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ABSTRACT

Neural Decoding and Understanding via Deep Learning

by

Chenqian Le

Advisor: Prof. Yao Wang

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (Computer Engineering)

May 2024

This thesis introduces innovative deep learning techniques for neural decoding

and understanding, applying these methods across auditory and visual modalities.

The research begins by examining the disentanglement of neural representations

of speech through enhanced Swap Autoencoder architectures that incorporate

a mix of data augmentation and hybrid neural networks. It then extends to

real-time neural speech decoding with voice conversion, aimed at improving the

accuracy of speech synthesis from brain activity. Additionally, the thesis explores

the application of pre-trained deep neural networks to decode brain activity in



vii

response to visual stimuli, which significantly enhances the robustness and accuracy

of neural decoding systems. These studies present preliminary results that suggest

promising directions for further research. The ongoing investigation will focus on

refining these methodologies and exploring their implications for the development

of more e↵ective and interpretable brain-computer interfaces.
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Chapter 1

Introduction

1.1 Background

The field of Brain-Computer Interfaces (BCIs) is at the forefront of neuroscience

and technology, focusing on developing neural speech prostheses to assist individuals

with speech impairments. Research utilizing electroencephalographic (ECoG)

recordings has demonstrated promising results in decoding speech directly from

brain activity [39]. However, creating e↵ective decoders using machine learning

presents significant challenges. The primary obstacle is acquiring ample training

data, which is hindered by the logistical complexities and high costs associated

with clinical experiments, coupled with the scarcity of corresponding neural and

speech data [8]. Moreover, comprehending the complex relationship between ECoG

and audio signals is crucial for advancing this technology [27].

Exploring the neural mechanisms underlying speech production provides es-

sential insights into the brain’s intricate processing capabilities. A major goal in

neuroscience is to elucidate the roles of di↵erent brain regions and neuron popula-
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tions, particularly how they collaborate to encode various inputs. Through the use

of ECoG electrodes, researchers have been able to uncover latent representations,

shedding light on the workings of neural circuits as they process auditory inputs and

facilitate speech reproduction [44]. Advances in unsupervised learning techniques

have further enhanced our understanding of the robustness and variability of neural

responses, as well as the dynamic remapping that occurs as neurons learn new tasks

[1].

Additionally, investigations into BCI applications in speech production have

shown that both machine learning and human learning play pivotal roles in opti-

mizing control over imagined-speech BCI systems. This research emphasizes the

importance of understanding the spatial and frequency tuning of neural activity,

which is essential for improving BCI control [4].

1.2 Related Work

1.2.1 SwapVAE

SwapVAE, developed by Liu et al., is a novel unsupervised learning framework

where the latent space within a Variational AutoEncoder (VAE) is manually divided

into content and style components [21]. This framework facilitates signal reconstruc-

tion by utilizing brain signals from rhesus macaques, enabling the disentanglement

of latent features by swapping the content between two augmented views. This

alignment reflects the physical attributes of movement direction and speed, as
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illustrated by the following equation:

min
f,g

X

i=1,2

Lrec(i, g(i))| {z }
Reconstruction loss

+�
X

i=1,2

DKL(
(s)
i
k(s)
i,prior)| {z }

Regularization - style space

+↵ Lalign(
(c)
1 ,(c)2 )| {z }

Alignment - content space

,

(1.1)

Figure 1.1: Overview of the SwapVAE model

1.2.2 Speech Resynthesis

The current advancements in unsupervised and quantized latent spaces have sig-

nificantly enhanced speech synthesis capabilities [17]. A method designed by Polyak

leverages these advancements to resynthesize natural speech using disentangled

speech latents that include fundamental frequency, speech features, and speaker

embeddings. This process enables straightforward voice conversion by substituting

the speaker embedding, as depicted below:
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Figure 1.2: Speech Resynthesis Process Overview

1.2.3 ECoG to Text Decoding

Continuing exploration into the interface between neural signals and computa-

tional models, Metzger et al. have made significant strides with their ECoG-to-text

decoding research, showcasing the potential to directly translate brain activity into

textual outputs [27].

1.2.4 fMRI Decoding Model

Innovative fMRI decoding techniques, such as those discussed in ”Mind’s Eyes”

and ”Brain Decodes Deep Nets,” utilize deep learning to interpret and visualize

cognitive processes involved in viewing complex visual stimuli [34, 41]. These

models o↵er profound insights into the neural representation and processing of

visual information, further bridging the gap between neural activity and perceptual
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experiences.

This thesis aims to highlight the significant advances in the BCI field, particularly

those enhancing and expanding speech processing capabilities. Subsequent chapters

will delve deeper into the methodologies used in this research, exploring both the

theoretical frameworks and practical applications of these innovative technologies.
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Chapter 2

Disentangled Neural Speech

Representational Learning

2.1 Introduction

Understanding the intricate relationship between neural activity and speech

production can o↵er profound insights into the brain’s complex processing mech-

anisms. However, linking neural dynamics to specific speech features remains a

formidable challenge. This study introduces an innovative framework for deriving

disentangled and semantically meaningful neural representations. Our approach

leverages contrastive learning, employing either a transformer or a resnet as the

encoder and utilizing temporal convolutional layers for decoding. The resulting

latent space e↵ectively captures both content and instance-specific information.

This concept of disentangled representation draws inspiration from techniques

in computer vision that separate images into content and style components. In

computer vision, content captures the essence of what an image depicts, while style



7

varies with each image, influencing its realism. This work[21] adapts this concept

to analyze brain states by isolating content to reflect target locations and style

to represent movement dynamics. Similarly, our joint neural-speech embedding

is designed to segment into two parts: content that holds semantic information

and an instance component that captures varying dynamics, facilitated by a novel

swapping technique.1

2.2 Encoder Backbone

3D ResNet The 3D ResNet, a deep learning model, is used as a backbone to

extract features from ECoG signals due to its ability to handle complex spatiotem-

poral data. This makes it ideal for interpreting the spatial and temporal dimensions

of brain activity recorded in ECoG, which is important for applications such as

brain-computer interfaces or medical diagnostics. The residual learning approach

in 3D ResNet allows for training deeper networks, overcoming the challenges of

vanishing gradients, which is essential for learning intricate patterns in ECoG

data. Moreover, 3D ResNet is resilient to noise and variability in signals, making

it a suitable choice for various neuroscientific and clinical contexts. Additionally,

pre-trained models o↵er a practical solution in scenarios with limited ECoG data

availability, enhancing their e↵ectiveness and adaptability.

Grid-Free Swin Transformer Indeed, the 3D ResNet has demonstrated superior

e↵ectiveness over attention mechanism-based neural networks in the context of

neural activity speech decoding, as evidenced by Chen et al. [8]. Nonetheless,

1This is a joint work with Xupeng Chen and Junbo Chen. I run the experiments in this
project.
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convolution-based neural networks o↵er greater flexibility and extensibility. A

notable advantage is that these networks do not require the input ECoG signal to

be in a grid-like format. This flexibility allows for the incorporation of a broader

range of neural data types, such as sEEG and ECoG with depth electrodes, thereby

expanding the dataset scale—a crucial factor for e↵ective deep neural network

training.

Integrating prior knowledge about specific regions as additional token inputs

can enable the transformer model to achieve performance comparable to that of the

ResNet [7], as illustrated in Figure 2.1. Consequently, we have chosen to primarily

employ this approach as our backbone encoder for feature extraction.

In our design, the Swin Transformer encoder comprises a series of Swin Trans-

former blocks. Each block consists of a multi-head self-attention layer, a feed-forward

network, and a residual connection. The multi-head self-attention layer is instru-

mental in allowing the model to concurrently focus on di↵erent segments of the input

sequence. The feed-forward network facilitates the modeling of complex, non-linear

relationships between input features and output predictions. The inclusion of a

residual connection is key to preserving stability throughout the training process.

A major advantage of the Swin Transformer lies in its versatility to process inputs

of various spatial configurations, making it particularly adept at learning from

non-grid-like electrode arrays. In our implementation, we successfully achieved

a latent embedding that reduced the temporal dimension by a factor of 16 while

retaining the original electrode dimensionality.
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Figure 2.1: Structure of Grid-Free Swin Transformer

2.3 Swap Mechanism

In Liu’s study [21], a swapping mechanism was employed to create latent em-

beddings that carry a specific physical meaning. This was achieved by dividing the

latent embedding into two parts and swapping the main informative part. In order

to obtain a meaningful latent embedding, we similarly divide our latent embedding

into two parts: content and style. In our case, we assume that the ”content”

corresponds to the words spoken by the speaker, while the ”style” corresponds

to the rest of the speech style, such as their loudness. Then, we similarly swap

the ”content” parts from two di↵erent trials and do both swap reconstruction and

reconstruction. To help the model learn the invariant for the content latent, two

di↵erent trials selected here correspond to the same word label for the produced

speech.

Here we have the basic loss function for our swapping mechanism:

Lrecon =
X

||ECoGi � ECoGi(Recon||2 +
X

||ECoGi � ECoGi(SwapRecon||2

(2.1)
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Figure 2.2: Basic Swapping Mechanism

where xirecon denotes the reconstructed neural activity from original latent, xiswap

denotes the reconstructed neural activity from the swapped latent.

2.4 Unsupervised Swap Autoencoder

To adhere to the unsupervised learning approach, we obtain ECoG2 by applying

augmentation to the input ECoG signal. Thus, we have ECoG1 = ECoG and

ECoG2 = f(ECoG), where f represents a combination of augmentation functions

discussed previously. Based on this, we explored various swapping mechanism-based

models.

2.4.1 Swap-VAE

Our model employs a swap reconstruction loss to regulate the ”content” compo-

nent. However, the ”style” component lacks constraints to render it meaningful.

To counteract this, we use the KL divergence to regulate the ”style” component,

aiding in overfitting prevention and ensuring a continuous, well-structured latent

space. It compels the ”style” component to follow a specific distribution, such as
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the Gaussian distribution. A commonly used SSL method is also implemented to

enhance model generalizability. The loss function is thus defined as:

L = Lrecon + �LKL, (2.2)

where � is the weight assigned to the KL divergence.

Results: In dealing with unsupervised learning, particularly with complex

inputs like ECoG signals, it is crucial to prevent feature collapse. Our experiments

revealed that employing solely the Basic SwapVAE loss led to a content part

embedding with similar distributions across various channels, signifying minimal

informational content and thus being unsuitable for our purposes.

2.4.2 Swap-VICReg

Bardes et al. [3] introduced a regularization approach for self-learned features

using three terms: Variance, Covariance, and Invariance. The variance term

ensures su�cient representational variability and prevents trivial solutions. The

invariance term fosters learning features invariant to input data transformations,

often achieved by minimizing the distance between representations of di↵erent

augmented inputs. Covariance Regularization encourages e↵ective utilization of

all dimensions, preventing redundancy. These terms collectively aid in model
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robustness. The loss function is given by:

LV IC = � · VarLoss + µ · InvLoss + ⌫ · CovLoss, (2.3)

VarLoss =
1

D

DX

i=1

max(0, � �
p
Var(zi)), (2.4)

InvLoss =
1

N

NX

j=1

kzj � z0
j
k2, (2.5)

CovLoss =
1

D

X

i 6=j

Cov2(zi, zj). (2.6)

Consequently, the overall loss function for Swap-VICReg is:

L = Lrecon + LV IC . (2.7)

Results: Implementing VIC in our model did not yield an interpretable speech-

related latent representation (see Figure 2.3). The t-SNE visualization indicates

that content features do not correlate with speech words, likely due to the lack of

guidance in relating content features to speech.

2.5 Swap Autoencoder

2.5.1 Encoder, Decoder and Auxiliary Neural Networks

Encoder Here, we take the Swin Transformer we mentioned above, which allows

us to extract better latent embedding via the multi-head attention mechanism and

the positional encoding.
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Figure 2.3: t-SNE Visualization Results for Swap-VICReg: The figure displays
the content latent space, with colors corresponding to word labels for each ECoG
signal.

Figure 2.4: | The proposed disentangled neural representational learn-
ing framework. Here, we present a joint and disentangled neural latent rep-
resentational learning framework. Participants are required to perform speech-
related tasks and produce overt speech. The speech-paired ECoG signals are
augmented. Neural activities with the same words are treated as positive pairs
(ECoG1 and ECoG2), while neural activities with di↵erent words are treated as
negative pairs (ECoG1/ECoG2 and ECoG3). The ECoG signals are encoded into
a lower-dimensional embedding using the Swin Transformer. The latent embedding
is split into two parts: content and style. The content of the two latents is then
swapped to obtain a swapped latent representation. The original and swapped
latents are passed through the decoder to reconstruct the original ECoG signal.
Reconstruction losses, similarity losses, and auxiliary losses are used to help the
model learn meaningful latent representations. The latent representation can be
used to reconstruct the original ECoG signal and for downstream neural speech
decoding tasks. The analysis revealed that the latent representation learned is
closely related to speech semantics and speaking dynamics.
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Decoder The decoder is comprised of a stack of temporal transposed convolutions

as shown in. A group normalization layer and a leaky ReLU activation function

follow each temporal transposed convolution. The temporal transposed convolutions

allow the model to upsample the latent embedding back to the original temporal

dimension.

Semantic Classifier The semantic classifier, denoted in Fig.2.5B, is responsible

for learning the assignments of word labels from the content features trained using

a cross-entropy loss function.

Triplet Classifier The triplet classifier labeled as Fig.2.5C is trained to classify

whether or not two content features are positive pairs.

Figure 2.5: Decoder and Auxiliary Classifier Struecture A. Structure of
Decoder. B. Structure of Semantic classifier C.Structure of Triplet Classifier



15

2.5.2 Loss Function

It is di�cult for a model to learn an out-of-modality representation with

unsupervised learning. We tried to add some prior constraints to the model. In

this case, we introduce a grouped input to our model to help it correlate to the

speech information similar to work [12]. Here is how the grouped ECoG is defined:

• ECoG1: Anchor neural activity corresponding to the word ”A”.

• ECoG2: Di↵erent neural activity but also corresponds to the word ”A”.

• ECoG3: Di↵erent neural activity with di↵erent word correspondence.

Therefore, [ECoG1, ECoG2] is considered as positive pair since they represent the

same word. [ECoG1, ECoG3] and [ECoG2, ECoG3] are considered two negative

pairs as they correspond to two di↵erent word labels.

Reconstruction Loss Based on our basic swap mechanism, we also apply

the reconstruction task to our third ECoG Signal here. As shown in Fig.2.4,

ECoGi, i = 1,2,3 are ECoG signals after the augmentation, which are fed to the

Encoder. Five ECoG signals are reconstructed from latent space by the decoder.

ECoGi(Recon) is decoded from [Ci, Si], ECoG1(SwapRecon) is decoded from [C2, S1]

and ECoG2(SwapRecon) is decoded from [C1, S2]. Thus, the reconstruction loss here

is formally defined as:

Lrecon =
3X

i=1

||ECoGi�ECoGi(Recon)||2+
2X

i=1

||ECoGi�ECoGi(SwapRecon)||2 (2.8)
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where xirecon denotes the reconstructed neural activity from original latent, xiswap

denotes the reconstructed neural activity from the swapped latent.

Triplet Loss Triplet Loss Methodology: As part of our strategy to e↵ectively

distinguish between positive and negative samples, we employ the Triplet Loss

technique. This method directs the neural network towards precise classification in

a structure that includes both positive and negative samples grouped as triplets.

Our approach aims to make the data from positive ECoG pairs more alike while

simultaneously distancing the data from negative pairs. The formal definition of

the triplet loss is as follows:

Ltriplet = ||c1 � c2||2 � ||c1 � c3||2 � ||c2 � c3||2 (2.9)

Enhanced Content Latent with Variance-Covariance Loss We enhance the

capacity of the content latent to convey information by incorporating a variance-

covariance loss, as delineated in [3]. This technique is employed to broaden the

range of content representations our model can capture.

Consider a batch C = [c1, . . . , cn], consisting of n content vectors each of

dimension d. For each dimension j, we construct a vector cj that comprises the j-th

element from all vectors in C. The variance regularization term v is then defined

as the average, over all dimensions, of a hinge function applied to the regularized

standard deviation along the batch dimension. This is mathematically expressed

as:

v(C) =
1

d

dX

j=1

max(0, � � S(cj, ✏)), (2.10)
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where S, the regularized standard deviation, is given by:

S(cj, ✏) =
p

Var(cj) + ✏, (2.11)

and the variance Var(cj) is calculated as:

Var(cj) =
1

n� 1

nX

i=1

�
cj
i
� c̄j

�2
, with c̄j =

1

n

nX

i=1

cj
i
. (2.12)

In this formulation, � represents a predefined standard deviation target, set to

1 in [3], while ✏ is a small scalar added to prevent numerical issues. This approach

encourages the variance within a batch to match � across each dimension, thereby

averting mode collapse.

The covariance matrix for C is defined as:

Cov(C) =
1

n� 1

nX

i=1

(ci � c̄)(ci � c̄)T , with c̄ =
1

n

nX

i=1

ci. (2.13)

We then define the covariance regularization term cov as the sum of the squared

o↵-diagonal elements of Cov(C), normalized by the dimension d:

cov(C) =
1

d

X

i 6=j

[Cov(C)]2
i,j
. (2.14)

This term aims to minimize the o↵-diagonal elements of Cov(C), thereby decorre-

lating the di↵erent dimensions of the embeddings and ensuring they don’t encode

redundant information. Such decorrelation at the embedding level translates into

decorrelation at the representation level.
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Finally, the variance-covariance loss is formulated as:

LV C = v(C) + cov(C) (2.15)

Utilizing Cross-Entropy in Classification In our approach, cross-entropy

serves as the loss function for two auxiliary classifiers that aid in the learning of

content features. These classifiers are depicted in Fig. 2.5 parts c and d. The

first classifier, a semantic classifier, processes content inputs c1, c2, c3 and produces

outputs o1, o2, o3, each classified into one of 50 categories. The second classifier,

known as the triplet classifier, assesses whether pairs from ci, i = 1, 2, 3 form positive

or negative pairs, yielding predictions n1, n2, n3 for pairs [c1, c2], [c2, c3], and [c1, c3],

respectively.

The loss function for the semantic classifier is formulated as follows:

LCEsemantic = �
3X

i

50X

k=1

yoi,k log(poi,k) (2.16)

In the case of the triplet classifier, the loss function is defined by:

LCEtriplet
= �

3X

i

2X

k=1

yni,k log(pni,k) (2.17)

Here, y denotes the one-hot vector representing the true label, and p indicates the

softmax output of the classifier. For semantic classification, there are 50 classes

(K=50), and for triplet classification, there are two possible outcomes, positive or

negative pairings (K=2).

By combining these loss functions, we derive the overall cross-entropy loss for
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classification:

LCE = LCEsemantic + LCEtriplet
(2.18)

The comprehensive loss function for our model, therefore, is:

L = �1Lrecon + �2Ltriplet + �3LVC + �4LCE, (2.19)

where each �i represents the weighting factor for its corresponding loss component.

In our configuration, we have set �1 = �2 = �3 = �4 = 1.

2.5.2.1 Results

We employed our speech decoding framework as shown in Fig.2.6 across N=48

participants who consented to complete a series of speech tasks. The participants

were undergoing treatment for refractory Epilepsy with implanted electrodes for

their clinical care. During the hospital stay, we acquired synchronized neural

and acoustic speech data. ECoG data were obtained from five participants with

hybrid-density(HB) sampling (clinical-research grid) and 43 participants with low-

density(LD) sampling (standard clinical grid), who took part in five speech tasks:

Auditory Repetition (AR), Auditory Naming (AN), Sentence Completion (SC),

Word Reading (WR), and Picture Naming (PN). These tasks were designed to elicit

the same set of spoken words across tasks while varying the stimulus modality. We

provided 50 repeated unique words (400 total trials per participant), all of which

were analyzed locked to the onset of speech production. We trained a model for

each participant using 80% of the available data for this participant. We evaluated

the model on the remaining 20% of data (with the exception of the more stringent

word-level cross-validation).
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Figure 2.6: Neural Speech Decoding Framework[8]

We compare the performance of neural speech decoding to evaluate the decoding

ability of the latent representation from Swap pretrained model. We use the

evaluation metrics CC and STOI+ and show the results in 2.7. We compare the

baseline ResNet model used in the first chapter and the Swin Transformer model

without pre-training. We show a consistent increase in performance for both metrics

(in Fig. 2.7a and d). We then use the Swap framework as pretraining and fine-tune

the Swin Transformer in a neural speech decoding task. We show that the Swap

pre-trained Swin Transformer using only grid electrodes has further gain in terms of

CC and STOI+ in most of the participants (in Fig. 2.7b and e). Further comparison

shows that the Swap pre-trained Swin Transformer with all electrodes used could

have an even greater gain in performance. This indicates the advantage of our

Swap-pretrained framework in finding a better latent semantic representation for

downstream decoding.

Here, we compare the ResNet baseline, SwinT from scratch, Swap pretrained

SwinT with grid electrodes, and Swap pretrained SwinT with all electrodes in

the boxplot in Fig. 2.8. Consistent gains are observed in both CC and STOI+
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Figure 2.7: | Performance Comparison of di↵erent models with PCC
and STOI+ We compare the performance of neural speech decoding to evaluate
the decoding ability of the latent representation. The evaluation metrics we use
are CC and STOI+. We first compare the baseline ResNet model used in the
first chapter and the Swin Transformer model without pre-training. We show a
consistent increase in performance for both metrics (in a and d). We then use the
Swap framework as pretraining and fine-tune the Swin Transformer in a neural
speech decoding task. We show that the Swap pre-trained Swin Transformer using
only grid electrodes has further gain in terms of CC and STOI+ in most of the
participants (in b and e). Further comparison shows that the Swap pre-trained
Swin Transformer with all electrodes used could have an even greater gain in
performance. This indicates the advantage of our Swap-pretrained framework in
finding a better latent semantic representation for downstream decoding tasks.
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plot metrics. Each point in the plot represents one participant. The example

brains show the grid-only electrodes and all electrodes. The latter contains grid

and strip and/or depth electrodes. We can see that the Swap pretrained SwinT

models outperform the other models on both metrics. This suggests that the

Swap pretraining procedure is e↵ective in improving the performance of SwinT on

ECoG to speech decoding. The biggest gain comes from the all-electrodes model,

suggesting that the Swap pretraining procedure equipped with SwinT can learn a

better latent representation than previous arts.

To understand the latent representation, we apply t-SNE[23] to the latent

content and style features formed by our model and visualize them in 2D. Fig. 2.9a

shows the content latent clustered into 50 classes that correspond exactly to the

word of the overt utterance. Fig. 2.9 c shows that the style representations are

clustered according to temporal dynamics. This indicates that speech dynamics may

contain information other than the semantic information encoded in the content,

and our model disentangles this information. However, these are visualization

for the training samples. However, it couldn’t generalize well on test data which

indicates the model overfits on the training data due to our limited data. In this case,

our proposed method is e↵ective for neural speech joint embedding disentangling

to some extent.

2.6 Swap Autoencoder for Multiple Subjects

To mitigate the overfitting challenge in our model, we have expanded the scope

of our SwapAE framework to encompass multiple patients, as illustrated in Fig.2.10.

This strategic enhancement is designed to diversify the training data, thereby
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Figure 2.8: | Performance Comparison of di↵erent models with PCC and
STOI+ with Boxplot Here we compare the ResNet baseline, SwinT from scratch,
Swap pretrained SwinT with grid electrodes, and Swap pretrained SwinT with all
electrodes. Consistent gains are observed in both CC and STOI+ plot metrics.
Each point in the plot represents one participant. The example brains show the
grid-only electrodes and all electrodes, which contain both grid electrodes and strip
and/or depth electrodes.
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Figure 2.9: | Disentangling speech-related neural activity by visualizing
latent content and style with di↵erent semantic and temporal resolution
To understand the latent representation, we apply t-SNE[23] to the latent content
and style features formed by our model and visualize them in 2D. a shows the
content latent for training samples clustered into 50 classes that correspond exactly
to the word of the overt utterance. b shows how content latent from test samples is
distributed. c shows that the style representations for training samples are clustered
according to temporal dynamics. This indicates that speech dynamics may contain
information other than the semantic information encoded in the content.

strengthening the model’s generalization capabilities.

By structuring the latent space in this nuanced manner, the model is equipped to

disentangle and understand complex patterns across di↵erent patients. The content

component focuses on the temporal dynamics of the data, ensuring that essential

time-related information is captured. In contrast, the patient style component is

tailored to spatial aspects, enabling the model to recognize and adapt to the unique

electrocortical attributes of individual patients. Finally, the instance style aims to

filter out and manage extraneous elements such as noise, enhancing the model’s

robustness and accuracy in diverse scenarios. This comprehensive approach in the

modified SwapAE framework is a strategic step towards achieving more reliable

and generalizable results in multisubject data analysis.

Similar to the group setting in the previous swapAE, we set up a new group

input:
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Figure 2.10: | Adapted SwapAE for Multisubject Application: Building
on the single-patient SwapAE foundation, this version maintains the same core
encoder and decoder components. The latent space is now intricately partitioned
into three segments: content, patient style, and invariance style. We specifically
design the content latent to encapsulate only temporal information, the patient
style to uniquely reflect spatial dimensions corresponding to varied electrocortical
graphical features, and the instance style to capture additional elements like noise
and other variabilities.
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• ECoG 1: Initial neural activity recording for Patient 1, focusing on their

response to Word 1 during the first trial.

• ECoG 2: A distinct neural activity pattern from Patient 1, still in response

to Word 1, but from a subsequent trial.

• ECoG 3: Di↵erent neural activity from Patient 1, now in response to a new

word, Word 2.

• ECoG 4: Neural activity from Patient 2, corresponding to their reaction to

Word 1.

• ECoG 5: A unique neural response from Patient 2, related to a di↵erent word,

indicated as Word n (not Word 1).

2.6.1 Adapted Swap Mechanism

Content Swap To obtain a disentangled and meaningful content latent that

accurately represents word labels, we implement a content swap mechanism. This

involves exchanging content between di↵erent ECoG signals that correspond to

identical words.

Patient Swap Similarly, to achieve a meaningful patient style latent representa-

tion, we swap patient styles between ECoG signals from the same patients. For

example, we might swap styles between signals like ECoG1 and ECoG2, each

originating from a separate patient. This approach is aimed at enhancing the

distinctiveness of patient-specific characteristics in the data.
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2.6.2 Loss Function

Reconstruction Loss In our enhanced model, we expand the reconstruction loss

to cover 5 ECoG signals, compared to the 3 signals in our previous single version

swap-AE. The loss is now formulated as follows:

Lrecon = LOriginalRecon + LContentRecon + LPatientRecon (2.20)

LOriginalRecon =
5X

i=1

||ECoGi � �Ci + Pi + Ii||2 (2.21)

LContentRecon =
X

i,j

||ECoGj � �(Ci + Pj + Ij)||2 ,where i, j 2 {1, 2, 3}

(2.22)

LPatientRecon =
X

i,j

||ECoGj � �(Cj + Pi + Ij)||2 ,where i, j 2 {1, 2, 3}

(2.23)

Where � denotes the decoder part of the autoencoder. Note: The sums in

LContentRecon and LPatientRecon were corrected to iterate over 5 signals for con-

sistency. For the content reconstruction loss, the content latent extracted from

ECoG1, ECoG2 and ECoG4 are swapped between latent from these three signals.

For the patient reconstruction loss, the patient latent extracted from ECoG1,

ECoG2 and ECoG3 are swapped. For both of these two losses, reconstruction

target follows the unaltered latent parts.

Variance Covariance Loss To ensure that the content and patient latent spaces

learn meaningful representations, we employ the Variance Covariance loss on both.
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This loss is defined as:

LV Call
=

5X

i=1

LVC(Ci) +
5X

i=1

LVC(Pi) (2.24)

Triplet Loss To foster similarity in content from the same word and patient

style from the same patient, we apply triplet loss to both content and patient styles.

This approach aims to enhance the distinctiveness and consistency within each

category of data.

2.6.3 Results

For the results of this multi-patient swapVAE, the model still requires further

modification to generate the desirable content part.

2.7 Discussion

This chapter presented a novel approach utilizing self-supervised alignment to

dissect neural activity into distinct latent subspaces, providing new perspectives

on the relationship between neural dynamics and speech features. Our model

e↵ectively captures individual variations across participants, suggesting its potential

applicability in broader neuroscientific studies.

We employed neural data augmentation strategies such as temporal jitter,

channel-wise dropout, and additive noise to enhance the model’s robustness and

aid in the disentanglement of semantic content from speech dynamics. The model

adeptly balances encoding of semantic and dynamic information within neural

activity, which is anticipated to enhance neural speech decoding performance in
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downstream tasks.

Our framework integrates a sequential backbone architecture to leverage dynamic

speech aspects, incorporating these into the model’s learning process. The successful

use of a transformer-based architecture in conjunction with contrastive learning

illustrates its capability in modeling complex latent structures over extended periods.

It is important to note that the results presented here are preliminary and

represent an initial exploration into this complex area of research. The disentangled

latent representations show e↵ective clustering and semantic alignment only with

training data. When the ECoG decoder is fine-tuned for downstream speech

decoding tasks, this distinct clustering tends to diminish, indicating a potential

overfitting to training data or a need for further model adjustments to preserve

these characteristics in applied settings.

The process of disentangling these representations without explicit labels is

inherently challenging, requiring careful tuning of the loss functions and thoughtful

design of the model to facilitate the learning of e↵ective latent representations. The

intrinsic complexity of speech production and the potential entanglement within

neural activities add to these challenges. Most current methodologies focus on

single-subject analyses, and the preliminary nature of our findings underscores the

necessity for further investigations. Extending this research to include multi-subject

data could substantially enrich the understanding and enhance the generalizability

of the models.

Future work will aim to not only decode ”what” and ”how” information is

encoded in neural signals but also to identify ”whose” information is encoded,

opening new avenues for personalized medicine and customized neural interfaces.

This research will continue to evolve, incorporating more data and refining method-
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ologies to better understand and utilize the rich information encoded in neural

activity related to speech.
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Chapter 3

Neural Speech Decoding with

Natural Voice Conversion

3.1 Introduction

This chapter 1 presents a novel approach in neural speech synthesis, focusing on

the conversion of brain activity to speech while maintaining the speaker’s natural

voice characteristics. The methodology integrates two advanced training stages:

Speech-to-Speech and Neural-to-Speech, utilizing state-of-the-art models such as

Hubert and HifiGAN for speech unit generation and synthesis.

The primary motivation for this research is to develop communication aids

for individuals with speech impairments, enabling them to speak with their own

voice (or their preferred proxy’s voice) characteristics. The approach leverages

sophisticated neural networks and diverse datasets like VCTK and VoxCeleb to

ensure the synthesized speech is both clear and personal.

1This is a joint work with Xupeng Chen. I setup the pipeline and run the experiments in this
project.
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3.2 Audio Dataset for Speech-to-Speech

VCTK The VCTK dataset [40], which includes recordings from 109 native English

speakers of various accents, serves as a foundational element in our experiments.

Its diversity is key to enhancing our model’s ability to handle accent variations in

speech synthesis, thereby increasing robustness and adaptability. The dataset’s

comprehensive annotations and broad phonetic diversity are critical for training

models that can accurately replicate the nuanced characteristics of human speech.

The audio sampling rate for VCTK is resampled to 16K.

VoxCeleb In contrast, the VoxCeleb dataset provides an extensive collection of

over 100,000 utterances from 1,251 celebrities, derived from online video sources.

With its variable recording conditions and background noise [29], VoxCeleb o↵ers a

challenging yet valuable real-world testing environment. It allows us to evaluate

our speech synthesis model’s performance in less controlled acoustic conditions,

ultimately enhancing the model’s ability to deliver clear and intelligible speech in

various adverse scenarios. The sampling rate for the VoxCeleb dataset is 16K.

3.3 Speech Resynthesis

Similar to the model described in [33], we employ a similar encoder-decoder

architecture to re-synthesize the speech. The speech encoder part contains three

sub-encoders: Speech to HuBERT Units encoder, F0 Quantizer, and Speaker

Embedder. Similarly, we use the Hifi-GAN as the synthesizer to synthesize the

speech from the speech latent generated from three sub-encoders. The overall

overview is shown in Figure 3.1a.
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Figure 3.1: Overview of the Pipeline: (a) Speech-to-Speech Training Stage: Incor-
porates pre-trained models—HuBERT for generating speech units, F0-Quantizer for
F0 unit quantization using F0 extracted from original speech via YAAPT algorithm,
and Speaker Embedder for extracting direct speaker embeddings from speech. The
HifiGAN synthesizer is trained to convert these extracted latents into audible
speech. (b) Neural-to-Speech Training Stage: Involves training a Neural decoder to
decode HuBERT and quantized F0 units. Speaker embeddings are generated from
any proxy speech using ECAPA-TDNN, enabling e↵ective voice conversion.
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3.3.1 Speech Encoder

3.3.1.1 Speech to HuBERT Units Encoder

The Speech to HuBERT Units Encoder leverages the HuBERT model[17], which

is integral for capturing the linguistic content of speech. This encoder specifically

converts raw speech into HuBERT units, serving as a crucial intermediary step in

transforming speech into a format amenable for further processing. The Hubert

encoder operates by first segmenting the input speech into smaller, manageable

frames (20ms per frame for audio sampled at 16kHz), which are then individually

analyzed to extract their acoustic properties. These properties are encoded into

a discrete set of HuBERT units, e↵ectively compressing the speech data while

preserving essential linguistic features. This process not only facilitates a more

compact representation of speech but also enhances the model’s responsiveness to

linguistic nuances, thus improving its overall performance in speech-related tasks.

3.3.1.2 F0 Quantizer

The F0 quantizer is pre-trained with the VQ-VAE framework on the F0 recon-

struction task. It consists of the F0 encoder and bottleneck and is used to generate

discrete units as the representation embedding of F0.

F0 Encoder The encoder includes four residual blocks, each performing a down-

sampling operation on the F0 by a factor of two. This process not only reduces

the temporal resolution but also increases the feature channels. To prepare the

F0 for this encoding, the YAAPT[19] is used to extract the F0 from the original

audio, where one F0 value is sampled from every 80 frames. This equates to F0

being downsampled by 80 times compared to the original audio, resulting in 200 F0
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values per second. Subsequently, these are further downsampled by a factor of 16

during encoding, resulting in an F0 representation of approximately 12.5 units per

second. The resultant features across all channels at each downsampled temporal

point are then vector quantized.

Codebook The VQ-VAE codebook is learnable and stores a set of discrete

embeddings. The continuous F0 embeddings from the encoder are quantized by

mapping them to the nearest neighbors in this codebook, transforming them into a

discrete set of indices.

F0 Decoder The decoder uses four transposed convolutional layers to reconstruct

the F0 from the discrete embeddings retrieved from the codebook. These layers

progressively upsample the quantized representations back to the original resolution

of the F0.

Loss Function The training of the f0-VQ-VAE is directed by a loss function

composed of a reconstruction term and a commitment term, formulated as follows:

L(EF0 , C,DF0) = Lrecon + �Lcommit,

Lrecon(EF0 , C,DF0) =
1

T 0

T
0X

t=1

kpt �DF0(t)(es)k22,

Lcommit(EF0 , C) =
1

L0

L
0X

s=1

khs � sg[ezs ]k22,

(3.1)

where:

• pt represents the target F0 value at time t,

• DF0(t)(es) denotes the reconstructed F0 from the decoder for the embedding
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es at time t, which are derived at a lower temporal resolution s = t

s
.

• sg indicates the stop gradient operation, which detaches the embedding from

the gradient updates during backpropagation,

• hs is the original embedding from the encoder for segment s,

• ezs is the closest codebook embedding to hs,

• � is a weighting factor that balances the reconstruction and commitment loss

components.

This loss function ensures the decoder can reconstruct the F0 accurately from

the quantized embeddings and maintains a strong alignment with the original

embeddings, minimizing the loss of information during the quantization process.

The reconstructed F0 correlation coe�cient can be achieved at 0.88 under this

setting while testing on our patient speech dataset.

3.3.1.3 Speaker Embedder

The Speaker Embedder utilizes the ECAPA-TDNN[11] architecture, renowned

for its e↵ectiveness in capturing distinct speaker characteristics. This architecture

employs a series of densely connected convolutional layers, which are designed to

process and identify unique vocal traits from input speech signals. The extracted

features undergo a temporal aggregation process, which synthesizes the information

across the entire input sequence, resulting in a dense vector representation of

the speaker’s voice. This representation encapsulates the unique timbral and

dynamic characteristics of the speaker, allowing the synthesized speech to retain

the individuality of the speaker’s voice. The inclusion of attention mechanisms
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further refines the embedding process, ensuring that salient features are emphasized,

thereby enhancing the model’s accuracy in speaker characterization.

3.3.2 Speech Synthesizer

Figure 3.2: Input to hifi-GAN: The process illustrated in the diagram involves
transforming speech into a format suitable for hifi-GAN, a high-fidelity generative
adversarial network used for speech synthesis. Initially, speech latent vectors are
obtained. These vectors are then utilized to retrieve continuous HuBERT features
and fundamental frequency (F0) features through a lookup table. These two sets
of features are concatenated to form a unified feature set. Subsequently, speaker-
specific embeddings are appended to each frame of the concatenated features to
incorporate speaker identity into the synthesis process. This enriched feature set
serves as the input for hifi-GAN, facilitating the generation of high-quality synthetic
speech.

The Hifi-GAN synthesizer is configured to receive inputs composed of concate-

nated features from the HuBERT units and F0 units where the speaker embedding

is then concatenated to each frame of concatenated features shown as Fig.3.2. This

arrangement ensures that the synthesized speech retains the content, prosody, and

timbre of the original speech. The training of Hifi-GAN incorporates a multi-

objective loss function, which includes adversarial, feature-matching, and recon-

struction losses, as defined in [33]. This complex loss function helps in generating

high-quality, realistic speech.
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For the hifi-GAN training, we use the same loss used in the [33]:

Lmulti

G
(D,G) =

JX

j=1

(Ladv(G,Dj) + �fmLfm(G,Dj)) + �rLrecon(G),

Lmulti

D
(D,G) =

JX

j=1

LD(G,Dj),

(3.2)

where:

• G denotes the generator in the Generative Adversarial Network (GAN), re-

sponsible for generating synthetic speech that mimics the real speech samples.

• D represents the discriminator in the GAN, tasked with distinguishing between

real and generated speech samples.

• Dj denotes the jth sub-discriminator, including multi-scale discriminators

and multi-period discriminators, which constitute the entire discriminator D.

• Ladv is the adversarial loss, which measures how well G can deceive D.

• LD is the discriminator’s loss, which quantifies D’s ability to correctly classify

real and generated samples.

• Lfm is the feature-matching loss, which ensures that the features of the

generated samples closely match those of the real samples across multiple

layers of D.

• Lrecon is the reconstruction loss, specifically the L1 loss on the mel-spectrogram,

which measures the accuracy of the reconstructed audio.

• �fm and �r are weighting coe�cients set to 2 and 45, respectively, balancing
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the influence of the feature-matching and reconstruction losses relative to the

adversarial loss.

Here we set �fm = 2 and �r = 45.

Training Strategy The training of this speech resynthesis framework is carefully

structured. The HuBERT and speaker embedder models are employed directly

from existing pre-trained models because they are well-trained on large datasets,

ensuring robust initial feature extraction. However, the F0-VQ-VAE and Hifi-GAN

require specific training on speech datasets. Initial training is conducted on the

VCTK dataset, which, despite its diversity, is limited in scale. To enhance the

model’s generalizability, further fine-tuning is performed on the VoxCeleb dataset,

which contains a wide range of speakers and recording conditions. This two-stage

training process significantly improves the model’s ability to synthesize speech

from unseen speakers, as evidenced by the improved Mel-Spectrogram Correlation

Coe�cient in our evaluations.

Dataset Used Mel-Spectrogram CC
VCTK 0.719
VCTK+VoxCeleb 0.926

Table 3.1: Speech resynthesis results on patient speech data

3.4 Neural to Speech Synthesis

As detailed in Figures 3.1b and 3.3, training the neural decoder to decode discrete

logits of HuBERT and F0 units simplifies the task by framing it as classification

rather than regression. According to [27], the highest performance in neural

decoding has been achieved using an RNN-based architecture. However, RNNs are
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Figure 3.3: Detailed Architecture of the Neural Decoder: The input, denoted as
T ⇥ E, passes through either an RNN or SWin Transformer, followed by Spatial
MaxPooling and an MLP. The signal then traverses a common latent layer and
multiple Conv1d layers at varying temporal resolutions, culminating in a HUBERT
unit for the final output. This design facilitates e�cient decoding and translation
of neural signals.

CC STOI CER WER
RNN 0.803 0.465 0.85 1.04
SwinTW 0.727 0.325 1.32 1.38

Table 3.2: Speech Decode Result on sEEG Data:This table presents the correlation
coe�cient (CC), short-time objective intelligibility (STOI), character error rate
(CER), and word error rate (WER) for each model

limited in multi-patient scenarios due to their sensitivity to spatial variations in

neural electrode placement. To overcome this, a transformer-based subject-agnostic

decoding model is developed, which performs robustly across di↵erent electrode

configurations [7]. Initial results are summarized in Table 3.2. From the discrete

units prediction accuracy in the Table3.3, the accuracy is very low. That’s the

reason for the undesirable speech decoding result. Therefore, we need to tune our

neural decoder architecture further for better unit sequence prediction.
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Prediction Accuracy F0 Units HuBERT Units
RNN 0.347 0.278
SwinTW 0.285 0.125

Table 3.3: Speech Latent Prediction Accuracy on sEEG Data

3.5 Discussion and Future Work

The project presents promising initial results, but there are several avenues for

improvement and future exploration to enhance performance and applicability:

Enhancing F0-VQ-VAE Performance Current outcomes suggest that the

F0-VQ-VAE may not capture enough granular details in the quantized F0 units,

potentially limiting the naturalness and expressiveness of synthesized speech. Con-

sidering alternative models such as FSQ-VAE [26] could provide a more refined

quantization of F0 features, potentially leading to improved speech re-synthesis

quality. Therefore, a better audio guidance can be provided for our neural decoding.

Optimizing Neural Decoders for Multi-Patient Scenarios The present

models, while e↵ective in some respects, show limitations in decoding perfor-

mance, particularly in multi-patient scenarios where spatial variability in electrode

placements can a↵ect results. Developing and testing other architectures, such

as advanced transformer models or domain adaptation techniques, might yield

better generalization across di↵erent patients without compromising the decoding

accuracy.

By addressing these areas, the project could significantly advance the field

of speech synthesis from brain activity, o↵ering more personalized and e↵ective

communication aids for those in need.
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Chapter 4

Deep Visual Feature-based Brain

Decoding

4.1 Introduction

Brain decoding is an important technique for deriving insights into the brain’s

functions by finding how voxel-level activation data can be used to predict certain

stimuli or response variables[34, 42]. In this work, we investigate a simple tweak to

the traditional classification-based decoding method: instead of using pre-defined

classification labels [6, 10, 14, 15, 18], we propose to use pre-trained representations

from deep neural network (DNN) models. In the interest of space, we focus on

the visual cortex’s response to natural scenes from the Natural Scenes Dataset

(NSD), but our method can be easily applied to other domains, such as auditory

processing. While some previous works have delved into regression-based approaches

[22, 28, 31, 32, 35, 36], our methodology introduces a distinctive perspective. Our

proposed new decoding method removes the need for existing stimuli labels and
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provides a weight map that better aligns with the underlying scene recognition

process compared to classification-based decoding. Through a post-hoc classification

test of scene classification, we show that our method preserves the class-related

information even when not explicitly optimized for it, achieving a very similar

performance as classification-based decoding. These advantages make our method

a simple drop-in replacement for many decoding-style analyses involving complex

responses or stimuli.1

4.2 Methods

Dimensionality
Reduction

SpaceNet
Regression

Weight Maps

Decoded 
Feature

Visual 
Latent Feature

Feature
Extraction

MSE Loss

fMRI Visual Stimuli

Thresholding

Selected Voxels

SpaceNet 
Classification Which 

Class

Figure 4.1: Pipeline Overview: Initially, visual stimuli are processed using a
pre-trained deep neural network (either ResNet or DINOv2) to extract latent
embeddings. These embeddings then undergo dimensionality reduction via PCA
or UMAP to isolate fine-grained features. A linear regression model with Graph-
Net regularization (SpaceNet) regresses these visual latent features. Subsequently,
voxels of significant weights are selected for evaluation in an image classification
task via thresholding.

1This is a joint work with Nika Emami, Chris Liu, and Xupeng Chen. I run the experiments
and do brain visualization in this project.
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4.2.1 Dataset

Our research employs the Natural Scenes Dataset (NSD)[2], a comprehensive

fMRI dataset captured at 7T featuring whole-brain, high-resolution measurements

from eight healthy adults. Participants were exposed to thousands of color natural

scenes from the extensively annotated Microsoft Common Objects in Context

(COCO)[20] images during 30–40 scan sessions. We focus on data from four subjects

who viewed identical stimuli, ensuring consistency in our analysis. This dataset is

instrumental for investigating brain visual perception and pattern recognition.

4.2.2 Framework

Our framework integrates advanced feature extraction and dimension reduction

techniques to analyze complex visual stimuli. We use pre-trained models, ResNet-

50[16] and DINOv2[30], to extract visual features of a scene, followed by PCA[30]

and UMAP[25], respectively, to reduce the dimension to two. For decoding analysis,

we use the Nilearn[9]’s implementation of SpaceNet Decoder with Graph-Net

regularization[13] to create both classification and regression weight maps. This

methodology aids in producing interpretable brain weight maps. The overall pipeline

is illustrated in Figure 4.1.

4.2.3 Post-hoc classification test

To quantify the informativeness of the resulting weight map from both methods,

we use a post-hoc test to evaluate how well class-related information is preserved in

the weight maps obtained from decoding analyses. Once we combine a final weight

map from a decoding analysis by taking the max magnitude across all the sub-weight
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maps, regardless of the decoding target, we use it as a selection mask and decode

the scene class from the FMRI analysis again. If the class information is preserved

well in the first decoding step, the second post-hoc classification evaluation will

yield high prediction accuracy. We evaluate at a number of di↵erent sparsity levels

by thresholding the resulting weight maps at di↵erent levels.

4.3 Results

4.3.1 Post-hoc classification test

In our post-hoc classification evaluation of the weight maps, our label-free brain

decoding method produces very similar levels of F1 score compared to traditional

classification-based decoding, shown in Figure 4.2.b. Note that for a fair comparison,

we selected an equivalent number of voxels from both the regression-based and

classification-based methods. This indicates that the class-related information is

adequately preserved in our method, even though this is not explicitly optimized

for classification.

4.3.2 Analysis of the Visual Cortex Regions

In general, our method produces a similar weight distribution as classification-

based decoding. As we can see from figure 4.2.a, we investigate di↵erent sub-regions

of the visual part, including V1 to V5 cortex according to the Juelich atlas, and

the following regions according to the Harvard-Oxford atlas: LG (Lingual Gyrus),

LO-1 (Lateral Occipital Cortex superior division), LO-2 (Lateral Occipital Cortex

inferior division), IC (Intracalcarine Cortex), CC (Cuneal Cortex), TOF (Temporal
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Figure 4.2: (a). Average voxel weights and the mean of weight correlation
coe�cients across subjects for visual subregions. (b). Image Classification Accuracy
(c). Comparative Analysis of Weight Maps Across Methods: Average normalized
values from the weight maps of each method across all subjects.
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Occipital Fusiform Cortex), OFG (Occipital Fusiform Gyrus), and OP (Occipital

Pole). Figure 4.2.a shows a high consistency across all combinations of DNNs and

dimensionality reduction methods, with a higher average weight in areas associated

with higher-level visual processing. While the findings from the classification-based

decoding largely corroborate our results, disagreements appear in the V5 cortex

and the LO-2 region, both associated with higher-order visual functions [24, 43].

Figure 4.2.a shows the mean correlation between voxel weight maps of di↵erent

subjects. It is consistent across di↵erent subjects but decreases from 0.9 to 0.5

from V1 to V5. This trend might indicate a divergence in how subjects interpret

combinations of high-level visual features but share similar processing of low-level

visual features.

The visualization in Figure 4.2.c highlights significant weights in the Parahip-

pocampal Place Area (PPA), a region integral to scene recognition and spatial

memory, by the proposed approach. Higher weights are also prominent in the

VO1 (visual occipital 1) and VO2 (visual occipital 2) regions, known for their

roles in color recognition [37]. Conversely, the classification-based method assigns

heavier weights to the Medial Temporal area, emphasizing motion perception[5].

We note that the underlying task of these fMRI scans is scene recollection, where

participants recall previously viewed stimuli. This di↵erence suggests that the

weight maps produced by our method are better aligned with the underlying task

of scene recognition.

Further analysis of weight progression from visual areas V1 to V5 shows an

increase in weight intensity from basic visual processing in V1 to complex integra-

tions in V5. This is particularly evident in classification-based methods, notably in

the hMT(human Middle Temporal)/MST(Medial Superior Temporal) area known
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for motion sensitivity. This pattern highlights di↵erent neural engagements based

on the decoding strategy, illustrating how these methods process visual information

di↵erently. This research enhances our understanding of the visual cortex’s func-

tional architecture and demonstrates the potential of advanced decoding techniques

to reflect cognitive tasks in visual processing more accurately.

4.4 Conclusion and Discussion

We introduce a novel label-free brain decoding methodology using the Natural

Scenes Dataset (NSD), where we replace the commonly used classification targets

with features from pre-trained deep neural networks, which removes the need for

predefined classes or labels[38]. We demonstrated that this approach yields weight

maps as informative as the traditional classification-based methods. A comparison

of the weight maps shows that the regression-based method assigns weights in

a way that better captures the underlying task of scene recognition, notably in

brain regions like the Parahippocampal Place Area (PPA). Our proposed method

provides a decoding analysis method that preserves relevant visual information, is

consistent across parameter choices, and removes the reliance on hand-designed

labels.
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Chapter 5

Conclusions and Future Work

The explorations and experiments conducted in this thesis provide initial insights

into the capacities of neural decoding and representational learning across both

auditory and visual modalities. While promising, these findings should be considered

preliminary, indicating potential pathways and hypotheses rather than conclusive

evidence.

The methodologies introduced across di↵erent chapters, from disentangled

representations in speech processing with ECoG signals to innovative approaches

in visual cortex mapping, highlight the complexity and potential of decoding

neural signals. However, it is crucial to recognize the limitations and challenges

encountered, such as overfitting in specific models and the need for more expansive

and varied datasets to validate and generalize these results.

Given these considerations, our work sets the stage for further research. Ex-

tending these studies to include a broader range of subjects and more diverse

neural data will be essential to enhance the robustness and applicability of the

proposed models. Additionally, integrating more sophisticated machine learning
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techniques and exploring new neural network architectures could address some of

the shortcomings identified in our initial experiments.

Future work will also need to delve deeper into the mechanisms underlying the

disentangled representations and their implications for practical applications in

neural engineering, such as neuroprosthetics and brain-computer interfaces. By

continuing to refine the techniques and expand the scope of our investigations, we

aim to contribute more definitively to the field, paving the way for more e↵ective

and nuanced technologies in both medical diagnostics and interactive computing

systems.
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