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1. Introduction

In the evolving landscape of medical imaging, enhancing diagnostic accuracy while min-

imizing patient discomfort and health risks remains a primary objective. Magnetic Reso-

nance Imaging (MRI) plays a pivotal role in modern diagnostics, providing detailed images

of tissues, organs, and other internal structures. However, the traditional use of gadolinium-

based contrast agents in T1-weighted contrast-enhanced (T1CE) MRI poses challenges, in-

cluding potential allergic reactions and gadolinium accumulation in the body. Recognizing

these challenges, our project aims to revolutionize the field by advancing multi-parametric

MRI synthesis, thereby reducing the dependency on multiple scans and contrast agent in-

jections.

The central objective of this project is to diminish the need for gadolinium injections, which

are standard for obtaining T1CE images that enhance the visibility of pathological features

such as tumors or inflammation. Our novel approach leverages Constrained Contrastive

Learning [11], a technique originally devised for segmentation tasks and adapted from ex-

isting methodologies in recent studies, to synthesize T1CE images effectively. By employ-

ing this innovative technique, we aim to replicate the diagnostic features visible in T1CE

images by using the intrinsic tissue properties evident in other MR contrast images.

The hypothesis driving our research posits that understanding and differentiating the local

representation of tissue properties in MR-contrast images can significantly aid in synthesiz-

ing high-fidelity T1CE images. This approach not only promises to maintain the diagnostic

capabilities of traditional contrast-enhanced imaging but also aims to overcome the associ-

ated health risks and patient discomfort. Furthermore, the precise reconstruction of tumor

regions in synthesized T1CE images showcases the potential of this method in clinical ap-

plications.

This thesis explores the challenges associated with traditional T1CE imaging, including

6



managing allergic reactions and artifacts from excessive contrast, and details the develop-

ment and validation of our synthesis technique. By addressing these challenges, our project

aspires to enhance the overall safety and efficacy of MRI procedures, contributing to the

broader field of medical imaging.

1.1 Background

Magnetic Resonance Imaging (MRI) [7] is a pivotal diagnostic tool in neurology and neu-

rosurgery, renowned for its superior delineation of anatomical structures of the brain, spinal

cord, and vascular systems. Unlike other imaging modalities, MRI excels in providing de-

tailed images across all three anatomical planes: axial, sagittal, and coronal, offering a

comprehensive view essential for accurate diagnosis and treatment planning.

1.1.1 Physics of MRI

The underlying technology of MRI revolves around the magnetization properties of atomic

nuclei, particularly hydrogen protons found in water molecules within body tissues. The

process begins with the application of a strong, uniform external magnetic field, aligning

the randomly oriented protons. This alignment is temporarily disrupted by an external Ra-

dio Frequency (RF) pulse, causing the protons to absorb energy and deviate from their

alignment. As they return to their original state, they emit RF signals, which are captured

and analyzed.

The emitted RF signals vary in frequency depending on their location within the body,

and these differences are converted into image data through Fourier transformation. This

data is then represented as varying shades of gray in a pixelated image. Crucially, by alter-

ing the sequence of RF pulses—characterized by variables like Repetition Time (TR) and

Time to Echo (TE)—different image contrasts and types can be generated, enhancing the

ability to distinguish between different types of tissues and pathologies.

7



1.1.2 Tissue Characterization

As mentioned, MRI imaging sequences are crucial for obtaining detailed images that high-

light different tissue properties and pathologies. The most commonly used sequences in

clinical practice are T1-weighted and T2-weighted scans. The four contrast images of in-

terest, which provide the tissue information, are represented in Figure 1.1.

Figure 1.1: Examples of the brain different MR contrast images from BraTS 2021 [2]
training dataset. From left to right: T2-FLAIR, T1-weighted, T1-Gd and T2-weighted.

T1-Weighted Images

T1-weighted images are generated using short Time to Echo (TE) and Repetition Time

(TR) durations. The resulting images provide high contrast based on the T1 relaxation

properties of tissues. In these images, cerebrospinal fluid (CSF) appears dark, while fat

and subacute hemorrhage show up as bright, making T1-weighted imaging excellent for

assessing the integrity of the blood-brain barrier and for visualizing fatty tissues.

T2-Weighted Images

Conversely, T2-weighted images are produced with longer TE and TR times, which high-

light the T2 relaxation properties of tissues. These images make CSF appear bright, which

is beneficial for evaluating brain edema, inflammation, and infection. The high contrast

for fluid makes T2-weighted scans particularly useful for detecting pathologies filled with

fluid, like cysts and tumors.
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FLAIR Sequences

Another key sequence is the Fluid Attenuated Inversion Recovery (FLAIR), which is a

modification of the T2-weighted scan where TE and TR times are extended to suppress

the bright signal of normal CSF. This results in a dark appearance of CSF, enhancing the

contrast and visibility of abnormalities such as lesions, which remain bright. FLAIR se-

quences are indispensable for differentiating between normal fluid spaces and pathological

changes.

Gadolinium-Enhanced Imaging

To further enhance diagnostic capability, T1-weighted imaging can be performed with the

injection of Gadolinium (Gad), a non-toxic paramagnetic contrast agent, as shown in Fig-

ure 1.2.. Gad shortens the T1 relaxation time, causing tissues where Gad accumulates to

appear very bright. This property is especially useful for visualizing vascular abnormali-

ties and disruptions in the blood-brain barrier, such as tumors, abscesses, and inflammatory

conditions like herpes simplex encephalitis and multiple sclerosis.

Figure 1.2: Difference between a T1-weighted image (left) and T1 after Gadolinium injec-
tion (right)
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Table 1.1: Appearance of Brain Tissues in MRI Sequences

Tissue T1-Weighted T2-Weighted FLAIR

CSF Dark Bright Dark

White Matter Light Dark Gray Dark Gray

Gray Matter Gray Light Gray Light Gray

Blood Vessels Variable Variable Variable

Fat (within bone marrow) Bright Light Light

Inflammation (infection, de-
myelination) Dark Bright Bright

1.2 Training and Evaluation

1.2.1 Dataset Split

To facilitate our synthesis process, we employed a comprehensive and diverse dataset

known as Brain Tumor Segmentation (BraTS2021) [2][3][4][5], which comprises a rich

collection of MR contrast images suitable for our research. Originally, the dataset included

data from 1660 subjects. Following rigorous data cleaning to ensure quality and consis-

tency, we narrowed down the dataset to 838 subjects. The subjects were randomly allocated

into different subsets for our deep learning pipeline: 360 for training, 245 for validation,

and 70 for testing, with each subset containing 70 slices, viewed as individual samples.

The training process was conducted in 2D, treating each slice within the MR scans as an

independent image. This approach allowed us to focus on the nuanced differences and

similarities between slices, essential for the effective training of our model on local tissue

representations and enhancing its capability to synthesize T1CE images accurately.

1.2.2 MR-Contrast Synthesis Using Deep Learning

Our synthesis approach for MR contrast images consists of a two-stage deep learning ar-

chitecture, primarily based on the U-Net model, which is well-suited for medical image

processing due to its ability to handle complex visual data with high efficiency. The first
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stage of our methodology involves a pretraining phase (6.1) where we employ a constrained

contrastive learning methodology. This technique allows the model to effectively extract

tissue-specific information from various types of MR images, such as T1-weighted, T2-

weighted, and T2-FLAIR. The extracted features are crucial as they form the foundation

for the subsequent synthesis stage.

In the synthesis stage (6.2), we leverage the U-Net model, which has been pretrained and

whose weights have been refined to enhance their effectiveness for specific tasks. These

refined weights are then applied in the synthesis of MR contrast images, particularly T1CE

images, as part of the downstream tasks. To optimize the synthesis quality, we experi-

ment with various loss functions, including perceptual loss that incorporates elements of

the VGG16 network. This approach ensures that the synthesized images closely resemble

the target images, both in terms of quality and diagnostic relevance.

Additionally, we explore two decoder configurations within our U-Net architecture: a full

decoder and a partial decoder. For more details about the variations in decoder configura-

tions, please refer to Section (6.1.1) of this document.

1.2.3 Evaluation

We use different metrics to compare three different models—baseline, CL-full, and CL-

partial—to assess their performance in MR synthesis. These metrics include mean squared

error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and

convolutional neural network-based metrics such as the Learned Perceptual Image Patch

Similarity (LPIPS) [12], employing both AlexNet and VGG architectures. The effective-

ness of our full decoder configuration was substantiated through both visual assessments

and statistical analyses, particularly using p-values, which confirmed its superior ability in

generating T1CE images that closely match the ground truth.
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2. BraTS 2021 Dataset

2.1 Background

2.1.1 Overview and Organization

The Brain Tumor Segmentation (BraTS) 2021 Dataset[2][8] is a significant contribution to

the field of brain glioma segmentation, organized by the collaborative efforts of the Ra-

diological Society of North America (RSNA), the American Society of Neuroradiology

(ASNR), and the Medical Image Computing and Computer Assisted Interventions (MIC-

CAI) society. Its establishment marks a cornerstone in providing a standardized benchmark

for the evaluation of brain tumor segmentation algorithms. Renowned for its extensive as-

sortment of multi-institutional, multi-parametric Magnetic Resonance Imaging (mpMRI)

data, the dataset facilitates the development of cutting-edge diagnostic tools.

2.1.2 Data Structure

The dataset includes a variety of MRI modalities, co-registered for each subject, with each

modality serving a unique purpose in brain tumor analysis [3], [4]. These modalities, which

include a mix of pre- and post-therapy brain scans, some displaying resections, were ac-

quired from four distinct centers using MR scanners of varied vendors, field strengths, and

imaging sequence implementations. Detailed MRI modality specifications, [8]:

• T1 (T1-weighted, Native Image): Acquired in either sagittal or axial 2D planes,

these images have a slice thickness ranging from 1 to 6 mm, providing a base view

of the brain’s anatomy without contrast enhancement (Figure 2.1, second column

from left).

• T1c (T1-weighted, Contrast-Enhanced): These images are obtained using 3D ac-

quisition techniques, enhanced with Gadolinium contrast to highlight pathological

areas. For most patients, these images have a 1 mm isotropic voxel size, offering

12



Figure 2.1: Figure 2.1 illustrates four different slices of a brain image from one of the
subjects in the BraTS 2021 training dataset. Each row corresponds to a different slice, with
columns arranged from left to right showcasing MR contrasts: T2-FLAIR, T1-weighted,
T1CE, and T2-weighted. [2].

high-resolution insights into tumor regions (Figure 2.1, third column from left).

• T2 (T2-weighted Image): Acquired in axial 2D acquisition, these images have a

slice thickness of 2 to 6 mm. They are particularly useful for visualizing the brain’s

water content and edema surrounding tumors (Figure 2.1, forth column from left).

• FLAIR (T2-weighted FLAIR Image): These images can be acquired in axial, coro-

nal, or sagittal 2D planes with a slice thickness of 2 to 6 mm. FLAIR imaging pro-

vides valuable information by suppressing the fluid signal, making it easier to detect

lesions near the ventricles (Figure 2.1, first column from left).

To ensure uniformity across the dataset, they rigidly aligned each subject’s image volumes
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to the T1c MRI, which typically had the highest spatial resolution. Subsequently, all images

were resampled to a 1 mm isotropic resolution in a standardized axial orientation using a

linear interpolator. Furthermore, skull stripping was applied to all images to ensure the

anonymity of the patients [8].

2.1.3 Reflecting Clinical Diversity

The BraTS dataset encapsulates a retrospective collection of brain tumor mpMRI scans

from various institutions, captured under standard clinical conditions but using differ-

ent equipment and protocols [2]. Specifically, these scans were acquired at four distinct

centers—Bern University, Debrecen University, Heidelberg University, and Massachusetts

General Hospital—over several years. The use of MR scanners from different vendors,

with varying field strengths (1.5T and 3T) and implementations of the imaging sequences

(e.g., 2D or 3D), contributes to this diversity. As a result, the dataset exhibits heterogeneous

image quality, reflecting the wide range of clinical practices across institutions [8].

2.1.4 Data Preparation

For our synthesis task, we utilized the coregistered multiparametric images (T1w, T1Gd,

T2w, T2-FLAIR) to construct a contrast space. This space enabled the generation of a

constraint map to learn and discriminate various information types. The selection of images

for the constraint map was tailored based on the target image modality. As part of our

dataset preparation, we performed preprocessing (details are presented in Chapter 7) to

enhance the quality and uniformity of the images. Subsequently, we randomly selected

training and validation datasets to ensure a broad representation of the data. These datasets,

along with their generated constraint maps, were stored in two separate HDF5 files. This

structured approach allowed for efficient access and management during further pretraining

and downstream tasks.
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3. Constraint Contrastive Learning

3.1 Background

3.1.1 Introduction to Representational Learning

The efficacy of machine learning methodologies is fundamentally linked to the data rep-

resentation (or features) upon which they operate. A significant portion of the effort in

deploying machine learning systems is therefore dedicated to the creation of preprocess-

ing pipelines and data transformations. These transformations are designed to yield a data

representation that is conducive to effective machine learning processes. This necessity

underscores a critical weakness in current learning algorithms—their limited capacity to

autonomously extract and organize discriminative information from the data [6].

Traditionally, overcoming this limitation involves substantial feature engineering, a pro-

cess where human ingenuity and prior knowledge are leveraged to enhance machine learn-

ing models. Although effective, feature engineering is a demanding and labor-intensive

process. This process is crucial as it compensates for the shortcomings of current algo-

rithms by generating data representations that aid in the extraction of valuable information,

necessary for developing classifiers and other predictive models. Nowadays, various deep

learning models are employed to address this limitation and are used as part of pretraining

for further downstream tasks. These models automate much of the feature extraction and

can learn powerful representations directly from large datasets, thus potentially reducing

the need for intensive manual feature engineering.

3.1.2 Contrastive Learning

Building upon the advancements in representational learning, contrastive learning stands

as a specialized form of representational learning that leverages unlabeled data to forge

powerful feature representations, enhancing performance in a variety of machine learning
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tasks. This methodology utilizes the availability of semantically similar data pairs and neg-

ative samples to refine the quality of data representations [1].

In practice, contrastive learning employs a framework where each data point is paired

both with ”positive” samples (similar data points) and ”negative” samples (dissimilar data

points). This differential approach is guided by the contrastive loss, which optimizes the

weights ✓ of a deep learning model  ✓(.) such that the distance between latent representa-

tions ( ✓(xa), ✓(xb)) of pairs of inputs (xa, xb)approximates their semantic similarity in

input space. Consequently, semantically similar data points (positive samples) are pushed

closer together in the representational space, while being distanced from dissimilar data

points (negative samples) [11], as an example look at Figure 3.1. This not only amplifies

the semantic distinctions between dissimilar data points but also reinforces the similarity

among comparable data points.

The theoretical underpinnings of contrastive learning are predicated on the concept of latent

classes. It is hypothesized that semantically similar data points are likely drawn from the

same latent class. By assuming the existence of these latent classes, the method provides

a structured mechanism to learn representations that are not only discriminative but also

inherently aligned with the latent semantic structures within the dataset. Such discrimina-

tive power is crucial for enhancing the efficacy of classifiers and other predictive models in

downstream tasks [1].

3.2 Methodology

In this work, we fully adopt the innovative constrained contrastive learning (CCL) frame-

work introduced by Umapathy et al [11]. in their study on segmentation tasks, applying it

to synthesis tasks in MR images. Their original research, detailed in the article ”Reduc-

ing annotation burden in MR: A novel MR-contrast guided contrastive learning approach

for image segmentation”, highlights how MR imaging offers flexible contrast mechanisms

(such as T1, T2, diffusion, etc.) that can be controlled using image acquisition parameters
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Figure 3.1: Transforming data from input space to representational space via a deep learn-
ing model, where similar data points are attracted (’Pulled’) closer together, while dissimi-
lar data points are repelled (’Pushed’) apart, exemplifying the process of contrasting similar
and dissimilar examples.

to better characterize underlying tissues. We extend this framework to focus on the syn-

thesis of MR images, leveraging the same MR contrast information via a constraint map to

embed tissue-specific details into the representational space. This approach not only main-

tains the integrity of the original framework but also explores its potential to (1) generate

precise tissue characterizations and (2) improve the efficacy of synthesis operations on MR

contrast images (such as T1-Gd or T2-FLAIR images).

3.2.1 MR Image contrast space

In our synthesis application for MR imaging, we aim to autonomously detect local ar-

eas with semantic consistency by leveraging an associated collection of multi-contrast MR

data, termed the contrast space. These regions, characterized by similar underlying tissue

attributes, are expected to display analogous signal profiles within this contrast space. The

signal contrast in an MR image, denoted as s, is formulated by f(u, v,�,�), where (u, v)

are the spatial coordinates. Here, � encapsulates the tissue-specific parameters, while �

includes additional imaging parameters such as longitudinal relaxation time T1, transverse

relaxation time T2, or Apparent Diffusion Coefficient, among other MR imaging settings

like repetition time (TR), echo time (TE), inversion time (TI), and flip angles [11].
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Our hypothesis suggests that local p ⇥ p sections within an MR image, sharing akin �

values, will manifest similar representational features. To pinpoint such p ⇥ p sections

within a given image s, we utilize a series of related MR contrast images S = {si =

f(u, v,�,�i)}Ni=1, where N represents the number of contrasts. The contrast in both the

primary MR image and its corresponding contrast space is modulated by the identical

tissue-specific parameter �.

3.2.2 Constraint Maps

Regions within contrast images that share related � values will naturally reflect similar

signal profiles across the contrast space, serving as a proxy for the � tissue information.

We encode this tissue information within the contrast space by conducting a pixelwise

principal component analysis on S, retaining fewer than N principal components to reduce

dimensionality and filter out noise. Subsequently, an unsupervised clustering technique

like K-means, employing K clusters, is applied to these principal component images to

create the constraint map C. This map classifies each pixel according to the underlying

tissue parameter �, providing a structured characterization. Please refer to Figure 3.2 to see

an example of the generated constraint map from given MR contrast images.

Figure 3.2: Multiparametric images displaying tissue-specific information, accompanied
by the generated constraint map.
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3.2.3 Strategy and Loss Function

Consider an MR image s and its corresponding constraint map C. The feature represen-

tation  ✓(s) is obtained by processing s through the deep learning model. Define M as

the collection of all non-overlapping p ⇥ p patches within s. We select a patch ma from

M at random, which has a feature dimension  (ma) 2 R
p⇥p⇥D where D represents the

dimensionality of the space. The following description outlines our contrasting approach to

determine the sets of positive (⌦+
ma

) and negative (⌦�
ma

) patches that facilitate the learning

of distinct local features.

During training sessions, for each patch ma, we identify all other patches mi within s where

the similarity in their feature representations surpasses a preset threshold, d( (ma), (mi)) �

sthresh. This gives us the set of “representationally similar” embeddings Rma .

Rma = {mi : d( (ma), (mi)) � sthresh}

(3.1)

We assess similarity in the representational space using the l2-normalized cosine similarity

metric. As an alternative approach, the set Rma can also be constructed by selecting the

top-K nearest neighbors in the representational space that are most similar to  (ma).

Next, we use the constraint map to determine the ”parametrically similar” embeddings⇤ma ,

those sharing identical signal characteristics and potentially the same tissue parameter � as

ma:

⇤ma = {mj : �(mj) = �(ma)}

(3.2)
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In this context, �(ma) indicates the predominant class among the pixels within the patch

ma on the constraint map.

The positive and negative neighborhoods are defined through the following constraints for

each learning iteration:

⌦+
ma

= Rma \ ⇤ma (3.3)

⌦�
ma

= Rma \ ⇤c
ma

(3.4)

Where ⇤c
ma

is the complement of ⇤ma . This strategy, which they refer as constrained

contrastive learning [11], ensures that patches that are both representationally and paramet-

rically similar to ma are grouped closer together, as it is shown in Figure 3.3.

Figure 3.3: Representational space of a selected patch, showing the identification of both
representationally and parametrically similar neighbors.
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The contrastive loss L(ma) for a patch ma is calculated as follows:

L(ma) =
1

|⌦+
ma

ma|
X

mi2⌦+
ma

l(ma,mi) (3.5)

l(ma,mi) = � log

 
e
d( (ma), (mi))/⌧

ed( (ma), (mi))/⌧ +
P

xk2⌦�
ma

ed( (ma), (mk))/⌧

!

(3.6)

Here, ⌧ is the temperature coefficient, and d(a, b) = aT b
kakkbk represents the cosine similarity

between two l2-normalized feature vectors a and b in the representational space. This loss

function is designed to maximize the probability that a selected patch ma will be recognized

as similar to its positively associated local region mi within ⌦+
ma

. By minimizing this loss

function, we encourage the representations of patches in ⌦+
ma

to become more similar,

while ensuring that those in ⌦�
ma

remain dissimilar. The total contrastive loss for an image

is calculated as the sum of losses over T randomly sampled patches in the image:

L(s) =
1

T

TX

i=1

L(mi) (3.7)
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4. Unet Architecture

4.1 Introduction

The U-Net model, a significant advancement in the field of computer vision and particularly

impactful in the domain of medical image analysis, was proposed by Olaf Ronneberger,

Philipp Fischer, and Thomas Brox in their seminal paper presented at the International

Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)

in 2015 [9]. Originally developed for biomedical image segmentation, U-Net has demon-

strated exceptional versatility and effectiveness, finding application in a broad spectrum of

tasks beyond its initial design. At its core, U-Net is a convolutional neural network (CNN)

that features a distinctive structure, enabling efficient processing and analysis of visual data,

a crucial capability especially in scenarios where data availability is limited.

4.1.1 Architecture

At the heart of U-Net’s design is its distinctive ”U” shaped structure, which embodies the

encoder-decoder concept:

• Encoder (Contraction Path): The encoder or contraction path serves to capture the

context within the image. It consists of a sequence of convolutional and max pooling

layers. This structure works to progressively reduce the spatial dimensions of the

input image while deepening its feature representation, allowing the model to distill

and encode high-level features from the visual data.

• Decoder (Expansion Path): The decoder or expansion path inversely mirrors the

encoder, employing a series of upconvolutions (or transposed convolutions) and con-

catenations with corresponding feature maps from the encoder through skip con-

nections. This expansion path progressively restores the spatial dimensions while

refining the feature depth, enabling precise localization and detailed segmentation by

integrating high-level contextual information with low-level spatial details.
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• Skip Connections (Bridging Encoder and Decoder): A key innovation of the U-

Net architecture is the introduction of skip connections that directly link layers in

the encoder with corresponding layers in the decoder. These connections are crucial

for the transfer of spatial and structural information, which helps in the precise de-

lineation of object boundaries. Skip connections ensure that the decoder has access

to both the abstracted features of the deeper layers and the fine-grained details lost

during downsampling, facilitating a more nuanced reconstruction of the image.

4.2 Adapting U-Net for Synthesis

While U-Net was initially tailored for segmentation, its encoder-decoder framework, com-

plemented by skip connections, provides a versatile foundation for other complex tasks,

such as image synthesis.

In our case, in synthesizing missing MR contrast, T1CE, U-Net can be adapted to han-

dle multi-modal inputs by adjusting the input layer to accept different MRI contrasts as

separate channels. This adaptation leverages the encoder to assimilate diverse contextual

information from the input contrast images, while the decoder focuses on reconstructing

the desired output contrast image with high fidelity. Customizing the output layers and

employing specialized loss functions tailored to the synthesis task can further refine the

model’s output, ensuring that the synthesized images closely match the target characteris-

tics in terms of structure and appearance.

We can customize a U-Net model by keeping some decoder layers unadjusted during pre-

training and calculating loss on the feature maps from the lower levels of the decoder.

This approach allows the last layers of the decoder to remain as free weights for further

adjustments in the downstream tasks, which we will discuss in the Chapter 6. Figure 4.2

illustrates the feature maps extracted from the last and third layers of the decoder.
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Figure 4.1: We employ a customized version of the UNET model for our training. The
2D Encoder-Decoder architecture (UNET) used in this work is shown here. The encoding
path consists of a series of 2D convolutions layers (3x3 kernels) with padded convolutions,
batch normalization layers, and rectified linear activation layers. The number of feature
maps generated by each convolution layer are noted next to it.

Figure 4.2: Comparison of feature maps extracted from the last layer of the decoder (full
decoder model) and the third layer of the decoder (partial decoder model).
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5. Synthesis Loss

In my thesis, the evaluation of loss functions extends beyond traditional pixel-to-pixel ap-

proaches like Mean Absolute Error (MAE) and Mean Squared Error (MSE), to include a

Perceptual loss framework that integrates the feature-based analysis capabilities of VGG16.

Pixel-based losses often lead to over-smoothed results and fail to capture high-frequency

details, shortcomings that Perceptual loss mitigates by emphasizing feature similarity over

exact spatial alignment. This feature-centric methodology, drawn from the realm of super-

resolution, not only enhances the visual sharpness of the generated images but also ensures

that the reconstructed output preserves contextual integrity, underscoring the efficacy of the

deep learning model employed in my research.

5.1 MAE Loss

Mean Absolute Error (MAE) loss, also known as the L1-norm loss, quantifies the absolute

differences between the predicted values and the actual values in an image. In the context of

medical image synthesis, MAE loss would measure the absolute pixel-wise discrepancies

between the synthetic MRI images Isynth and the corresponding ground truth MRI images

IMR, thereby providing a direct representation of the average error across the image. This

loss function is robust to outliers and often leads to reconstructions with fewer artifacts

compared to MSE.

MAE =
1

N

NX

i=1

|IMRi � Isynthi | (5.1)

5.2 MSE Loss

Mean Squared Error (MSE) loss, the squared L2-norm, minimizes the sum of the squared

differences between the synthesized MRI images Isynth and the real MRI images IMR. MSE

is highly sensitive to large errors due to its squaring operation, pushing the model to focus

on reducing larger errors more aggressively. While this can lead to high-quality reconstruc-

25



tions where minimizing large errors is crucial, it may also result in overly smooth images

as it penalizes variance, potentially affecting the sharpness and fine details.

MSE =
1

N

NX

i=1

(IMRi � Isynthi)
2 (5.2)

5.3 Perceptual Loss

The term ”perceptual” implies that the loss function is more aligned with human perception

of images. While pixel-wise loss might consider two images to be very different if all

pixels are slightly off, perceptual loss might find them to be similar if they share the same

structures and textures, much as a human might not notice the pixel differences but would

recognize the same objects and shapes in both.

5.3.1 VGG16

VGG16 [10] is a convolutional neural network (CNN) model that has achieved remarkable

recognition for its performance in large-scale image recognition challenges. The model is

structured as a deep network with 16 weight layers, designed with a philosophy of sim-

plicity and depth. VGG16 employs a series of convolutional layers with small receptive

fields of 3×3, which are stacked on top of each other in increasing depth, as it shown in

Figure 5.1. Interspersed among these convolutional layers are max pooling layers, which

serve to reduce spatial dimensionality and to induce spatial hierarchy in the feature rep-

resentation. The network concludes with fully connected layers that lead to a final output

layer, typically tailored for classification tasks.

The architecture has approximately 138 million trainable parameters, a testament to its

depth and capacity for feature extraction. The depth of the network, combined with the

small size of the convolution filters, allows VGG16 to learn complex features at various

levels of abstraction, which has been a significant factor in its widespread adoption for var-

ious computer vision tasks.
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Figure 5.1: In VGG16 there are thirteen convolutional layers, five Max Pooling layers, and
three Dense layers which sum up to 21 layers but it has only sixteen weight layers i.e.,
learnable parameters layer.

Figure 5.2: To utilize the VGG network as a loss network, we extract the feature maps
from the fourth layer of both the input and target in the VGG network and then calculate
the mean squared error (MSE).

In the context of image synthesis, pretrained VGG16 can be utilized as a feature extractor

where the network is employed in a non-traditional way — not for classifying images, but

for comparing different images. When used for synthesis loss calculation, VGG16’s inter-

mediate layer activations can serve as a representation of the high-level features learned by

the network. By extracting these features from both the target (ground truth) image and the

synthesized (generated) image, one can calculate the synthesis loss.
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This loss is computed by measuring the similarity between the feature maps of the synthe-

sized image and the feature maps of the target image using a chosen error function, such as

the mean squared error (MSE) or the mean absolute error (L1), as visualized in Figure 5.2.

This approach is often referred to as perceptual loss or feature reconstruction loss. Since

VGG16 is pre-trained on a diverse set of images, its features can capture a wide range of

visual patterns and textures, making it particularly effective for such comparisons.

By focusing on feature similarities rather than pixel-level differences, our loss function en-

sures that the synthesized model prioritizes the replication of perceptually relevant details.

This approach involves extracting features from both the predicted and target images using

the VGG16 network, and then computing the L2 distance or Mean Squared Error (MSE)

between these features at corresponding spatial locations, as defined in Equation 5.3 (5.3).

In this equation, ŷh,w,c and yh,w,c represent the predicted and target features, respectively.

This will enable the generation of images that are visually closer to the target in terms of

textures, patterns, and complex structures.

LPerceptual Loss =
1

H ⇥W ⇥ C

X

h,w,c

||ŷh,w,c � yh,w,c||22 (5.3)

5.4 Evaluating Synthesis Model Loss Functions

Earlier we outlined the potential for employing various loss functions within our synthesis

model—specifically Mean Squared Error (MSE), Mean Absolute Error (MAE), and per-

ceptual loss. To examine their effects, we tested all three models: Baseline, CL-Full, and

CL-Partial, against each type of loss function. Our empirical results showcased the superi-

ority of perceptual loss in generating sharp, realistic images that closely mirror the original

data.

As evidenced in Figure 5.3, models trained with MSE and MAE tended to produce images

with a smoother, more blurred appearance, albeit preserving the general structure of the

brain. In stark contrast, models utilizing perceptual loss achieved a higher level of detail
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and sharpness. This was particularly notable in the models’ ability to reconstruct tumor

regions with greater clarity and definition. Furthermore, according to the LPIPS values

presented in Table 5.1, images generated using Perceptual loss were closer to the original

images, indicating its efficacy in preserving textural details that contribute to the perceptual

quality of the synthesized images.

Figure 5.3: Models trained with various loss functions: MSE, MAE, and perceptual loss.

Table 5.1: LPIPS AlexNet values for different models and loss functions

Loss Function Baseline CL-Partial CL-Full

MSE 0.122 0.117 0.123
MAE 0.145 0.155 0.144
Perceptual 0.0867 0.0846 0.0840
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6. Model Architecture

The proposed network architecture is designed to generate targeted MR contrast images

and consists of two main stages: pretraining and contrast synthesis. As discussed in Sec-

tion 3.1.2, Contrastive Learning plays a crucial role in utilizing a large amount of unlabeled

data for feature representation. In the pretraining stage of our network, this unsupervised

learning approach is employed to aggregate tissue-specific information from various MR

contrast images. These feature representations are then utilized in downstream task.

In the second stage, the contrast synthesis network leverages the weights developed during

pretraining. This stage is specifically tasked with learning the synthesis of targeted MR

contrast images. The synthesis network builds on the foundational work of the pretraining

stage, further refining all network weights to effectively generate the desired outputs.

6.1 Pretraining

For the pretraining stage of our network, we employ the U-Net architecture, depicted in

Figure 4.1. This model processes MR contrast images with spatial dimensions of 160 x

160 pixels. As illustrated in Figure 6.1, in this case our inputs for this model include three

types of contrast images: T1-weighted, T2-weighted, and T2-FLAIR. However, the model

is flexible and can accept any combination of these images, or even a single image type.

During pretraining, the model generates feature maps from the input images. These maps

are then used alongside prepared constraint maps to calculate the contrastive loss (3.5),

which guides the learning process.

6.1.1 Full Decoder and Partial Decoder

To explore the impact of different network configurations on learning efficacy, we experi-

mented with modifications to the decoder section of the U-Net architecture. We tested two
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Figure 6.1: Schematic of the Pretraining Network. Three distinct MR contrast images
(FLAIR, T1, and T2) are input into the U-Net model, which is composed of an encoder (E)
and a decoder (D). The network generates feature maps from these inputs. The contrastive
loss is then computed based on these feature maps in conjunction with a corresponding
constraint map. The process is applicable for both the complete decoder (CL - Full) and
the partial decoder (CL - Partial) scenarios.

scenarios: a full decoder setup (referred to as ”CL - Full”) and a partial decoder setup (”CL

- Partial”). In the full decoder scenario, all layers of the decoder are used to reconstruct the

data from the latent space back to its original size. The contrastive loss is then calculated

based on the feature maps generated from the last decoder layer.

In a typical encoder-decoder architecture, the encoder compresses the input into a latent

representation, and the decoder reconstructs the output from this representation. By omit-

ting the final layers of the decoder during the initial training phase — in this case, the last

two layers — these layers do not learn from the primary training process. This approach

allows the last two layers to retain ”free weights,” which can be adjusted during the down-

stream task. The output from the earlier layers captures essential data characteristics but

is less tailored to the specificities of the input data compared to a full decoder output. The

final layers, being free of adjustments during this initial training, are more adaptable for

fine-tuning based on the downstream task, which in our case is the synthesis of the T1-CE

image. This technique, inspired by prior research, is hypothesized to provide the model
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with more flexibility in adjusting these weights to enhance performance in other DL tasks.

Our experiments aim to evaluate the effectiveness of this strategy compared to the full

decoder setup in synthesis task.

6.2 Synthesis Model

The synthesis network represents the second stage of our architecture, wherein we continue

to utilize the U-Net model, this time with the objective of generating the target MR contrast

images. This stage leverages the pretraining weights acquired in the first stage, applying

perceptual loss to guide the synthesis process. The architecture and the initial weights for

this stage are illustrated in Figure 6.2.

Input images with dimensions of 192 x 192 pixels are fed into the U-Net model, which then

produces a predicted MR image. The fidelity of this prediction is evaluated by comparing

it to the target image using a defined loss function. For our network, we employ percep-

tual loss, utilizing the VGG16 network 5.3.1, which is renowned for capturing high-level

content and style from images, to refine our model’s predictions.

Figure 6.2: Diagram of the Contrast Synthesis Network. The U-Net model, initialized with
weights from the pretraining network either CL-partial, CL-full, or baseline (no weights)
receives input images of FLAIR, T1, and T2 contrasts with a resolution of 192 x 192 pixels.
The model then synthesizes contrast images, which are subsequently evaluated by the loss
network, using a VGG-based perceptual loss framework.
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6.2.1 Baseline

To assess the benefit of using pretrained weights, we introduce a baseline model for com-

parison. This baseline model follows the same architectural and training setup; however, it

diverges in that it commences training with randomly initialized weights, lacking any pre-

trained information. The comparison between the pretrained U-Net model and the baseline

provides insights into the efficacy of pretraining for the task of MR image synthesis.
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7. Data Pre-processing

7.1 Constraint Maps

Constraint maps are crucial for our MR-contrast guided contrastive learning approach.

They encapsulate tissue parameter information that assists in emphasizing distinctive fea-

tures during the pretraining phase. The generation of these maps is an offline preprocessing

step.

To create the constraint maps, we first perform Principal Component Analysis (PCA) fol-

lowed by K-Means clustering on the three available MR contrast images. The PCA step

reduces dimensionality and noise, while K-Means clustering, with k set to 20, organizes

the MRI data into meaningful clusters. The choice of 20 clusters is based on our analysis

presented in Table 1.1, which takes into account the variety of tissue types—such as white

and gray matter, necrotic regions, inflammation, water, fat—and the intrinsic contrasts of

the images. Opting for more clusters could result in over-segmentation, while fewer clus-

ters might oversimplify the tissue parameters, obscuring critical details needed for effective

pretraining.

7.2 Image Processing

The data pre-processing pipeline was carefully designed to standardize the MR images

and optimize them for effective network training. The following steps outline the pre-

processing applied:

• Slice Selection: Each subject’s dataset originally comprised 155 slices for each con-

trast image. We truncated the top and bottom slices to ensure that the remaining

images prominently featured visible brain structures.

• Intensity Clipping: Intensities were clipped to fall within the 0.01st to 99.9th per-

centile range, mitigating the effect of extreme values that could skew the analysis.

34



• Histogram-Based Contrast Stretching: We utilized histogram-based contrast stretch-

ing for contrast enhancement, rescaling intensities within the brain mask to sharpen

the feature distribution.

• Channel-wise Z-score Normalization: Channel-wise normalization was implemented

by applying zero-mean and unit standard deviation normalization exclusively to the

signal within the brain mask. This targeted approach is crucial for addressing the

variable acquisition protocols in the BraTS dataset.

• Cropping for Pretraining: Originally having dimensions of 240 x 240 pixels, the

images were cropped to 160 x 160 pixels during the pretraining phase. This size was

selected to balance focus on the brain regions with the computational efficiency of

the training process.

• Cropping for Synthesis Task: For downstream tasks involving synthesis, we in-

creased the crop size to 192 x 192 pixels to enhance the resolution and the level of

detail, which is paramount for generating high-fidelity MR images.
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8. Experimental Results

8.1 Experimental settings

The BraTS’21 dataset was randomly divided into three subsets: a training set with 350

subjects, a validation set with 245 subjects, and a test set comprising 70 subjects. We con-

ducted experiments using three models: Baseline, CL-Full, and CL-Partial, across various

configurations and settings. The optimal configuration, chosen for its highest PSNR, LPIPS

and superior detail preservation in the tumor region, involved synthesizing T1CE images

from a combination of T1-weighted, T2-weighted, and T2-Flair images.

During the experimentation phase, several parameters were fine-tuned. For pretraining, a

learning rate of 1 ⇥ 10�3 was selected, with training extending over 150 epochs. In the

synthesis tasks, the learning rate was adjusted to 1 ⇥ 10�2 for 20 epochs. We utilized

checkpoints throughout the training process to monitor the best loss value on the validation

set and adjusted the number of epochs based on these checkpoints, as detailed in the logs

shown in Figure 8.1. The temperature setting for the contrastive loss was fixed at 0.1, with

a patch size of 4⇥ 4.

Figure 8.1: The illustrated training and validation curves on the left correspond to the
pretraining stage, while those on the right are for the synthesis stage. These plots pertain
to the CL-Full model.
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In assessing the performance of our models, we employed a comprehensive set of metrics

including Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-

to-Noise Ratio (PSNR), and Learned Perceptual Image Patch Similarity (LPIPS) [12] with

architectures like VGG and AlexNet. While MSE provides a straightforward measure of

the average squared difference between the estimated and actual values, SSIM and PSNR

offer insights into the perceptual quality of images, focusing on aspects such as contrast,

luminance, and noise. LPIPS, particularly when utilized with well-established neural net-

works like VGG and AlexNet, is especially valuable for image synthesis tasks. This metric

assesses the perceptual similarity between synthesized and real images more effectively

than traditional pixel-based metrics. By comparing deep features extracted by these net-

works, LPIPS can capture subtler, more human-perceptible differences, making it a supe-

rior choice for ensuring the synthesized images are not only accurate in pixel values but

also visually indistinguishable from genuine images in human perception.

8.1.1 Model Comparison

In the synthesis of T1CE images, achieving high accuracy in the representation of tumor

and necrotic regions is crucial. For training, the VGG16 network was utilized to calcu-

late the loss, enhancing the model’s ability to capture detailed textures and structures. As

demonstrated in Figure 8.2, the CL-Full model exhibits superior performance in recon-

structing these regions, outperforming both the Baseline and CL-Partial models. As shown

in Table 8.1, the CL-Full model has significantly higher values of PSNR and SSIM com-

pared to the Baseline. Additionally, it demonstrates superior LPIPS metrics, evaluated

using both AlexNet and VGG, compared to both other models, which underscores its ef-

fectiveness. The statistical assessment of these results is detailed in the following section.

8.1.2 Statistical Analysis of Model Performance

To statistically validate the performance enhancement of the CL-Full model over the Base-

line in generating T1CE images from a combination of T1-weighted, T2-weighted, and T2-

Flair contrast images, a two-tailed paired t-test was conducted on a set of 70 test subjects.
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Table 8.1: Comparison of Metrics Across Different Models, where VGG16 was utilized for
perceptual loss calculation during the training phase. Metrics used for evaluation include
PSNR, MSE, SSIM, and LPIPS metrics evaluated using both ’AlexNet’ and ’VGG’.

Model Type SSIM MSE PSNR LPIPS ’AlexNet’ LPIPS ’VGG’

Baseline 0.752 0.166 27.23 0.0871 0.1494
CL-Partial 0.748 0.164 27.23 0.0846 0.1335
CL-Full 0.757 0.166 27.60 0.0844 0.1240

Table 8.2 representing key aspects of image quality and fidelity by providing statistical re-

sults for different metrics.

Our null hypothesis posited no significant difference between the CL-Full and Baseline

models, while the alternative hypothesis suggested a superior performance of the CL-Full

model. The significance level was set at 5%, meaning that a p-value lower than 0.05 would

indicate a statistically significant difference favoring our alternative hypothesis.

Table 8.2: Statistical comparison of models using t-test under the null hypothesis with a
desired confidence of 5%, p < 0.05

Metric Model Comparison p-value Conclusion

SSIM CL-Full vs. Baseline 0.0004 Significant
CL-Full vs. CL-Partial 0.0000 Significant

MSE CL-Full vs. Baseline 0.8765 No significant
CL-Full vs. CL-Partial 0.0966 No significant

PSNR CL-Full vs. Baseline 0.0000 Significant
CL-Full vs. CL-Partial 0.0000 Significant

LPIPS ’AlexNet’ CL-Full vs. Baseline 0.0000 Significant
CL-Full vs. CL-Partial 0.7611 No Significant

LPIPS ’VGG’ CL-Full vs. Baseline 0.0000 Significant
CL-Full vs. CL-Partial 0.0000 Significant

The statistical analysis in Table 8.1 & 8.2 indicates the following:

• The CL-Full model significantly outperforms the Baseline model across all metrics

except MSE, where there was no significant difference.
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• For comparisons between CL-Full and CL-Partial, the results are mixed. CL-Full

shows significant improvement in SSIM, PSNR, and LPIPS with VGG, but not in

MSE and LPIPS with AlexNet where differences were not statistically significant.

• Results suggest that the full implementation of constrained contrastive learning en-

hances model performance in most tested aspects compared to both a baseline and a

partially constrained contrastive model, particularly in terms of image quality met-

rics like SSIM and PSNR, as well as perceptual similarity as assessed by LPIPS with

VGG.

8.2 Dataset and other training details

8.2.1 Data Cleaning

As previously mentioned, our initial dataset comprised approximately 1660 subjects. Upon

review, we identified 800 images that were corrupted, blurred, highly noisy, or contained

significant artifacts; some were even bisected, as illustrated in Figure 8.3. These issues

made them unsuitable for our synthesis tasks and adversely affected the quality of the

generated images. While the BraTS’21 dataset includes scans from various clinics using

different equipment—a feature we appreciate for its potential to help develop a model that

generalizes well across different image qualities—images with excessive corruption can

deteriorate model performance. Figure 8.4 demonstrates the notable improvements in the

generated images after cleaning the dataset. It is evident that not only the synthesis of

the tumor region but also the overall image quality and other details have significantly

enhanced.

8.2.2 Normalization

In our code, we provide two normalization options before training: normalizing the entire

image to a [0, 1] scale and employing z-mean normalization. Z- score normalization specif-

ically targets the brain tissue, normalizing based on the mean and standard deviation of the
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brain region, excluding the background. This method has proven especially effective in our

experiments (Figure 8.5) for enhancing the synthesis of tumor regions, aligning with our

focus on improving tumor visibility in MRI images.

8.2.3 Activation Function

The choice of activation function is pivotal in neural network performance, influencing

both the learning dynamics and the quality of the generated output. To determine the most

suitable activation function for our model, we conducted a comparative analysis between

Tanh and ReLU, as reported in Table 8.3.

Table 8.3: Performance Metrics for Different Activation Functions and Loss Values

Activation Full Partial Base

SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR

Tanh 0.752 0.169 26.83 0.746 0.175 27.03 0.751 0.170 27.14
ReLU 0.757 0.166 27.60 0.748 0.164 27.23 0.752 0.166 27.23

In comparative performance assessments across different configurations—Full, Partial, and

Base—as detailed in Table 8.3, the ReLU activation function consistently outperformed

Tanh. This performance contrast with the Tanh activation function is further illustrated in

Figure 8.6.
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Figure 8.2: Comparison of T1CE synthesis results using a combination of T1-weighted,
T2-weighted, and T2-Flair images across different subject samples for three models: Base-
line, CL-Full, and CL-Partial.
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Figure 8.3: Examples of Corrupted MR Images demonstrating the possible challenges by
poor-quality data in synthesis task.

Figure 8.4: An example of synthesized MR contrast image (T1CE) before and after dataset
cleaning.
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Figure 8.5: Comparison of synthesized results using Z-mean score normalization versus
[0, 1] normalization.
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Figure 8.6: Comparison between setting the activation function as ReLU or Tanh for three
different models: Baseline, CL-Full, and CL-Partial.
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Future Work

This thesis has set the groundwork for several exciting avenues of future research in MR

contrast image synthesis using deep learning. As the field progresses, the following strate-

gies could significantly enhance the model’s performance and application:

Complex Tasks-Simultaneous Synthesis of Multiple MR Contrasts

Future studies could aim to tackle more complex tasks, such as training models to take

only two MR contrast images and simultaneously synthesize two additional contrasts that

are missing. This could dramatically improve efficiency in clinical settings, reducing the

need for multiple scans. The challenge lies in ensuring the model can capture and relate

the nuanced differences and dependencies between various contrast types without losing

accuracy.

Incorporate Adversarial Training

Incorporating adversarial training by implementing a discriminator model could refine the

realism of synthetic images. Adversarial loss, when applied through such models, pits

the generator against the discriminator in a game-theoretic scenario, pushing the generator

to produce increasingly realistic images. This approach could help overcome some of

the synthetic artifacts and unrealistic texturing that current models might produce, thereby

improving the clinical usability of synthesized MR images.

Model Stacking Strategy

Exploring a dual-model approach by stacking CL-Partial and CL-Full models offers a

promising direction for enhanced feature extraction and synthesis precision. Stacking mod-

els in such a manner could leverage the strengths of each model, potentially leading to

better generalization over a wider range of data variations. This strategy might also mit-

igate overfitting by combining the diverse feature representations learned by each model

separately.
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Tumor-Centric Loss Weighting

Modifying the synthesis loss function to assign higher weights to tumor masks would pri-

oritize tumor region accuracy, an area of critical importance for diagnostic imaging. By

emphasizing tumor areas within the loss function, the model could produce higher fidelity

representations of these crucial regions, thus providing radiologists with more reliable im-

ages for making accurate diagnoses. This approach necessitates careful calibration to bal-

ance the emphasis on tumor regions against the overall image quality.
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