this study. Acknowledgment to Vara Lakshmi Bayanagari,
Prof. Sohae Chung, Prof. Yao Wang, Prof. Yvonne W. Lui for their collaboration and advice.
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[40, 68, 120], and episodic memory [5, 6, 60]. The prevalence of many neurological

and neuropsychiatric disorders also di↵ers between males and females: Autism

spectrum disorder and Tourette syndrome are more prevalent in males [9, 123], while

disorders such as multiple sclerosis and depression are more prevalent in females

[97, 98]. Understanding sex di↵erences in brain structure is crucial towards better

understanding of sex di↵erences in brain function and neuropsychiatric disorders.

Prior studies of structural MRI have documented significant sex di↵erences in

global brain anatomy, such as greater overall brain volume in males compared

with females [103]. Subregional brain di↵erences have also been shown: males

and females show di↵erences in gray-matter volume across di↵erent brain regions

[81], and investigators have also demonstrated greater cortical thickness in female

subjects than males [102].

However, there is ongoing debate regarding sex-related di↵erences in human

brains, as the findings are not entirely consistent across studies. For example, there

is controversy about sex di↵erences in the size of the corpus callosum [1, 65, 82].

Some of these inconsistencies may be explained by variable quantification procedures,

small sample sizes, and wide age distributions across studies [15].

Besides, the previous studies based on structural MRI focus on the sex di↵erences

in macroscopic brain structure. However, sex matters not only at the macroscopic

level but also at the microscopic level [99]. Compared with macroscopic di↵erences

that inform gross brain structure, cellular-level changes at the microscopic level

provide more information and more subtle indicators of cognitive function in both

health and disease [10, 24, 42]. For example, cellular-level sex di↵erences in the

brain, such as the density of microglia, are critical for brain health and immunity

and could influence di↵erences in the sex-related expression of disease [50, 51].
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Many such studies, however, rely primarily on animal models and the study of ex

vivo samples which introduces fixation and preparation artifacts. As such, we have

only a partial picture of human brain tissue microstructure. Elucidating sex-related

brain tissue microstructural di↵erences may help us better understand sex-related

di↵erences in normal development and aging as well as in pathologic conditions of

the brain.

Multi-shell di↵usion MRI is a promising and developing field capable of cap-

turing microscopic structure of the brain non-invasively [94]. It is being used

to study various neurological diseases, ranging from neurodegenerative disorders

such as Alzheimer’s dementia [54, 130] and Parkinson’s disease [14] to autoimmune

disorders such as Multiple Sclerosis [36]. As neurological disease disorders have been

commonly documented with di↵erences between males and females [9, 97, 98, 123],

leveraging di↵usion MRI to study the sex di↵erences in the human brain could

shed light on the sex-related di↵erences on cellular level and help us understand

pathology of neurological diseases.

In studies of di↵erences between males and females in terms of di↵usion MRI

metrics, conventional statistical analysis methods are commonly used, such as

comparing mean and variance of metric values within region-of-interest between

sexes at group level based on t-test and f-test [67, 102], or comparing between males

and females with tract-based spatial statistics analysis [109]. However, representing

the brain microstructure with a few regional statistics is likely to lose complex

and subtle microscopic information. Deep neural networks, on the other hand, are

able to learn to capture complex biomarkers and non-linearity from the di↵usion

MRI volumes. However, training neural networks on high dimensional volumetric

imaging data is challenging given limited dataset. Two recent works from two
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di↵erent groups trained neural networks with handcrafted features derived from

structural connectivity matrices computed using WM FA and mean di↵usivity (MD)

volumes. Their studies achieved between 77% - 95% accuracy in sex classification

[56, 128], which suggests that there are indeed sex-related di↵erences in structural

connectivity. However, the use of complex hand-crafted features is cumbersome, can

add potential biases, and limits the ease of reproducibility. Besides, di↵erent neural

networks architectures are e↵ective at capturing di↵erent types of features, making

studies relying on one single architecture challenging to capture comprehensive

information.

In our work, we aim to study sex di↵erences in the human brain at microscopic

level by leveraging deep neural networks and multi-shell di↵usion MRI. We incorpo-

rate an end-to-end design wherein the neural networks take the entire MRI volume

into account so as not to rely on complex hand-crafted feature engineering that

bias analysis. In addition, we explore 3 major network architectures believed to

capture di↵erent and possibly complementary information, to prevent the results

from relying on a single model. Finally, we identify those WM areas that most

significantly contribute to the model decisions, and thereby have most sex-related

di↵erences. With di↵usion metrics of all subjects registered to a standard template

space, e↵ects of any macroscopic anatomical di↵erences are removed to make the

model focus on microscopic structural di↵erences between sexes. Note that our

e↵ort in developing sex classification models is not for the purpose of classifying

sexes per se, but rather to reveal how much in vivo signal from di↵usion MRI may

inform regarding sex-related di↵erences in brain tissue microstructure.
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3.2 Methods

3.2.1 End-to-End Classification Models

We test three major model architectures: 2D convolutional neural network

(CNN), 3D CNN, and 3D vision transformer (ViT). We choose these end-to-end

deep networks that act on the entire image volume to avoid any reliance on hand-

crafted features and/or complicated feature engineering. In general, CNN and ViT

show state-of-the-art performances broadly across image classification tasks and

the two architectures have their own strengths and may be complementary: CNN

has inductive bias by design such as locality and translation equivalence/invariance

(w/wo pooling), making such a model generally more sample-e�cient and easier

in theory to capture local features of an image or volume [76]. While ViT lack

the inductive bias from convolutional layers rendering them somewhat more data-

hungry, they have strengths that CNNs lack in being able to capture long-range

interactions and more global features present in an image or imaging volume [37, 39],

which could be important [62, 104]. Thus, both CNN and ViT are included here.

For the CNN, although 3D CNN may be an intuitive choice of architecture to

handle a 3D imaging volume, a 3D CNN has many more parameters and requires

more training samples compared with a 2D CNN. Therefore, we also assess the

performance of a 2D CNN with a lighter feature extraction backbone and greater

training e�ciency.

3.2.1.1 2D Convolutional Neural Network

In this work, the 2D CNN employed uses a ResNet18 [58] as a backbone for

feature extraction. Here, the 2D network essentially receives input from a small
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3-slice subvolume (as ResNet18 is designed to receive color images with 3 channels

(RGB)). Thus, we extract features from every 3 consecutive slices and combine

features from all non-overlapping 3-slice subvolumes for the prediction head for

classification (Figure 3.1). Specifically, given input volumetric data with the shape

of SxHxW (S: slice number, HxW: slice size, with each slice in sagittal view),

we generate S/3 2D 3-channel images each with the shape of 3xHxW. The same

ResNet18 is applied to extract features from each 3-slice subvolume and features

from all S/3 3-slice subvolumes are concatenated as the input to a linear prediction

head. The ResNet18 architecture is shown at the bottom of Figure 1. The input

is fed to a convolutional layer (conv layer) (kernel-size=7x7, stride=2, channel-

number or number-of-feature-maps=64), followed by a max-pooling layer for further

downsampling (kernel-size=3x3, stride=2). After the pooling, 8 convolutional layer

blocks called residual blocks (where input to the block is added to the output via

residual short-cut connection) are applied where each block contains 2 convolutional

layers with kernel-size=3x3, the channel number gets doubled and the spatial size

gets downsampled by 2 at the first conv layers of 3rd, 5th, 7th residual blocks. Each

conv layer is followed by batch-normalization [63] and ReLU activation ??. In the

end of ResNet18, global-average pooling is applied to each feature map to generate

a single feature value, leading to 512 features for each 3-slice subvolume. Given

SxHxW=183x224x224, we have S/3=61 3-slice subvolumes with each yielding 512

features. These 61x512 features are concatenated and fed to a linear layer for final

prediction.
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Figure 3.1: Our 2D CNN model. In the top of the figure, the imaging volume is
divided into subvolumes, and a shared ResNet18 is applied to extract 512 features
from each subvolume. The features are concatenated and fed to a linear layer for
the final prediction. The bottom of the figure shows the architecture of ResNet18
(residual connection, ReLU activation, batch normalization are omitted for sim-
plicity): The input is first fed into a convolutional layer (7x7 kernel-size, stride=2,
channel-number=64) followed by a max-pooling (kernel-size=3x3, stride=2) layer;
subsequently, 8 residual blocks are applied with each containing 2 convolutional
layers. Residual blocks parameters: conv layers in block 1, 2 have kernel-size=3x3
and channel=64; conv layers in block 3, 4 have kernel-size=3x3 and channel=128;
conv layers in block 5, 6 have kernel-size=3x3 and channel=256; conv layers in
block 7, 8 have kernel-size=3x3 and channel=512; stride=2 is applied at the first
conv layer of block 3, 5, 7. Global average pooling is applied at the end.
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3.2.1.2 3D Convolutional Neural Network

We employ 3D ResNet-10 [22, 53] as our 3D CNN backbone, with archi-

tecture shown in Figure 3.2. The 3D volume is firstly fed into a conv layer

(kernel-size=7x7x7, stride=2, channel=64) followed by a max pooling layer (kernel-

size=3x3x3, stride=2), 8 residual blocks are then used with each block having 1

conv layer. The channel number is doubled at residual block 3, 5, 7, with stride

set as 2 for block 3 and dilation set as 2 for block 5 and set as 4 for block 7. Each

conv layer is followed by group-normalization [125] and ReLU activation [91]. In

the end, global average pooling is applied to map 512 feature maps to 512 feature

values and one linear layer is used for the final prediction.

Figure 3.2: Our 3D CNN model based on ResNet10 (residual connection, ReLU
activation, group normalization omitted for simplicity). The 3D volume is first
fed to a conv layer (kernel-size=7x7x7, stride=2, channel=64) followed by a max
pooling (kernel-size=3x3x3, stride=2). Subsequently, 8 residual blocks are applied
with each containing 1 conv layer. Residual blocks parameters: block 1, 2 have
kernel-size=3x3x3 and channel=64; block 3, 4 have kernel-size=3x3x3 and chan-
nel=128; block 5, 6 have kernel-size=3x3x3 and channel=256; block 7, 8 have
kernel-size=3x3x3 and channel=512; stride=2 is used at conv layer in block 3, while
dilation=2 is used at conv layer in block 5 and dilation=4 is used at conv layer in
block 7. Global average pooling is applied at the end.
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3.2.1.3 Vision Transformer for 3D Input Pretrained with Mask Autoen-

coders

The original 2D ViT [39] is extended to extract features from a 3D volume.

Shown in Figure 3.3, given input 3D di↵usion metric x 2 R
S⇥H⇥W , the data is

reshaped into a sequence of flattened non-overlapping 3D patches xp 2 RN(shw)

, where (S, H, W) is 3D volume size and (s, h, w) is the 3D patch size, patch

number is defined as N = SHW/shw. As shown in Figure 3, for each 3D patch, a

linear layer is applied to map voxel values to a latent embedding with dimension

D. A learnable positional embedding with same dimension D representing each

token’s location, is added to the original embedding. The resulting sequence of

embeddings for all N patches are fed to the encoder consisting of L alternating layers

of multi-head attention and Multi-layer-perceptron (MLP) blocks. A classification

token with dimension D is appended to the input embedding sequence, which is

designed as a latent representing the entire input sample.The output embedding

of the classification token is then fed into a linear prediction head to generate a

prediction. In our study, S×H×W= 182×224×224 and s×h×w=6×16×16, D=384,

L=12.

We pretrain the ViT with a 2D+3D Masked Autoencoders (MAE) modified

from 2D MAE [56], where a specific ratio of patches, defined as r, is randomly

masked and a ViT encoder and auxiliary decoder are trained to predict the values

of r*N masked patches from (1 - r)*N unmasked patches. After pretraining, the

encoder is finetuned for the target sex classification task with all N patches fed

into it. Since 3D patches are more di�cult to predict than 2D patches (especially

given the small number of available 3D volumes), we pretrain a 2D ViT encoder

with MAE on 2D slices first and use the resulting weights to initialize our 3D ViT
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Figure 3.3: Vision Transformer for Di↵usion MRI sex classification: the imaging
volume inputted is partitioned into non-overlapping patches. Each patch is projected
to patch embedding using a linear patch embedding layer, and added with positional
embedding representing the position of the patch. A classification token is appended
to the sequence of tokens to learn representation of the entire input sample. The
structure of the transformer encoder is shown on the right, which consists of L
alternating layers of multi-head attention and multiple-linear-perceptron (MLP)
blocks. After the transformer encoder, the corresponding output of the classification
token is fed to the classification head to generate prediction results.
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model for 3D patches, and further pretrain the model with MAE on 3D volumes.

In our study, mask ratio r = 0.75 and the axillary decoder has D=192, L=4. The

ViT encoder (latent-dimension=384, depth=12, number of heads=6, MLP-ratio=4)

and decoder (latent-dimension=192, depth=4, number of heads=3, MLP-ratio=4)

adapt the asymmetric architecture following the MAE designed for images [56],

as encoder only operates on visible patches and decoder operates on all patches

during the pretraining, decoder is more memory consuming and should employ a

smaller architecture. The masking ratio r is set as 75% as it was shown to be the

best ratio for the image data, making the MAE task both feasible and challenging

enough to learn generalizable features [56].

3.2.2 Model Training and Evaluation

1031 unique subjects are split into training (831 subjects), validation (100

subjects) and test sets (100 subjects). Training, validation and test sets share the

same sex and age distribution, where female and male have a relatively balanced

ratio of 27:23. Models’ hyperparameters are tuned based on the performance

on the validation set. Models trained with the training set and the selected

hyperparameters are then tested on the test set for final prediction results. Classifiers

are implemented with pytorch. For fair comparison, all three models use the same

training/validation/testing split. Details of the training process are explained

in the appendix. For ViT, we conducted three experiments: ViT trained from

scratch without MAE pretraining, linear probing where the encoder is freezed

with weights from MAE pretraining, and only linear prediction head is trained

for sex classification, and fine-tuned ViT where the whole model is refined on sex

labels. The performance of linear probing can reflect how the feature learnt from
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pretraining generalizes to the sex classification task, while performance of model

trained from scratch can serve as the baseline to examine if the pertaining can

bring performance improvement.

For MAE, the model is trained with the mean square error between predicted

pixels/voxels and their reconstruction target ground truth value for all masked

patches. Instead of using the patches’ original value, the reconstruction target is

set as the values after z-score normalization with the mean and standard deviation

of pixels/voxels in the patch, as this normalized target can help improve the

representation quality of the pretraining [56]. The AdamW optimizer is used with

�1=-0.9 and �2=0.95. The weight decay is set as 0.05. For the 2D MAE, the mode

is trained for 500 epochs with batch size as 128 and initial learning rate as 7.5 ⇥

10�5. For the 3D MAE, the model is trained for 600 epochs with batch size as

8 and initial learning rate as 4.5 ⇥ 10�6. For linear probing, logistic regression

models from Scikit-learn [95] are trained on latents from frozen pretrained ViT

encoder. For end-to-end finetuning, the model is trained for 100 epochs with initial

learning rate as 1 ⇥ 10�4 and batch size 2 with cross-entropy as the loss function.

For 3D CNN, the stochastic gradient descent optimizer is used with momentum as

0.9 and weight decay as 0.001. Exponential learning rate scheduler with � = 0.99

is used. The model is trained for 100 epochs with initial learning rate as 0.01 and

batch size 8. For 2D CNN, Adam optimizer is applied with learning rate at 0.03,

momentum as 0.9 and beta values �1=-0.9 and �2=0.999. The model was trained

for 50 epochs with batch size set as 10.
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3.2.3 Occlusion Analysis

We conduct occlusion analysis on the trained models and Wilcoxon signed rank

test to identify white matter areas of the brain that contribute significantly to sex

classification. We conduct occlusion at the region level and consider the 48 white

matter regions defined by the Johns Hopkins University-ICBM-labels-1mm atlas [89].

Given a trained model for a di↵usion metric, we compare the predicted probability

for the correct label before and after occlusion of each region in succession, by

setting all voxels in the region to the mean white matter value. We apply the

Wilcoxon signed rank test with one-sided alternative hypothesis to the probability

changes associated with each region for all subjects in the testing dataset to test

whether the decrease in the predicted probability for the correct label is statistically

significant. The regions that achieve p-value < 0.05 are considered significant for

distinguishing between male and female.

3.3 Result

3.3.1 Di↵usion MRI Acquisition and Processing

The study includes 1031 healthy adult subjects (age range, 22-37 years) from

the Human Connectome Project (HCP - Young dataset) [117], whereby sex labels

were collected through self-reporting and no subject was found to have di↵erent self-

reported sex from genetic sex. Institutional review board approval and participants’

informed consent were obtained at the participating institutions. Demographic

details are summarized in Table 3.1.

Di↵usion MR images were collected on a 3T scanner (Connectome Skyra,
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Table 3.1: Study Cohort

Male Female
Number of subjects 471 560

Age range: number of subjects
22 - 25 138 79
26 - 30 205 249
31 - 37 128 232

Siemens Medical Solutions, Erlangen, Germany) and preprocessed as per HCP

protocol [48, 117]. In brief, di↵usion imaging was performed with the following

parameters: 3 b-values (1000, 2000, 3000 s/mm2), 90 di↵usion orientations per

shell, 18 b0 (b-value=0) images, 1.25 mm isotropic image resolution, field of view

= 210 mm, number of slices=111, TR/TE=5500/89 ms, each scan was repeated

along 2 phase encoding directions (RL/LR), details can be found in HCP dataset

[117]. The di↵usion data was preprocessed by HCP for correction of artifacts like

motion and eddy-currents artifacts, detailed in [48]. We use a state-of-the-art

image processing pipeline to generate di↵usion metrics [2]. We use tissue di↵usion

anisotropy (FA, fractional anisotropy), mean di↵usivity (MD) from Di↵usion Tensor

Imaging (DTI) and tissue complexity (MK, mean kurtosis) from Di↵usion Kurtosis

Imaging (DKI) to assess white matter microstructure. FA and MD are included

because they are the two most commonly used metrics for characterization of tissue

microstructure in brain-related studies [119]. Of note, FA measures directionality

of water movement in brain tissue, known to be sensitive to microstructures such

as axons and myelin [113]; and MD measures mean water di↵usivity, sensitive

to characteristics like cellularity [93]. Here, we also include MK from DKI to

compactly represent non-Gaussian water di↵usivity as a measure of overall tissue
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microstructural complexity [30]. All metrics are registered to standard MNI space

[89] using FMRIB Software Library (FSL) [111] so as to remove e↵ects of any

macroscopic anatomical di↵erences such as size and contour of the brain itself.

3.3.2 Classification Results

We use the area under the curve (AUC) of each trained model on the testing

dataset to evaluate the model performance. Table 3.3 shows that our 2D CNN,

3D CNN and ViT (fineturned and linear probing) models all achieved promising

AUC for all 3 di↵usion metrics with test AUC of >0.9. For FA and MD, 2D CNN

achieved the highest AUC at 0.98 for FA and at 0.97 for MD. 3D CNN and ViT also

achieved relatively high AUC (> 0.92). For MK, all models achieved a high AUC

above 0.96, and 3D CNN achieved highest performance with AUC of 0.98. The

ViT trained from scratch yielded low AUC ( < 0.8) for all di↵usion metrics. The

finetuned ViT and linear probing ViT achieved comparable AUC on all 3 di↵usion

metrics, indicating that the MAE-pretrained feature extraction layer is directly

applicable for the classification task.

Table 3.2: Performance (test AUC) of sex classification models using three di↵erent
di↵usion MRI parametric maps as inputs (FA, MD, and MK)

Model FA MD MK
2DCNN 0.98 0.97 0.96
3DCNN 0.92 0.96 0.98

ViT (finetuned) 0.93 0.95 0.97
ViT (linear probing) 0.94 0.95 0.96

ViT (trained from scratch) 0.79 0.75 0.72
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3.3.3 Occlusion Analysis Results

2D and 3D CNNs and finetuned ViT are included in the occlusion analysis. The

ViT finetuned model is selected for the occlusion analysis despite it has similar

performance as the linear probing model, because the finetuned model is refined on

the sex classification task. The numbers of regions passing the significance test are

summarized in Table 3.3. Identified regions are illustrated in Figures 3.4-3.6.

Table 3.3: Number of white matter regions showing significant di↵erences between
males and females in the occlusion analysis; 48 WM regions in total.

Model FA MD MK
2DCNN 12 25 7
3DCNN 2 2 2

ViT (finetuned) 5 13 2

3.4 Discussion

The study reveals clear sex-related di↵erences in white matter microstructure

as captured by di↵usion MRI, detected consistently across 3 di↵erent end-to-end,

deep learning-based image classification models. The reliability of this finding is

evident in the fact that high classification performance (test AUC 0.92 - 0.98) is

observed independent of model architecture across 3 major network architecture

types and without introducing the biases of complex hand-crafted features and/or

manual operations. In addition, white matter regions most central to the model

decision are identified and may shed some additional light on these di↵erences.

The three di↵erent model architectures allow us to leverage di↵erent types of

features for sex classification. For example, the 3D CNN relies on a conventional 3D
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Figure 3.4: WM regions in selected slices with significant (p<0.05) impact on
classification probability based on occlusion analysis for FA; numbered labels
based on JHU-ICBM-1mm atlas (https://identifiers.org/neurovault.image:1401); 1:
middle cerebellar peduncle, 2: pontine crossing tract (a part of middle cerebellar
peduncle), 3: genu of corpus callosum, 4: body of corpus callosum, 5: splenium
of corpus callosum, 7: corticospinal tract (right), 9: medial lemniscus (right), 10:
medial lemniscus (left), 14: superior cerebellar peduncle (left); 17: anterior limb of
internal capsule (right), 20: posterior limb of internal capsule (left), 35: cingulum
(cingulate gyrus) (right), 37: cingulum (hippocampus) (right), 40: stria terminalis
(left), 48: tapetum (left).
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Figure 3.5: WM regions in selected slices with significant (p<0.05) impact on
classification probability based on occlusion analysis for MD; numbered labels
based on JHU-ICBM-1mm atlas (https://identifiers.org/neurovault.image:1401); 1:
middle cerebellar peduncle, 2: pontine crossing tract (a part of middle cerebellar
peduncle), 3: genu of corpus callosum, 4: body of corpus callosum, 5: splenium
of corpus callosum, 5: splenium of corpus callosum, 7: corticospinal tract (right),
13: superior cerebellar peduncle (right), 14: superior cerebellar peduncle (left), 15:
cerebral peduncle (right), 17: anterior limb of internal capsule (right), 18: anterior
limb of internal capsule (left), 19: posterior limb of internal capsule (right), 20:
posterior limb of internal capsule (left), 22: retrolenticular part of internal capsule
(left), 25: superior corona radiata (right), 26: superior corona radiata (left), 27:
posterior corona radiata (right), 28: posterior corona radiata (left), 31: sagittal
stratum (right), 35: Cingulum (cingulate gyrus) (right), 36: cingulum (cingulate
gyrus) (left), 37: cingulum (hippocampus) (right), 39: stria terminalis (right),
40: Stria terminalis (left), 42: superior longitudinal fasciculus (left), 43: superior
fronto-occipital fasciculus (right).
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Figure 3.6: WM regions in selected slices with significant (p<0.05) impact on
classification probability based on occlusion analysis for MK; numbered labels
based on JHU-ICBM-1mm atlas (https://identifiers.org/neurovault.image:1401); 1:
middle cerebellar peduncle, 2: pontine crossing tract (a part of middle cerebellar
peduncle), 4: body of corpus callosum, 5: splenium of corpus callosum, 6: fornix
(column and body of fornix), 26: superior corona radiata (left), 37: Cingulum
(hippocampus) (right), 38: cingulum (hippocampus) (left), 46: uncinate fasciculus
(left).
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CNN backbone and while it can powerfully capture local features within the imaging

volume, a recent study showed that even very deep CNNs still have only small

e↵ective receptive fields ([37]), meaning they are better able to learn local features

as opposed to longer distance relationships. On the other hand, the nature of the

ViT enables it to capture global features more readily [39] and the incorporated

MAE pretraining task used here also heavily focuses on inter-patch correlations.

As both the 3D CNN and ViT models performed very well, this suggests that

there are perhaps both short-distance and long-distance interactions contributing

to sex-related di↵erences in white matter microstructure.

Of note, the 2D CNN achieved overall best performance for 2 out of 3 di↵usion

metrics studied. This could be attributable to two main factors: First, the 2D

CNN model used the simplest feature extraction backbone with the lowest number

of parameters, possibly pushing its generalization capability given a somewhat

modest-sized training dataset. However, the di↵erences between validation and

test performances were nominal for all three models, suggesting generalizability of

the models to be comparable. One additional consideration could be that the 2D

CNN classifier used here incorporates a design that may allow it to simultaneously

capture both local features and global interactions (across all slices), thus making

it able to leverage both types of features in the classification task. Specifically,

the ResNet18 extracts features from every group of 3 consecutive slices allowing

the model to learn from within-slice features and short-range inter-slice features

across the 3 slices; by then concatenating features across all 3-slice subvolumes

(as opposed to averaging across them as is most commonly done) the model here

e↵ectively preserves local features from every 3-slice partition while at the same

time, the prediction head is able to learn more global interactions across 3-slice
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subvolumes.

The occlusion analysis results show general consistency across models and across

di↵usion metrics and implicate central white matter tracts and ventral/dorsal

hindbrain tracts in contributing to sex-related di↵erences, though results di↵er

slightly across the three di↵usion metrics and the three models tested. Of interest,

the number and fractional volume of WM regions significantly contributing to

sex classification was highest for 2D CNN (mean number of regions: 15; mean

fractional volume: 0.79) compared with 3D CNN (mean number of regions: 2; mean

fractional volume: 0.24) and ViT (mean number of regions: 7; mean fractional

volume: 0.16), possibly again reflecting di↵erences in the relative facility of these

models to tap short-range interactions, long-range interactions, or both. Across the

three di↵usion metrics, it appears that the 3D CNN classifier focused consistently

on large central white matter structures such as the middle cerebellar peduncle and

corpus callosum whereas the ViT and 2D CNN models tended to rely on a greater

diversity of white matter regions. Another observation is that corpus callosum

was found to be important across all three neural networks architectures and three

included di↵usion metrics. As there is debate whether sex di↵erences exist within

the corpus callosum [1, 65, 82], our work provides new evidence that sex di↵erences

exist in the corpus callosum.

For the ViT, pre-training with MAE was important. ViT is a data-hungry

architecture and di�cult to train with a limited dataset since it lacks inductive

bias such as the locality and translation invariance of CNNs. The MAE pretraining

task (to predict masked patches from visible patches) enables the model to learn

inter-patch interactions without supervision from data labels. The random masking

itself also introduces data diversity to the pretraining, which helps further improve
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the generalizability of learned features. The benefit of MAE pretraining is clearly

demonstrated in the experimental results: without pretraining, ViT trained from

scratch yielded much lower performance with test AUC < 0.80. With MAE pre-

training, the ViT encoder achieved test AUC 0.94-0.96. The end-to-end supervised

finetuning brought no additional gain and achieved comparable performance with

linear probing, confirming that the size of the training set is insu�cient to tune a

data-hungry ViT in supervised end-to-end training.

Our results demonstrate that microstructural sex di↵erences exist in the human

brain both in local features (e.g., within central white matter structures such as the

middle cerebellar peduncle and corpus callosum) and in global features (like long-

distance interactions). Capturing microstructural di↵erences with such complexity

is very challenging for conventional statistical methods or a single neural network

architecture. Our work shows that, instead of relying on a single neural network

architecture, leveraging multiple neural networks with very di↵erent architecture

design can capture complementary information and make the results independent

of the model architecture. When it comes to leverage data-hungry neural network

architectures for additional information, self-supervised learning can be used to

pretrain the models and enable these neural networks applicable to medical imaging

studies that lack large datasets. In summary, our work provides an example of a

framework to study sex di↵erences in the human brain at microscopic level with

multiple deep neural networks and multi-shell di↵usion MRI, which can capture

complex features that reflect sex di↵erences and prevent results from being biased

by the model type. Such a framework can be further applied to study the brain

microstructure underlying neurological diseases such as neurodegenerative disorders

like Alzheimer’s dementia and Parkinson’s disease or autoimmune disorders such
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as Multiple Sclerosis, which have been found to manifest di↵erently between males

and females [9, 97, 123].

Limitations include the use of only three representative di↵usion metrics, though

these were chosen based on the fact that they are common and easily obtained.

Further exploring modeled di↵usion metrics [94] may yield more information about

sex-related di↵erences in tissue microstructure and help us better characterize the

underlying biophysical di↵erences between brains of males and females. Recognizing

that the age distribution di↵ers between the female and male cohorts (with the

female group having more older people) (3.1), we have separately evaluated the

model accuracy on the three age groups and found the accuracies to be comparable

among these groups. Even for the middle age group (26-30), our models achieve

high sex classification accuracy, thus a�rming that our models are not mostly using

microstructure di↵erences due to age to separate di↵erent sex groups. Finally, the

occlusion analysis was conducted using a standard JHU-ICBM-1mm atlas for white

matter parcellation with sizable variation in region size which could potentially bias

regional importance; however, our analysis shows that the significance of regions is

not merely based on the region size.

3.5 Conclusion and Contributions

This study finds that there are clear sex-related di↵erences in the brain white

matter microstructure of healthy young adults that can be detected in vivo using

di↵usion MRI without hand-crafting or manually manipulating the imaging data.

We show this utilizing 3 di↵erent end-to-end deep neural networks and 3 di↵usion

MRI metrics. Even after registering di↵usion MR volumes to a template so as to
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remove macroscopic anatomical di↵erences such as overall brain size and contour,

we find that sex di↵erences exist in di↵usion anisotropy (FA), mean di↵usivity (MD)

and tissue complexity (MK) of brain white matter. Our experiments further suggest

that there are both local as well as longer-distance microstructural organizational

features that di↵er between sexes. In particular, the central white matter appears

specifically implicated. This study provides a framework to study microstructural

di↵erences in the human brain with multiple neural network architectures, which

help capture complex microscopic features challenging for statistical methods while

preventing the results from depending on a single model. Further study is needed

to determine whether and how these microstructural di↵erences influence brain

health and disease in both men and women.
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Chapter 4

Temporal Swin Transformer for

Grid-Free ECoG Speech Decoding

on Single and Multi Patient

4.1 Introduction

The speech disability can seriously decrease the patient’s life quality and can

be caused by brain damage such as stroke, brain injury and tumor [29, 92, 115]. In

the United States, an estimated 2.5 million people are su↵ering from the disability

of speech [64]. The electrocorticographic (ECoG) signals can record the neural

activity of speech production and be used to generate human speech, making it

possible to design Brain-computer interface to help patients with speech disability

to communicate [20, 23, 83, 90, 100, 108].

Junbo Chen is the main driver of this study. Acknowledgment to Xupeng Chen, Dr. Ran
Wang, Dr. Amirhossein Khalilian-Gourtani, Chenqian Le, Prof. Adeen Flinker, and Prof. Yao
Wang for their collaboration and advice.
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The recent advancements in deep neural networks can be leveraged to push

the boundary of speech decoding from ECoG signals. In [28, 122], the ResNet [58]

and 3D Swin Transformer [79] were used as ECoG decoder to predict time-varying

speech parameters, and achieved promising performances. In [3], densely connected

3D Convolutional Neural Networks (CNN) was applied to decode speech from

ECoG signals. Besides CNN and Transformer, Recurrent neural networks (RNN)

and long short term memory (LSTM) have also been explored as ECoG decoder

[4, 73, 84]. These recent studies demonstrate that deep neural networks are capable

of decoding speech information from the complex neural activity recorded by the

ECoG signals.

However, the deep neural networks in previous ECoG studies have architecture

designs that require the electrodes to be put in a fixed grid topology, which imposes

a major challenge to fully leveraging the ECoG signals. Firstly, the ECoG electrodes

are implanted in the human not necessarily following any fixed grid. For a single

subject, the electrodes could be implanted with grids and strips in very di↵erent

positions. Additionally, the electrodes can be implanted below the brain surface as

depth electrodes. The neural networks such as CNN require electrodes to be fit in a

fixed grid [3, 4, 73, 84, 122, 127], making the model not able to leverage electrodes

that can not fit in the grid. Vision transformers’s absolute position embeddings and

relative positional bias are also based on the grid index [39, 77, 78, 79, 122, 127].

Besides, the position of implanted electrodes has high variation among subjects.

The deep neural networks that based on fixed grid topology can not handle the

subject di↵erences. Therefore, previous studies rely on the subject-specific model,

making the ECoG decoder not able to leverage signals from multiple subjects and

generalize to new subjects outside of the training set.
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In our study, we propose a novel transformer-based ECoG decoder that does

not rely on regular grid structure, named non-grid Swin transformer with temporal

window (SwinT). Instead of relying on the grid index, the model leverages the

anatomical location of electrodes in the standardized brain template to help the

prediction of speech. The proposed ECoG decoder achieved superior performances

than ResNet and 3D Swin Transformer, given the same electrodes. The model

demonstrated further performance increase by leveraging the o↵-grid electrodes that

can not be used in the previous studies. Besides, instead of relying on the subject-

specific ECoG decoder, we managed to train a single model with multiple subjects,

leading to performance improvement and generalizability to unseen subjects that

are not in the training set.

4.2 Method

4.2.1 Speech Decoding Framework

The design of the ECoG-to-Speech framework is based on the 2-step speech

decoding framework proposed by our previous study [28], shown in Figure 4.1.

In the first step of Audio-to-Audio training (upper part of Figure 4.1), a speech

encoder is used to extract speech parameters at every time frame (e.g. pitch,

formant frequencies, loudness) from input speech spectrogram and a di↵erentiable

speech decoder/synthesizer is designed to reconstruct the spectrogram from the

speech parameters. In the second step of ECoG-to-Audio training (lower part

of Figure 4.1), the ECoG Decoder is trained to predict the time-varying speech

parameters from ECoG signals. The speech parameters generated by the ECoG

Decoder will be fed to the Speech Synthesizer from the Audio-to-Audio training to
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generate a speech spectrogram that will be converted to the final predicted speech

waveform.

Following [28, 122], for Audio-to-Audio training, in the speech synthesizer, the

speech signals can be parameterized as a soft mix of voice contents and unvoice

contents: voice content is generated by processing a harmonic excitation with a

voice filter designed as the sum of 6 formant filters, designed to model formants

such as vowels and nasal information; unvoice content is generated by processing

white noise with a broadband filter as well as the six formant filters, designed

to capture consonants (such as fricatives, plosives, semi-voice, and unvoice) and

formant transition subsequent to consonants. The weighted average of the voice

and unvoice contents is then modulated with loudness and added with background

noise to generate the final speech spectrogram. Based on the design of the Speech

Synthesizer from our previous study [28], the speech signal is parameterized as 18

time-varying speech parameters: fundamental frequency of harmonic excitation

f
t
0, formant frequency f

t
i and amplitude a

t
i of each of the six formant filter, center

frequency f
t
u, bandwidth b

t
u and amplitude atu defining the broadband unvoice filter,

voice weight ↵t (↵t for voice component and (1� ↵
t) for unvoice component) and

loudness L
t. As shown in the upper part of Figure 4.1, during Audio-to-Audio

training, the speech encoder extracts 18 speech parameters at each time from

the original speech spectrogram, and the set of speech parameters is then fed to

the Speech synthesizer to reconstruct the original speech spectrogram. A simple

network architecture made with MLP and temporal convolution is applied for

the speech encoder. The soft mix of voice and unvoice components makes the

speech synthesizer di↵erentiable, which enables the end-to-end training of this

speech-to-speech autoencoding tasks. The speech encoder and synthesizer details
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Figure 4.1: 2-Step Speech Decoding Training Framework (step1) Audio-to-Audio
Training: the original speech waveform is first converted to speech spectrogram
with STFT, then speech parameters are generated at each frame based on speech
spectrogram by Speech Encoder. A speech synthesizer is trained to reconstruct the
speech spectrogram based on speech parameters from the Speech encoder. (step2)
ECoG-to-Audio Training: The ECoG decoder maps ECoG high-gamma signal to
latent representation and predicts speech parameters supervised by the speech
parameters from the trained speech encoder from step 1. The predicted speech
parameters from the ECoG decoder are fed to the trained speech synthesizer from
step 1 to generate the predicted speech spectrogram, which is reversed to the
predicted speech signal.
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can be found in [28].

For ECoG-to-Audio training, the ECOG decoder first maps neural activity from

all input electrodes to a latent representation and predicts the 18 speech parameters

for each time frame, supervised by the speech parameters generated by the Speech

Encoder from Audio-to-Audio training. Then, the speech parameters predicted by

the ECoG decoder will be fed into the Speech Synthesizer from the Audio-to-Audio

training to generate the predicted spectrogram, which is converted back to the

ECoG-decoded speech signal.

4.2.2 Grid-Free ECoG Decoder based on Temporal Swin

Transformer

In our study, we propose a novel architecture for decoding speech parameters

from ECoG signals that does not require electrodes to be formatted as a 2D grid.

We name the proposed ECoG decoder as non-grid Swin transformer with temporal

window (SwinT), which is inspired by the Swin Transformer [77, 78]. In the vanilla

Vision Transformer (ViT) [39], the self-attention layer computes global attention

among all tokens (with each token corresponding to an image patch). This global

attention causes the absence of the inductive bias of locality and heavy quadratic

computational complexity to the input size. The Swin Transformer solves the

problems by partitioning tokens into local windows and computing local attention

within each window at self-attention layers. To allow inter-window information

exchange, the Swin Transformer shifts the window partition for every two windowed

self-attention layers, which prevents di↵erent windows from being segregated (details

can be found in [77, 78]). However, since the Swin Transformer was designed for

2D images or 3D videos, its architecture assumes the input is in the formats of 2D
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or 3D grids. In our proposed SwinT, we made several modifications to remove such

a constraint to allow speech decoding based on ECoG electrodes in any topological

layout. The architecture of the SwinT is shown in Figure 4.2.

Grid-free patch partition: In the Swin Transformer [77, 78, 79] or ViT [39],

the input images or videos are partitioned into 2D or 3D patches, and each patch

is then mapped to a token with a patch embedding layer. This patch partition

enforces the assumption of grid input and makes the model not invariant to the

electrode order (as changing the order will change the electrodes corresponding to

each patch). To solve this problem, our proposed SwinT generates tokens from

each electrode individually and only partitions the temporal dimension. As shown

in Figure 4.2, given an ECoG signal with the shape of T ⇥N (T : number of frames,

N : number of electrodes), for each electrode, the SwinT partitions the temporal

sequence of neural activity as T
W patches with patch size W . The temporal patch

partition generates T
W ⇥N patches in total, and a linear patch embedding layer is

applied to map them to T
W ⇥N tokens with latent dimension of C.

Temporal window attention: In Swin transformer [77, 78, 79], tokens are

partitioned into windows, where each window contains a local subset of tokens, and

attention is calculated among tokens within each window. The window partition

and local attention in spatial dimension make the model only suitable for signals

in grid format. In SwinT, to remove this grid input assumption, the model only

partitions tokens into local windows in the temporal dimension and calculates

global attention in the spatial dimension. Given N = Nt ⇥ Ns tokens (N: total

number of tokens, Nt: length of tokens in the temporal dimension, Ns: length of

tokens in the spatial dimension) and window size Wt, the N tokens are paritioned

into Nt
Wt

windows and attention is calculated among Wt ⇥Ns tokens within each
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window.

Temporal patch merging: The Swin Transformer leverages patch merging to

achieve inductive bias of locality and hierarchical feature maps. However, merging

nearby patches in the spatial dimension does not fit our study as it enforces the grid

input assumption. Therefore, instead of using the spatiotemporal patch merging in

the 3D Swin Transformer [79], the SwinT conducts patch merging for each electrode

individually. During patch merging in the SwinT, for each electrode, every two

consecutive tokens in the temporal dimension with shape C will be concatenated

as a 2C dimensional latent and get mapped to a 2C dimensional merged token.

Grid-free positional embedding: The SwinT follows Swin Transformers

[77] to add positional information as relative positional bias. However, instead

of using the 2D or 3D grid index di↵erence as the relative position like the Swin

Transformer, our SwinT defines the relative positional bias based on anatomical

location and time-frame index of each token. The positional bias is defined as

below:

Attention(Q,K, V ) = Softmax(SIM(Q,K))V (4.1)

SIM(qi, kj) =
qikj

|qi||kj|
/⌧ +Bi,j (4.2)

Bi,j = MLP (xi, yi, zi, ti, xj, yj, zj, tj, xi � xj, yi � yj, zi � zj, ti � tj) + ri · rj (4.3)

Given Q,K, V 2 R
N⇥C (Q,K, V are query, key and value generated from each

token, N is number of tokens and C is the latent dimension), shown in equation

4.1, the softmax of SIM(Q,K) for all pairs of token in the window is used to

aggregated V (values of tokens within the window) to get the output token values.

We define query-key similarity following the scaled cosine attention of SwinV2 [77],

defined in equation 4.2. ⌧ is a learnable parameter not shared among attention
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heads and layers. Bi,j is the relative positional bias between token i and token j.

In SwinT, Bi,j consists of two terms: MNI-based positional bias and region-index-

based bias. For MNI-based positional bias, we project each subject’s electrodes to

a standardized Montreal Neurological Institute (MNI) brain anatomical map and

collect each electrode’s x, y, z location in standard MNI coordinate. For each token

pair, the MNI coordinates of the corresponding electrodes and time-frame index,

along with the di↵erence, will be mapped to the MNI-based positional bias with a

2-layer MLP, which is shown in the first term of equation 4.3. Besides, we parcelate

the brains into region-of-interest (ROI) and learn a dictionary of embeddings for

all ROIs. Given Nr ROIs and Nh attention head, the learnable dictionary has Nh

sets of Nr ⇥ Cr region embeddings (Cr is the region embedding dimension). The

region embeddings are learnt during the training. For a pair of tokens, the dot

product of the embeddings of their corresponding electrodes’ ROIs will be added

to the positional bias, shown in the second term of equation 4.3. The dot product

is used instead of cosine similarity to remove inductive bias of strong intra-region

attentions, as the inductive bias may not help the speech decoding. Besides, it can

also allow the model to assign high attention to certain regions by letting them

have large embedding values.

The architecture of SwinT is shown in Figure 4.2 (a). The input ECoG signal

with a size of T ⇥N is partitioned into ( T
W ⇥N) patches, each with a patch size of

W ⇥ 1. A linear patch embedding layer then maps each patch to a C dimensional

token. The SwinT has three stages with 2, 2, and 6 layers, respectively. Swin

Transformer Block (consists of a windowed multi-head self-attention layer and an

MLP) is applied in each layer, detailed in [78], and we replace the spatial-temporal

windowing with temporal-only windowing. Following the Swin Transformer, for
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Figure 4.2: a. SwinT ECoG decoder. SwinT uses three stages of temporal swin
transformer blocks with spatial-temporal attention with temporal windowing to
extract features. An MLP layer is applied to decrease latent dimension. Spatial max
pooling is then applied followed by transposed temporal convolution to upsample
the temporal dimension. b. Prediction head for speech parameters consists of
temporal convolution and MLP that map features from (a) to speech parameters
at every frame.

every two consecutive layers, the second layer will shift the window partition

to allow inter-window information exchange, detailed in [78]. SwinT performs

temporal patch merging after the first and second stages, which decreases the

token number by half and doubles the latent dimension. After stage 3, an MLP

is applied to decrease 4C latent dimension to C
0. Spatial max pooling is then

applied to convert ( T
4W ⇥N)⇥C

0 feature maps to T
4W ⇥C

0, followed by transposed

temporal convolutions to upsample T
4W ⇥C

0 to T ⇥C
0, where T is the frame number

of input ECoG signal. As shown in 4.2 (b), the T ⇥ C
0 latent from SwinT goes

through prediction head consists of temporal convolutions (kernel-size=3) and MLP,

proposed in previous work [28], to predict the 18 speech parameters at every frame,

which will be used to generate the speech spectrogram with the speech synthesizer

from the audio-to-audio training.
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In our study, we set C = 96 and C
0 = 32. Patch-size W = 4 is applied to

partition temporal dimension. In our 3 stages SwinT with 2, 2, and 6 layers, the

self-attention layers in the 3 stages have 3, 6, and 12 attention heads, respectively.

The MLP ratio of transformer blocks is set as 4. The MLP for dimension decrease

has 3 layers (384→196→96→32) with layer norm [8] and LeakyRELU activation

in between. The transposed convolution for temporal upsampling contains 4 1D

transposed convolutional layers with stride=2 and kernel-size=3, padding=1.

4.2.3 Multi-Subject ECoG-to-Audio

The proposed SwinT allows the ECoG decoder to take input with any electrode

layout and electrode order. Therefore, instead of training subject-specific ECoG

decoder, our study makes it possible for the ECoG decoder to be shared among

subjects. Figure 4.3 demonstrates the pipeline for multi-subject ECoG decoder

training. Given multiple subjects, a shared SwinT-based ECoG decoder generates

speech parameters based on each subject’s ECoG signal and electrode location

(electrodes’ MNI coordinates and region index). Reference loss is calculated between

the ECoG predicted speech parameters and the speech parameters generated by

the subject-specific speech encoder. Each subject’s predicted speech parameters

are then fed into the corresponding subject-specific speech synthesizer to generate

speech spectrogram. During inference, the ECoG signal and electrodes’ location

are fed into ECoG decoder to generate speech parameters. The subject’s speech

synthesizer then generates speech spectrogram from the predicted speech parameters.

Separate region embeddings are learned for left and right brain hemisphere when

there are right hemisphere and left hemisphere subjects in the training set.



58

Figure 4.3: multiple-subject ECoG decoding training pipeline. Given multiple
subjects, each subject’s ECoG signal and electrodes’ location information (MNI
coordinates and ROI region index) are fed to a shared SwinT ECoG decoder to
predict speech parameters. The predicted speech parameters are supervised by the
speech parameters generated by subject-specific speech encoder from ground-truth
speech spectrogram. The each subject’s predicted speech parameters are then
fed into the corresponding subject-specific speech synthesizer to generate speech
spectrogram.
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4.2.4 Training of Speech Encoder and Speech Synthesizer

The audio-to-audio training of the speech encoder and learnable parameters of

the speech synthesizer follows our previous work [28]. In summary, we train the

speech encoder and speech synthesizer by letting them finish an audio-to-audio

auto-encoding task, illustrated in (step 1) of Figure 4.1.

As detailed in [28], we supervise the training with multiple loss terms. The

loss La2a consists of modified multi-scale spectral loss LMSS, Short-Time Objective

Intelligibility (STOI) loss LSTOI and supervision loss Lsupervision, shown in the

equation 4.4.

La2a = LMSS + �1LSTOI + �2Lsupervision (4.4)

LMSS is inspired by [41]. It supervises speech reconstruction by measuring the

distance between the ground truth spectrogram and the reconstructed spectrogram

in both linear scale and mel-frequency scale. LSTOI measures the intelligibility of

reconstructed speech based on the STOI+ metric [49]. As higher STOI+ indicates

better intelligibility, the LSTOI is defined as the negative of STOI+: LSTOI =

�STOI+. Besides, additional supervision Lsupervision is applied to improve the

accuracy of pitch f
t
0 and formant frequencies f t

i=1,2,3,4 prediction. The Lsupervision

calculates the L2 distance between each predicted frequency and the corresponding

frequency extracted by the Praat method [18]. The details of LMSS, LSTOI and

Lsupervision can be found in [28]. Following [28], �1 and �2 are set as 1.2 and 0.1,

respectively. We use the speech synthesizer and speech encoder trained by our

previous study [28]; training details can be found in [28].
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4.2.5 Training of ECoG Decoder

Following [28], for the training of the ECoG decoder that predicts speech

parameters from ECoG signals, we leverage two types of supervision to guide

the training. Firstly, we train the ECoG decoder to generate speech parameters

that match the parameters generated by the speech encoder. Besides, the ground

truth speech spectrograms can act as additional supervision for the ECoG decoder,

as the predicted speech parameters are converted to spectrograms by the speech

synthesizer. For speech parameter based loss, we define reference loss Lreference as

equation 4.5:

Lreference =
X

i

�i||Ĉt
i � C

t
i ||

2

2 (4.5)

i 2 [f t
0, f

t
1, ..., f

t
6, a

t
1, ..., a

t
6, f

t
u, b

t
u, a

t
u,↵

t
, L

t] (4.6)

Le2a = LMSS + �1LSTOI + �2Lsupervision + �3Lreference (4.7)

where Ĉ
t
i and C

t
i are speech parameters generated by the ECoG decoder and the

speech encoder (as ground truth), respectively. We have 18 speech parameters

defined in Section 4.2.1 and illustrated in the equation 4.6. We assign each speech

parameter with individual weight �i, and the values are detailed in [28]. For

spectrogram-based supervision, we follow the loss used in audio-to-audio training

illustrated in equation 4.4. Therefore, the training loss for ECoG decoding is defined

as equation 4.7 and �1 �2 and �3 are set as 1.2, 0.1 and 1.0.

Adam optimizer [71] with learning-rate=5⇥ 10�4, �1=0.9 and �2=0.999 is used

to train the ECoG decoder. As mentioned in Section 4.3.1, following [28], randomly

selected 50 out of 400 trials are used as the test set for each subject, and the rest

of the data is used as the training set.
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4.3 Results

4.3.1 ECOG Data Collection and Preprocessing

The study includes 43 native English-speaking subjects (20 males, 23 females)

with refractory epilepsy (a disease involving seizures caused by abnormal electrical

activity in brain cell communication). Details about speech and ECoG signals

collection can be found in previous study [28]. In brief, at each trial, a subject

was requested to speak a specific target word based on the stimuli provided by

the care provider while their neural activity signals were recorded using ECoG

electrodes. Each subject’s trials were collected from 5 di↵erent tasks: (1) Auditory

Repetition (repeating the word that the care provider has spoken), (2) Auditory

Naming (naming the word based on definition that the care provider has spoken)

(3) Sentence Completion (naming the last word to complete an sentence that the

care provider has spoken) (4) Visual Reading (reading the written word shown

by the care provider) (5) Picture Naming (naming the word based on a colored

drawing shown by the care provider). Each task included 50 target words, each

appearing once in the Auditory Naming and Sentence Completion and twice in

each of the other tasks, leading to 400 trials of ECoG signal recording, and the

average duration of word production among trials was 500ms.

In terms of the ECoG recording, detailed in [28], each of the 43 subjects has 8x8

electrodes with 10 mm spacing implanted to capture signals from the perisylvian

cortex (male left hemisphere: 14 subjects; female left hemisphere: 13 subjects;

male right hemisphere: 6 subjects; female right hemisphere: 10 subjects). The

8x8 electrodes are embedded in the perisylvian area as it is known to be the

brain regions consisting of Broca’s speech center and Wernicke’s comprehension
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center [34]. Besides 8x8 grid electrodes, each subject also has o↵-grid electrodes

implanted, as strips out side of the 8x8 grid or as depth electrodes implanted under

the surface of the brain, as shown in Figure 4.4. The experiments were approved

by the Institutional Review Board of NYU Grossman School of Medicine, with

written and oral consents collected from each participant. The ECoG arrays are

FDA-approved. The high gamma component (70-150 Hz) was extracted, with

electrodes with artifacts or interictal/epileptiform activity were excluded by setting

their signal to 0. The details of the preprocessing can be found in [28]. This study

also applies a Savitzky-Golay filter [106] with 3rd order polynomial and window

size of 11 to further denoise the signal in the temporal dimension. Among the 400

trials of ECoG signals recorded from the five word production tasks, 350 trials

were used for model training, and 50 trials were held out for testing (10 randomly

selected trials were reserved for testing for each task).

Figure 4.4: ECoG electrodes implanted on the human brain (a) 8x8 macro electrodes
on the grid (b) both grid and o↵-grid electrodes.
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4.3.2 Single-Subject Speech Decoding with Grid Electrodes

To compare our proposed grid-free SwinT with the ECoG decoders based on

ResNet and 3D Swin transformer from the previous study [28], we firstly evaluated

the SwinT trained with 64 ECoG electrodes on the grid for each subject individually.

Following [28], we used two metrics to evaluate the speech decoding performance:

1) Pearson Correlation Coe�cient (PCC) between the decoded spectrogram and

the ground-truth spectrogram, and 2) STOI+ [49] that measures the intelligibility

of the decoded speech (in the range between -1 to 1, higher STOI+ indicates better

intelligibility). For each subject, we average PCC and STOI+ among all the test

trials for model evaluation. As illustrated in Figure 4.5, the SwinT outperforms

ResNet and 3D Swin transformer in terms of both CC and STOI+ for all subjects

with only a few exceptions.. The superior performance of SwinT can also be

demonstrated in Figure 4.6. Therefore, the results show that when tested on grid

electrodes, although the SwinT does not have the inductive bias of grid layout and

spatial locality in its architecture design, it can achieve better performance than

grid-based ECoG decoders based on 3D Swin and ResNet. The results indicate

that the SwinT is not only superior in its grid-free flexibility but also in the speech

decoding performance.

4.3.3 Speech Decoding with Additional O↵-Grid Electrodes

As the SwinT does not have spatial locality and assumption of grid input, unlike

ECoG decoders based on ResNet or 3D Swin Transformer [28], the proposed SwinT

can easily leverage o↵-grid electrodes to provide additional information for the

speech decoding. In our study, for each subject, we selected o↵-grid electrodes
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Figure 4.5: Comparison between baseline ECoG decoder and proposed SwinT when
both trained and tested on grid electrodes: (a): Comparison between ResNet and
SwinT regarding PCC; (b): Comparison between 3D Swin and SwinT regarding
PCC; (c): Comparison between ResNet and SwinT regarding STOI+; (d): Com-
parison between 3D Swin and SwinT regarding STOI+. Each point indicates the
speech decoding performance of a specific subject, with the x-axis as the perfor-
mance of the SwinT and the y-axis as the performance of the baseline model. For
(a)-(d), all sample points are below the diagonal line with only a few exceptions,
indicating that the SwinT outperforms the two baseline models regarding both
PCC and STOI+.
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Figure 4.6: Comparision between baseline ECoG decoders (based on ResNet and 3D
Swin Transformer) and the proposed SwinT ECoG decoder when models are trained
and tested with grid electrodes for each subject individually: (a): Comparison
regarding PCC; (b): Comparison regarding STOI+. The SwinT outperforms the
baseline ECoG decoders based on ResNet and 3D Swin Transformer regarding both
PCC and STOI+.
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that have standard deviation of the signal greater than a subject-specific threshold.

We applied the subject-specific threshold from a previous study [70]. We then

trained the SwinT ECoG decoder with both 64 electrodes from the 8x8 grid and the

selected o↵-grid electrodes for each subject, and calculate the PCC and STOI+ for

the test trials. As there are 4 subjects that do not have any o↵-grid electrode fullfill

the threshold requirement, we compared the models based on the remaining 39

subjects. Figure 4.7 illustrates the comparision between the SwinT ECoG decoders

with and without the o↵-grid electrodes. The results demonstrate the superior

performance of the SwinT ECoG decoder with o↵-grid electrodes as additional

input. The grid-free flexibility of our porposed SwinT architecture can improve

the performance of speech decoding by allowing the model to leverage the useful

information in o↵-grid electrodes.

4.3.4 Speech Decoding Trained with Multiple-Subjects

As the proposed SwinT architecture does not require the electrodes to be

arranged in a grid but relies on the electrode position in the brain anatomy, it is

promising to handle the di↵erence of electrode layout among di↵erent subjects and

allows the ECoG decoder to be trained with multiple-subejct data. To validate this

idea, we trained a single SwinT ECoG decoder with 15 randomly selected male

subjects with ECoG electrodes implanted in left or right brain hemisphere (left

hemisphere: 4 subjects; right hemisphere: 11 subjects). As detailed in Section

4.2.3, subject-specific speech encoder and speech synthesizer are applied while the

ECoG decoder is shared among subjects. We compared the SwinT trained with

multiple subjects and the SwinT trained for single subject. We first evaluated the

ECoG decoder on test trials of the 15 subjects. Illustrated in Figure 4.8, compared
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Figure 4.7: Comparision between SwinT ECoG decoders w and w/o o↵-grid
electrodes, when trained on each subject individually. (a) and (b): Comparision
in PCC and STOI+, respectively. Each point indicates a subject, with x-axis
being the performance of the SwinT with o↵-grid electrodes and y-axis being the
performance of the Swin without o↵-grid electrodes; (c) and (d): Comparision in
PCC and STOI+ box plot. The results indicate the superior peformance of the
SwinT with o↵-grid electrodes.
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with subject-specific SwinT, the SwinT shared among subjects achieved superior

performance for most subjects and comparable performance for the rest.

Figure 4.8: Comparison between the SwinT ECoG decoder trained with multiple
(15) subject and the subject-specific SwinT. PCC and STOI+ were evaluated on
test trials from the 15 subjects.

We also evaluated the multi-subject SwinT ECoG decoder on test trials of the

subjects outside of the training set. We conducted 5-fold cross-validation separately

for male and female subjects. Specifically, we partitioned subjects (with ECoG

electrodes implanted in either left or right brain hemisphere) into five folds. Each

time we use four folds of subjects to train a SwinT ECoG decoder and evaluate its

ECoG decoding performance on the remaining one fold of subjects. The process

is iterated to use every fold of subjects as the test subjects once. As shown in

Figure 4.9, although the performance achieved on unseen subjects is significantly

lower than the subject-specific models, the decoded speech still has a high pearson

correlation with mean PCC=0.765. The results demonstrate the proposed SwinT

ECoG decoder can achieve generalizability to subjects not in the training set.

Additionally, as shown in Figure 4.10, compared with hemisphere-specific models,

the SwinT ECoG decoder trained on both hemispheres can achieve comparable or

slightly better performance when inferenced on unseen subjects.
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Figure 4.9: The performance of SwinT inferenced on unseen subjects that are
not in the training set. (a) cross-validation conducted on male subjects; (b)
cross-validation conducted on female subjects. For each plot, the speech decoding
performance when subjects are outside of the training subjects is shown on the
right, and the performance of the SwinT decoder trained on each specific subject
is shown on the left. The results demonstrate that the SwinT ECoG decoder
can achieve generalizability to unseen subjects, as the performance achieved on
unseen subjects is in a range with significant overlap with the performance of the
single-subject models.
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Figure 4.10: The comparison of speech decoding performance on unseen subjects
between SwinT trained on one hemisphere and SwinT trained on both hemispheres.
Models were trained separately for males and females. The results demonstrate
that, compared with hemisphere-specific models, the SwinT ECoG decoder trained
on both hemispheres can achieve comparable or slightly better performance when
inferenced on unseen subjects.

4.4 Discussion

This study proposes a new ECoG decoding architecture, SwinT, that does not

have the grid-input assumption and can predict speech parameters from ECoG

electrodes in any topological layout. The SwinT removes the grid-based operations

in the Swin Transformers [77, 78, 79] (e.g., patch partition, patch merging, and

local windowing) to make the model suitable for input in any layout. The grid-

based operations are preserved for the temporal dimension as they provide the

locality necessary to capture time-varying speech information. Besides, instead of

relying on grid indexes to provide positional information about each electrode, the

SwinT is fully anatomy-based as it relies only on electrodes’ position in the brain

anatomy to generate relative positional bias for self-attention. Based on the 2-step

training pipeline (Audio-to-Audio and ECoG-to-Audio training) and the speech
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encoder/synthesizer proposed in our previous works [28, 122], the grid-free SwinT

ECoG decoder can achieve better speech decoding performance compared to the

previous grid-based ECoG decoders based on the ResNet and 3D Swin Transformer.

Besides, as the SwinT does not require the electrodes to be arranged in a grid,

it can further improve the speech decoding performance by leveraging o↵-grid

electrodes as an additional source of information. Lastly, the proposed SwinT can

also be trained with ECoG signals from multiple subjects and can achieve superior

performance compared with the model trained for each subject individually. The

multiple-subject SwinT can also achieve generalizability to new subjects out of the

training set.

Our proposed SwinT ECoG decoder achieved superior performance than the

ECoG decoders based on ResNet and 3D Swin Transformer from our previous

studies [28, 122]. As illustrated in Figure 4.6, the SwinT achieved higher PCC and

STOI+ (PCC: mean 0.817, median 0.828; STOI+: mean 0.309, median 0.292) than

the ResNet (PCC: mean 0.804, median 0.815; STOI+: mean 0.264, median 0.275)

and 3D Swin Transformer (PCC: mean: 0.785, median: 0.797; STOI+: mean 0.216,

median 0.205) using the same 64 electrodes from the 8x8 ECoG grid. The results

indicate that the SwinT can serve as a superior ECoG decoder compared with

the ResNet and 3D Swin Transformer. Unlike ResNet and 3D Swin Transformer,

the SwinT does not have spatial locality or grid input assumption. Therefore, the

better performance achieved by the SwinT indicates that the SwinT can leverage

the anatomical positional information provided by the MNI coordinates and region

index to extract features that suit the speech decoding better.

Since the SwinT does not assume grid input format and can handle input

electrodes with any topology, the SwinT can leverage o↵-grid electrodes that are



72

di�cult to fit a grid (such as strip electrodes outside the grid or depth electrodes

underneath the brain surface). Our results demonstrate that the proposed SwinT

ECoG decoder architecture can leverage o↵-grid electrodes to improve speech

decoding performance. As illustrated in Figure 4.7, for subjects with additional

o↵-grid electrodes, the SwinT with additional o↵-grid electrodes achieved better

PCC (mean 0.836, median 0.843) and STOI+ (mean 0.351, median 0.369) compared

with the SwinT trained with grid electrodes only (PCC: mean 0.825, median 0.829;

STOI+: mean 0.318, median 0.320). The superior results indicate that the neural

activity recorded by the o↵-grid electrodes contains useful information correlated

with the speech. The superior performance achieved by adding o↵-grid electrodes

demonstrates the superiority of the SwinT’s gird-free and fully anatomy-based

architecture.

The proposed SwinT achieved performance improvement when being trained

with ECoG signals from multiple subjects (PCC: mean 0.837, median 0.849; STOI+:

mean 0.352, median 0.378), compared with the SwinT trained for each subject

individually (PCC: mean: 0.831, median: 0.846; STOI+: mean: 0.334, median:

0.340). The performance improvement can be explained by the more training

samples and higher data diversity from the multiple subjects. Including multiple

subjects for ECoG decoder training did not lead to performance improvement when

we experimented with ResNet and 3D Swin Transformer. The success achieved

by the SwinT can be attributed to its grid-free architecture. As the SwinT does

not require grid layout of ECoG electrodes but the position in brain anatomy, the

SwinT can better handle the di↵erences in electrode placement between subjects.

Besides, as illustrated in Figure 4.8, the SwinT can be successfully trained with

subjects with ECoG implanted with left and right hemispheres. The success of the



73

left and right hemispheres co-training demonstrates the strong learning capacity of

the SwinT. The two-hemisphere co-training also allows the ECoG decoder to fully

leverage the whole dataset as we no longer need to train the model separately for

each hemisphere.

Our study achieved generalizability to subjects outside of the training cohorts

with the SwinT ECoG decoder trained with multiple subjects. Figure 4.9 shows

that the speech decoding performance achieved on unseen subjects by multi-subject

SwinT ECoG decoder is in a range with significant overlap with the results achieved

by the subject-specific model. And the speech decoding performance is comparable

between unseen subjects from the left and right hemispheres. The results indicate

that the SwinT has successfully learned how to handle di↵erences among subjects

based on ECoG signals and the anatomical position of the electrodes. The result

demonstrates the good prospect of ECoG-based speech decoding in real applications,

as we can train a reliable decoder with other subjects and then directly deploy the

model to the new subject.

There are several limitations of our study. Firstly, our speech decoding pipeline

needs the audio synthesizer trained for each specific subject at the inference stage.

Although the subject-specific audio synthesizer can help reconstruct the voice

characteristics of the subject, it potentially makes the model not applicable to

subjects with speech disabilities. To make our study work for paralyzed subjects,

old speech recordings of the subjects can be used for the Audio-to-Audio training

to get the speech synthesizer and speech encoder. Besides, the performance of

subjects outside of the training cohorts is not consistently high. This could be

potentially solved by including more subjects for the training when larger datasets

become available. Lastly, our study focuses on word-level decoding. Sentence-level
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study could be conducted in the future.

4.5 Conclusion and Contributions

In our study, we proposed a new neural network architecture named SwinT. As

the ECoG decoder, the SwinT can predict speech parameters from ECoG signals

and electrodes’ position in the brain anatomy without requiring the electrodes

to be arranged in a grid. The new ECoG decoder demonstrated superior speech

decoding performance compared with baselines based on ResNet and 3D Swin

Transformers. Besides, the grid-free architecture of the SwinT can also allow the

model to leverage o↵-grid electrodes to help the speech decoding. The SwinT can

be trained with multiple subjects with ECoG implanted in the left and right brain

hemispheres. The multi-subject SwinT demonstrated better performance compared

with the subject-specific models. Lastly, for the first time, our SwinT achieved

generalizability to subjects outside of the training cohorts.
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Chapter 5

Semi-Supervised Learning for

ECoG Decoder based on Latent

Decomposition

5.1 Introduction

Speech decoding based on electrocorticographic (ECoG) recordings can benefit

patients with speech disabilities by helping them communicate with Brain-Computer

Interface (BCI) [20, 83, 90, 108]. Recent studies have been exploring deep neural

networks to build ECoG speech decoder and have achieved promising results

[28, 122]. However, there are many challenges that remain to be solved to push

the boundary of the ECoG decoder. Firstly, it is challenging to collect large-scale

datasets in ECoG studies. The ECoG electrodes require invasive surgery to be

Junbo Chen is the co-main driver of this study. Acknowledgment to Xupeng Chen, Chenqian
Le, Dr. Ran Wang, Dr. Amirhossein Khalilian-Gourtani, Prof. Adeen Flinker, and Prof. Yao
Wang for their collaboration and advice.
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implanted in the brain of patients. As the data collection requires invasive surgery,

the datasets of ECoG recordings are limited. On the other hand, deep neural

networks are data-demanding. For example, the Vision Transformer is data-hungry

and di�cult to train [121], making it challenging to apply the model to ECoG

studies. Besides, the neural activity underlying speech production is very variable

and complex. Even with a single subject speaking the same word, speech signals

can have variation [13, 129]. Speech production also requires collaborations between

regions corresponding to di↵erent functions, such as motor, auditory, and language

processing [17, 96, 116]. The complex mechanism and high variation associated

with the speech production make it challenging for the ECoG decoder to capture.

Recent studies in self-supervised learning can shed light on the ECoG research.

Self-supervised learning has achieved significant performance improvement for deep

neural networks [56, 57, 126], where the models can learn representation with good

generalizability by learning to do pretasks without any ground-truth annotation.

However, designing self-supervised learning for ECoG speech decoding is challenging.

On the one hand, given the complexity of the speech production mechanism, it

is unclear which pretask can lead to latent representation generalizable to speech

decoding. On the other hand, the pretasks in many self-supervised learning studies

heavily rely on data augmentation [27]. However, designing data augmentation for

ECoG signals is not trivial and requires domain knowledge.

In our study, we propose a semi-supervised learning method to pretrain ECoG

speech decoder. The pretraining method achieved superior speech decoding perfor-

mance for the SwinT ECoG decoder (detailed in chapter 4). Our work is inspired

by the SWAP-VAE [75] and its idea of decomposing the latent representation into

content and style. The SWAP-VAE designs a novel pretraining framework that
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uses reconstruction to decompose the neural activity of the primate target reaching

task into ”content” representation of semantic information (the direction of target)

and ”style” representation of dynamic information (the motion dynamics of the

reaching process). In our study, we aim to simplify speech decoding by decomposing

the complex neural activity of speech production into word-level semantics and

trial-level dynamics, denoted as ”word latent” and ”trial latent”. Compared with

the study of SWAP-VAE [75], the ECoG signals in our study are more complex.

Therefore, we propose to leverage word labels in our semi-supervised pretraining

and combine the reconstruction pretasks in the original SWAP-VAE [75] with

multiple other pretasks and regularization to guide the semantic and dynamics

learning. Besides, the framework is carefully designed to prevent the collapsed

solution that can fail the pretraining of the original SWAP-VAE [75].

5.2 Method

5.2.1 Pretraining Framework with Latent Decomposition

We propose a novel framework to pretrain the ECoG decoder with multiple

pretasks and regularizations. In the original SWAP-VAE [75], two augmented views

from the same sample of neural activity recording are considered as a positive

pair that share the same content semantics. The reconstruction is applied as the

pretask: given the two positive samples denoted as x1 and x2 with corresponding

latent representation [c1, s1] and [c2, s2] (c denotes content and s denotes style),

in addition to the reconstruction of x with corresponding latents, the contents are

swapped between the two samples and the model is also trained to reconstruct

x1 with [c2, s1] and x2 with [c1, s2]. The L2 distance between the c1 and c2 is
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applied to ensure the same content is shared by the two views. However, the

content semantics defined as the common information among augmented views

from the same sample is unclear in the setting of ECoG recordings. Besides, the

reconstruction (with swap) can lead the model to collapse content c and compress all

the information to the style s, making pretraining trivial. In our study, we leverage

the word label and define content semantics as the word-level semantics (denoted as

W ) and style as the trial-level dynamics (denoted as T ). To further help guide the

model to decompose the word-level semantics and prevent the collapsed solution,

we designed our pretraining framework as a combination of multiple pretasks and

regularizations, illustrated in the Figure 5.1.

Figure 5.1: Framework for the ECoG decoder pretraining. At each iteration, three
samples are input to the framework: two trials from the same word and one trial
from a di↵erent word. The SwinT encoder extacts latent representation from each
sample. The representation is divided into two parts with same dimension: word
latent and trial latent, denoated as W and T . The latents of the original three
latents go through decoder to reconstruct the corresponding signals. Besides, the
content of the two same-word trials are swapped and used to predict the signals
corresponding to the trial latent. The word latent are also fed to word classifier
with contrastive loss.

Reconstruction with Swap: As shown in Figure 5.1, the pretraining requires
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triplets of samples. At each iteration, two trials from the same word and one

additional trial from a di↵erent word are input to the framework. The SwinT

encoder extracts latent representation from each sample, with the architecture

shown in Figure 5.2(a). The representation of each sample is divided into W and

T with equal dimensions. Based on the decoder shown in the 5.2(b), each of the

three latent representations is used to reconstruct the corresponding original ECoG

signals. Inspired by [75], we also generate two additional latent by swapping the

word latent between the two positive samples: [W2, T1] and [W1, T2]. As they are

di↵erent trials from the same word, they should have the same word semantics but

di↵erent trial dynamics. Therefore, the [W2, T1] and [W1, T2] are used to generate

the corresponding trials, which are ECoG signals of Word A Trial i and ECoG

Word A Trial j in Figure 5.1.

Figure 5.2: (a): SwinT Encoder, detailed in Section 4.2.2; (b): decoder consists of
four transposed conv layers with kernel-size=3x1 to predict the signal reconstruction.
C = 96, C 0 = 64, C 00 = 128.

Word Prediction and Contrastive Learning: We further leverage the word

label to guide the model to capture word semantics. As illustrated in Figure 5.1,
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the word latents of the sample triplet are supervised by the contrastive loss defined

in Section 5.2.3. In addition, two label-prediction tasks are also applied to guide

the semantics learning: word prediction and positive-pair prediction. For word

prediction, the prediction head illustrated in Figure 5.3 (a) is applied to predict the

word label (50 words in total) from the W . For positive-pair prediction, we combine

the W of every two samples and train a separate prediction head to predict if the

two samples correspond to the same word, illustrated in Figure 5.3 (b).

Figure 5.3: (a): Word classification prediction head; (b): If-same-word classification
prediction head.

5.2.2 Data Augmentation

To further increase the generalizability of representations learned from the

pretraining, we include a collection of data augmentations to the ECoG signals.

The data augmentations included are: time jittering (shift signals in the time

dimension by �, with 8 < |�| < 16), spatial dropout (randomly dropout electrode

with p = 0.2), adding Salt and Pepper noise (magnitude=0.1 with p=0.2), adding
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Gaussian noise (standard deviation is set as the standard deviation of the processed

trial). We randomly select a subset of the four data augmentations at each time,

with each method being included with p = 0.5.

5.2.3 Loss Functions and Training

In our pretraining framework, the framework requires three samples as an input

triplet. The two positive samples corresponding to the same word are denoted as

x1 and x2. The additional negative sample from a di↵erent word is denoted as

negative sample x3. The x denotes the ground-truth ECoG signal, and x̂ denotes

the reconstructed signal. Besides, the x̂swapi denotes the reconstructed signal from

the swapped latent, with x̂swapi referring to the trial latent is from the xi. Given

Wi and Ti indicating the word and trial latents of xi, the x̂swap1 is reconstructed

from [W2, T1] and x̂swap2 is reconstructed from [W1, T2].

Reconstruction Loss: The L2 distance between the ground-truth signals

and the reconstructed signals is used as the reconstruction loss, denoted as the

following:

Lrecon =
3X

i=1

||xi � x̂i||22 +
2X

i=1

||xi � x̂swapi ||22 (5.1)

However, the reconstruction loss can potentially lead to a collapsed solution. The

model can simply compress all the information to the trial latent and collapse the

word latent (e.g., word latent is always 0 regardless of the input signal) that contains

no word information. To ensure the word latent contains useful information and

prevent the collapsed solution, we add additional regularizations and supervision

to the word latent.

Contrastive Loss/Triplet Loss: To prevent collapsed word latent and make it
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represent word-level speech information, we design a simple triplet loss to supervise

the word latent, defined as:

Ltriplet = ||W1 �W2||22 � ||W1 �W3||22 � ||W2 �W3||22 (5.2)

We also tried other contrastive loss functions, such as InfoNCE [27] and hinged

triplet loss [25], but the performance is not as good in our study. By optimizing

the Ltriplet, the word latents of trials from the same word will be pulled together,

and trials from di↵erent words will be pushed way. The loss helps word latent to

contain word-level semantic information, and pushing away latents from di↵erent

words can also help prevent collapsed solutions.

Variance-Covariance Loss: To further prevent the word latent from collapsing

and increase the information it contains, we apply the variance and covariance loss

LV C from [47] to the word latent, defined as:

LV C = �CC(W ) + �V V (W ) (5.3)

C(W ) =
1

d

X

i 6=j

Cov(W )2i,j (5.4)

V (W ) =
1

d

dX

j=1

max(0, 1�
q

V ar(W.,j)) (5.5)

The variance term V (W ) encourages each dimension to have high variance, ensuring

that all dimensions are used in the latent. The covariance term C(W ) is to

decorrelate the dimensions and encourage each dimension to capture di↵erent

information. The �C and �V are set as 1 and 10 respectively.

Cross Entropy Loss: In our pretraining framework, we have two cross-entropy
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loss terms: Lword for word classification and Lsame for classifying if two latents are

from trials corresponding to the same word.

Therefore, the loss we use for the pretraining is defined as:

L = Lrecon + Ltriplet + LV C + Lword + Lsame (5.6)

The Adam optimizer [71] with learning-rate=10�3, �1=0.9 and �2=0.999 is used

to train the ECoG decoder. After the pretraining, the weights of SwinT are used

to initialize the SwinT ECoG decoder in the ECoG-to-audio training detailed in

Chapter 4.

5.3 Results

We compared the speech decoding performance of the SwinT with and without

the pretraining. For the pretrained SwinT, the SwinT is finetuned with loss

function for ECoG decoding after the pretraining, detailed in Section 4.2.5. The

experiments were conducted on the 43 subjects (each with 64 electrodes), detailed

in Section 4.3.1. Speech decoding pipeline and SwinT ECoG decoder from Section

4.2.1 and 4.2.2 were used. For the pretrained SwinT, we evaluated the speech

decoding performance of using both word latent W and trial latent T and the

performances of using only one of them. The comparison of test STOI+ and

PCC is shown in Figure 5.4, and the result shows the pretraining can lead to

incremental performance gain. The pretrained SwinT using the three latents

achieved mean PCC and STOI+ as PCCW+T=0.822, PCCW=0.822, PCCT=0.816

and STOI+W+T=0.320, STOI+W=0.317, STOI+T=0.304. Compared with the

SwinT w/o pretraining (PCC: 0.817, STOI+: 0.309), both pretrained W + T and
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W only achieved performance improvement, and pretrained W + T achieved the

best result.

Figure 5.4: Performance comparsion between ECoG decoder with and without
pretraining. The performance of speech decoding are measured as PCC and
STOI+. For pretrained SwinT ECoG decoder, we evaluated the speech decoding
performances that rely on word+trial latent, word latent only, and trial latent only.

5.4 Discussion

This study propose a semi-supervised framework to pretrain ECoG speech

decoder. By leveraging a collection of pretasks (reconstruction, swap reconstruction,

word-level contrastive learning, word classification and same-word classification),

the framework aims to train the ECoG decoder to decompose representation of
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neural activity into word-level semantics and trial dynamics.

Multiple pretasks and regularizations are carefully selected and combined in

the study to guide semantic learning and prevent collapsed solutions. Although

our work is inspired by the SWAP-VAE [75], their framework does not suit the

complex ECoG signals. Firstly, the model is pretrained to capture the shared

information among positive samples as the semantics or content. The information

shared by augmented views from the same ECoG signal does not correspond to

any interpretable speech semantics. Therefore, we change the definition of positive

samples as trials corresponding to the same word to capture the word-level semantics.

Besides, the loss functions in the SWAP-VAE can lead to collapsed solutions as the

model can simply set content latent to 0 and compress all information to the style,

degregating the pretraining to simple reconstruction. We observed this collapsed

content (word semantics) in experiments. To regularize the word semantics from

collapsing, we apply the variance and covariance loss from [47] and explicitly guide

the word latent with contrastive loss and cross-entropy loss. The result shows that

the collapsed solution is successfully prevented in our pretraining framework.

The ECoG decoder with the proposed semi-supervised pretraining achieved

performance improvement compared with the ECoG decoder trained from scratch.

The speech decoding based on both word semantics and trial dynamics achieved

the best performance. Besides, speech decoding based on word semantics and trial

dynamics individually can also achieve promising results. The results demonstrate

the proposed pretraining is capable of learning representation generalizable to

speech decoding, and validate the idea of simplifying the speech decoding task by

decomposing the complex speech-related neural activity into word semantics and

trial dynamics.
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The current results show several limitations. Firstly, the performance increase

from the pretraining is marginal. Secondly, the word semantics still needs improve-

ment since the word semantics does not show good word clusterring in test trials

when visualized with T-SNE. Besides, the trial dynamics currently capture both

speech dynamics and speech-nonrelated dynamics. Therefore, further disentangle-

ment of the two dynamics is also needed. Lastly, the detailed interpretation of

what types of semantics and dynamics is needed to shed light on the mechanism

underlying speech production in the human brain.

5.5 Conclusion and Contributions

The study proposes a semi-supervised pretraining method to capture repre-

sentation that can be leveraged to decode speech from ECoG recordings. The

pretraining framework aims to simplify the complex neural activity correlated with

speech production by decomposing the representation into word-level semantics

and trial-level dynamics. The framework contains several pretasks, leveraging word

labels as additional supervision to guide semantics learning during the pretraining.

The results show that the pretraining can lead to performance improvement, which

validates the idea that the disentanglement between semantics and dynamics can

help speech decoding.
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Chapter 6

Conclusion

This thesis leverages machine learning to study the human brain from two

aspects: understanding the microstructure of the brain and designing a neural

activity decoder to predict human speech.

For the investigation of brain microstructure, we focus on leveraging classification

as means of identifying microstructural di↵erences of the target cohorts. Specifically,

we design models to classify the target cohorts based on multi-shell di↵usion MRI

and interpret the learned classifiers to pinpoint important di↵usion metrics or

brain regions for the classification tasks. In the study of microstructural di↵erences

of RHI, the classification pipeline with wrapper-based feature selection achieved

promising results in classifying RHI subjects. The results support the notion that

there are detectable white matter microstructure changes in the setting of RHI.

The learned weights of the classifiers further reveal the influential di↵usion metrics

associated with RHI. The work serves as an example of methods that lead to a

better understanding of the myriad of di↵usion metrics as they relate to injury

and disease. In the study of sex-related di↵erences at the microscopic level, the
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designed 3D CNN, 2D CNN, and Vision Transformer sex classifiers can achieve

promising sex classification performance based on multiple volumetric di↵usion

metrics. The results demonstrate that the proposed MAE-based pretraining can

lead to sigfinicant performance improvement to data-demanding ViT in the setting

of multi-shell di↵usion MRI. The occlusion analysis reveals white matter regions

contribute most to sex-related di↵erences and supports the idea of using distinctive

neural networks to capture complementary information associated with sex-related

di↵erences. The results indicate that distinctive neural networks can capture

complementary information regarding sex-related di↵erences, and provide new

insight supporting di↵erences between male and female brain cellular-level tissue.

For decoding speech from human neural activity, we first propose a novel

ECoG speech decoder, named SwinT. Instead of relying on any grid index, the

SwinT leverages each electrode’s anatomical position and brain parcellation to

decode human speech, enabling the model architecture to accommodate arbitrarily

positioned electrodes. The proposed model achieved state-of-the-art performance

based on the same grid electrodes used in the previous studies. It also achieved

further performance increases by leveraging o↵-grid electrodes. More importantly,

instead of relying on subject-specific ECoG decoders, our SwinT can be trained with

ECoG signals from multiple subjects. The SwinT trained with multiple subjects

not only achieved performance increase but also demonstrated generalizability to

unseen subjects outside of the training set.

To further improve speech decoding, we propose a novel semi-supervised pre-

training approach for the feature extraction part of the SwinT decoder. The

study aims to simplify the complex neural activity associated with speech pro-

duction by decomposing the latent representation into word-level semantics and
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trial-level dynamics. The pretraining framework combines the pretasks of neural

signal reconstruction and contrastive learning to guide the decomposition. Refining

the pretrained network with the decoding loss led to improved speech decoding

performance compared to training from scratch.



90

Bibliography

[1] E. Adeli, Q. Zhao, N. M. Zahr, A. Goldstone, A. Pfe↵erbaum, E. V. Sullivan,

and K. M. Pohl. Deep learning identifies morphological determinants of sex

di↵erences in the pre-adolescent brain. NeuroImage, 223:117293, 2020.

[2] B. Ades-Aron, J. Veraart, P. Kochunov, S. McGuire, P. Sherman, E. Kellner,

D. S. Novikov, and E. Fieremans. Evaluation of the accuracy and precision

of the di↵usion parameter estimation with gibbs and noise removal pipeline.

Neuroimage, 183:532–543, 2018.

[3] M. Angrick, C. Her↵, E. Mugler, M. C. Tate, M. W. Slutzky, D. J. Krusienski,

and T. Schultz. Speech synthesis from ecog using densely connected 3d

convolutional neural networks. Journal of neural engineering, 16(3):036019,

2019.

[4] G. K. Anumanchipalli, J. Chartier, and E. F. Chang. Speech synthesis from

neural decoding of spoken sentences. Nature, 568(7753):493–498, 2019.
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