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ABSTRACT

Deep Learning for Glaucoma Diagnosis and Monitoring and for Video
Processing

by

Zhiqi Chen

Advisors: Prof. Yao Wang, Dr. Joel S. Schuman

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

January 2024

Deep learning (DL)’s success in computer vision tasks, driven by robust parallel com-

puting and extensive data, has expanded to higher-dimensional data like 3-dimensional (3D)

medical images and spatiotemporal sequences. This thesis focuses on employing DL algo-

rithms for two critical vision tasks: comprehending 3D volumetric retinal optical coherence

tomography (OCT), especially in glaucoma applications, and understanding spatiotemporal

sequences, including longitudinal glaucomatous retinal image prediction and natural video

processing.

Glaucoma, a significant cause of global blindness, involves the gradual and irreversible

loss of retinal ganglion cells and their axons, leading to functional defects. The structural

changes observed through OCT and functional abnormality measured by standard auto-

mated perimetry (SAP) are crucial for comprehensive glaucoma diagnosis. However, SAP’s

subjectivity and susceptibility to fluctuations pose challenges, while OCT exhibits excel-

lent reproducibility. To bridge this gap, a 3D Convolutional Neural Network (CNN) is pro-

posed to estimate point-wise visual field (VF) sensitivities from segmentation-free 3D OCT

volumes, outperforming its two-dimensional (2D) counterpart relying on segmentation-
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dependent 2D OCT thickness maps. This innovative 3D model enhances the understanding

of structure-function relationships, overcoming limitations of prior segmentation-dependent

measurements brought by the minimal measurable level (floor e�ect), and potentially aiding

in VF surrogate derivation without SAP’s inherent limitations.

With a robust model capturing the interplay between structural and functional measure-

ments without domain knowledge or segmentations, this research opens avenues for discov-

ering unexpected anatomical or structural features highly associated with function through

model visualization. The establishment of a general point-wise spatial mapping between

structure and function, as demonstrated by occlusion analysis on the above 3D CNN model,

provides insights consistent with manually derived maps. This approach enables the ex-

ploration of new findings from machine learning models, potentially o�ering robust and

unbiased insights. Given the diverse progression patterns in glaucoma, the detailed spatial

correlation map holds promise for identifying personalized progression patterns, improving

assessment, and enhancing the forecasting of progression.

Monitoring glaucoma progression is crucial for e�ective clinical management, where

ganglion cell inner plexiform layer (GCIPL) thickness serves as a critical biomarker. Despite

deriving from 3D OCT scans, the conventional clinical progression analysis uses summa-

rized GCIPL measurements, neglecting its 2D nature and potentially missing subtle changes

and spatial patterns. To address this limitation, this thesis introduces a Time-aware Convo-

lutional Long Short-Term Memory (TC-LSTM) model. This novel model predicts future

2D GCIPL thickness maps by leveraging spatial and temporal correlations in irregularly

sampled longitudinal sequences. Experimental results demonstrate the superiority of the

proposed TC-LSTM over traditional methods.

The final part of this thesis explores another example of spatiotemporal sequences, nat-

ural videos, and develops an e�cient video frame interpolation algorithm, Pyramid De-

formable Warping Network (PDWN). By integrating a pyramid structure and deformable

convolution in its design, PDWN e�ectively merges the advantages of optical flow and ker-
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nel methods, surpassing state-of-the-art models in accuracy across various datasets for video

interpolation, while reducing the model parameters and inference time.
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Chapter 1

Introduction

1.1 Background

This dissertation delves into the realm of employing deep learning (DL) algorithms for

critical vision tasks in light of recent advancements in high-performance parallel comput-

ing and the availability of big data. DL has emerged as a powerhouse in computer vision,

demonstrating remarkable success across various tasks like classification, segmentation,

and detection. As attention turns toward higher dimensional data, particularly spatiotem-

poral sequences and three dimensional (3D) medical images, their relevance to real-world

applications becomes increasingly apparent. This dissertation focuses on employing DL

algorithms for two critical vision tasks: comprehending 3D volumetric retinal optical co-

herence tomography (OCT), especially in glaucoma applications, and understanding spa-

tiotemporal sequences, including longitudinal glaucomatous retinal image prediction and

natural video interpolation.

Glaucoma, the second leading cause of blindness, is characterized by the progressive

loss of retinal ganglion cells and their axons [85, 86, 88, 91, 104, 106]. This degeneration

may lead to changes in the optic nerve head (ONH) and retinal nerve fiber layer (RNFL),

eventually resulting in vision impairment and irreversible blindness. Early diagnosis and

1
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meticulous progression monitoring are crucial for e�ective glaucoma management. The

integration of DL into ophthalmology has marked a significant shift due to its capacity to

extract pertinent features from complex, high-dimensional data [15–17,19,20,24,37,58,70,

87,107]. This infusion of DL has the potential to revolutionize glaucoma diagnosis, manage-

ment, and understanding by interpreting structural and functional information, identifying

phenotypes, and deciphering progression patterns.

OCT stands as a non-invasive imaging technique providing micrometer resolution cross-

sectional and volumetric retinal images. The scheme of the OCT scanner is shown in Fig-

ure 1.1. It has become the de facto standard for objectively quantifying structural damage

in glaucoma. Commercially available Cirrus OCT (spectral-domain OCT (SD-OCT)) ac-

quires OCT data with 5 µm axial resolution in tissue. It allows for visualization of 3D

retinal structure and quantitative assessment of RNFL thickness within a very short time

span at a single visit. Figure 1.2 shows examples of Cirrus OCT reports. Early exploration

into DL for glaucoma applications has revolved around segmentation algorithms applied to

OCT volumes to derive standard measurements like RNFL or macular Ganglion Cell–Inner

Plexiform layer (GCIPL) thickness [21, 69, 94, 102, 105, 109]. However, these algorithms,

while accurate, are limited by relying on segmentation, making them prone to errors and ne-

glecting potential 3D features related to the disease. Consequently, the quest continues for

more intricate, segmentation-free methods capable of handling volumetric data e�ectively.

Apart from structural measurements, functional abnormality measurements are critical

for comprehensive glaucoma diagnosis and management. Figure 1.3 shows examples of

visual field (VF) reports generated by standard automated perimetry (SAP). Understanding

the relationship between structural loss and functional impairment in glaucoma remains a

topic of debate [27, 30, 46, 50, 54, 66, 84, 99, 108, 126]. DL’s success in identifying and

predicting glaucoma progression holds promise in unraveling this complex relationship.

Moreover, given the subjectivity, time consumption, and noise associated with VF tests,

accurate estimation of VF from OCT data could potentially reduce unnecessary testing in
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Figure 1.1. Schematic diagram of imaging optics comprising the OCT scanner and
an example of a tomographic image of the retina obtained along the papillomacular

axis. Cross-sectional images of optical reflectivity v.s. depth are created in a manner
similar to ultrasound scans. The axial resolution is determined by the coherence length of

the superluminescent diode source and is 10 µm (full width at half-maximum) in the
retina. (images created by and borrowed from [44])

Figure 1.2. Examples of Cirrus OCT report from a healthy case (a) and a
glaucomatous case (b). The image is color-coded (red, orange, and yellow represent

thicker areas while green and blue represent thinner areas).
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Figure 1.3. Examples of Humphrey 24-2 VF report from a healthy eye (a) and a
glaucomatous eye (b). Figure (b) shows advanced visual field damages with superior

hemifield and nasal step.

stable eyes.

The accelerated loss of retinal ganglion cells characterizes glaucoma progression along-

side functional damages. Identifying and estimating the rate of this progression, whether

structurally or functionally, remain crucial in managing glaucoma. While current clini-

cal standards like Guided Progression Analysis enable clinicians to detect progression and

evaluate losses compared to baselines, they do not forecast future progressions [61, 72].

DL’s application in predictive medicine presents an intriguing avenue for glaucoma man-

agement, particularly in predicting future findings, an area that has seen limited investigation

so far [9, 13, 80, 94, 99, 111, 115]. The high-dimensional feature space of retinal progres-

sion falls within the realm of understanding spatiotemporal sequences. The development of

tailored DL algorithms for this specific application presents a considerable challenge.

In addition to medical sequences, natural videos present another form of spatiotemporal

sequences ubiquitous in daily life. Video processing forms the backbone of multimedia, and

spatiotemporal modeling plays a pivotal role in advancing video processing technologies.

Unlike medical sequences, natural videos encompass rigid and non-rigid deformations and

possess more diverse appearances with uniform, frequent sampling rates. Tailoring DL

algorithms to meet the distinct demands of video processing, characterized by these varying
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attributes, poses a significant challenge in this domain.

1.2 Problem statement

This dissertation is primarily focused on two vision tasks:

• 3D volumetric OCT analysis in relating structure and function of glaucomatous

eyes. Analyzing unprocessed 3D OCT volumes circumvents segmentation procedures

needed to derive clinical features like retinal layer thicknesses and rim volume. This

approach is free from segmentation errors and o�ers richer information compared to

summarized segmentation measurements.

– Segmentation-free point-wise VF estimation. The structural changes mea-

sured by OCT are closely related to functional changes in VF. Prior studies

in characterizing structural-functional relationships have focused on correlating

VF outcomes with segmentation-dependent OCT measurements, such as RNFL

thickness. However, segmentation-dependent OCT measurements have floor ef-

fects that will a�ect the structural-functional relationship learning for patients

with advanced disease. To overcome the floor e�ect of segmentation-dependent

OCT measurements, we aim to develop a 3D model to estimate the functional

deterioration directly from segmentation-free 3D OCT volumes and compare it

to the model trained with segmentation-dependent two dimensional (2D) OCT

thickness maps.

– Generalized point-wise spatial mapping of structure to function. With a ro-

bust model capturing the interplay between structural and functional measure-

ments without domain knowledge or segmentations, it is possible to discover

unexpected anatomical or structural features highly associated with function

through model visualization. Thus, in this study, we aim to establish a general-

ized point-wise spatial mapping between structure and function by conducting
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occlusion analysis on a DL model trained on an extensive clinical cohort of pa-

tients to predict point-wise VF sensitivities from 3D OCT volumes.

• Spatiotemporal sequence generation aims to generate intermediate or future time

points given a spatiotemporal sequence. Here, we addressed two specific problems in

two di�erent domains:

– Retinal GCIPL thickness map prediction. GCIPL thickness is an important

biomarker for the clinical management of glaucoma. Clinical analysis of GCIPL

progression uses averaged thickness only, which easily washes out small changes

and reveals no spatial patterns. 2D thickness maps may allow clinicians to pick

up small changes. Also, the spatial pattern of GCIPL thickness often contains

useful features to detect subtle potential progression. So in this study, we aim

to utilize both spatial and temporal information to predict the progression of

glaucoma regarding 2D GCIPL damages. Following the clinical convention, we

used GCIPL thickness maps from the past 4 visits as baselines to predict the

map of the future 5th visit.

– Video interpolation. Video interpolation aims to generate intermediate frames

between given prior and post frames. However, natural videos include com-

plicated appearance and motion dynamics, e.g., various object scales, di�er-

ent viewpoints, varied motion patterns, object occlusions, and dis-occlusions,

making interpolation of realistic frames a significant challenge. To alleviate

the above issues, we aim to design an e�cient algorithm capable of generat-

ing realistic intermediate frames by modeling non-linear motion dynamics and

complicated appearances.
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1.3 Contributions

This dissertation focuses on crafting e�cient algorithms tailored for four significant ap-

plications: segmentation-free point-wise VF estimation, retinal structure-to-function spatial

mapping, GCIPL thickness map prediction, and video interpolation. The main contributions

are detailed below.

• Segmentation-free point-wise VF estimation in glaucoma. We introduce a novel

3D Convolutional Neural Network (CNN) designed to directly estimate point-wise

VF sensitivities from segmentation-free 3D OCT volumes. This approach mitigates

floor e�ects (the minimal measurable level) inherent in segmentation-dependent OCT

measurements. Comparing its performance to a model trained with segmentation-

dependent 2D OCT thickness maps in a substantial clinical dataset, we demonstrate

the 3D model’s superior performance both globally and point-wise. The analysis indi-

cates reduced influence from floor e�ects in the 3D model, resulting in more accurate

estimations. This o�ers a potentially valuable avenue for developing substitutes for

VF tests from OCT retinal scans, aiding clinicians and patients unable to undergo

conventional VF examinations.

• Generalized point-wise spatial mapping of structure to function in glaucoma.

Through occlusion analysis of the aforementioned 3D model, we establish a gener-

alizable point-wise spatial relationship between OCT-based structure and VF-based

function. These derived maps visualize global trends in point-by-point spatial rela-

tionships between structure and function, presenting a bias-free learning opportunity

from trained machine learning models without prior knowledge or segmentation of

OCT volumes. The revealed spatial correlations align with previously published map-

pings, opening avenues for robust and bias-free learning.

• Retinal GCIPL thickness map prediction. This work introduces the first attempt
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to predict 2D GCIPL thickness maps. We propose a novel time-aware Convolu-

tional Long Short-Term Memory (TC-LSTM) unit within an auto-encoder-decoder

framework. This model e�ectively handles irregular sampling intervals of longitu-

dinal GCIPL thickness map sequences, capturing both spatial and temporal corre-

lations. Experiments demonstrate the superiority of our proposed model over tradi-

tional methods.

• Video interpolation. We present Pyramid Deformable Warping Network (PDWN),

a light yet e�cient model for video interpolation. Using a pyramid structure, PDWN

generates deformable convolution (DConv) o�sets for predicting the unknown mid-

dle frame relative to known frames through successive refinements. Ablation stud-

ies validate the e�ectiveness of coarse-to-fine o�set refinement, cost volumes, and

DConv. PDWN achieves comparable accuracy to state-of-the-art models across mul-

tiple datasets while significantly reducing model parameters and inference time. Ad-

ditionally, our extended framework utilizing longer input sequences substantially im-

proves performance with a minimal increase in model size and inference time.

1.4 Outline and Organization

In Chapter 2, a novel 3D framework for estimating functional measurement e.g. VF

sensitivities directly from segmentation-free 3D OCT volumes is explored. Chapter 3 ex-

tends the work in Chapter 2 by establishing a generalizable spatial mapping from structure

to function in glaucoma using occlusion analysis. The derived map identifies statistically

significant ONH regions for predicting VF test points for specific patient groups, not only

demonstrating the correctness of the model in Chapter 2 but also opening up the possi-

bility of learning from trained machine learning models, potentially robust and free from

bias. Chapter 4 introduces a TC-LSTM model to predict future 2D GCIPL thickness maps,

enabling the prediction of the progression of glaucoma. Chapter 5 presents a video interpo-



9

lation algorithm to generate realistic intermediate frames for video frame rate conversion.

Finally, Chapter 6 concludes the thesis and provides remarks on the possible directions for

future research.



Chapter 2

Segmentation-Free Point-wise VF Estima-

tion

2.1 Introduction

Glaucoma is a slowly progressive disease accompanied by characteristic loss of retinal

ganglion cells and their axons and functional defects, which can greatly impact the quality

of life [40, 74]. In practice, visual field (VF) test is an essential examination to identify

and monitor functional abnormalities. However, VF test is highly subjective and highly

depends on patient compliance. It su�ers from random errors and fluctuations due to vari-

ous factors such as patient attention, fatigue, learning curve, and rim artifacts [26,67,116].

Moreover, the fluctuations are more severe in glaucomatous patients than in healthy sub-

jects [11, 56]. On the other hand, optical coherence tomography (OCT) which is widely

used for visualizing and measuring retinal structures has very good Reproducibility in both

healthy and glaucomatous subjects [12,28,45]. Previous studies have shown that the struc-

tural changes measured by OCT are closely related to the functional changes measured in

VF [32, 60, 90, 92, 117]. Thus, the surrogates of VF test outcomes could be derived from

OCT retinal scans via accurate quantitative models encapsulating structural-functional re-

10
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lationships. It can not only benefit the patients by reducing the long testing time of VFs

but also allow clinicians to make clinical judgments without the inherent limitations of VFs

such as subjective nature and high test-to-test variability.

Prior attempts to characterize structural-functional relationships have focused on corre-

lating VF outcomes and structural measurements [25, 27, 30, 32]. Garway et.al. [32] pro-

posed the widely used and validated Garway-Heath map to map localized retinal nerve fiber

layer (RNFL) defects measured by red-free RNFL photographs to the location of points on

SAP. With spectral-domain OCT (SD-OCT) becoming popular and able to provide a bet-

ter assessment of RNFL, many previous researches have modeled the structural-functional

relationship between OCT measurements like peripapillary RNFL thickness and standard

automated perimetry (SAP) using statistical tools [25,27,30]. However, these studies relied

on small samples and oversmoothed summarized thickness measurements.

Recent developments of artificial intelligence have shown the potential of deep learning

(DL) algorithms in modeling complex nonlinear relationships and learning task-specific fea-

tures automatically from high-dimensional data in various medical sectors [19, 37, 64, 95].

Recent research has attempted to use DL methods to estimate VF from higher-dimensional

SD-OCT measurements such as two dimensional (2D) SD-OCT thickness maps [22, 39,

65, 66, 81, 97]. The promising results proved the advantages of 2D thickness maps over

summarized measurements. However, 2D thickness maps are prone to segmentation errors

introduced by the adopted segmentation algorithms, leading to inaccurate estimation of VF.

Furthermore, the presence of segmentation errors is associated with macular diseases [2]

and hence impedes the practical application of directly estimating function from structure.

In addition to segmentation errors, segmentation-based OCT measurements have floor ef-

fects [71]. The floor e�ect is the point at which no further structural loss can be detected by

segmentation-based OCT measurements. So it will a�ect the structural-functional relation-

ship learning for patients with advanced disease. Alternatively, the three dimensional (3D)

OCT volume not only is segmentation-free but also can provide more abundant informa-
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tion than 2D thickness maps. Therefore, to overcome the above limitations, we developed

a DL model to estimate pointwise functional outcome directly from segmentation-free 3D

OCT volumes and compared the performance with the model trained with segmentation-

dependent 2D OCT thickness maps. We also proposed a gradient loss term to utilize spatial

information in VF by reshaping VF into 2D arrays and calculating gradients between adja-

cent VF points.

2.2 Methods

2.2.1 Model architecture

A Convolutional Neural Network (CNN) was developed to take one optic nerve head

(ONH) OCT as input to predict a 52-dimensional VF vector. We adopted ResNet18 [43]

as the backbone of the feature extractor and replaced the last fully connected layer with 2

convolutional layers to output 52-point VF sensitivities. The 3D version replaces all 2D

Convolutional layers in the 2D ResNet18 to be 3D convolutions. Model details are shown

in Fig 2.1.

2.2.2 Loss function

To train the network, we used mean square error as the reconstruction loss:

Lreconstruction =
1

N ⇥ 52

N,52X

n=1,i=1

(yni � ŷni )
2, (2.1)

where yni and ŷni were the ground-truth and estimated value, respectively, for the ith compo-

nent of the 52-point VF vector for the nth sample. We also experimented on mean absolute

error loss and got similar results as mean square error loss. Therefore, we only reported

results trained with mean square error loss in the study.

Typical glaucomatous visual field loss is characterized by arcuate defects, nasal steps,
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Figure 2.1. Model details. (A): 3D model taking a 3D OCT volume as input
(1⇥ 128⇥ 64⇥ 64, channel ⇥ depth⇥ width⇥ height). (B): 2D model taking a 2D

RNFL thickness map as input (3⇥ 200⇥ 200, channel ⇥ width⇥ height).
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Figure 2.2. An example of rearrange 2D VF and gradients.

and other patterns on rectangular grids. To better utilize the spatial correlation in nearby VF

points, we rearranged the output VF vector into a 8⇥ 9 2D array and filled in the boundary

with zeros as depicted in Figure 2.2. Then a gradient loss term was proposed to minimize

the di�erences of the horizontal and vertical gradients between the estimated and ground

truth VF array as follows:

Lhorizontal
gradient = kMh ⇤ (yi,j � yi�1,j)�Mh ⇤ (ŷi,j � ŷi�1,j)k1, (2.2)

Lvertical
gradient = kMv ⇤ (yi,j � yi,j�1)�Mv ⇤ (ŷi,j � ŷi,j�1)k1, (2.3)

where yi,j denotes value of the point at ith row and jth column in the ground truth 2D VF

array. Mh and Mv are the binary masks to exclude gradients for blind spots and boundary

points for horizontal and vertical gradients as shown in Figure 2.2 (B) and (D). With the

gradient loss, the 52 points of the VF vectors were not independent to one another anymore.

The model was enforced to not only reconstruct the individual points faithfully but also to

match with the change pattern of ground truth visual field defects. Thus, the gradient loss

emphasized on the learning of the spatial changes between adjacent VF points, which is

essentially the spatial patterns of VF defects.

Finally, we set the training loss as:

Ltotal = Lreconstruction + �Lhorizontal
gradient + �Lvertical

gradient, (2.4)

where � is set to be 10.
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The model was trained with stochastic gradient descent, optimized by the Adam opti-

mizer with �1 = 0.9, �2 = 0.999, and ✏ = 10�8 [55]. The initial learning rate was 2⇥10�4

and decayed every 100 epochs by 10�1. We trained the model for 200 epochs.

2.2.3 Statistical analysis

We used mean absolute error (MAE) and Pearson’s correlation coe�cients between

the measured and estimated VF to evaluate the model performance. Pearson’s correlation

coe�cients were tested with the Williams test for equality of correlations and MAEs were

tested with the Wilcoxon Signed-rank test.

2.3 Results

2.3.1 Data collection

This retrospective study was performed in accordance with the tenets of the Declaration

of Helsinki. The study was approved by the Institutional Review Board of Langone Health

Center of New York University.

Subjects that had at least one Humphrey VF test and one SD-OCT visit within 90 days

of each other were included in the study. VF tests were performed using SAP with the 24-

2 Swedish Interactive Threshold Algorithm (Carl Zeiss Meditec, Inc., Dublin, CA, USA)

protocol. Tests with more than 33% fixation losses, 15% false positive errors, or 15% false

negative errors were excluded. SD-OCT tests were acquired using Cirrus SD-OCT instru-

ment (Carl Zeiss Meditec). RNFL thickness maps were obtained from the 6mm ⇥ 6mm

ONH scan 200⇥200 protocol. Tests with signal strength less than 6 dB were also excluded.

The final dataset contains 8387 VF tests and 15026 ONH OCT scans from 1129 patients

over multiple visits. Table 2.1 summarizes the demographic characteristics of the dataset.

The dataset was randomly split into the training and testing datasets at a ratio of 9:1 with
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no patient overlap between datasets. To reduce variances caused during OCT imaging,

the Bruch’s membrane surface was flattened and aligned by adjusting A-scans in the z-

direction. The 3D scans were centrally cropped around the optic nerve head to be 128 ⇥

128⇥ 512 voxels. The 3D scans were then downsampled to be 64⇥ 64⇥ 128 voxels with

Gaussian denoising to reduce the memory consumption during model training. Of the 54

points of 24-2 VF tests, 2 blind spot points were excluded. The sensitivity values of the

remaining 52 test points were temporally smoothed using point-wise linear regression to

reduce random fluctuations. All left eye visits were flipped horizontally to match the right

eye format for both OCTs and VFs. During training, every VF visit was randomly associated

with a corresponding OCT visit within 90 days to form a training pair.

Table 2.1. Demographic characteristics of the dataset.

Mean ± standard deviation Range

Number of patients 1129 -

Number of eyes 2151 -

Age at the time of visit (year) 64.2 ± 12.6 18 - 94

Number of VF visits per patient 3.9 ± 2.9 1 - 20

Number of OCT visits per patient 6.6 ± 5.5 1 - 63

VF mean deviation -4.59 ± 6.80 -32.78 - 5.78

Peripapillary RNFL thickness (µm) 76.76 ± 14.95 14 - 80

2.3.2 3D model vs 2D model

The test dataset has 996 VF-OCT pairs from 147 patients. Table 2.2 summarizes the

global performance comparison between the model trained with 3D OCT volumes and the

model trained with 2D thickness maps. The MAE is significantly lower in 3D than 2D

models (3.11 vs. 3.47 dB, p < 0.001, Wilcoxon Signed-rank test). Pearson’s correlation
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coe�cient is also significantly better in 3D than 2D models (0.80 vs. 0.75, respectively,

p < 0.001, Williams test for equality of correlations). Both metrics demonstrate that the

overall performance of the 3D model is better than that of the 2D model.

Table 2.2. Comparison between 2D-thickness-map-based model and
3D-volume-based model.

Model
All test data With floor e�ects Without floor e�ects

MAE Correlation MAE Correlation MAE Correlation

2D model 3.47 ± 3.75 0.75 6.34 ± 4.58 0.74 3.09 ± 3.45 0.67

3D model 3.11 ± 3.54 0.80 5.24 ± 3.99 0.83 2.82 ± 3.37 0.70

p < 0.001 p < 0.001 p < 0.001 p = 0.001 p < 0.001 p = 0.004

To further investigate model performances when RNFL reaches the measurement floor,

we split the test dataset into two parts, one with and the other without floor e�ects. The set

with floor e�ects consists of visits that have an average RNFL thickness less than or equal to

57 µm according to [71]. The floored test set has 117 VF-OCT pairs from 20 patients while

the other test set has 879 pairs from 127 patients. Global results are shown in table 2.2.

Globally, both MAE and correlation coe�cients of the 3D model are significantly better

than that of the 2D model in terms of MAE. The Pearson’s correlation coe�cient’s gain of

the 3D model is significant when floor e�ects are present while the gain is marginal in data

without floor e�ects. Moreover, the performance gain of the 3D model is much greater in

the floored test data than that in test data without floor e�ects (4 times for MAE, 3 times for

correlation).

Fig 2.3 shows the error trends of both models at every VF sensitivity level. The error

trends of 3D and 2D models do not di�er much for data without floor e�ects in subfigure (B).

Conversely, the MAE of the 3D model clearly shows a better trend than that of the 2D model

for data with floor e�ects in subfigure (A). The gap between the two lines demonstrates that

the model using 3D volumes has less influence from the floor e�ects. Regardless of floor
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Figure 2.3. Error trend comparison on test data with and without floor e�ects. (A):
with floor e�ects. (B): without floor e�ects. The dashed line and the solid line represent

the MAE of the 2D thickness-map-based model and the 3D volume-based model,
respectively. Histograms show the VF density for data with and without floor e�ects.

e�ects, both models perform better for VF sensitivity between 20 and 35 dB, which are most

frequently sampled in our dataset, than values under 20 dB. As a result, a plateau e�ect is

presented in Fig 2.4 when the measured sensitivity is less than 20 dB. A similar pattern

was also presented in [66]. In addition, the high test-to-test variability of VF sensitivity

values below 20 dB may also contribute to the large estimation error in the low sensitivity

end [29, 113].

In Fig 2.5 we plot the di�erence between evaluation metrics of 3D and 2D models for

each VF point. Subplot (A) is the point-wise mean absolute error map, i.e., MAEi
2D �

MAEi
3D where i represents one of the 52 points. Red in the map means that the 3D model

has lower/better MAE than the 2D model and blue means the opposite. Subplot (B) shows

the p value of the MAE di�erence. White cells have p value � 0.05 and black and greyish

cells have p value< 0.05. The MAE di�erence map (subplot (A)) is almost all red except for

points in the central region. And the significance map is almost greyish. So the 3D model

is significantly better than the 2D model in most VF positions in terms of MAE. Similarly,

the point-wise Pearson’s correlation coe�cients of the 3D model are significantly better

than those of 2D models in most VF positions. Therefore, the point-wise analysis again
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Figure 2.4. Box plot of the 3D-volume-based model estimations.

demonstrates the supremacy of 3D OCT volumes versus 2D thickness maps.

Table 2.3 summarizes the sectional results of the 3D model. We use the sectors defined

in Garway-Heath map [32]. The observation that the superior sector has smaller MAEs

compared to the corresponding inferior sector (3.14 vs 3.67 dB temporally, 2.75 vs 3.23 dB

nasally) coincides with [38, 81]. [38] claimed that it is due to the superior retina having

a higher structural-functional correlation than the inferior retina. [81] suggested another

reason for the observation. Glaucomatous damage occurs sequentially from the inferotem-

poral sector to the superotemporal sectors [93]. As a result, the inferotemporal ONH sector

could have a larger error since the inferotemporal ONH sector progressed more than other

sectors. Our results may support their hypothesis. The superior-inferior MAE gaps narrow

as glaucoma progresses. For example, the superior-inferior MAE gaps narrow from 0.49 dB

(|2.96� 3.47| dB) temporally and 0.43 dB (|2.47� 2.90| dB) nasally in data without floor

e�ects to 0.12 dB (|5.06� 5.18| dB) temporally and 0.09 dB (|5.26� 5.35| dB) nasally in

data with floor e�ects. Nevertheless, the pattern of Pearson’s correlation coe�cients does

not agree with the pattern of MAE. The superior correlations are not better than the inferior

correlations.
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Figure 2.5. Point-wise analysis on floored test data. (A): MAE di�erence map,
MAE2D �MAE3D. The red cell means the 3D model has a lower MAE than that of the
2D model at the point while the blue cell means the opposite. (B): Significance map of

MAE di�erence. (C): Correlation di�erence map, correlation3D � correlation2D. The
red cell means the 3D model has a higher Pearson’s correlation coe�cient than that of the

2D model at the point while the blue cell means the opposite. (D): Significance map of
correlation di�erence. In the significance maps, white cells have p value � 0.05 and black

and gray cells have p value < 0.05.
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Table 2.3. Sectional results of the 3D model.
Sector

All test data With floor e�ects Without floor e�ects

MAE Correlation MAE Correlation MAE Correlation

Superotemporal 3.14 ± 3.59 0.77 5.06 ± 3.87 0.77 2.96 ± 3.53 0.67

Temporal 2.93 ± 3.33 0.65 4.82 ± 3.91 0.71 2.71 ± 3.11 0.49

Inferotemporal 3.67 ± 3.44 0.78 5.18 ± 3.62 0.87 3.47 ± 3.35 0.63

Inferonasal 3.23 ± 3.65 0.82 5.35 ± 4.04 0.85 2.90 ± 3.45 0.72

Nasal 2.72 ± 3.43 0.76 5.62 ± 4.62 0.77 2.30 ± 2.95 0.71

Superonasal 2.75 ± 3.46 0.82 5.26 ± 3.87 0.83 2.47 ± 3.35 0.71

Fig 2.6 shows a point-wise analysis of the 3D model performance for data with and

without floor e�ects. For data without floor e�ects, the 3D model performs better in central

locations than in boundary locations probably due to rim artifacts of VF. However, the

performance in central locations is worse than that in boundary locations for data with floor

e�ects.

2.3.3 Comparison with prior studies

Previous studies have also used DL to learn structure-function relationships. Commonly,

segmentation-based thickness measurements by OCT devices are used as inputs to predict

VF outcomes. Shin et. al. [97] compared 24-2 VFs outcomes from 2D RNFL and Gan-

glion Cell–Inner Plexiform layer (GCIPL) thickness maps measured by SD-OCT and by

swept-source OCT (SS-OCT). They showed that their model estimated VFs better with SS-

OCT (root mean square error (RMSE) = 4.51± 2.54 dB) than did with SD-OCT (RMSE =

5.29± 2.68 dB). Though we cannot directly compare with their results, we achieve similar

RMSE (4.22 ± 2.88 dB) for our 2D model which also utilized RNFL map of SD-OCT

and better RMSE (3.83 ± 2.74 dB) for our 3D model. Park et. al. [81] developed an

InceptionV3-based model to predict 24-2 VFs from combined GCIPL and RNFL thick-

ness maps and achieved RMSE of 4.79 ± 2.56 dB, which is also similar to our 2D model

(4.22± 2.88 dB). Mariottoni et. al. [66] used CNN to predict 24-2 VFs from 768 peripapil-

lary RNFL thickness points in SD-OCT. They reported an average correlation coe�cient of

0.60 and an MAE of 4.25 dB. In our case, the correlation coe�cients are 0.75 and 0.80 for



22

Figure 2.6. Point-wise results of the 3D model for data with and without floor e�ects.
(A): Point-wise MAE for data with floor e�ects. (B): Point-wise correlation for data

without floor e�ects. (C): Point-wise MAE for data without floor e�ects. (D): Point-wise
correlation for data without floor e�ects.

2D and 3D models respectively. Overall, our 2D model has similar performance with previ-

ous segmentation-dependent methods, but our 3D model significantly outperforms previous

segmentation-dependent methods. Comparisons are summarized in Table 2.4.
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Table 2.4. Comparison with prior studies using SD-OCT.

Method MAE RMSE Correlation

Shin, et al [97] - 5.29± 2.68 -

Park, et al [81] - 4.79± 2.56 -

Mariottoni et al [66] 4.25 - 0.60

Ours (2D) 3.47± 3.75 4.22± 2.88 0.75

Ours (3D) 3.11± 3.54 3.83± 2.74 0.80

Figure 2.7. E�ectiveness of the gradient loss.

2.3.4 Gradient loss

Figure 2.7 shows performances corresponding to di�erent settings of � in the training

loss function (2.4). Introducing the gradient loss clearly gives a boost to the performance

in the lower VF sensitivity end. We chose � = 10 in our experiments because it provides

the lowest estimation errors in low-sensitivity regions in the training set.
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2.4 Conclusion

In conclusion, we investigate a DL model to estimate point-wise VF sensitivities directly

from segmentation-free 3D OCT volumes to overcome the floor e�ects of segmentation-

dependent OCT measurements. We compare the performance with the model trained with

segmentation-dependent 2D OCT thickness maps in a large clinical dataset. We show that

the 3D model is significantly better than the 2D model both globally and point-wisely. Fur-

ther analysis on a subset of the test dataset with floor e�ects demonstrates that the 3D model

had less influence from the floor e�ects and thus generated more accurate results than the 2D

model. Moreover, we propose a gradient loss function to be combined with mean square

error loss to utilize the spatial information of VFs. The proposed loss improves the esti-

mation error for low-sensitivity values. Our study provides a better quantitative model to

encapsulate the structural-functional relationship more accurately. Our study could o�er

new insights into developing surrogates of VF test outcomes from OCT retinal scans. This

may help both clinicians and patients who are unable to undergo real VF examinations.

Despite the improvement introduced by segmentation-free OCT volumes, this study still

has limitations. First, the dataset is imbalanced in terms of VF sensitivity values. A rela-

tively large error is present due to under-represented low and very high sensitivities. Though

we demonstrate that predicting VFs directly from 3D OCT volumes and using gradient loss

could alleviate the issue of low sensitivity values, the problem persists. Further investiga-

tion is needed with additional low and very high sensitivity data. Second, VF tests are prone

to errors and variability, leading to di�culties in model training and evaluations, which im-

poses a lower bound on the achievable predictive performance. In addition, the test-retest

variability of VF is even higher for sensitivity values under 19 dB [31], further limiting

the model’s predictive performance for low VF sensitivity values. Repeated tests may help

suppress noise in VF to construct a cleaner dataset. Finally, despite the advantage of fea-

ture agnosticism, using non-segmented OCT volumes is ine�cient in terms of memory and
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computation since the OCT volumes contain a substantial area without tissue information.

Although flattening, cropping, and downsampling have been applied in preprocessing steps

to improve the e�ciency of memory and computation, more advanced methods combining

the segmentation masks can be explored in future work.



Chapter 3

Generalized Point-Wise Spatial Mapping

of Structure to Function

In Chapter 2, we have introduced a three dimensional (3D) model that is able to predict

visual field (VF)-based functional damage from 3D segmentation-free optical coherence to-

mography (OCT)-based structural damage. Although there is a strong correlation between

structural and functional measurements, there are many clinical cases that cannot be clearly

explained with such a simple correlation. Since glaucoma progression patterns widely vary

from individual to individual, a detailed spatial correlation map may help identify person-

alized progression patterns and provide better assessment and forecasting of progression.

Built upon the work in Chapter 2, this chapter introduces how to derive spatial mapping

from structure to function using model visualization.

3.1 Introduction

Structure-function spatial correlation has been widely investigated [25, 30, 32, 49, 108].

Perhaps the most well-known depiction is the Garway-Heath map that associates clusters

of VF test points with sectors of the optic disc by superimposing 24-2 VF test grid on reti-

26
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nal photographs and manually tracing visible retinal nerve fiber layer (RNFL) defects or

prominent nerve fiber bundles to note their point of intersection [32]. The derived map

divides the optic nerve head (ONH) and 24-2 VF into six corresponding sectors. Janso-

nius et. al. [49] later proposed a mathematical model fitting hand-traced retinal nerve fiber

trajectories to reduce variabilities in hand-tracing, leading to a more robust portrayal of

the structure-function relationship. Alternative approaches used statistical methods to pro-

duce the structure-function correspondence. Gardiner et. al. [30] utilized the maximum

correlation between the normalized rim area of 36 sectors measured by Heidelberg retina

tomography (HRT) and 24-2 VF sensitivities. Turpin et. al. [108] further constrained the

correlation between HRT measurements and VF to be anatomically plausible with a com-

putational model of the axon growth of retinal ganglion cells. Ferreras et. al. [25] used

factor analysis to divide 24-2 VF grid into 10 sectors. Then, a similar correlation approach

was applied to relate predefined 10 VF sectors to clock-hour sectors of peripapillary RNFL

thickness measured by OCT.

All previous studies are based on prior knowledge regarding anatomical structures and

their functions or require segmentations to get ONH measurements. It can certainly be a

good way of establishing structure-function relationships. However, it is possible to dis-

cover unexpected anatomical or structural features that are highly associated with function

using artificial intelligence. Recent advances in deep learning (DL) approaches achieve

unprecedented performance – sometimes better than human experts – in many medical ap-

plications. While DL models are known to be black boxes, recently many techniques to

reveal which location within the input image contributed the most to reach the output have

been developed. In other words, it is now possible to learn from well-trained DL models.

Several previous studies have attempted to predict VF outcomes using OCT measure-

ments through DL algorithms [3, 18, 21, 41, 52, 53, 57, 66, 79, 81–83]. Although these stud-

ies have shown promising results in approximating VF metrics from OCT data, the precise

spatial relationship between structural damage and functional damage remains less well-
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established. Mariottoni et. al. [66] created a mapping between the 768-point RNFL thick-

ness profile obtained from a spectral-domain OCT (SD-OCT) circumpapillary scan and the

24-2 standard automated perimetry (SAP) VF loss by simulating localized RNFL defects

of varying locations and characteristics. They observed the impact of these defects on VF

outcomes using a CNN designed to predict VF sensitivities from RNFL thickness profiles.

The derived map o�ers a more detailed spatial structure-function relationship compared to

the Garway-Heath map, but their method depends on the segmentation outcomes, which

can be a�ected by image quality and segmentation errors [2]. Kihara et. al. [53] proposed a

multimodal policy DL system that directly predicts VF from unsegmented circumpapillary

OCT and Scanning Laser Ophthalmoscopy image of the ONH. Thus, a circumpapillary

sector structure-function mapping was derived in a data-driven, feature-agnostic fashion.

Nonetheless, all prior mappings remained limited to sector representations, which is subop-

timal as they fail to fully exploit 3D nature of the retinal structure. A more comprehensive

spatial mapping, derived from 3D structure measurements (e.g., 3D OCT volume) and in-

dependent of domain-specific knowledge (e.g., segmented RNFL thickness), is desired to

enhance our understanding of the spatial relationship between structure and function.

Recently, DL algorithms have ventured into analyzing higher-dimensional data to lever-

age 3D information that may not be readily discernible through conventional methods [18].

Consequently, in this study, we aim to establish a generalized point-wise spatial mapping

between structure and function by conducting occlusion analysis on a DL model trained

on an extensive clinical cohort of patients to predict point-wise VF sensitivities from 3D

OCT volumes. The revealed spatial correlations were consistent with previously manually

derived maps. This may provide a gateway to the discovery of new findings from machine

learning models, potentially robust and free from bias.



29

3.2 Methods

3.2.1 Model architecture and training

Since the purpose of this study was to derive the spatial relationship between struc-

ture and function, rather than developing a new model to predict function from structure,

we adopted the same model architecture, a 3D CNN, from Section 2.2.1, which showed

promising performance in predicting SAP VF sensitives from 3D SD-OCT volumes of the

ONH.

We adopted the same training strategy as Section 2.2.1, i.e., we trained the model with

the Adam optimizer [55] for 200 epochs and a batch size of 16. The learning rate was

initially set to 2 x 10-4 and linear decayed every 100 epochs by 10-1. Di�erent from 2.2.1,

we used a reliability-weighted mean square error loss function instead of standard mean

square error loss to compensate for larger noises in peripheral VF test points. The reliability

was defined as the inverse of the point-wise standard deviation of sensitivities for subjects

with VF mean deviation (MD) larger than -1 dB, with the highest reliability normalized to

1. The weight for each VF test point is shown in Figure 3.1.

3.2.2 Structure-function mapping

Once an accurate model is established to quantify the relationship between OCT vol-

umes and point-wise VF sensitivities, it becomes possible to derive spatial correlations

between each test point of the VF and the corresponding regions of the ONH using the

model. To establish this spatial mapping, we first applied occlusion analysis on the trained

model, generating 52 point-wise 3D saliency volumes for every sample in the test set. This

allowed us to evaluate the contribution of individual regions in the input OCT volume to

the model’s predictions. To ensure consistency, all 3D saliency volumes were registered

using the geometric center of the optic disc. Additionally, to account for variations along
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Figure 3.1. Point-wise reliabilities.

the depth dimension, we averaged each 3D saliency volume across depth to generate a two

dimensional (2D) individual saliency map, analogous to OCT en face images.

Next, we divided the test set into two groups based on VF MD values (cuto� at MD -6

dB) and performed a point-wise t-test separately for each small ONH region within each

group. This enabled us to generate group t-statistic maps, revealing the detailed spatial

relationship between each VF test point and the corresponding statistically significant and

relevant regions of the ONH for a specific group.

Individual saliency map by occlusion analysis

Occlusion analysis is widely used to visualize the decision-making process of black

box models. In this study, we utilized occlusion analysis to quantify the contribution, also

known as saliency, of each small region of the ONH on the model’s prediction for each

VF test point. The underlying assumption is that if a region of the ONH is related to a VF

test point, removing information from that region will significantly alter the DL model’s

prediction for the corresponding point. Conversely, the model’s prediction should remain

consistent when removing information from irrelevant ONH regions.

To implement this, we replaced a small region (4⇥4⇥4 voxels, 240⇥240⇥31.25µm)
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within an input volume with a gray patch (mean intensity of the input) and calculated the

saliency by comparing the model’s prediction with the original input to its prediction with

the occluded input. The saliency was defined as the absolute di�erence between the model

predictions for the original and occluded inputs. By repeating this process for all loca-

tions throughout the entire input volume for all VF test points of each ONH volume in the

dataset, we generated 52 saliency volumes for every OCT-VF pair in the dataset. Specifi-

cally, for each OCT volume Vi in the test set {V1, V2, . . . , VN}, we obtained 52 saliency vol-

umes {Si,1, Si,2, . . . , Si,52} corresponding to the 52 VF test points. Each voxel Sj
i,pt within

a saliency volume Si,pt represented the absolute di�erence between the model predictions

when occluding the j-th small region of the ONH volume:

Sj
i,pt = |f(Vi)� f(T j(Vi))| (3.1)

where Vi denotes the original ONH volume, T j(·) denotes the operation that replaces the

j-th patch of Vi with a value equal to the volume’s mean intensity V̄i. An example of a 3D

saliency volume was presented in Figure 3.2 and Figure 3.3.

Figure 3.2. The cross-sectional view of an individual saliency volume. (A) A VF test.
(B) The associated en-face OCT image. (C) Cross-sectional B-scan associated with the
red line in (B), overlaid with the corresponding saliency of point 21 highlighted with the

red bounding box in (A). (D) Cross-sectional B-scan associated with the green line in (B),
overlaid with the corresponding saliency of point 21 highlighted with the red bounding

box in (A).
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Figure 3.3. The en-face view of an individual saliency volume. (A) A VF test. (B) The
associated cross-sectional OCT B-scan. (C) A scan associated with the red line in (B),
overlaid with the corresponding saliency of point 21 highlighted with the red bounding

box in (A).

To account for variation across depth due to the adopted coarse registration, the 3D

individual saliency volumes

{{S1,1, S1,2, . . . , S1,52}, {S2,1, S2,2, . . . , S2,52}, . . . , {SN,1, SN,2, . . . , SN,52}}

were projected onto the en face plane, generating 2D individual saliency maps

{{S 0
1,1, S

0
1,2, . . . , S

0
1,52}, {S 0

2,1, S
0
2,2, . . . , S

0
2,52}, . . . , {S 0

N,1, S
0
N,2, . . . , S

0
N,52}}

to address depth-related variations and to ease visualization.

Group saliency map by t-test

To identify statistically significant and relevant ONH regions for each VF test point in

a specific group, we divided the test set into two groups as described above and separately

conducted t-tests within each group. This process yielded the corresponding group t-statistic

maps, which encode the group-specific spatial relationships between structure and function.

The group t-statistic maps were generated by separately performing t-tests for each small

ONH region, comparing its saliency with the point-wise group-averaged saliency. For a

particular 4 ⇥ 4 region k in the en face plane and a particular VF test point pt, we had
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{S 0k
1,pt, S

0k
2,pt, . . . , S

0k
N,pt} representing the saliency of region k for model prediction at VF

test point pt for each subject in a group. The group t-statistic map Tpt of a particular VF test

point pt was created by conducting t-test separately across all regions of ONH:

T k
pt =

8
>><

>>:

S̄k
pt � µpt

(�k
pt/

p
N)

, ↵  0.05

0, ↵ > 0.05

(3.2)

where S̄k
pt and �k

pt denote the sample mean and sample standard deviation of saliencies for

a particular patch k, and µpt denotes the hypothesis mean. We set µpt to be S̄pt + ��pt,

where � = 0.75. In other words, a one-sample t-test was conducted to determine the extent

to which the mean saliency of a particular patch k for a particular test point pt exceeds the

mean saliency averaged over all patches S̄pt (adjusted by standard deviation �pt as well)

within the same group for that test point pt.

As a result, this study generated a new map, namely the group t-statistic map, which

establishes the spatial relationship between each VF test point and the corresponding sig-

nificantly relevant regions of the ONH.

3.3 Results

3.3.1 Data collection and VF estimation accuracy

We use the same dataset as described in Section 2.3.1. The distribution of VF MD is

shown in Figure 3.4. The test set contained 996 OCT-VF pairs from 247 eyes. All par-

ticipants were clinically diagnosed with glaucoma, glaucoma suspect, or healthy after un-

dergoing a comprehensive ophthalmic evaluation that included a clinical exam, VF testing

(Humphrey Field Analyzer; Zeiss, Dublin, CA), and an SD-OCT (Cirrus HD-OCT, Zeiss,

Dublin, CA). Among them, 121 eyes have glaucoma, 108 eyes are glaucoma suspects, and

18 eyes are healthy. Every OCT and VF visit in the test set was unique, i.e., one OCT was
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Figure 3.4. Distribution of VF MD.

only associated with one VF test.

To preprocess the OCT volumes and VFs, we adopted the same preprocessing steps

as in Section 2.3.1. In brief, for OCT, we detected the ONH region and flattened Bruch’s

membrane opening (BMO) surface by segmenting BMO with smoothing and moving each

A-scan along the z direction. Then central cropping and downsampling with Gaussian an-

tialiasing filtering were applied to reduce memory consumption during model training. Af-

ter preprocessing, all ONH volumes were flattened by BMO, centrally cropped at the optic

disc center to 144⇥144⇥576 voxels (covers a 4.32⇥4.32⇥1.125mm region of ONH), and

downsampled to 72⇥ 72⇥ 144 voxels. For VF, the 2 blind spot points were excluded. The

sensitivities were temporally smoothed over 5 consecutive VF visits of the same eye using

pointwise linear regression to reduce random fluctuations. All left eye visits were flipped

horizontally to match the right eye format for both OCTs and VFs.

The resulting model achieved 2.92 dB of mean absolute error in estimating VFs, com-

pared to 3.11 dB in Section 2.3.2.
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3.3.2 Group t-statistic maps

MD > -6 dB V.S. MD  -6dB

All results shown in this study were generated on the test set. There were 792 OCT-VF

pairs from 207 eyes for MD > -6 dB (-1.32 ± 1.90 dB) group and 204 pairs from 66 eyes

for MD  -6 dB (-17.93 ± 7.68 dB) group. Figure 3.5 shows an example of an individual

saliency map that corresponds to a particular VF test point. Figure 3.6 shows the mean VF

sensitivity maps and the group t-statistic maps for both groups. ONH sectors proposed by

the Garway-Heath map were overlaid on top of the group t-statistic maps for comparison.

As illustrated in Figure 3.6, the group t-statistic maps indicated that the structural locations

with the most significant impact on VF sensitivity prediction were largely consistent with

the Garway-Heath map.

However, some minor deviations were observed. For instance, in both the MD > -6 dB

and MD  -6 dB groups, points 28 and 37 were slightly closer to the temporal aspect in

our derived map, while point 43 was slightly closer to the nasal aspect. These discrepan-

cies primarily occurred at the edge points of VF clusters defined in the Garway-Heath map,

suggesting the existence of finer clusters that were not captured by the coarse mapping. Ad-

ditionally, several factors might have contributed to the observed di�erences. Firstly, despite

temporal smoothing of VF tests to mitigate noise, the remaining sensitivity variability of VF

measurements could still hinder the model’s ability to accurately characterize the structure-

function relationship, leading to potential inaccuracies in the spatial mapping. Secondly,

the coarse individual image registration method to generate group maps did not account for

morphological variables such as disc to foveola angle. While we mitigated interindividual

variation by using a relatively large sample size, these variations could still contribute to

the observed discrepancies between our map and the Garway-Heath map. Finally, di�er-

ences in the sample population, including demographic and clinical characteristics, could

also contribute to slight variations in the structure-function mapping.



36

Figure 3.5. An example of an individual saliency map of a particular VF test point.
(A) VF sensitivities of a subject in the test set. (B) The saliency map of a particular test
point (highlighted with a red bounding box in (A)). (C) the corresponding en-face OCT

image.

Overall, despite these minor discrepancies and factors potentially influencing the results,

our study provides valuable insights into the spatial relationship between structure and func-

tion in the context of glaucoma. We successfully generated a generalized 2D mapping that

establishes the group spatial relationship between VF test points and regions of the ONH

at a fine resolution. Importantly, our algorithm relied solely on the data without any prior

knowledge about the structure-function relationship, free from potential bias, segmentation

errors, and/or floor e�ect. Despite the absence of explicit domain knowledge, the derived

mapping captured spatial relationships that align with clinical expectations.

Superior defect V.S. inferior defect

We further divided the MD  -6 dB group into superior and inferior defect subgroups

by manually observing the 24-2 VF defect patterns. The corresponding VF sensitivity maps

and group t-statistic maps are shown in Figure 3.7. Similarly, Garway-Heath sectors were

overlaid on the t-statistic maps for comparison. The two groups’ t-statistic maps showed

symmetric patterns for superior and inferior damage groups. That is, the groups’ t-statistic

map of superior damages highlighted the inferior part of the retina and vice versa for the

map of inferior damages.
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Figure 3.6. Group t-statistic maps for MD � -6 dB and MD  -6dB. ONH sectors
proposed by the Garway-Heath map were overlaid on top for comparison. Di�erent colors

represent di�erent VF clusters defined in the Garway-Heath map.
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Figure 3.7. Group t-statistic maps of superior and inferior defects. ONH sectors
proposed by the Garway-Heath map were overlaid on top for comparison. Di�erent colors

represent di�erent VF clusters defined in the Garway-Heath map.
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Figure 3.8. Point-wise Pearson’s correlation between saliency magnitude and VF MD.

3.3.3 E�ect of disease severity

Previous studies have reported that the correlation between structure and function varies

with the severity of the disease [1, 33, 50, 54]. In line with these findings, our study also

demonstrated a connection between the averaged saliency across the entire volume and the

severity of VF damage. Figure 3.8 illustrates the point-wise Pearson’s correlation between

saliency and VF MD for all subjects in the test set. It was observed that the saliency exhibited

a negative correlation with VF MD, indicating a stronger association between saliency and

MD when defects are more severe. As a result, the group t-statistic map of the MD > -6 dB

group appears less representative compared to that of the MD  -6 dB group. Furthermore,

this correlation leads to symmetric spatial patterns for the subgroups with superior and

inferior defects, as depicted in Figure 3.7.
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3.3.4 Comparison with prior studies

While the application of occlusion analysis to visualize the e�ects of OCT on VF pre-

diction is not groundbreaking [21,53], the majority of these studies primarily center around

confirming the accuracy of the proposed DL model. For instance, Christopher et. al. [21]

employed a DL model to predict averaged function measurements of VF sectors as defined

in the Garway-Heath map. They utilized occlusion analysis to generate a structure-function

map for individual cases. Although their map demonstrated specific sectoral structure-

function relationships, such as the model’s emphasis on superior ONH structures to predict

function in the inferior and inferior nasal VF sectors, and vice versa, it was not specifically

tailored to assess the broader trend of spatial mapping between structure and function. Its

primary objective was to establish the validity of the proposed DL model on an individual

case basis. Similarly, Kihara et. al. [53] managed to derive a more refined occlusion-based

structure-function map with more advanced DL methods that were able to predict point-

wiseVF. However, the resulting map remained specific to individual cases and thus could

not represent the overarching structure-to-function trend as e�ectively as our group saliency

map did.

In another study, Mariottoni et. al. [66] developed a DL-based spatial structure-function

mapping by simulating localized peripapillary RNFL defects and feeding the resulting thick-

ness profile into a pre-trained CNN model. The identified pattern exhibited agreement with

previous maps such that the RNFL defects simulated on the temporal superior and temporal

inferior regions led to arcuate VF defects in the inferior and superior hemifield, respectively.

However, it is important to note that the derived map remained sectoral in nature and was

confined to the peripapillary sampling circle, lacking a comprehensive representation of the

entire structure-function relationship. Also, their method relied on RNFL segmentation.
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3.4 Conclusion

In summary, this study utilized novel DL methods to explore point-by-point spatial re-

lationships between structure and function without relying on prior knowledge or segmen-

tation of OCT volumes, potentially free from bias. The revealed spatial correlations o�er

detailed and specific mapping that is consistent with previous studies, highlighting the po-

tential of machine learning in establishing intricate structure-function relationships.

However, there are several limitations to consider in this study. Firstly, the accuracy of

the saliency maps relies on the CNN’s ability to accurately predict VF sensitivities from

SDOCT volumes. Uncommon defect patterns, such as early onset patterns, may not be well

captured by the network during training, leading to underappreciation of certain structure-

function relationships. Additionally, VF test results in glaucoma patients are susceptible

to random noise and subjectivity [26, 56, 67], which inherently reduces the accuracy of

the model in predicting VF sensitivities. Another limitation is the use of naive registra-

tion in this study. Although the derived map demonstrates high resolution and aligns well

with known clinical knowledge and understanding of structure-function relationships, the

naive registration does not account for refractive errors or other morphological variables

like disc-foveola angle. These variations can contribute to di�erences in the spatial rela-

tionship between VF test points and corresponding ONH regions. Advanced registration

techniques are needed to uncover more subtle spatial relationships and fully leverage the

three-dimensional nature of the ONH.



Chapter 4

GCIPL Thickness Map Prediction for Glau-

coma Progression

Chapter 2 and Chapter 3 have covered two applications of applying deep learning (DL)

algorithms to understand three dimensional (3D) volumetric optical coherence tomography

(OCT) data for improving glaucoma diagnosis and management. In this chapter, we will

investigate another data modality, temporal sequences with spatial dependencies, in another

important glaucoma application, forecasting glaucomatous progression.

4.1 Introduction

For clinical management of slowly progressing diseases such as glaucoma, early diag-

nosis and longitudinal progression monitoring are essential [100]. The accelerated retinal

ganglion cell loss is a characteristic feature of glaucoma progression and is often associ-

ated with functional damages [98]. Measurements performed on OCT scans, especially the

macular Ganglion Cell–Inner Plexiform layer (GCIPL) thickness, are clinically used as a

biomarker for diagnosis and monitoring of glaucoma [10]. Clinical progression analysis on

GCIPL uses summarized numbers (mean values on global or sectoral measurements) only.

42
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two dimensional (2D) thickness maps are used just for subjective assessment as a supple-

ment. 2D thickness maps may allow clinicians to pick up small changes earlier because

summarized numbers can easily wash out such small changes. Also, the spatial pattern of

GCIPL thickness often contains useful features to detect subtle potential progression [98].

So in this study, we aim to utilize both spatial and temporal information to predict the pro-

gression of glaucoma regarding 2D GCIPL damages. Following the clinical convention, we

use 4 visits of GCIPL thickness maps as baselines to predict the map of the 5th visit based

on those baselines.

Machine learning has been widely used in the diagnosis and monitoring of glaucoma.

Song et al. [100] predicted mean circumpapillary retinal nerve fiber layer (RNFL) thickness

and visual field index (VFI) via a 2D continuous-time hidden Markov model. Yoshida et al.

[121] trained a support vector machine to predict monocular visual field (VF) from RNFL,

GCIPL, and RNFL + GCIPL thickness, then calculatedvisual field index (VFI) by merging

bilateral simulated monocular VF. Yousefi et al. [123] detected glaucoma progression by

clustering VFI into normal, early glaucoma, and advanced glaucoma via a Gaussian mixture

model with expectation maximization. Yousefi et al. [122] fed longitudinal feature vectors

of the L1 norm of the data at the baseline and at each follow-up visit to classifiers to classify

each eye as stable or progressed over time. Maetschke et al. [64] proposed a 3D CNN to

classify eyes directly from raw OCT scans. These explorations, however, lie only in utilizing

and predicting summarized numbers of measurements, which reveal no spatial information,

or simple classification.

Recent advances in Recurrent Neural Network (RNN) and Long Short-Term Memory

(LSTM) provide useful insights into understanding temporal sequences [4, 35, 112]. Con-

volutional Long Short-Term Memory (cLSTM) was used to better capture spatiotemporal

correlations [96]. However, RNN and LSTM implicitly assume equally sampled inputs,

which might cause problems when dealing with unequally sampled longitudinal medical

data. Neil et al. [73] extended the LSTM unit by adding a time gate to model timestamps,
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Figure 4.1. Top: an example of a GCIPL thickness map sequence in false color. Hot
color represents thick GCIPL while cool color indicates thin GCIPL. Bottom: our

pipeline. The inputs are the 2D GCIPL thickness map at each visit and the time interval
between 2 successive visits. TC-LSTM cell contains a learnable time penalty function that

handles irregular time intervals.
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called Phased LSTM. Though Phased LSTM has advantages over standard LSTM in appli-

cations that require precise timing of updates, it might fail to model very sparse samples

because the model is only updated by samples lying in the model’s active state during train-

ing. Aware of the problem, Zhu et al. [128] proposed two di�erent versions of time gates

to model users’ actions in recommendation systems. The first version exploited time inter-

vals to capture the short-term and long-term interests. The second version used two time

gates, one for capturing short-term interests for current recommendations and the other for

modeling long-term interests for the latter. Baytas et al. [8] proposed Time-Aware LSTM

which added a fixed scalar function to handle irregular elapsed time in longitudinal pa-

tient records. However, this model has limitations in modeling the relationship between

sequence elements since the time penalty function is prefixed. Inspired by [8] and [96],

we propose a model which leverages the time-aware Convolutional Long Short-Term Mem-

ory (TC-LSTM) in an auto-encoder-decoder to make full use of both spatial and temporal

information in GCIPL thickness maps, as shown in Figure 4.1 (bottom). We modify the

Time-Aware LSTM unit with a learnable time penalty function and replace the gates with

convolutional gates so that it can also model spatial information. The contributions of this

study are as follows:

• A novel application of LSTM in predicting glaucoma progression. This is the first

work to predict 2D GCIPL thickness maps from multiple past maps.

• Our proposed model equips LSTM with carefully designed time gates and convolu-

tional operations. So it can not only utilize the interval information between objects to

better model temporal correlations but also learn spatial features in spatial-temporal

sequences. This model is not limited to GCIPL thickness map prediction, but can be

applied to all unequally sampled spatiotemporal sequences.

• Our proposed models are trained and evaluated on both real-world data and synthe-

sized data. Experiments show the superiority of the proposed method over traditional
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methods.

4.2 Methods

4.2.1 Time-aware convolutional LSTM

cLSTM [96] has been proven to be powerful in modeling spatiotemporal relations. cLSTM

replaces full connections in input-to-state and state-to-state transitions in standard LSTM

with convolution operators so that it can encode the spatial information as well as the tem-

poral correlation. The key equations are shown below:

it = �(Wxi⇤Xt+Whi⇤Ht�1+bi) (4.1)

ft = �(Wxf ⇤Xt+Whf ⇤Ht�1+bf ) (4.2)

Ct = ft�Ct�1+it�tanh(Wxc⇤Xt+Whc⇤Ht�1+bc) (4.3)

Ht = �(Wxo⇤Xt+Who⇤Ht�1+Wco�Ct+bo) (4.4)

where ⇤ denotes convolution operation and � denotes the Hadamard product. However,

cLSTM implicitly assumes that the input sequences are uniformly sampled in time.

TC-LSTM extends cLSTM to nonuniformly sampled 2D sequence data by incorporating

the sampling intervals into the model. TC-LSTM first decomposes memory into long-term

memory and short-term memory. Then a time penalty is applied to the decomposed short-

term memory which transforms the elapsed time between two sampling points as a scalar to

penalize the short-term memory without losing the global profile of changes. In other words,

the longer time elapsed, the smaller the e�ect of previous memory is on the current output

while the long-term memory plays a more significant role in predicting current output. The
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Figure 4.2. Architecture of (a) Standard cLSTM cell and (b) TC-LSTM cell.

(a) (b)
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t + bo) (4.11)

Equation 4.5 extracts the short-term memory from the previous memory, while equation 4.6

gets the long-term memory by subtracting short-term memory from the previous memory.

f(�Tt) in equation 4.7 is a scalar function that maps sampling intervals �Tt between

samples at t-1 and t to [0, 1] and monotonically decreases as sampling intervals increase. We

call this scalar function a time penalty function. Hence, equation 4.7 adjusts the previous

memory by penalizing the short-term memory while preserving the long-term memory.

Equation 4.8 - 4.11 are the same as cLSTM but operate on the adjusted previous memory.

Figure 4.2 shows the architecture of standard cLSTM cell and TC-LSTM cell.
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Figure 4.3. Histogram of intervals between 2 sequential visits.

4.2.2 Time penalty function

Di�erent time penalty functions can be chosen according to typical sampling intervals

of time in the underlying application. In our case, the time interval varies from 1 month

to 2 years as shown in Figure 4.3. Therefore we use a unit of day. We experiment with

three types of penalty functions, given in 4.12 - 4.14. The function in 4.12 is fixed, and the

inverse of log mapping is used instead of simple inverse (f(�Tt) = 1/�Tt) because the

time intervals are numerically large. In order to introduce more flexibility in the model, we

also consider 4.13 and 4.14, whose parameters are learned during training.

f(�Tt)=
1

log(e+�Tt)
(4.12)

f(�Tt)=
1

a�Tt+b
(4.13)

f(�Tt)=
1

ea�Tt+b
(4.14)
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4.3 Experiments

4.3.1 Dataset and experiment settings

The dataset contains 346 eyes from 191 patients. The average number of visits is 9.49±

3.39, and the average follow-up period is 5.85±2.01 years. Each eye is imaged by a commer-

cially available spectral-domain OCT (SD-OCT) device (Cirrus OCT; Zeiss). The GCIPL

thickness map is 200⇥ 200 pixels and is generated by measuring GCIPL thickness across a

6⇥6mm2 area centered at the fovea. We randomly split the patients into the train set and the

test set with a 9:1 ratio. By setting the max time interval to 500 days and extracting 5-visit

sequences for every patient, we get 1648 5-visit sequences in total. Each map is registered to

the same fovea position and normalized to [0,1]. We trained the network using the ADAM

optimizer [55] with a learning rate of 0.0002 and a batch size of 16. We experimented with

3 di�erent loss functions, L2 loss, L1 loss, and L2 + L1 loss.

4.3.2 Data simulation

83.2% of patients are under a quite stable state with the average GCIPL damage less

than 2µm per year. The average damage over the whole dataset is 0.84µm per year. So

we simulated progressing cases according to the GCIPL damage patterns of glaucoma, dif-

fuse damage, and hemifield damage. The progressive GCIPL thinning is detected most

frequently at 2.08 mm from the fovea and extends in an arcuate shape [98]. For di�use

damage, GCIPL around the fovea gets thinning more or less equally. For hemifield dam-

age, usually temporal side usually gets more pronounced thinning while the nasal side is

preserved. We set the time interval to 6 months and randomly applied di�use or hemifield

damage (both superior and inferior cases) with equal probability to randomly selected real

maps 4 times to create 5-visit sequences. The average thickness losses per half year match

a standard normal distribution. In total, 576 progressing sequences are generated. Though
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Figure 4.4. Top: histogram of average GCIPL damage per half year. Bottom:
example of a synthesized sequence.

these data are artificially generated, it is confirmed by expert ophthalmologists that the syn-

thesized data contains similar characteristics as real data, and cannot be distinguished from

the real patient data. Figure 4.4 shows an example of a synthesized sequence.

4.3.3 Compared methods

Given the lack of prior published work for the prediction of 2D GCIPL thickness maps,

we compare TC-LSTM to a linear regression (LR) baseline and a regular cLSTM without

considering time interval di�erences. LR also takes time into account as time is the variant

of LR. For the LR baseline, we first use principle component analysis (PCA) directly to all

maps in the training data to identify a set of principal components so that the mean square

error (MSE) is 1% of the original signal variance. Each 200x200 map is then represented

by the projection coe�cients associated with these 962 principal components. Finally, we



51

Table 4.1. Method comparison.

Method MSE PSNR SSIM

Copy last 0.00106 30.27 0.947

LR 0.00061 32.52 0.967

cLSTM (L2) 0.00053 33.93 0.939

TC-LSTM (L2 & Eq. (13)) 0.00049 34.08 0.966

TC-LSTM (L1 & Eq. (13)) 0.00050 34.18 0.973

TC-LSTM (L2+L1 & Eq. (13)) 0.00049 34.45 0.972

TC-LSTM (L2 & Eq. (12)) 0.00052 33.83 0.972

TC-LSTM (L2 & Eq. (14)) 0.00050 34.10 0.965

apply LR to predict the PCA coe�cients of the future image from the coe�cients of the

past 4 images. Then, the predicted 5th-visit GCIPL thickness map is reconstructed from the

predicted PCA coe�cients.

MSE, peak signal noise ratio (PSNR), and structure similarity index (SSIM) [114] are

used to quantitatively evaluate the quality of predicted GCIPL thickness map; lower MSE

and higher PSNR and SSIM indicate better results. However, it is well known that existing

numerical measures cannot reflect human perception well, and temporal coherence cannot

be evaluated from these numerical metrics. From our observation, the visual di�erence in

the quality of the predicted maps via our method and those via linear regression is more

significant than the numerical di�erence. The measurements do not represent subjective

impressions well (the di�erences among di�erent methods are small) because the subtle

thinning area changes among di�erent time points (as shown in Figure 4.5) cannot be eval-

uated by those summarized metrics well. Therefore, we also perform a subjective evalua-

tion. Three independent expert ophthalmologists are asked to choose the best prediction out

of three methods based on the whole map sequence and the similarity between the ground

truth and the predicted map.
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Table 4.2. Subjective Rating Results. The number in a column indicates the percentage
of maps predicted by a particular method that is rated the best. TC-LSTMs are trained

with a penalty function of Eq. (13). There are 2 sub-methods for the TC-LSTM approach,
one trained with L2 loss and the other trained with L2 + L1 loss. The preferences of the
particular TC-LSTM method for each rater are 50% and 42.8%, 86.2% and 7.2%, and

59.6% and 35.8% respectively.

Rater TC-LSTM approach Linear reg. approach

Rater 1 92.8% 7.2%

Rater 2 93.4% 6.6%

Rater 3 94.8% 5.2%

4.3.4 Quantitative results

As shown in Table 4.1, our method (TC-LSTM trained with L2+L1 loss and time penalty

function of Eq.(13)) outperforms both LR and cLSTM baselines regarding all three metrics.

By properly handling the time interval di�erence, the TC-LSTM approach significantly im-

proves the SSIM of the prediction compared to cLSTM, while the SSIM of cLSTM is the

worst among all methods, even worse than that of directly copying from the last visit. Re-

sults of di�erent time penalty functions show that by introducing learnable parameters into

the time penalty function, the SSIM of the prediction is significantly improved, while PSNR

is also improved. The Wilcoxon signed-rank test shows a significant di�erence between our

best TC-LSTM results and LR results (MSE 0.00049 vs. 0.00061, p<0.001, and PSNR

34.45 vs. 32.52 dB, p=0.035).

4.3.5 Subjective evaluations

As Table 4.2 shows, TC-LSTM-based methods are significantly preferred over LR. All

raters chose the TC-LSTM approach as the best predictor over 90% of real test sequences.

They agree on TC-LSTM (L2) as the best predictor in 42 out of 151 cases and TC-LSTM

(L2 + L1) as the best predictor in 2 out of 151 cases. Figure 4.5 shows 2 real examples,
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one for a progressing case with moderate glaucoma and the other for a stable case with

advanced glaucoma. Both TC-LSTM and LR can learn reasonable overall thinning patterns.

However, TC-LSTM contains more details while LR produces blurry results. Moreover, the

thinning area is more accurate in the prediction of TC-LSTM compared to that of LR. For

the top example, TC-LSTM trained with L2+L1 loss is picked by the expert as the best. In

the superior temporal region (red box area), the pattern of the thinned layer in TC-LSTM

(L2+L1) resembles the ground truth most closely, while LR does not capture the subtle

thinning area changes. For the bottom example, TC-LSTM trained with L1 loss looks the

best because it shows the tiny heated area properly without showing an overly smoothed

appearance. However, at the same time, none of the methods shows the notch in the middle

of the ground truth image.

4.4 Conclusion

In this study, we propose an end-to-end model, TC-LSTM, for a novel application of

predicting 2D GCIPL thickness maps. Our model is designed to handle irregularly sam-

pled spatiotemporal sequence modeling. Experiments show that this approach is able to

predict reasonable GCIPL thinning patterns of glaucoma and outperforms linear regression

for GCIPL thickness map prediction.
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Figure 4.5. Examples results. Top: a progressing case with moderate glaucoma. Bottom:

a stable case with advanced glaucoma. Images in the last rows are di�erence maps
between predictions and ground truth.



Chapter 5

Video Interpolation

In Chapter 4, we discussed spatiotemporal sequence prediction in medical scenes. In

this chapter, we will explore a di�erent example of spatiotemporal sequence, natural videos,

which is ubiquitous in daily life.

5.1 Introduction

Video interpolation, which aims to generate intermediate frames between given prior

(or left) and post (or right) frames, is widely applied in video coding [118] and video frame

rate conversion [14]. However, natural videos include complicated appearance and motion

dynamics, e.g., various object scales, di�erent viewpoints, varied motion patterns, object

occlusions, and dis-occlusions, making interpolation of realistic frames a significant chal-

lenge.

Flow-based methods have been proven to work well in video interpolation [6, 7, 51, 63,

119]. Many state-of-the-art methods first use an optical flow estimator to obtain optical flow

between given frames, and then infer the optical flow between the missing middle frame and

the left and right known frames, respectively, by prefixed motion assumptions such as linear

motion [6, 51, 75] or quadratic motion [119]. The middle frame is then obtained by back-

55
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ward warping input frames using the estimated optical flows. Such approaches are prone to

flow errors caused by adopted flow estimators and errors in the motion assumption. Thus,

additional flow correction networks [119] or additional information such as depth [6] are

usually required to refine the initial interpolated optical flows, leading to sophisticated mod-

els. Moreover, training such models requires ground truth optical flow or depth information,

which is expensive to obtain in large quantities.

Though flow-based methods have achieved great success in video interpolation, they are

prone to errors and face the challenge of complicated dynamic scenes including nonlinear

motions, lighting changes, and occlusions. Recently, deformable convolution (DConv) has

been investigated in video interpolation to warp features and frames [36, 59]. DConv pro-

duces multiple o�sets for each pixel to be interpolated with respect to each input frame, and

uses a weighted average of these o�set pixels in the previous (or future) frame to predict

the target pixel. When the filter size of DConv is 1x1 and the filter coe�cient is 1, DConv

o�set is the same as optical flow. When the filter size is larger than 1, DConv performs

many-to-one weighted warping, and thus the o�sets can be considered as many-to-one flows.

Generally, DConv o�sets are more robust than single optical flow. Furthermore, DConv fil-

ter coe�cients enable the model to produce more complex transformations. However, the

increased degree of freedom of DConv makes the model hard to train.

To alleviate the above issues, we propose a Pyramid Deformable Warping Network

(PDWN) to perform coarse-to-fine frame warping. The coarse-to-fine structure has been

proven to be powerful in optical flow estimation [48, 89, 103]. In video interpolation,

however, relatively few approaches explored the coarse-to-fine strategy. Amersfoort and

Shi [110] proposed a multi-scale generative adversarial network to generate the predicted

flow and the synthesized frame in a coarse-to-fine fashion. Zhang et. al. [125] designed a

recurrent residual pyramid architecture to refine optical flow using a shared network across

pyramid levels. Other methods, despite the usage of multi-scale features, only generate one-

stage optical flow [6,36,63]. In our work, we exploit the advantages of the warping strategy
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and cost volume in addition to the pyramid structure to estimate DConv o�sets from coarse

to fine.

The proposed network follows a pyramid structure that extracts features at various res-

olution scales from each input frame. At every pyramid level, DConv is adopted to warp

features from the past and future frames towards the middle frame, and a matching cost

volume under di�erent additional o�sets between two warped features is constructed and

exploited to infer residual DConv o�sets. By warping features with the obtained o�sets and

passing the cost volume to the next pyramid level, the network refines the estimated o�sets

from coarse to fine. We demonstrate that such a methodology for video interpolation gen-

erates more realistic frames without requiring additional information such as ground truth

optical flow information or depth during training. Our proposed network greatly reduces

the number of model parameters and the inference time, while achieving better or on-par

performance compared to state-of-the-art models as shown in Figure 5.1. Furthermore, our

proposed approach can be extended to using multiple input frames easily, and using four

instead of two frames as input leads to significantly improved interpolation results.

5.2 Related work

5.2.1 Video interpolation

Video interpolation has been extensively explored in the literature [6, 7, 36, 51, 59, 63,

75,77,119,120]. Prior methods can be grouped into two categories: kernel-based approach

and flow-based approach. Kernel-based approaches [59, 76, 77] estimate convolution ker-

nel parameters to hallucinate intermediate frame. However, kernel-based approaches typ-

ically fail in cases with large motions unless very large filter kernels are used, and su�er

from large computational loads. Flow-based approaches estimate the optical flow to warp

pixels to synthesize the target frame. Super SloMo [51] adopted one UNet to estimate op-

tical flow between two input frames, and another UNet to correct the linearly interpolated
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Figure 5.1. Accuracy / e�ciency tradeo� for video interpolation on Vimeo-90K
dataset: PDWN in comparison to previous work. Left: PDWN outperforms

state-of-the-art methods in both accuracy and model size. Right: PDWN reaches the best
balance between accuracy and runtime. PDWN++ is the enhanced PDWN model with
input normalization, network improvements, and self-ensembling. PDWN++ further
improves the performance with a small cost of model size and nearly 8 times of the

runtime. The runtime is the time needed to interpolate one frame on GeForce RTX 2080
Ti GPU card.

20 40 60 80 100 120 140
Number of model parameters (million)

33.5

34

34.5

35

35.5

PS
N

R
 (d

B)

sepconv-L1

sepconv-Lf

MEMC-Net*

DAIN

AdaCof

FeFlow

PDWN

(a) Accuracy / size tradeo�

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Runtime (second)

33.5

34

34.5

35

35.5

PS
N

R
 (d

B)

sepconv-L1

sepconv-Lf

MEMC-Net*

DAIN

AdaCof

FeFlow

PDWN

(b) Accuracy / runtime tradeo�

flow vector. Beyond linear motion assumptions, QuaFlow [119] adopted PWC-Net [103]

to estimate optical flow between input frames. Then the quadratically interpolated flow

was refined through a UNet. MEMC-Net [7] estimated both motion vectors and compen-

sation filters through Convolutional Neural Network (CNN). Note that four input frames

are required for QuaFlow to construct a quadratic model. Instead of bilinear interpolation,

MEMC proposed an adaptive warping layer based on optical flow and compensation filters

to reduce blur. Based on MEMC-Net, DAIN [6] used depth information estimated by a pre-

trained hourglass architecture [62] to detect occlusions. Di�erent from the above methods,

Softmax Splatting [75] estimated forward flow using an o�-the-shelf optical flow estimator

and designed a di�erentiable way to do forward warping. Though flow-based methods can

generate sharp frames, inaccurate flow estimation often leads to severe artifacts. Unlike

the methods described above, our method directly estimates the ”flow” between given input

frames and the unknown middle frame without assuming the trajectory is linear or quadratic

or has other parametric forms. And we estimate many-to-one ”flow” which is more robust
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compared to single optical flow. Furthermore, we estimate the flows in a coarse-to-fine

manner, to e�ciently handle large motions.

5.2.2 Pyramid structure and the cost volume

Pyramid structure has been proven to be powerful in optical flow estimation. Ilg et

al. [48] achieved state-of-the-art performance by stacking several UNets into a large model,

called FlowNet2. To reduce the over-fitting problem caused by large models, SpyNet [89]

incorporated two classical principles, pyramid structure, and warping, into deep learning.

A spatial pyramid network was constructed for each of the two frames, and it estimated the

flow in each scale and warped the second image to the first one at each scale repeatedly to

reduce motion between the two images. PWC-Net [103] further explored the trade-o� be-

tween accuracy and model size. Instead of image pyramids, PWC-Net constructed feature

pyramids that are invariant to shadows and lighting change. Partial cost volume is used to

represent matching costs associated with di�erent disparities. Inspired by classical pyramid

energy minimization in optical flow algorithms, RRPN [125] designed a recurrent residual

pyramid architecture for video frame interpolation to refine optical flow using a shared net-

work for every pyramid level. Following the above methods, we also exploit the advantages

of classical principles of optical flow – the pyramid structure, multi-scale warping, and

cost volume. Di�erent from RRPN, we replace the flow estimation in each scale with the

estimation of many-to-one o�set maps through the use of deformable convolution filters,

significantly reducing artifacts that are associated with occasional wrong flow estimates.

Furthermore, cost volume is incorporated into our model non-trivially. We demonstrate

that the cost volume between the warped features of the two known frames can provide use-

ful information for estimating the flow between the unknown middle frame and the known

prior and post frames.
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5.2.3 Deformable convolution

DConv operation [23] is originally proposed to overcome the limitation of CNN due to

fixed filter support configuration and to enhance the transformation modeling capacity of

CNN. It estimates a set of K o�sets at each pixel and a global filter (non-spatially varying)

with K coe�cients to be applied for the K o�set pixels. Zhu et. al. [127] further improved

DConv by adding spatially adaptive modulation weights to modulate the global filter co-

e�cient associated with each o�set. The improved DConv thus has the ability to vary the

attention to di�erent o�set pixels. Recognizing that DConv can be viewed as many-to-one

weighted backward warping, FeFlow [36] used DConv to align input features from two

known frames and fused aligned features to synthesize the middle frames. AdaCoF [59]

constructed a UNet to estimate both local filter weights and o�sets for each target pixel to

synthesize output frames. We have found that learning a global filter plus spatially-varying

modulation weights as in [127] is better than directly estimating locally adaptive filters.

Di�erent from FeFlow and AdaCoF [59] that estimate the DConv o�sets directly in the

original image resolution, we perform o�set estimation and feature alignment in a coarse-

to-fine successive refinement manner. Specifically, we successively refine DConv o�sets

from the coarser scales to the finer scales. We further utilize the cost volume computed

from two aligned features at each scale to improve the accuracy of the o�set update.

5.3 Methods

The structure of PDWN is shown in Figure 5.2. Given two input frames I0 and I2, we

aim to synthesize the intermediate frame I1 by gradually warping features of input frames

to the middle frame using DConv. First, we construct a feature pyramid for each input

frame using a shared feature extractor. Second, we generate the o�sets and the associated

modulation weights between each input frame and the middle frame, and then warp features

of both input images toward the middle frame. This operation is taken at every level of the



61

Figure 5.2. (a) The architecture of PDWN. Given the past frame I0 and the future frame
I2, PDWN first generates two feature pyramids. Then DConv o�sets f l

1!0, f
l
1!2 and

associated modulation weights ml
1!0,m

l
1!2 are generated from the coarsest scale to the

finest scale. Finally, two warped frames are adaptively blended to synthesize the middle
frame. (b) O�set estimator module. Features of scale l are warped producing F̃ l

0 and F̃ l
2

via DConv with generated o�sets and associated modulation weights. The cost volume
between F̃ l

0 and F̃ l
2, together with input features, are fed to 2 convolutional layers to refine

the next-scale DConv o�sets and the associated modulation weights. The above process is
repeated until it gets to the finest level.
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feature pyramid to refine the motion. Thus, the estimated DConv o�sets, which can be

considered as many-to-one flow, are refined from the coarse level to the fine level. Third,

at the finest resolution level (same as the input frame), interpolation weight maps between

the warped left and right frames are generated to handle occlusions. Finally, following the

post-processing scheme of DAIN, we adopt a context enhance network to further enhance

the interpolated frame, shown in Figure 4.2.

5.3.1 Shared feature pyramid encoder

A multi-layer CNN is used to construct L-scale pyramids of feature representations for

both input frames {F l
i | i 2 {0, 2}, l 2 {1, 2, ..., L}. The features at the first scale, F 1

i , have

the same spatial resolution as the input frames. The lth scale feature F l
i is downsampled by

a factor of 2 both horizontally and vertically from the (l � 1)-th scale feature F l�1
i . Each

scale consists of two convolution blocks.

5.3.2 O�set estimator module

The O�set estimator module is used in every scale of PDWN. It jointly predicts the

DConv o�sets from the unknown intermediate frame to the given input frames and the

associated modulation weights for each o�set in order to warp input frames and features to

the intermediate frame.

Deformable warping with spatially-varying modulation coe�cients

A deformable convolution filter is specified by a global filter w(j), a set of spatially-

varying o�sets f(j, x), and modulation coe�cients m(j, x), where j denotes j-th location

in a filter support R and x indicates pixel location. The global filter w(j) here is the same

convolution filter as regular convolutions except that the sampling is irregular. The support

R = {(�1,�1), (�1, 0), ..., (0, 1), (1, 1)}
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specifies a 3⇥3 filter in our model. The o�set is defined by horizontal and vertical displace-

ments. And every sampling point is associated with a modulation weight. Thus the o�set

tensor and the modulation tensor have channel dimensions of 18 and 9, respectively. The

global filter has the size of 3⇥ 3. To use DConv for video interpolation at multiple scales,

we generate two sets of o�sets and modulation coe�cients at scale l, f l
1!i(j, x),m

l
1!i(j, x)

with i = 0, 2 indicating the known prior and post frame and i = 1 the unknown middle

frame. The global filter weights wl(j) are learnt and stay fixed after training for each scale

and shared for known input features. Specifically, we generate the warped feature at scale l

at pixel x from the original features for frame i as follows:

F̃ l
i (x) =

|R|X

j=1

wl(j)ml
1!i(j, x)F

l
i (x+R(j) + f l

1!i(j, x)) (5.1)

Cost volume between features warped towards the middle frame

The notion of cost volumes has been widely used in optical flow methods [47,103,124] to

provide explicit representation of matching cost under di�erent displacements between two

given frames for each pixel. In the PWC method for optical flow estimation, the cost volume

is constructed between a warped image and a fixed image. Typically, for each pixel x in one

frame, the correlation between the feature at x in this frame and the feature at a displaced

location x + d in the other frame is computed, for a finite set of displacements d 2 Dk(x).

Dk(x) is a square neighborhood of pixel x with neighborhood size k ⇥ k. In our case,

however, a cost volume is calculated between two sets of warped features F̃ l
0 and F̃ l

2 based

on the estimated o�sets from each known frame to the middle frame, determined in a lower

scale. The cost volume indicates the correlation between the features for corresponding

pixels in the left and the right warped features under di�erent displacements. Specifically,

given F̃ l
0 and F̃ l

2, a cost volume C l is constructed based on

C l(x1, x2) =
1

k2
F̃ l
0(x1)

T F̃ l
2(x2), x2 2 Dk(x1) (5.2)
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where x1 and x2 are pixel indexes. We set k = 9, including displacement from -4 to 4 in

both horizontal and vertical directions. Thus the cost volume has a channel dimension of

81.

Instead of using a pre-determined way to calculate the matching cost, one can also train

a small network (learnt as part of the entire network) v(·) that takes the two warped features

and outputs the cost volume:

C l = v(F̃ l
0, F̃

l
2) (5.3)

We experimented with both approaches, where we used a network with two conv layers for

the network v(·).

Multi-scale o�set estimation

As shown in Figure 5.2, we estimate the o�sets between the middle frame and each of

the two input frames from coarse to fine scales with a total of L scales (L = 3 in Figure 5.2).

DConv o�sets are generated within each scale to gradually reduce the distance between two

sets of features warped towards the middle frame.

At l-th scale, the o�set estimation block first upsamples the estimated o�sets f l+1
1!i and

modulation weights ml+1
1!i at the lower scale l + 1 to the current resolution using bilinear

interpolater h(·), yielding

f̂ l
1!i = 2 ⇤ h(f l+1

1!i) (5.4)

m̂l
1!i = h(ml+1

1!i) (5.5)

Then it warps the original features F l
i towards the middle frame based on f̂ l

1!i, m̂l
1!i, and

the learnt global filterwl, generating the warped features F̃ l
i using Eq. (5.1). Then, the o�set

estimator computes the cost volume C l between the two warped features using Eq. (5.2).

Next, it generates two sets of DConv o�sets residuals �f l
1!i and two sets of modulation

weight ml
1!i from C l, f̂ l

1!i, m̂l
1!i, the original features F l

i , and the upsampled features
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h(F l+1) from the features F l+1 generated by the o�set estimator in the previous scale:

�f l
1!i,m

l
1!i = g(C l, F l

i , f̂
l
1!i, m̂

l
1!i, h(F

l+1)), i = 0, 2 (5.6)

where g(·) denotes a three-layer CNN. The final o�sets and modulation weights are obtained

by

f l
1!i = f̂ l

1!i +�f l
1!i (5.7)

ml
1!i = �(ml

1!i) (5.8)

�(t) =
1

1 + e�t
(5.9)

where �(·) denotes a sigmoid activation function. We can use a small subnetwork (con-

sisting of three conv layers) to estimate the o�set fields because the motion between two

warped features is usually small. The same process repeats until we complete scale 1.

For the coarsest scale L, the o�set estimator only takes the original features in that scale

FL
0 and FL

2 as input and generates fL
1!i and mL

1!i directly.

To summarize, the o�set estimator at each scale needs to generate two sets of o�set

tensors and two sets of modulation tensors, with a total channel dimension of 54.

5.3.3 Adaptive frame blending

Using the estimated o�set f 1
1!i, modulation weightsm1

1!i, and global filterw1 at scale 1,

we warp frame i towards the middle frame, generating two candidate estimates of the middle

frames Ĩi, i 2 0, 2. Occlusions often happen due to the movement of objects. Therefore, in

order to select valid pixels from two warped reference frames, we design a blending layer

that generates a weight map ↵(x) to average the two transformed frames at position x. The

layer is constructed by a three-layer CNN. See Table I, the network takes two warped frames,

Ĩ0 and Ĩ2, and two warped features, F̃ 1
0 and F̃ 1

2 , at first scale of the feature pyramids as input

and generates the weight map with a softmax activation applied on the output layer. At
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position x, the blended frame is

Ĩ1(x) = ↵(x) ⇤ Ĩ0(x) + (1� ↵(x)) ⇤ Ĩ2(x) (5.10)

The warped features provide contextual information to estimate the weight map.

5.3.4 Context enhancement network

To generate the final output, we construct a context enhancement network which takes

warped images and features at scale 1 as input and outputs a residual image between the

unknown ground truth intermediate frame and the blended frame. The network consists of

five residual blocks, shown in Figure 5.3.

Figure 5.3. Context enhancement network. After getting the initial synthesized middle
frame, warped input frames and warped 1st-level features are fed into five residual blocks

to further enhance the contextual details of the synthesized frame.

F̃0
Ĩ0

F̃2
Ĩ2

Ĩ1

5.3.5 Extending to four input frames

Quadratic flow [119] shows an improvement in moving trajectory estimation by estimat-

ing acceleration information from four input frames. We also extend our model to exploit

the information in additional input frames and to estimate the motion more accurately. Our

extended model takes four input frames (two previous and two following frames). A pyra-

mid feature encoder is shared between four input frames to generate four feature pyramids.



67

In the o�set estimator, we input four feature maps of the four input frames instead of two

in the first conv layer in Figure 5.2. (b). This allows the network to recognize the motion

trajectory over a longer temporal scope and yield more accurate o�set estimation. In higher

scales, we still generate the warped feature maps for the two closest past and future frames

using the estimated o�sets and modulation weights from the lower scale and determine the

cost volume from these two warped features. Then the cost volume is concatenated with four

original features of input frames as well as o�sets and modulation weights and fed into the

next scale to refine o�sets and modulation weights in the next scale. Note that even though

the input consists of four frames, the network only generates two sets of o�sets, between the

middle frame and its left and right neighboring frames, respectively. The final interpolated

frame is the adaptively weighted average of these two closest frames warped by deformable

convolution.

5.3.6 Implementation detail

Architecture configuration

The configurations of PDWN with 6 scales and predefined matching cost calculations,

are evaluated in this study. Detailed configurations are shown in Table 5.1

Loss function

L1 norm has been proven to generate less blurry results in image synthesis tasks [34,68].

Thus, L1 Reconstruction loss between the reconstructed frame and the ground truth frame

is used to train the model:

L = ||Ĩ1 � I1||1 (5.11)

We also explore a multi-scale L1 reconstruction loss for training. Specifically, we down-

sample the input frames and the ground truth middle frame. Then, we apply the estimated

o�sets and modulation weights to the downsampled input images to generate the interpo-
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Table 5.1. Architecture of PDWN

Module Scale Output size Configuration

Feature extractor

1 H ⇥W
Conv 7 - 3 - 16
Conv 5 - 16 - 16

2 H/2⇥W/2 Conv 3 - 16 - 32
Conv 3 - 32 - 32

3 H/4⇥W/4 Conv 3 - 32 - 64
Conv 3 - 64 - 64

4 H/8⇥W/8 Conv 3 - 64 - 96
Conv 3 - 96 -96

5 H/16⇥W/16 Conv 3 - 96 - 128
Conv 3 - 128 - 128

6 H/32⇥W/32 Conv 3 - 128 - 196
Conv 3 - 196 - 196

O�set estimator

6 H/32⇥W/32
Conv 3 - 473 - 256
Conv 3 - 256 - 256
Conv 3 - 256 - 54

5 H/16⇥W/16
DConv 3 - 128 - 128
Conv 3 - 647 - 196
Conv 3 - 196 - 196
Conv 3 - 196 - 54

4 H/8⇥W/8
DConv 3 - 96 - 96
Conv 3 - 523 - 128
Conv 3 - 128 - 128
Conv 3 - 128 - 54

3 H/4⇥W/4
DConv 3 - 64 - 64
Conv 3 - 391 - 64
Conv 3 - 64 - 64
Conv 3 - 64 - 54

2 H/2⇥W/2
DConv 3 - 32 - 32
Conv 3 - 295 - 64
Conv 3- 64 - 64
Conv 3 - 64 - 54

1 H ⇥W

DConv 3 - 16 - 16
Conv 3 - 231 - 64
Conv 3 - 64 - 64
Conv 3 - 64 - 54

Adaptive frame blending 1 H ⇥W

DConv 3 - 3 - 3
DConv 3 - 16 - 16
Conv 3 - 38 - 16
Conv 3 - 16 - 16
Conv 3 - 16 - 2

Context enhancement 1 H ⇥W

Conv 3 - 41 - 64
Conv 3 - 64 - 64 ⇥ 2 ⇥ 4

Conv 3 - 64 - 3
* The convolutional and deformable convolutional layer parameters are denoted as

“Conv/DConv <filter size> - <number of input channels> - <number of output
channels>”. The leakyReLU activation function, max pool layer, bilinear upsample
layer, and matching cost layer are not shown for brevity.
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lated frame at each scale. Finally, the L1 reconstruction losses between the reconstructed

frame and the ground truth frame for all scales are combined. Through our experiment, we

find that the multi-scale loss does not improve the final results compared to simple L1 re-

construction loss at the finest scale. However, we do observe that the multi-scale loss could

speed up the convergence during training. For simplicity, all results reported in this paper

are obtained by using the simple L1 reconstruction loss at the finest scale.

Training dataset

We use Vimeo-90k training set [120], which has 51312 triplets, to train our model. Each

triplet has 3 consecutive frames and each frame has a resolution of 448 ⇥ 256. Horizontal

flipping and temporal reversing are adopted as data augmentation.

Training strategy

We train PDWN sequentially. In other words, we first train PDWN without context en-

hance network for 80 epochs, then finetune the whole system end-to-end for another 20

epochs. We use Adam [55] with �1 = 0.9 and �2 = 0.999 to optimize our model. The

initial learning rate is set to 0.0002. Mini-batch size is set to 20. Following the techniques

introduced in [78], we also train a variant of PDWN, called PDWN++, with input normal-

ization, network improvements, and self-ensembling. Specifically, each color channel of

the input frames is normalized independently to have zero mean and unit variance. Then,

we replace the two-layer convolution with residual blocks. Moreover, the global filter of

the deformable convolution that warps frames at level 1 is shared not only between input

frames but also across RGB color channels. Finally, 7 transforms, including reverse, flip-

ping, mirroring, reverse and flipping, and rotation by 90, 180, and 270 respectively, are

applied during the inference phase for self-ensembling.
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5.4 Results

In this section, we first introduce evaluation datasets. Then, we conduct ablation studies

to evaluate the contribution of each component and to compare our proposed model with

state-of-the-art on two input frames. Finally, we compare the performance of our models

using two vs. four input frames and also compare with other models using four input frames.

5.4.1 Evaluation datasets and metrics

Evaluation Datasets Our model is trained on a single dataset (Vimeo-90K training set)

but validated on multiple datasets including Vimeo-90K [120] test dataset (448 ⇥ 256),

UCF [63, 101] dataset (25 FPS, 256 ⇥ 256), and the Middlebury dataset [5] (typically 640

⇥ 480). The Middlebury dataset has two subsets. The OTHER set provides the ground-

truth middle frames while the EVALUATION set hides the ground-truth and can only be

evaluated by uploading the results to the benchmark website.

Evaluation Metrics We report peak signal noise ratio (PSNR), structure similarity index

(SSIM) [114], and interpolation error (IE) for model comparison on multiple datasets with

various resolutions and contents. IE is the average absolute color error. Higher PSNR or

SSIM and lower IE indicate better performance.

5.4.2 Ablation studies

Optical flow V.S. DConv

To analyze how well the proposed framework performs with di�erent image warping

techniques, we train two variants of our approach, one using optical flow and the other using

DConv at each scale. To integrate optical flow into our model, PDWN-optical flow generates

and refines two sets of optical flow in every pyramid level instead of deformable o�sets and
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Figure 5.4. Analysis on warping operations and network scales & visualization of
DConv o�sets and adaptive blending weights. (c)-(d) Optical flow V.S. DConv. (d), (f),
and (h) compares models with di�erent number of scales. The model with larger scales is
able to generate more accurate and sharper contents. (i) visualizes the sampling points of

DConv in the past and future frames respectively. (e) and (g) show weighted averaged
o�sets to the past and future frame respectively at each scale, calculated based on 5.12. (j)

is the adaptive weight map ↵ for the warped past frame, i.e., the weight for the future
frame is 1� ↵. Thus, the black regions around the hand and ball show PDWN’s capacity

to handle occlusion.

(a) Overlayed inputs (b) Ground truth

(h) PDWN (L=3)

(d) PDWN (L=5)

(i) DConv offset visualization

(e) Averaged DConv offset to I0

(g) Averaged DConv offset to I2

(j) Adaptive weight map

(f) PDWN (L=4)

(c) PDWN-optical flow
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Table 5.2. Ablation studies on di�erent components of PDWN

Model
Vimeo-90k Middlebury OTHER

PSNR SSIM PSNR SSIM IE

PDWN-optical flow 34.59 0.961 35.35 0.957 2.47

PDWN w/o modulation 35.23 0.965 37.00 0.966 2.02

PDWN w/ modulation 35.38 0.966 37.00 0.966 2.00

PDWN w/o CV 35.13 0.964 37.09 0.966 1.99

PDWN w/ CV 35.38 0.966 37.00 0.966 2.00

PDWN w/ learnt CV 35.42 0.966 37.17 0.967 1.98

PDWN w/o coarse-to-fine 34.54 0.959 35.95 0.961 2.19

PDWN w/ coarse-to-fine 35.42 0.966 37.17 0.967 1.98

PDWN w/o c. e. 35.42 0.966 37.17 0.967 1.98

PDWN w/ c. e. 35.44 0.966 37.20 0.967 1.98
* CV denotes cost volume and c.e. denotes context enhancement. All models

presented here use 6 scales. Models in section 1, 2, and 3 are trained without
context enhancement.
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modulation weights. Features and frames are backward warped by optical flow in PDWN-

optical flow to replace deformable convolution in PDWN. As shown in Table 5.2 (section 1),

DConv outperforms optical flow in terms of all performance metrics, which demonstrates

the e�ectiveness of DConv. In Figure 5.4. (i), we visualize the DConv sampling points in the

past and future frame respectively of an occluded point. We observe that the proposed model

is able to point to locations in the left frame where the color is similar to the occluded region.

As discussed above, DConv o�sets can be considered as many-to-one backward warping

flow. The redundancy of many-to-one flow makes the model more robust. In Figure 5.4.(e)

and 5.4.(g), we visualize the weighted averaged DConv o�sets by:

f̄1!i(x) =

P|R|
j=1(R(j) + f1!i(j, x))m1!i(j, x)

P|R|
j=1 m1!i(j, x)

(5.12)

.

Cost volume

To analyze the e�ectiveness of using cost volumes, we consider three variants of our

approach. The first model takes warped features only as input to the first conv layer in

the o�set estimator in Figure 5.2.(b). The second model first computes the cost volume

between two warped features, then concatenates the cost volume and the original features

to estimate DConv o�set residuals. The third model replaces the cost volume layer with a

two-layer CNN to learn the matching cost between two warped features. As shown in Table

5.2, cost volumes bring additional improvements without adding more parameters on the

Vimeo-90K dataset. Replacing the predefined cost with the learned cost further improves

the results for both datasets.
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Coarse-to-fine successive refinement manner

In the proposed model, we warp features and construct the matching cost between warped

features to estimate DConv o�set residuals �f l
1!i at every pyramid level in a coarse-to-fine

manner. It reduces the distance between two input frames gradually and is particularly

important when the ground truth motion is large. We investigate the contribution of this

coarse-to-fine structure via training another variant of our model, without the coarse-to-fine

structure. In other words, this model is simply a UNet structure with 6 spatial scales that

takes two images I0 and I2 as input and directly outputs DConv o�sets and modulation

weights in the finest scale. We show the quantitative results in Table 5.2 and qualitative

results in Figure 5.5. By introducing the coarse-to-fine structure, the performance is signifi-

cantly improved, demonstrating the e�ectiveness of our successive coarse-to-fine successive

refinement approach.

Figure 5.5. E�ect of the coarse-to-fine structure. By introducing the coarse-to-fine
structure, PDWN generates more realistic interpolation results.

(a) Overlayed inputs (b) Ground truth

(c) w/o coarse-to-fine (d) w/ coarse-to-fine 
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Table 5.3. E�ect of the number of scales.

Scale
Runtime Param. Vimeo-90k Middlebury OTHER

(second) (million) PSNR SSIM PSNR SSIM IE

L=4 0.0056 1.7 35.02 0.963 36.63 0.964 2.07

L=5 0.0068 3.4 35.19 0.965 36.85 0.965 2.04

L=6 0.0086 6.6 35.23 0.965 37.00 0.966 2.02
* L denotes the number of scales. Note that in this experiment we use a simpler ver-

sion of DConv where the modulation weights are all set to 1 and the cost volume is
predefined. The models trained here are all without context enhancement. The fea-
ture size is downsampled 8, 16, 32 times for L = 4, 5, 6, respectively. The runtime
is evaluated for interpolating one middle frame of ”DogDance” from Middlebury
OTHER dataset, with a size of 640⇥ 480, on GeForce RTX 2080 Ti.

Impact of the number of scales

To analyze the impact of the number of scales on the performance, we investigate three

di�erent pyramid scales (L = 4, 5, 6). Quantitative results are shown in Table 5.3, and

the visual comparison is provided in Figure 5.4. We find that with model size increasing

from 1.7, 3.4, to 6.6 million, the PSNR steadily gets better from 36.63, 36.85, to 37.00 dB

on the Middlebury OTHER dataset. The example in Figure 5.4 also shows that the model

using more scales generates sharper outcomes. The gain on Vimeo-90K, however, is not

as significant as that on the Middlebury OTHER dataset. That is probably because the

Middlebury OTHER dataset has a larger image size (and hence larger motion in terms of

pixels) than the Vimeo-90K dataset. Even though the model size almost doubles with each

additional scale, the runtime only increases slightly, as the lower-scale images and features

have a smaller spatial dimension.
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Adaptive Blending Weight

Figure 5.4.(j) shows an example of adaptive blending weight map. As discussed in

section 3.3, ↵(x) = 0 means pixel x from I0 is occluded and pixels x from I1 is fully

trusted. The black region around the ball in the weight map indicates that our model can

detect and solve occlusion by selecting pixels from the previous and following frames softly.

Context enhancement network

To analyze the contribution of the context enhancement module, we train a variant of

PDWN without context enhancement and show the results in Table 5.2. Though DAIN

gains significantly from adding the context enhancement module (0.27 dB on Vimeo-90k in

terms of PSNR) [6], the context enhancement network has little contribution to PDWN. By

adding the context enhancement network, the number of model parameters increases from

7.4 million to 7.8 million and the runtime increases from 0.0082 to 0.0086 for interpolating

”DogDance” image (640⇥480) in the Middlebury-OTHER dataset, using an NVIDIA RTX

8000 GPU card.

5.4.3 Comparison with state-of-the-arts

We compare our model with state-of-the-art video interpolation models both quantita-

tively and qualitatively, including deep voxel flow (DVF) [63], SepConv [77], SepConv++

[78], SuperSloMo [51], MEMC-Net* [7], DAIN [6], AdaCof [59], FeFlow [36], on three

di�erent datasets, Vimeo-90K, UCF, and Middlebury dataset. Note that we only compare

with methods that use backward optical flow or DConv for backward image warping. For

SepConv, AdaCof, and FeFlow, we download their published models and test on the test-

ing datasets. For DVF, SuperSloMo, MEMC-Net*, and DAIN, we calculate the numbers

from their published interpolated data. For RRPN and SepConv++, we directly report their

published numbers.
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(a) Overlayed inputs (h) Ground truth(b) SepConv (c) MEMC-Net* (d) DAIN (e) AdaCof (f) FeFlow (g) PDWN

Figure 5.6. Visualized examples on Vimeo-90k test dataset.
As shown in Table 5.4, our proposed model outperforms all methods on the Vimeo-

90k dataset and Middlebury OTHER dataset except SepConv++. Using similar techniques

applied to SepConv++, PDWN++ surpasses SepConv++ for 0.88 dB on the Middlebury

OTHER dataset with respect to PSNR. Meanwhile, the number of model parameters in-

creases from 7.8 million to 8.6 million and the runtime increases nearly 8 times. On the

UCF dataset, our model achieves on par performance with state-of-the-art methods. Note

that DAIN uses additional depth information to detect occlusion in order to compensate for

errors in the linear interpolated optical flow. DAIN relies on the accuracy of depth infor-

mation, i.e., their model cannot learn meaningful depth information without a good initial-

ization of (pretrained) depth estimation network and thus yields lower quality results than

MEMC-Net. Our model does not need depth information for training information but still

achieves 0.73 dB higher PSNR than DAIN on Vimeo-90K. FeFlow uses multiple groups of

DConv o�sets in every layer to avoid occlusion and edge maps generated by BDCN [42]

as structure guidance. Compared to FeFlow, our model performs better on Vimeo-90K

without edge maps and with only a single group of DConv o�sets, which demonstrates the

supremacy of using DConv in a coarse-to-fine manner. Moreover, our model size is only

5.8% of that of FeFlow. Figure 5.6 presents two examples from the Vimeo-90k dataset.

Notably, our model generates the sharpest results among all compared methods.

Table 5.5 shows the comparison on the Middlebury EVALUATION dataset. Our pro-
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Table 5.4. Comparison with state-of-the-arts

Method
Runtime Param. Vimeo-90k Middlebury OTHER UCF

(second) (million) PSNR SSIM PSNR SSIM IE PSNR SSIM

DVF [63] - 3.8 - - - - - 34.12 0.942

SepConv-L1 [77] 0.0032 21.6 33.80 0.956 35.89 0.959 2.24 34.69 0.945

SepConv++ [78] - 13.6 34.98 - 37.47 - - 35.29 -

SuperSlowMo [51] - 39.6 - - - - - 34.75 0.947

MEMC-Net* [7] 0.122 70.3 34.40 0.962 36.48 0.964 2.12 35.01 0.949

DAIN [6] 0.125 24.0 34.71 0.964 36.70 0.965 2.04 34.99 0.949

RRPN [125] - - - - - - - 34.76 -

AdaCof [59] 0.0043 21.8 34.35 0.956 35.69 0.958 2.26 34.90 0.949

FeFlow [36] 0.7188 133.6 35.16 0.963 36.61 0.965 2.14 34.89 0.949

PDWN (L=6) 0.0089 7.8 35.44 0.966 37.20 0.967 1.98 35.00 0.950

PDWN++ (L=6) 0.0669 8.6 35.69 0.968 38.35 0.971 1.81 35.10 0.950

* PDWN achieves on-par performance with much fewer parameters com-
pared to previous methods.

* The runtime of DAIN and MEMC-Net* is reported in their paper on a
640x480 image using an NVIDIA Titan X (Pascal) GPU card. Other run-
time numbers reported are estimated for ”DogDance” image on an Nvidia
RTX 2080 Ti GPU card.

* The number in red and blue represents the best and second best perfor-
mance.



79

Figure 5.7. Visualized examples on Middlebury EVALUATION dataset. PDWN
generates high-quality details on the foot and girl’s toe while other methods produce

blurry output. Moreover, PDWN shows its capacity to deal with occlusion and semantic
shape distortion on the ball and white flowers.

(a) Overlayed inputs (e) FeFlow(b) MEMC-Net* (c) DAIN (d) AdaCof (f) PDWN

Table 5.5. Results on Middlebury EVALUATION datase

Method
Average Mequon Sche�era Urban Teddy Backyard Basketball Dumptruck Evergreen

IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE IE NIE

SuperSlowMo [51] 5.31 0.78 2.51 0.59 3.66 0.72 2.91 0.74 5.05 0.98 9.56 0.94 5.37 0.96 6.69 0.60 6.73 0.69

MEMC-Net* [7] 4.99 0.74 2.39 0.59 3.36 0.64 3.37 0.80 4.84 0.88 8.55 0.88 4.70 0.85 6.40 0.64 6.37 0.63

DAIN [6] 4.85 0.71 2.38 0.58 3.28 0.60 3.32 0.69 4.65 0.86 7.88 0.87 4.73 0.85 6.36 0.59 6.25 0.66

AdaCof [59] 4.75 0.73 2.41 0.60 3.10 0.59 3.48 0.84 4.84 0.92 8.68 0.90 4.13 0.84 5.77 0.58 5.60 0.57

FeFlow [36] 4.82 0.71 2.28 0.51 3.50 0.66 2.82 0.70 4.75 0.87 7.62 0.84 4.74 0.86 6.07 0.64 6.78 0.67

RRPN [125] 4.93 0.75 2.38 0.53 3.70 0.69 3.29 0.87 5.05 0.94 8.20 0.88 4.38 0.88 6.50 0.65 6.00 0.62

SepConv++ [78] 3.88 0.73 2.39 0.58 2.98 0.56 3.34 0.95 4.49 0.87 7.64 0.85 3.77 0.84 5.26 0.59 5.71 0.59

PDWN (L=6) 4.71 0.69 2.09 0.46 3.12 0.58 2.38 0.64 4.29 0.85 8.61 0.87 4.80 0.88 6.24 0.60 6.18 0.62

* NIE: normalized interpolation error.

posed method performs favorably against state-of-the-art methods. Our model performs

well quantitatively on sequences with small motion or fine textures such as Mequon, Teddy

and Sche�era. For videos with complicated motions, Figure 5.7 shows a visualized exam-

ple. Our model produces more details at the girl’s toe in the backyard example while other

methods output blurry results. And our model handles occlusion well around the boundary

of the orange ball.
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5.4.4 Extending to four input frames

Vimeo-90K septuplet dataset is used to train and test our extended model PDWN-4

which takes four input frames as input and has 6 pyramid levels. We use frame 1, 3, 5,

and 7 to interpolate frame 4 and compare the interpolated frame 4 with the original frame

4 for every sequence in the Vimeo-90K septuplet dataset. We compare the results with

our two-input model PDWN-2 and state-of-the-art methods including FeFlow [36] and

QuaFlow [119]. PDWN-2 is pretrained on the Vimeo-90K triplet dataset and finetuned

on the Vimeo-90K septuplet dataset. Results are given in Table 5.6. Figure 5.8 shows vi-

sualized results on the Vimeo-90K septuplet test dataset. Both the quantitative and visual

evaluations demonstrate that the extended PDWN with four input frames can significantly

improve the interpolation accuracy over using two input frames, with only modest increases

in the model size and the runtime. Furthermore, both PDWN-2 and PDWN-4 yield better

results than QuaFlow which uses four input frames.

5.5 Conclusion

In this work, we propose a pyramid video interpolation model that estimates the many-

to-one flows with modulation maps of the middle frame to the left and right input frames.

We show that the o�set estimator can benefit from using the cost volumes computed from the

aligned features, compared to using the aligned features directly. Our model is significantly

smaller in model size and requires substantially less inference time compared to state-of-

the-art models and yet achieves better or on-par interpolation accuracy. Besides, our model

does not rely on additional information (e.g. ground truth depth information or optical flow)

for training. Moreover, our model that uses two input frames can be extended to use four

input frames easily, with only a small increase in the model size and the inference time, and

yet the extended model significantly improves the interpolation accuracy.

A recent work [75], which proposes a di�erentiable forward warping operation using
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Figure 5.8. Visualized examples of the extended PDWN with 4 input frames.
PDWN-2 takes only 1 past frame and 1 future frame as input. QuaFlow and PDWN-4 take

2 past frames and 2 future frames as input.

(a) Overlayed inputs (b) FeFlow (c) QuaFlow

(d) PDWN-2 (e) PDWN-4 (f) Ground truth

forward optical flow to handle occlusion and dis-occlusion regions directly, outperforms

all backward-flow-based methods. It shows a promising direction for video interpolation.

In future work, we will also explore how to combine forward warping with a coarse-to-fine

structure. Furthermore, we will explore the integration of PDWN in video coding, where the

encoder can encode every other frame; Skipped frames will be interpolated by the PDWN

method and the interpolation error images can be additionally coded.
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Table 5.6. Results of the extended PDWN with four input frames on the
Vimeo-septuplet dataset

Method
Runtime Param. Vimeo-septuplet

(second) (million) PSNR SSIM

FeFlow [36] 0.221 133.6 33.88 0.946

PDWN-2 0.010 7.4 35.53 0.958

QuaFlow [119] 0.090 19.6 34.28 0.950

PDWN-4 0.012 8.3 35.93 0.960
* FeFlow and PDWN-2 take only 1 past frame and 1 future frame as

input. QuaFlow and PDWN-4 take 2 past frames and 2 future frames
as input.

* Both PDWN-2 and PDWN-4 have 6 pyramid levels and no contex-
tual enhancement module.

* The runtime reported is the average runtime for the Vimeo-septuplet
dataset with image size 448 ⇥ 256 on an Nvidia Tesla V100 GPU
card.



Chapter 6

Conclusion and Future Work

In this dissertation, we’ve covered diverse applications of three dimensional (3D) vol-

umetric image analysis and spatiotemporal sequence understanding. Our goals encompass

enhancing glaucoma diagnosis and management, alongside advancements in video process-

ing. In this chapter, we’ll provide a concise overview of our primary contributions and o�er

insights into potential future research directions.

To overcome limitations in segmentation algorithms applied to 3D optical coherence

tomography (OCT) and harness the volumetric nature of OCT images, Chapter 2 introduces

a novel 3D Convolutional Neural Network (CNN). This novel approach directly estimates

point-wise visual field (VF) sensitivities from segmentation-free 3D OCT images, aiming to

overcome the constraints of prior segmentation-dependent measurements. It provides a VF

surrogate potentially without standard automated perimetry (SAP)’s inherent limitations.

Building upon the 3D CNN model developed in Chapter 2, Chapter 3 employs occlusion

analysis to establish a generalized spatial structure-to-function mapping, visualizing signifi-

cant optic nerve head (ONH) regions in predicting point-wise VF sensitivities. The derived

maps are consistent with existing knowledge and understanding of structure-function spatial

relationships. This presents possibilities of learning from trained machine learning mod-

els without applying any prior knowledge, potentially robust and free from bias. While
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o�ering insights aligned with existing knowledge of structure-function relationships, this

work has limitations due to the use of naive registration. Advanced registration techniques

are necessary to uncover subtler spatial relationships and fully exploit the 3D nature of the

ONH.

In Chapter 4, we delve into spatiotemporal sequence modeling for glaucoma progres-

sion. We propose a time-aware Convolutional Long Short-Term Memory (TC-LSTM) model

to predict future two dimensional (2D) Ganglion Cell–Inner Plexiform layer (GCIPL) thick-

ness maps – a vital biomarker for monitoring glaucoma progression. This novel model

leverages spatial and temporal correlations in irregularly sampled longitudinal sequences.

Experimental results demonstrate the superiority of the proposed TC-LSTM over traditional

methods.

In Chapter 5, we explore another example of spatiotemporal sequences, natural videos,

and develop an e�cient video interpolation algorithm, Pyramid Deformable Warping Net-

work (PDWN). By integrating a pyramid structure and deformable convolution in its design,

PDWN e�ectively merges the advantages of optical flow and kernel methods, surpassing

state-of-the-art models in accuracy across various datasets for video interpolation, while

reducing the model parameters and inference time. While excelling in modeling large mo-

tions, PDWN might encounter challenges in scenarios involving tiny objects with extensive

movements. Further investigating Transformer approaches might provide benefits. Trans-

former models’ attention mechanism enables extended correlation modeling across distant

regions of video frames, preventing the omission of small objects. Additionally, exploring

video prediction through similar methods holds promise for broader applications in video

coding.
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