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ABSTRACT

Visual Analytics Through Edge Servers: Learned Feature Compression

and Adaptive Video Coding

by

Zhongzheng Yuan

Advisor: Prof. Yao Wang, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

May 2024

Deep learning models for visual analytics require high computation capabilities

to process high-resolution images in real-time. O✏oading the computation to

an edge server can mitigate computation bottleneck at the mobile device, but

may decrease the analytics performance due to the necessity of compressing the

image data. In this thesis, we explore using learned compression techniques to

improve the performance of visual analytics tasks under bitrate and computation

constraints. We first consider using learned autoencoder-based image compression
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model to compress the image and perform inference on the decompressed image.

Using a rate-task loss in training the compression and inference pipeline end-to-

end, we show that the learned end-to-end trained pipeline achieves improved task

performance over compression models optimized for human visualization. Split-

computing is another approach for computation o✏oading where the task model

is split between the mobile device and the server. The intermediate features are

compressed and transmitted between the two devices. We propose a learned feature

compression method using hyperprior and feature dimensionality reduction to

compress the intermediate features. We demonstrate the e↵ectiveness of the split

computing pipeline in performing computation o✏oading for the problems of object

detection and image classification. Compared to compressing the raw images on the

mobile, and running the analytics model on the decompressed images on the server,

the proposed feature-compression approach achieves significantly higher analytics

performance at the same bit rate, while reducing the complexity on the mobile.

We further propose a scalable feature compression approach, which facilitates

adaptation to network bandwidth dynamics, while having comparable performance

to the non-scalable approach. Finally, we explore using standard video compression

codecs in real-time video object detection applications. A high-resolution video

dataset of pedestrian street scenes was collected to investigate the e↵ect of changing

spatial and amplitude resolution on object detection performance. Based on this

result, a resolution adaptive video compression approach was proposed to maximize

the task performance.
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Chapter 1

Introduction

1.1 Background

Deep learning models have been successful in achieving state-of-the-art perfor-

mance in various visual analytics tasks. The ability to run these computationally

intensive neural networks at a high frame rate is crucial for applications such as

autonomous driving, navigation assistance for blind and visually impaired people,

and augmented reality. However, the end-user devices that capture the raw visual

data are often constrained in computation power and cannot run these models

with su�cient speed. Running these models also consumes significant energy and

therefore reduces the battery life of the device.

One potential solution to this problem is to employ edge computing, which

transmits the image data captured in the device to a nearby edge server with high

computation ability. A crucial component in this system is the compression of

the image data before it is transmitted. E�cient computation o✏oading requires

optimizing multiple objectives including compressed data rate, analytics perfor-
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mance, and overall inference speed. Our research is focused on the problem of data

compression for o✏oading the computation of visual analytics. We aim to develop

a method of compression that maximizes the rate-accuracy trade-o↵, while under

the constraint of fast inference speed of the overall system.

1.2 Organization of the Thesis

This thesis is organized as follows:

In Chapter 2, we provide a brief review of learned image compression models and

our work on fine-tuning image compression models for analytics.

In Chapter 3, we propose a split computing model with a learned feature compressor

to compress the intermediate features. We compare the performance of the split

computing approach to the image compression approach.

In Chapter 4, we propose a method of scalable feature compression as an extension

to the split computing model. The scalable model o↵ers variable bitrate compression

and better adaptation to dynamic network environments than the non-scalable

model.

In Chapter 5, we investigate the use of a standard video codec to compress a video

stream in an edge computing system for blind and visually impaired navigation

assistance. We propose a spatial resolution adaptive compression strategy to

improve object detection performance.
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Chapter 2

Image Compression for Analytics

2.1 Learned Image Compression

Image compression is a fundamental and widely studied research problem

in image processing and computer vision. The goal of image compression is to

reduce the bitrate necessary to store and transmit image, while minimizing the

distortion caused by compressing the image. Most image compression models

follow the transform-based image compression framework. It consists of three basic

modules: transform function for converting the input image to a more energy

compact transform domain, quantizer for discretizing the transform coe�cients,

and entropy coding to losslesssly compress the quantized coe�cients. The popular

image compression standard JPEG is one example of this approach which uses the

discrete cosine transform (DCT), a transform that was found to have good energy

compactness and decorrelation to the image [50].

More recently, learned image compression approaches have been proposed

and achieved remarkable success in improving rate-distortion performance. Deep
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learning based models benefit from the strong modeling capacity of deep neural

networks and end-to-end optimized pipeline to achieve better rate-distortion results

than traditional image compression codecs. The variational autoencoder model

proposed by Ballé et. al. [2] is an influential work that proposed end-to-end training

and the use of convolutional neural network as the encoder and decoder model. The

encoder model is a fully convolutional network that transforms the input image into

a latent tensor z, with reduced spatial dimension and increased channel dimension.

The latent tensor is then quantized and entropy coded with a piecewise linear

probability model. At the decoder, the decoded quantized latent is transformed

back to the image domain using a decoder model with transposed convolution.

This model is later extended by Ballé et. al. to use a hyperprior model to

estimate the mean and variance of the Gaussian distribution used for encoding the

quantized features [3]. A hyperprior encoder is trained to extract a set of features

zhyp from the main features z. The quantized ẑhyp is also entropy encoded and

sent as side information to the decoder. The hyperprior decoder decodes zhyp to

obtain the mean and variance parameters for entropy encoding and decoding.

The encoder and decoder networks are end-to-end optimized using a rate-

distortion loss:

L = R + � ·D

= Ex⇠px [� log2 pẑ|ẑhyp
(ẑ|ẑhyp)� log2 pẑhyp

(ẑhyp)] + � · Ex⇠px [d(x, x̃)],
(2.1)

where � is a Lagrangian multiplier that controls the rate-distortion trade-o↵, ẑ is

the quantized latent, ẑhyp is the quantized hyperprior latent, and d(x, x̃) is the

distortion between the original image x and the decoded image x̂. For image

compressors trained for human visualization, the distortion function is commonly



5

chosen to be MSE or SSIM to preserve the perceptual quality of the compressed

images.

2.2 Finetuned Image Compression for Visual An-

alytics

Using a compression model trained for visual quality to compress images for

visual analytics will lead to a decrease in task accuracy. As shown in Figure 2.1,

the accuracy of the classificaiton model decreased significantly when the image was

compressed by a compressor trained with MSE as the distortion function. This

result suggests that the compressor trained for MSE distortion was not optimized

to keep information in the image that are important for the analytics model.

We proposed to finetune both the image compression model and the analytics

model to improve the accuracy under compression. This was achieved by training

the compressor-task model pipeline with a rate-distortion loss that takes into

account the task performance. As an example, for a classification task, we replaced

the distortion loss with cross-entropy (CE) loss between the classification results

based on compressed images and the ground-truth labels y.

L = CrossEntropy(g(f(x)), y) + � · Ex⇠px [� log2 pẑ(ẑ)], (2.2)

where x is the raw image, ẑ is the quantized latent, f and g are the compressor

and the classifier, and � is a scalar that controls the RD trade-o↵.

We performed our experiment with image classification as the task, and the

ImageNet dataset for training and evaluation [13]. The joint-autoregressive and
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(a)

(b)

Figure 2.1: Rate-Accuracy curves of compressor-classifier model: (a) training the
classifier only, (b) jointly training both the compressor and the classifier

hierarchical priors network [35] was used as the compression model. The ResNet18

classification models was used as the classifier, and the models was initialized with

pre-trained weights from torchvision in the Pytorch library [40].

We trained the classifier and compressor models in two steps to optimize both

models for compressed images. First, we fixed the weights of the compressor model
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and trained the classification model only. The compressor was initialized using

pre-trained model in the CompressAI library [4], trained using Rate-MSE loss to

di↵erent bit-rates (identified by the quality number q = 1, 2, ..., 8). The � parameter

in the loss was set to 0 to minimize only the cross-entropy term. This step trained

the classifier to learn the characteristics of compressed images and adapt to the

compression artifacts in the images. The accuracy of the trained classifiers are

shown in Figure 2.1a. For all rate-points, training the classifier model led to

an increase in the classification accuracy over the initial model. The increase is

especially significant for the low bitrate models.

In the second step, we jointly-trained both the compressor and classifier networks.

Initializing the classifier models from the trained models in the previous train step,

we continued the training by optimizing both compressor and classifier for the

combined rate-CE loss in Eq. 2.2. For each compressor-classifier pair at di↵erent q,

di↵erent values for the � hyper-parameter were used to train models that are near

each initial rate point q. As shown in Figure 2.1b, the jointly-trained models led to

further increase in performance compared to training the classifier only.
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Chapter 3

Feature Compression and Split

Computing

3.1 Introduction

In Chapter 2, we have shown that jointly training the learned image compression

model and the task model is e↵ective in achieving high rate-task performance.

However, this framework has a few drawbacks when used in practical applications.

The learned image encoder is a large model that consists of convolution layers with

large number of channels. Such model is computationally expensive for the client

device which typically has no GPU processor for convolutional network acceleration.

Furthermore, when the compressed features are sent to the server, the image decoder

has to fully decode the image back to the original image dimension before feeding

it to the task network for processing, adding an additional amount of computation

that reduces the overall inference speed.

split computing, also known as Collaborative Intelligence (CI), is another
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approach for o✏oading computation from the mobile device to the server. In

contrast to the image compression approach, where inference of the task model is

performed fully on the server side, the mobile and the server each share a part of

the computation of the task model in collaborative intelligence [1]. CI for deep

neural networks was first proposed by [22], which demonstrated that latency and

energy consumption can be reduced by splitting a deep neural network between a

mobile device and an edge server.

Compression of the intermediate features is necessary to reduce the bitrate

for transmission. There has been no widely adopted standard for compressing

the features of a model. Several works have proposed using existing image/video

compression standards or learned compression models for feature compression.

Intermediate feature compression using standard image/video codec was studied

in [8, 14] with HEVC, and in [15] with JPEG and additional dimensionality

reduction. Using standard codecs for feature compression in general did not achieve

good performance, as the codecs were designed for compression of images rather

than task model features.

Feature compression with learned entropy compression model was proposed

in [44]. The hyperprior model was used to predict feature probability model and

the compression and task model was end-to-end trained. However, the split point

considered by [44] was at the second to the last layer of the original deep learning

model, so that the mobile device still has to do a majority of the computation

task. In [12], a learned feature dimension reduction and entropy coding approach

was proposed. The model achieved good rate-task performance, but switching

between di↵erent feature compression modules was still necessary to compress at

di↵erent bitrates. In addition, because only the feature compression modules were
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trained, its performance was lower compared to end-to-end trained models. Another

feature compression approach for CI was proposed in [52], where a learned entropy

compression model was used to compress the features, and the input image was

downsampled to reduce spatial redundancy.

The standardization of feature compression for analytics has also started recently,

with the Feature Coding for Video Coding for Machines (FCVCM) standardization

e↵ort calling for proposals of feature compression solutions. In [23], the intermediate

features were stacked in a matrix and Principal Component Analysis (PCA) was

performed to transform the matrix into coe�cients. The coe�cients are compressed

using the VVC standard video codec. A similar strategy was used in [54], except that

a trained neural network was used instead of the PCA to transform the intermediate

features. The two methods both use standard video codecs to compress the

intermediate bitstream, which are not end-to-end trainable and may be suboptimal

to end-to-end trained methods.

3.2 Split Computing for Visual Analytics Models

We propose a split computing model with learnable feature compressor and

decompressor. The task model is split into two parts, with the first part running on

the mobile device and the second part running on the server. We call the mobile

part of the model the task encoder F , and the server part of the model the task

decoder G. The intermediate features at the point of split are compressed and

transmitted from the mobile to the server. An example of the split computing

network is shown in Figure 3.1, where the YOLOv5 model is modified for split

computing.
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Choosing the point of split is an important consideration as it a↵ects the

amount of computation needed to be done by the mobile device. In general, a split

point located deeper into the task model outputs sparser features that are easier

to compress. However, splitting deeper is counter to the goal of computational

o✏oading, as a larger percentage of the task model needs to execute on the mobile.

We observe that in typical learned image compression models [2, 3], the model

architecture involves the use of strided convolutions or downsample layers to reduce

the spatial dimension of the input. In the learned image compression model

proposed by [2, 3], the input image undergoes four 2⇥ down-sample convolution

layers before being entropy encoded. Interestingly, several task models [18, 48],

including the ones we use, also contain strided convolutions or 2⇥ downsampling.

Motivated by these similarities, we place the split point in our task models after

the fourth down-sampling layer (D4), mirroring the architecture of [2, 3]. We also

consider splitting after the third down-sampling layer (D3) for less computation on

the mobile side. In typical task models, these points of split are early in the task

model, so the share of computation allocated for the mobile device is small. This

methodology can be applied to a range of di↵erent computer vision models. We

demonstrate this by showing its e↵ectiveness in the YOLOv5 model [48] for object

detection, and the ResNet18 model for image classification [18].

3.3 Feature Dimensionality Reduction

It is common for convolutional network models to increase the number of

channels at each downsample layer. While having a large number of channels is

beneficial for task performance, there is significant redundancy among the channels,
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Figure 3.1: Overview of the proposed system. The task model is split into two
parts that run on the mobile device and the edge server, respectively. A feature
compression model is used to compress the intermediate features at D3. Another
split point (D4) considered in our experiments is also indicated. The notation
↓2 and ↑2 refers to down-sample by a factor of 2 and up-sample by a factor of
2 respectively. (a) For object detection using the YOLOv5 architecture. When
splitting at D4, the first skip connection of the YOLO model was removed. The C3
layer which originally receives this skip connection was modified with less input
channels. (b) For image classification using the ResNet 18 architecture.

which can be seen in the inter-channel covariance matrix, as shown in Fig. 3.2 (a).

Coding these channels directly and independently does not exploit the redundancy

between channels. We propose to first reduce the channel dimension of the features

before performing entropy coding. We use a 1⇥ 1 convolution layer to reduce the

number of channels from N to NR. In addition to reducing the number of channels,

this layer also serves to decorrelate the resulting channels. In the receiver, we use
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a reverse 1⇥ 1 convolution layer to increase the channel number back to N . As

shown in Fig. 3.2 (b), the first 10 channels capture most of the total variance of

the original N = 128 channels.

Similarly, we reduce the spatial dimension of the features by down-sampling. At

the encoder side, we use a convolution layer with a kernel size of 5⇥5 and a stride of

2 to down-sample the features by a factor of 2. At the decoder side, 5⇥5 transposed

convolution is used to upsample the features back to the original spatial dimension.

The reduction and expansion layers are placed before the nonlinear activation of the

output layer at the point of split. We do not use nonlinear activation in the feature

compression layers because the entropy coder expects a Gaussian distribution, while

nonlinear activation in the model typically produces a single-sided distribution. We

perform spatial reduction in addition to channel reduction for the split point at D3

so that the resulting spatial dimension is the same as in D4, while only channel

reduction is performed at the D4 split point.

Reducing the channel and spatial dimensions has the added benefit that it

reduces the computation time for arithmetic coding. We observed that larger tensor

size leads to longer arithmetic encoding time, as shown in our results Section 4.7.

Reducing the dimension of the feature tensor helps increase the overall inference

speed.

3.4 End-to-end Split Computing Model Training

In our framework, y is the feature generated at the split point of the YOLO

network, which is further reduced to z by the channel reduction layer. We use ✓

to denote YOLO model parameters, and use � to indicate the channel reduction
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Figure 3.2: Inter-channel covariance matrix (top row) and the variance of each
channel (bottom row) for the intermediate features from the YOLOv5 model at
the D3 split point, for the original feature channels and after channel reduction to
di↵erent number of channels.

and expansion layer parameters. Thus, we write z(y(x; ✓);�) to indicate these

dependencies. We modify the rate-distortion loss in Eq. (2.1) to perform end-to-end

training of the entire system including the YOLO detection model (parameterized

by ✓) and the feature compressor and decompressor (parameterized by �) inserted at

the split point, for detection-aware compression. Instead, we replace the distortion

loss by a detection loss Ldet that directly measures the detection accuracy of the

model’s output:

L = LR + � · Ldet

LR = Ex⇠px [� log2 p(ẑ(y(x; ✓);�))]

Ldet = Lobj + Lclass + Lbox.

(3.1)

Ldet is the loss used for training the uncompressed YOLO model, and it consists

of the object detection loss Lobj, object class loss Lclass, and bounding box loss

Lbox, which will depend on ŷ(ẑ;�) and ✓. A combination of rate and detection loss
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allows us to perform end-to-end training of the entire model including both the

compression and detection components.

Instead of directly performing entropy coding on the quantized version of

the reduced feature ẑ, we follow the hyperprior idea proposed in [3] to generate

the hyperprior feature that helps the entropy coding of ẑ. As shown in Fig 3.1,

the hyperprior encoder generates quantized hyperprior feature ẑh, from ẑ. The

hyperprior decoder predicts the mean and variance of each element in ẑ, in the

Gaussian model used for entropy coding of ẑ. The additional rate for ẑh is included

in the rate loss LR.

When inserting the dimension reduction layers into the model, the randomly

initialized weights of the layers severely degrade the performance of the model.

Through our experiments, we found it to be beneficial to first perform a pre-training

step on the feature reduction and expansion layers, using the MSE loss between y

and ŷ. This step does not invoke quantization (through adding random noise) on

the reduced feature z, nor the hyperprior encoder and decoder and the rest of the

network. Pre-training allows the feature reduction and expansion layers to learn to

reconstruct the features as much as possible before training with the detection and

compression objectives, which are more di�cult to optimize than the MSE loss.

3.5 Experiments and Results

The Ultralytics YOLOv5 model [48] was used as the task model architecture for

object detection. The smaller-sized YOLOv5s model with 7.2 million parameters

was chosen for faster training and inference speed. The model was initialized with

weights provided by [48], which were trained with images from the entire COCO
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training set. We used the same strategy of data augmentation as in the pre-trained

model. The original images were resized to 640⇥ 640 before being passed as input

to the model.

We trained models at di↵erent bitrates by varying the number of compressed

channels NR, the point of split D3, D4, and the hyperparameter �. From these

models, we selected the models that achieve the best rate-task trade-o↵ to draw

a Pareto curve of task-accuracy vs. bitrate. We compared our models with three

di↵erent baselines using the compression-decompression-analytics framework. In

the first baseline, we used the BPG for image compression, which is based on the

intra-coding scheme of the H.265 video compression standard [5], followed by the

pretrained task model without fine-tuning. In the second baseline, the learned

image compression model by [3] was used as the image compressor. The compression

model was trained using MSE-loss for reconstruction and the task model was not

fine-tuned for compressed images. In the third baseline, we fine-tuned both the

image compression model and the task model end-to-end using the same rate-task

loss from Equation 3.1.

In some applications such as tra�c monitoring or pedestrian navigation, it may

be unnecessary to detect all 80 classes of objects in COCO. Therefore, we also

performed an experiment on a smaller subset of the COCO dataset to demonstrate

the potential for even better rate-accuracy performance under a limited number of

object classes. From the COCO dataset, we picked 9 classes of objects, including

Person, Car, Bus, Truck, Motorcycle, Tra�c Light, Fire Hydrant, Stop Sign, and

Parking Meter, that are relevant for tra�c-related applications. We extracted

images from the COCO dataset that includes at least one instance of the 9 classes

into a dataset called the COCO-Tra�c dataset [55].



17

(a) Full COCO Dataset (80 object classes)

(b) COCO-Tra�c Dataset (9 object classes)

Figure 3.3: Detection performance under various bitrates for the full COCO dataset
and the COCO-Tra�c dataset. Points on the curves for the proposed method are
labeled with their respective compression configurations. For example, D4C6 refers
to compression at split point D4 and reduction to 6 channels.
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The rate vs. detection accuracy curves of our feature compression model and

the benchmark methods are shown in Figure 3.3 (a). The detection accuracy

is measured by the mean Average Precision under the Intersection over Union

threshold of 50 (mAP50). We compared our approach against four baselines that

compress and decompress the image before feeding into the detection network.

Our method performed better than the baselines of image compression followed

by YOLO detection over the entire rate range considered, although the di↵erence

is small at the higher rates. Compared to jointly training the image compression

model [3] and the YOLO model for rate-constrained object detection, our method

is still better at the lower rate regime. We expect that with more exhaustive search

of the hyperparameters in our feature compression layer, our method can be on-par

with this benchmark over the higher rate range.

For the experiment with the COCO-tra�c dataset, we only evaluated models

at the D4 split point and focused on the low bitrate region. By focusing on a more

specific set of objects, the features can be compressed to very low bitrates (by

using very few channels) while still maintaining high mAP (see Fig. 3.3 (b)). The

results are significant for settings with low communication bandwidth and require

compression into extremely low bitrates. It is possible to deploy a split detector

in these settings to have high detection performance while using low bandwidth

transmission.

In some practical applications, it may be desirable to use a fixed pair of task

encoder and decoder when integrating it in a split computing scenario. This

enables the system to reuse a task encoder/decoder pre-trained from a large

dataset without considering the compression artifacts and to switch only the

compression/decompression modules when the network throughput changes. In
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such scenarios, only the feature compression layer should be trained by the rate-

task loss while the rest of the analytics model remains fixed. We evaluate the

performance loss due to this practical constraint.

We use a pre-trained YOLOv5s model as the basis for the task encoder and

decoder and insert the non-scalable feature compression modules. The compression

modules are then trained with the rate-task loss, while the task encoder and decoder

are fixed. This approach is similar to that of [12], in which variable rate compression

is achieved by switching the compression layers while the task encoder and decoder

share the same weights for all bitrates. As expected, the rate-analytics performance

with this approach is significantly lower than the end-to-end trained models (see

3.3). On one hand, this result demonstrates that end-to-end training of all modules

can lead to significant performance gain. On the other hand, the performance

with the fixed task model is still far better than the image compression approach

when both the task model and compression models are fine-tuned, when the object

detection task focuses on a small number of application-specific classes (see Fig.

3.3(b))

For our experiments on the classification task, we adopted the ResNet18 model

implemented by the torchvision package [31], and we used weights pretrained

using ImageNet as initialization for our training. To combat overfitting, we used

the AutoAugment augmentation strategy as described in [11] for training with

the ImageNet dataset. The input original images were resized to 256 ⇥ 256 for

faster training. For evaluation, an image size of 320 ⇥ 320 was used. The rate

vs. classification accuracy curve is shown in Figure 3.4. Our split computing

classification model again achieved better accuracy against the baselines across

di↵erent bitrates.
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Figure 3.4: Classification Accuracy under various bitrates for the ImageNet dataset

3.6 Runtime Analysis

We ran our models and the baselines in a setting that may be feasible in a

practical scenario. For computations ran on the mobile device, we used a 1.1GHz

CPU processor. For neural network computations on the server side, we used an

Nvidia RTX-8000 GPU. Entropy coding and decoding, however, are not parallelized

and are ran on the 1.1GHz CPU for both the mobile and server.

For the object detection task, a breakdown of the inference time for our feature

compression model and the baselines is shown in Table 3.1. Compared to running

YOLO locally, our model achieved a 47% and 53% reduction in the total inference

time for the low and high bitrate models, respectively. At high bitrates, our split

computing approach has a clear advantage over both baselines in the total inference

time. At low bitrates, although our model has a slightly longer runtime than BPG

+ YOLO, our detection performance is superior over both baselines. The baseline

using learned image compression followed by YOLO turns out to be not viable at

least for the setting considered here, since its total inference time is longer than
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[3] + YOLO

(0.050 bpp, 0.404 bpp)
BPG + YOLO
(0.0573 bpp)

BPG + YOLO
(0.382 bpp)

D4C6
(0.0585 bpp)

D3C40
(0.382 bpp)

YOLO on Mobile

Mobile Device
(CPU)

Image Compression 733.70 132.33 200.02
YOLO Pre-split 254.46 188.15

526.08
Feature Compression 10.12 26.78

Edge Server
(GPU)

Image Decompression 30.31 94.77 119.00 Feature Decompression 9.09 24.34
0

YOLO 7.39 7.39 7.39 YOLO Post-split 5.3 6.6

Total time on Mobile 733.70 132.33 200.02 264.66 214.92 526.08
Total time on Server 37.7 102.16 126.39 14.39 30.94 0
Total time 771.40 234.49 326.41 279.05 245.86 526.08

Detection mAP50 0.355, 0.533 0.342 0.503 0.434 0.530 0.546

Table 3.1: Breakdown of runtime (milliseconds) per image (640⇥ 640 pixels) for
the proposed split computing YOLO model and baselines. D4C6 and D3C40 refer
to models with split point at D4 and D3 and channel reduction to Nr = 6 and
Nr = 40, respectively. For each of the models D4C6 and D3C40, we compare the
runtime with BPG compressed at a similar bitrate. The runtime for [3] + YOLO
is similar regardless of the bitrate.

[3] + ResNet18
(0.051 bpp, 0.316 bpp)

BPG + ResNet18
(0.048 bpp)

BPG + ResNet18
(0.350 bpp)

D3C4
(0.046 bpp)

D4C64
(0.329 bpp)

ResNet18 on Mobile

Mobile Device
(CPU)

Image Compression 181.94 74.31 104.66
ResNet18 Pre-split 64.27 83.14

130.15
Feature Compression 7.79 16.54

Edge Server
(GPU)

Image Decompression 15.71 36.18 41.63 Feature Decompression 7.62 10.10
0

ResNet18 2.21 2.21 2.21 ResNet18 Post-split 1.78 1.21

Total time on Mobile 181.94 74.31 104.66 72.06 99.68 130.15
Total time on Server 17.92 38.39 43.84 9.40 11.31 0
Total time 199.86 112.70 148.5 81.46 110.99 130.15

Classification accuracy 0.530, 0.656 0.182 0.578 0.592 0.677 0.705

Table 3.2: Breakdown of runtime (milliseconds) per image (360⇥ 360 pixels) for
the proposed split computing ResNet18 and baselines. For each of the D3C4 and
D4C64 models, we compare the runtime with BPG compressed at a similar bitrate.
The runtime for [3] + ResNet18 is similar regardless of the bitrate.

running YOLO locally.

Using the same settings, we performed runtime analysis on the classification

models. The results are shown in Table 3.2. Our split computing model achieved

a lower total inference time than both baselines. Compared to running ResNet18

locally, our model achieved a 37% and 15% reduction in total inference time for

the low and high bitrate models, respectively.

The amount of time saving in this experiment is less than that of YOLO because,

compared to YOLO, ResNet18 is more computationally expensive in the early parts

of the network. If a more complex classification model is needed for higher accuracy,

for example ResNet50, we expect that there would be more significant time saving

with our split computing methodology.
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3.7 Image Reconstruction From Compressed Fea-

tures

In some applications, it may be necessary to not only have the task network

output the detection results but to also have a human operator to verify these

results. To demonstrate the possibility of achieving this functionality, we trained

an image reconstruction network to reconstruct the image from the compressed

features.

The reconstruction network follows the same architecture as the task encoder

part of the split computing network, with the number of input and output channels

reverted for each layers, shown in Figure 3.1. The stride-2 convolution layers are

replaced with stride-2 transposed convolution layers. The loss used for training the

reconstruction model is a distortion metric between the original input image and the

reconstructed output image. We tested both MSE and MS-SSIM as the distortion

metric in our experiments, but we found that both led to similar reconstruction

results. Only the weights of the image reconstruction model are updated during

training, while the weights of the split computing model, including the task network

and the feature compression network, are frozen. Because the split computing

model is not changed, training the reconstruction model does not a↵ect the rate-task

performance.

Figure 3.5 shows reconstructed images from compressed features at a bitrate

of 0.177 bpp and 0.449 bpp, respectively, along with images compressed by other

models at a bitrate close to 0.177 bpp. From the images reconstructed from the

task features, we can clearly recognize the detected objects. At similar low bitrates,

images compressed by BPG or the learned image compression model have more
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severe blurring and compression artifacts that can a↵ect the object detection

performance. In comparison, despite the blurring of the background and sometimes

severe distortion in the color of the detected object (e.g. the purple bus) and

irrelevant details (e.g. the text in the background and the bus), the shape and

edges of the objects in our reconstructed image are more defined, which may have

led to the better detection performance. For example in the top row, several cars

are not detected in the compressed images by BPG and the learned image coder,

while they are successfully detected by the proposed scheme at similar low bitrates.

In the second row, the tennis racket held by the person is completely blurred out

with BPG compression, and as a result, is not detected by YOLO. With the learned

image coder, the racket was detected as another object. In the reconstructed image

from our models, the racket is more visible and correctly detected.
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Figure 3.5: Reconstructed images from compressed features from the D3C16 and
D3C48 models, compared to decompressed images from BPG and the learned image
compression model in [3].
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Chapter 4

Scalable Feature Compression

4.1 Introduction

In the previous chapters, we have explored image or feature compression trained

for a single target bitrate. While training a di↵erent split computing model for

each target bitrate is likely to achieve the highest analytical performance for each

bitrate, it may not be practically feasible to store and operate multiple models on

the client device to adapt to di↵erent bandwidth conditions. Scalable compression,

a well-explored concept that has been adopted in video compression standards

[43, 45], is one possible method to achieve variable rate encoding. In scalable

compression, a layered bitstream is generated by the compressor. The base layer

bitstream provides a basic level of analytics performance, and each additional

enhancement bitstream provides an incremental performance improvement. Thus,

the encoder can quickly adapt to changing bandwidth by generating and sending the

maximum number of layers that the current bandwidth allows. We propose the first

scalable learned feature compression model and a corresponding strategy to train
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this model jointly with the task model. The resulting single scalable compression

model and corresponding task model can achieve competitive performance over the

entire rate range, compared to the non-scalable approach, which uses separately

optimized compression and task models for each target bitrate.

4.2 Scalable Feature Compression for Analytics

Scalable image compression encodes an image into a base layer z1 and additional

enhancement layers z2, z3, ..., zM for a total of M layers. The sender can adap-

tively generate and send a set of layers given the current communication channel

throughput. When the decoder receives the base layer bitstream only, it can decode

the image with a basic reconstruction quality. With each additional enhancement

bitstream received, the decoder can decode the image with successively higher

quality.

In a dynamic network with fast varying bandwidth, scalable compression has

the benefit that only a single bitstream needs to be generated to adapt to varying

network conditions. The sender can choose to send the number of layers that best

suits the current estimated network condition. Whereas in non-scalable encoding,

the encoder must encode the bitstream at a fixed bitrate based on the bandwidth

estimate prior to encoding, which may be over or under the capacity of the network

when the packet is actually sent.

In the case of feature compression for analytics, scalability refers to generate a

bitstream with multiple layers, so that each additional layer leads to improvement

in the analytics performance. In practical applications, the mobile device is often

deployed in areas with weak and unstable internet connection. In such scenarios,
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scalable compression can be particularly useful. In the case of a sudden drop in

the network throughput (e.g., switching from 5G to 4G wireless network), the base

layer can be transmitted to ensure a basic performance in analytics. When the

network condition improves, additional layers can be generated and sent.

There have been several works on learned scalable compression of images for

human visualization. In [21], scalability is achieved by using multiple encoder

networks to successively compress the residual of the reconstructed image and send

the residual latent information in layers. Another model proposed by[34] encodes

the input image to layered latent features and uses lower layer latents to predict

and enhance the higher layer bitstreams. More recently, a fine-grained scalable

model is proposed by [29]. The model generates a base and an enhancement feature

tensor. The base feature is sent as a whole, while the enhancement feature tensor

is split along the channel dimension, and each channel is sent one-by-one for each

enhancement layer.

Several prior works have considered scalable compression for analytics, such as

[53], and [9]. But the scalability proposed by these works refers to the ability of the

server network to perform additional analytics tasks as it receives each additional

bitstream, while our proposed scalable model aims at increasing the accuracy of a

single task with each additional layer. To the best of our knowledge, this work is

the first to propose a scalable feature compression model for analytics task.

4.3 Scalable Feature Compression Model

We extend the non-scalable feature compression model in Chapter 3 to enable

scalability in feature compression. We draw inspiration from principal component
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analysis (PCA) to perform dimensionality reduction along the channel dimension

through linear transform. PCA has the property that each channel in the transform

coe�cients are uncorrelated, and that lowest MSE reconstruction can be achieved

using the least number of channels, making it well-suited for scalable compression.

But whereas the transform in PCA minimizes the MSE of the reconstructed signal,

our model is trained end-to-end to minimize the rate-detection loss.

We first perform dimensionality reduction to the intermediate feature at the

split point to reduce the features into M groups of features zm,m = 1, 2, . . . ,M ,

each with a small number of channels. Unlike the single dimensionality reduction

layer in the non-scalable model, the scalable model uses M separate convolution

layers Rm,m = 1, 2, . . . ,M , to generate M groups of features zm = Rm(y) with

NRm channels. A separate hyperprior network is trained to estimate the mean and

variance parameters for each zm, which are individually quantized and entropy

encoded using their respective hyperpriors.

At the server side, M separate dimension expansion layers Em are used to

expand all received dequantized features ẑm back to N channels and the original

spatial dimension of y. The expanded tensors are added together to produce the

input to the task decoder. During inference, if only l scalable layers are received,

the recovered feature ŷ is the sum of all received and expanded tensors:

ŷl =
lX

m=1

Em(ẑm), l 2 {1, 2, ...M}. (4.1)

This combined feature is then input to the task decoder model to produce the

analytics result t = G(ŷ). An overview of our scalable model is shown in Fig. 4.1.
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Figure 4.1: Overview of the proposed scalable compression model. The model
creates scalable layers by generating and entropy coding di↵erent groups of reduced
feature channels from the task encoder. In this example, we first train a model
with four layers with each layer having 8 channels. We then split the base layer
into 8 layers of 1 channel each and the second layer into 4 layers of 2 channels each.
This model with M=14 layers is then further trained to cover a wider rate range
when the number of received layers l varies from 1 to 14.

4.4 Multi-Round Refinement of Scalable Layers

Using Rate-Task Loss

With a pre-trained YOLO model, we first pre-train the reduction/expansion

modules by minimizing the MSE loss between the original and reconstructed features

with all scalable layers activated. We then refine the model end-to-end with the

rate-task loss using a training strategy that updates all scalable layers iteratively.

For each batch of training data, we input the batch into the model over M rounds.

In round l, only layers 1 to l are activated, for l from 1 to M . The model is updated
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using the loss corresponding to having only layers up to l:

Ll =
lX

m=1

Lm
Rate + �l · Ll

Task, (4.2)

where Lm
Rate is the rate loss for th m-th layer, Ll

Task is the task loss when using up

to l layers. After going through M rounds, the compression and decompression

modules corresponding to all layers as well as the shared task encoder and decoder

will be updated. We experimented with di↵erent �l values for training and reported

the best-performing model.

Note that with this strategy, the compression and expansion modules for the

lower layers are updated more times than the higher layers. This is appropriate

because the lower layer a↵ects task-rate performance over a larger rate range than

the higher layers, due to the embedded nature of the layered bitstream. We have

found that this training strategy yields better performance over the entire rate

range than some alternative approaches, including progressive training, where we

first train only the base layer compression modules and task modules, and then

train the second compression layer, while fixing the base compression layer and

the task modules, and so on. The progressive approach would optimize the task

modules only for the lowest rate, yielding suboptimal performance over the entire

rate range.

4.4.1 Split Layer Training

We found that directly training the scalable model for many rate points will

lead to low rate-task performance. For example, if we initialize the task encoder

and decoder from a pretrained YOLO model and directly train 14 scalable layers
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with the scalable loss, the rate-task performance will be much lower than the

non-scalable models.

Therefore, we first trained a model with a small number of scalable layers

spanning a large rate range. Specifically, we trained a model with 4 scalable layers

each with a channel size of 8. This model achieved good accuracy for the high

bitrate points, but the base layer accuracy was slightly lower.

In order to create more operational rate points, we perform layer splitting to

generate more scalable layers for the low to mid bitrate range. From the 4 scalable

layer model, we split the base layer with 8 channels to 8 layers of 1 channel each.

We also split the first enhancement layer with 8 channels to 4 layers of 2 channels

each, resulting in a total of 14 scalable layers, shown in Figure 4.1. In performing

splitting to the feature dimension reduction/expansion modules, we separated the

weight tensors of the convolution layers along the channel dimension, so that the

new convolution layers created from the split can be operated independently.

More generally, starting with a trained model that generates M layers, the

original base feature tensor that consists of NR1 channels is subdivided into M 0

tensors with N 0
R1
, N 0

R2
, ..., N 0

RM0 channels respectively. This has the e↵ect of

splitting the original base layer into M 0 scalable layers for the lower bitrate range,

and the model after the split will consist of M +M 0� 1 scalable layers. Subsequent

enhancement layers can be similarly subdivided into additional scalable layers,

depending on the number of scalable layers that are required for a particular use

scenario.

After splitting the layers, a new set of hyperprior models for each of the layers

is initialized, and each newly formed layer is coded independently. We then train

the entire scalable model end-to-end using the same multi-round training strategy
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using the loss in Eq. (4.2), for both the newly splitted layers and the un-split layers.

4.5 Experiment and Results

We trained and evaluated our scalable model on the COCO-Tra�c dataset.

To further evaluate the model’s performance on high resolution image, we also

evaluated the model trained on the COCO-Tra�c dataset on the TJU-DHD dataset

[39], which is a high-resolution object detection dataset for tra�c scenes.

We compare our results to two non-scalable baselines. The first one is the non-

scalable split computing approach proposed in Section 3.4. With the second baseline,

the mobile compresses an image using the learned image compression model by [3],

then the server runs the object detection model on the decompressed image. With

both baselines, di↵erent task modules and the compression/decompression modules

are trained using the rate-task loss for di↵erent rate points.

The rate vs. detection accuracy performance of the scalable model is shown

in Fig. 4.2. We show results for two scalable models: one with 4 layers and one

with 14 layers as described in Section 4.4.1. The 14-layer model was obtained from

the 4-layer model through layer splitting and further refined through training all

14 layers. It achieved performance similar to the 4-layer model but includes more

points at the lower bitrate range for more flexible adaptation to network bandwidth

in low data rate communication scenarios. It is encouraging to see that the 14-layer

scalable model achieved similar accuracy as the non-scalable model at the high rate

range, and had relatively small accuracy drop at the lower rates.

The 4-layer model achieved high detection performance at the high bitrate range,

even slightly surpassing the performance of the non-scalable models. We suspect
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Figure 4.2: Rate-Accuracy performance for the proposed scalable model compared
to non-scalable compression baselines, for the COCO-Tra�c dataset

that this is because we have not performed an exhaustive search of all possible

model configurations including the reduced channel number, down-sampling of

selected channels, lambda value, and split point for the non-scalable model. Had

we found optimal configuration for each rate point, the non-scalable model should

achieve equal or higher detection accuracy than the scalable model at every rate.

Similar to the experiment for the non-scalable model, we also trained a model

where the task encoder and decoder are fixed with the pre-trained YOLO model

weights. In this case, having a fixed task encoder and decoder lowered the detection

performance more severely than the non-scalable model. This suggests that for

the scalable model, it is even more important to train the entire model jointly to

achieve good performance.

When evaluated on the higher-resolution (1624⇥ 1200) TJU-DHD dataset, our
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Figure 4.3: Rate-Accuracy performance for the proposed scalable model compared
to non-scalable compression baselines. Trained on the COCO-Tra�c dataset,
evaluated on the TJU-DHD dataset.

model achieved similar performance curves (Fig. 4.3). Even though the model was

originally trained on the COCO-Tra�c dataset with resolution 640⇥ 640, switching

to higher-resolution data did not significantly a↵ect the performance.

We would like to emphasize that for the baseline non-scalable methods, di↵erent

points on the curve require a di↵erent set of task encoder, task decoder, compression

and decompression modules. On the other hand, our scalable compression approach

achieves all the rate points with a single pair of task encoder and decoder and a

fixed set of compression/decompression layers. Higher rates are simply achieved

when more compression/decompression layers are invoked. This makes our scalable

approach much more practical for real-world applications.
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4.6 Comparison with Principal Component Anal-

ysis

We performed an experiment to support the necessity of training the model

end-to-end. Another method of achieving scalable compression is to perform

principal component analysis (PCA) to perform dimensionality reduction along the

channel dimension, and then order the channels from highest to lowest variance

to form di↵erent layers. This method ensures that each channel in the feature are

uncorrelated, while the reconstructed feature is the closest to the original in terms

of MSE using the least number of channels.

We initialized the task encoder and decoder with weights from the scalable

model trained with steps in Section 4.4. We performed PCA on the output features

of the encoder model. We ordered the channels from highest to lowest variance.

The four channels with the highest variance forms the base layer, the four channels

with the next highest variance forms the first enhance layer, and so on. Since PCA

reconstructs the original features, whereas the decoder trained in Section 4.4 was

not trained to take the reconstructed features with compression artifacts from the

decoder, directly using the PCA would not lead to good results. Therefore, we

additionally train a transform layer after the inverse PCA transform to transform

the decoded features to a form that the decoder expects.

As results shown in Figure 4.4 suggests, using PCA directly on the output of

the encoder will lead to significantly lower performance. Training an additional

transform layer increased the performance, but not enough to be comparable with

the baseline trained by the scalable training procedure, even though the same task

encoder and decoder are used. This suggests that in addition to decorrelation
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Figure 4.4: Detection accuracy vs. Bitrate of PCA scalable compression models

between the channels, is also important to train the model end-to-end to have a

high performing scalable model,

4.7 Complexity Scalability

In addition to rate and performance scalability, the design of our scalable model

also introduces complexity scalability. The scalable compression model compresses

the features into di↵erent number of channels depending on the target bitrate. The

number of channels directly a↵ects the runtime for feature dimension reduction and

expansion module, and arithmetic encoding and decoding. Since more computation

is required to generate and compress the features as more layers are being sent, the

computation complexity scales with the number of layers.

To simulate the hardware runtime of split computing pipeline, we used a 1.1GHz

CPU as the mobile device to run the task encoder and the RTX8000 GPU on the

NYU High Performance Computing server to run the task decoder. The entropy

coding time was measured using a 1.1GHz CPU processor. We measured the
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inference time of the scalable model using di↵erent numbers of scalable layers. The

results are shown in Figure 4.5. The computation increases as more layers are

generated and send, as expected. However, the complexity at the mobile side is

dominated by the task encoder. Because the client device is often also constrained

by battery capacity, the split computing strategy must also consider computation

complexity and the power consumption when selecting the number of layers to

send.

Figure 4.5: Inference time of using di↵erent numbers of scalable layers

4.7.1 Performance Under Packet Drop

Because of the embedded structure of the scalable bitstream, the scalable

bitstream is better protected against possible packet drop during transmission. We

demonstrate this through an experiment where a certain percentage of packets

are dropped, which simulates the scenario of packet drop due to congestion or

bandwidth decrease in the network during transmission. We assume that each
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channel of the features is packetized as an individual packet for transmission.

During inference, a certain percentage of the total packets are assumed as dropped

before passing to the task decoder.

We compare the performance of the scalable and the non-scalable model when

di↵erent percentages of the packets were dropped. For the scalable bitstream, the

highest layers will be dropped first while the channels closer to the base layer will

be prioritized for delivery. For the non-scalable bitstream, because the channels

have no particular order of importance, the channels are randomly dropped. For

both models, channels that are not received by the receiver will be filled with zeros

before being passed to the feature decompressor and task decoder model.

Figure 4.6: Detection accuracy of the proposed scalable model compared to the
non-scalable model under di↵erent packet drop rate

Fig. 4.6 shows the detection performance under di↵erent packet drop rates,

evaluated on the COCO-Tra�c dataset. The performance of the non-scalable
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Figure 4.7: Examples of detection results from the scalable and non-scalable model
under di↵erent packet drop rates. Image samples taken from the TJU-DHD dataset.

model decreased rapidly as more packets were dropped. In comparison, the scalable

model was able to maintain mAP higher than 0.6 with packet drop rate as high

as 50%. This experiment demonstrates the ability of the scalable model to adapt

to changing network bandwidth and maintain high detection performance when

the channel bandwidth decreases. Examples of detection results at di↵erent packet

drop rate are shown in Fig. 4.7. The scalable model continues to detect correctly

while the non-scalable model fails to detect many objects when the packet drop rate

increases to more than 50%. This demonstrates the benefit of the scalable model in

scenarios such as vision-assisted navigation, where the mobile device is constantly

moving and the bandwidth may change rapidly as the environment changes.
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Chapter 5

Adaptive Video Compression for

Real-time Analytics

5.1 Introduction

Technology in smart wearables is advancing rapidly with an increasing inte-

gration of high resolution cameras. High resolution video streams captured by

wearable devices combined with analytics by computer vision models o↵ers so-

lution to many challenging problems such as providing navigation assistance for

the blind-and-visually impaired (BVI) population. A key challenge of deploying

advanced computer vision models in wearable settings is that state-of-the-art deep

neural networks are computationally demanding, particularly for use cases that

have stringent delay requirement.

The feature compression models developed in the previous chapters o↵er a

promising solution to this problem. Although it o↵ers many benefits over the

image compression framework, much work in standardization and software devel-
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opment remains to be done for the widespread adoption of feature compression

in present systems. On the other hand, video compression designed for human

visual perception have long been studied, and standardization e↵orts have led to

an ecosystem of software and hardware for video codecs that is easy to integrate

into present edge computing systems. Furthermore, video compression utilizes

inter-frame dependence to further reduce bitrate, whereas the proposed feature

compression model only consider each frame as independent inputs.

To assess the possibility of transmitting compressed video stream through 5G

network for object detection on the edge, we conducted a detailed evaluation of the

requirements of achieving high performance detection in real-time. We consider the

use of object detection in a smart wearable system for the BVI called the VIS4ION

system [6], [47]. The system is implemented as a backpack with camera mounted

on the strap to capture video of the user’s surrounding, and an Nvidia Jetson

board contained within the backpack to perform local processing. The goal of

the VIS4ION system is to provide localization, navigation, and obstacle avoidance

for the user in a dynamically changing environment. A 100 ms end-to-end delay

requirement for the object detection results is needed to provide timely feedback

for the user [26].

In the previous generation of the VIS4ION system, all machine vision is per-

formed locally by the Nvidia Jetson board, which limited the image resolution

and the frame rate at which object detection can be performed. Furthermore, the

battery needed to support prolonged operation of the object detection model adds

considerably to the backpack weight. Hence, we investigate the possibility of utiliz-

ing edge computing to perform object detection inference for the VIS4ION system.

The video captured by the system is compressed using the H.265 video coding
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standard and is streamed to an edge server via 5G mmWave wireless connection.

Similar to compression by image codecs, compression by H.265 introduces

distortion to the video frames that can a↵ect the detection performance. Given a

target rate for a camera, the video can be compressed at di↵erent spatial resolutions

(frame size in terms of pixels) and temporal resolutions (frame rate), as illustrated

in Fig 5.1. With the chosen spatiotemporal resolution, the bitrate is controlled by

the quantization stepsize, which controls the amplitude resolution and a↵ects the

pixel quality. While there has been significant work in relating spatial, temporal,

and amplitude resolution (STAR) to perceptual video quality [20, 30, 38], the e↵ect

of STAR on object detection accuracy is less understood. Here, we conduct a

study to systematically evaluate the impact of spatial and amplitude resolution

on the object detection accuracy using the YOLOv5s model. We leave out the

consideration of the temporal resolution at this time because the YOLO model

works on video frames independently. This study enables us to determine the

optimal spatial resolution for a given bitrate, and the achievable detection accuracy

under the optimal resolution at this rate.

5.2 Creation of the NYU-Street Scene Dataset

To test the performance of the YOLO model for detecting objects of interest

for pedestrian navigation, we recorded a set of videos while wearing the VISION

backpack which has a single stereo camera on the front shoulder strap. The camera

model is the ZED camera from StereoLabs [24]. The recording was taken in the

streets near the NYU Tandon Campus and the NYU Washington Square Campus,

with pedestrian tra�c and street crossings. A total of 9 videos were captured with
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Figure 5.1: Under the same bitrate constraint, one can represent a video using
di↵erent combinations of spatial, temporal, and amplitude resolutions as shown
here with an example video compressed to 1 Mbps. The bottom row shows a crop
from each version of the video to better illustrate the di↵erences in compression
artifacts.
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the ZED at the 2.2K spatial resolution and 15 fps temporal resolution, with a total

video length of 43 minutes. The videos were manually annotated with bounding

boxes for 15 objects that are related to tra�c applications.

A sample frame from the dataset is shown in Figure 5.2. The frame was taken

from one of the video in the dataset compressed at 10 Mbps but with di↵erent

spatial and amplitude resolutions. For the higher spatial resolution frame, the

YOLO model was able to detect more objects that are far away. However, it is not

always the case that higher spatial resolution gives better detection results. As we

will show through our experiment, the optimal spatial and amplitude trade-o↵ to

achieve the best detection result varies according to the bitrate.

5.3 E↵ect of Spatial and Amplitude Resolution

on Object Detection Accuracy

We compressed all videos (left view only) in the StreetScene dataset using the

FFmpeg software with the x265 codec [16, 49], which follows the latest international

video coding standard H.265/HEVC [46]. We kept the same temporal resolution

and compressed the video either at the original 2.2K spatial resolution or reduced

spatial resolutions under di↵erent quantization parameters (QPs). Default down-

sampling filters (‘bicubic’) in FFmpeg were used for the spatial downsampling.

Considering the low-delay requirement of the navigation application, we used a

Group of Picture (GOP) length of 60 frames, without B-frames, i.e, each GOP

starts with one I-frame, followed by 59 P-frames.

The decompressed video was used to evaluate the performance of the pretrained

YOLOv5s model on di↵erent spatial resolutions and bitrates. Figure 5.3 shows the
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(a) Low spatial resolution: WVGA, QP=10,

PSNR=45dB

(b) High spatial resolution: 1080P, QP=28,

PSNR=36dB

(c) YOLO detection results for (a) (d) YOLO detection results for (b)

Figure 5.2: Sample detection results from videos both compressed at 10 Mbps but
using di↵erent spatial and amplitude resolutions. Objects that are indicated by
yellow arrows in (d) are missed in (c). Note that although the image in (a) and
(c) have lower spatial resolution than those in (b) and (d), we display them at the
same size for easier visual comparison.
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Figure 5.3: Mean detection accuracy (weighted mean AP) for 11 object types
vs. bitrate for di↵erent spatial resolutions. Di↵erent points in the same curve
correspond to di↵erent QPs.

Figure 5.4: Detection accuracy (AP) for person vs. bitrate for di↵erent spatial
resolutions. Di↵erent points in the same curve correspond to di↵erent QPs.
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weighted mean average precision (wmAP) over 11 objects in the dataset vs. bitrate.

The figure reveals that there is an optimal spatial resolution at each bitrate that

will maximize the wmAP. Specifically, 720P is best for 0.35-6.0 Mbps, 1080P for

6.0-26.2 Mbps, 2.2K for higher bitrates. However, 2.2K provides only marginal

improvement over 1080P above 26.2 Mbps. We note that this could be because

the YOLO model was trained mainly on low-resolution images. Additionally, we

note that since the YOLOv5s network was trained with uncompressed images, it

led to lower performance when used for detection on compressed video frames.

Nevertheless, we expect that the e↵ect of spatial resolution on mAP will remain

the same when a model trained on compressed images is used.

Fig. 5.4 presents the detection result for the person category. We see a similar

trend as in Fig. 5.3, although the specific rate points where higher resolutions take

over the lower resolutions are slightly di↵erent. The AP for the person category is

higher than the wmAP over 11 objects at similar bitrates, which shows that the

YOLO model is more e↵ective in detecting people than other object categories.

5.4 Computational Complexity vs. Spatial Reso-

lution

To measure the computation complexity of running the YOLO model, we used

the Jetson Xavier NX to measure the runtime of performing local processing and

used an RTX 8000 GPU to measure the runtime of edge server inference. Table

5.1 summarizes the computation complexity (measured by the FLOP count), the

inference time per video frame, and corresponding speed (frame/sec or fps) for

videos at di↵erent spatial resolutions for the two options.
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To assess the feasibility of o✏oading computation through wireless connection,

we conducted a realistic wireless network simulation of a user commuting in a

similar environment to those from which the NYU-Pedestrian dataset was captured.

The median round-trip delay of 5G mmWave and the 4G Lon Term Evolution

(LTE) carrier are both measured. These wireless network measurements, combined

with the detection model inference delay in Table 5.1 allow us to compare the

di↵erent configurations that can be used to deploy the VIS4ION system.

Table 5.2 summarizes the key results for using di↵erent configurations. Local

only refers to the local processing scenario, where the captured video is processed

entirely on the Jetson device. The “Local only” configuration provide a basic level

of service when the wireless connection is poor or not available to the user. Using

LTE and mmWave connection for computation o✏oading substantially reduced

median round-trip delay, and thereby increased the availability of service within the

delay budget. The detection accuracy increased significantly due to the availability

of 1080P video. With the high network bandwidth of mmWave connection, it is

possible to support a 4 camera system to provide a wider field of view for the

user. We further considered an adaptive processing configuration, where the system

switch between local and edge computing depending on the network condition,

and the resolution of the video is adaptively switched according to the available

bandwidth. The adaptive configuration enable even higher availability of service

and detection accuracy compared to the other configurations.
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Resolution GFLOP
Local

Inference
Time (ms)

Local
Inference
Speed (fps)

Server
Inference
Time (ms)

Server
Inference
Speed (fps)

2.2K 57.22 232.02 4.31 23.4 42.7
1080P 43.38 178.25 5.6 18.7 53.5
720P 19.56 95.69 10.5 10.4 96.2

WVGA 5.36 75.02 13.3 5.1 196.1

Table 5.1: Impact of spatial resolution on the detection model complexity, running
time on local processor and edge server, respectively. The Jetson Xavier NX is
used as the local processor, while the server uses an RTX 8000 GPU.

Table 5.2: Comparison summary of example configurations in di↵erent connectivity
scenarios.



50

5.5 Delay Compensation for Object Detection

We have shown that the median round trip delay for mmWave edge computing

is under the 100 ms requirement for BVI navigation. However, in an environment

where objects in the scene have rapid movement, even a short delay may result in a

large discrepancy between the received bounding box result and the objects in the

current scene. There may also be fluctuation in the channel condition that brings

the delay to much higher than the median. The discrepancy between the received

detection results for a past frame and the actual objects that are in the current

frame lead to an e↵ectively lower detection accuracy. To address this problem, we

propose a method for compensating the bounding box error due to round trip delay.

We consider the following scenario in which a video stream is being sent to an

edge server for object detection. At time t, the frame xt is captured by the camera.

The frame is compressed by the video encoder, transmitted through the wireless

connection, decoded and processed by the server, and the result of the detection is

sent back to the mobile device. The detection result b̂t for frame xt is recevied by

the mobile device at time t+�, with the delay � being the total duration from

the time the frame is captured to the time the result is received.

In evaluating the accuracy of a detection method, we would typically compare

bt, the ground-truth bounding boxes at time t, with the detection results at the

same time b̂t. However, considering that in a dynamically changing environment,

the position of the objects in the scene would have changed significantly during the

short duration, it is more reasonable to compare the detection results b̂t with the

ground-truth results at bt+�, corresponding to the frame xt+�. Due to changes in

positions of the objects in the frame and the possibility of new objects appearing or

objects moving out of the frame, the detection accuracy will decrease as the delay



51

Figure 5.5: Proposed system for correcting the error in bounding box due to delay
in the edge computing pipeline.

� increases.

To alleviate the decrease in accuracy due to delay, we propose a system to

compensate for the movement of objects in the frame. The system is shown in

Figure 5.5. A bu↵er is maintained on the mobile side to store past frames captured

by the camera. We assume that the length of this bu↵er is appropriately designed

so that it exceeds the typical round-trip delay. When a bounding box for time

t is received at time t+�, the past frames in the bu↵er xt, xt+1, xt+��1 and the

current frame xt+� are used to adjust the bounding boxes to the current position

of the object in frame xt+�.

Object tracking is performed to track each object in the received result b̂t

through the series of bu↵ered frames up to the current frame. For each object, we

start with the bounded region of the object in the frame xt as the template. We

then apply template matching to search for the region in frame xt+1, or the target

frame, that has the least di↵erence from the template. The object’s new bounded

region in frame xt+1 is used as the template to search for the next matching region
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in frame xt+2, and so on. At each step, the search region is limited to an area that

extends the template box’s height and width by 0.5 times on both sides in the

vertical and horizontal directions respectively.

To handle the case where the object is near the edge of the frame and the search

area needs to extend outside of the target frame, we extend the height and width

of the target frame by 0.25 times the original height and width on both sides by

replicating the values on the frame border. Ideally, we should ignore the di↵erence

contributed by the part of the template that extends outside the frame during the

search. But for the ease of implementation, we found that good performance can

be achieved even if the di↵erence outside the original frame border is counted.

To measure the decrease in detection accuracy due to delay and the performance

of the tracking method in recovering the loss in accuracy, we ran an experiment on a

30 fps video of a pedestrian walking in the street. We use average IOU (Intersection

Over Union) and the percentage of correct detection as metrics. Average IOU

is calculated as follows. For each ground truth object in a frame, we find the

detected/tracked object in the same class and has the highest IOU with the ground

truth to find the best matching pairs. We then compute the average of IOU of

the best matching pairs of ground truth and tracked results in the video. The

percentage of correct detection is defined as the percentage of ground truth objects

that have an IOU with a detected/tracked object greater than 0.5.

We measured these two metrics with an artificially introduced delay and varied

the amount of delay �. For each time step, we assume that the detected results

without delay is the ground truth, i.e. let bt = b̂t. This is appropriate since we are

only interested in how delay a↵ects detection accuracy over time relative to the

initial frame xt. For a certain �, we compute the Average IOU and Percentage
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(a) Average IOU (b) Percentage of correct detection

Figure 5.6: A figure with two subfigures

of correct detection by comparing b̂t and bt+� over all possible t in the video to

obtain the performance without tracking. We then perform template matching for

each b̂t using bu↵ered frames xt to xt+� to obtain the tracked results b̃t+�. We

compute the two metrics between each b̃t+� and b̂t+� to obtain the performance

with tracking.

The results of comparing bounding box accuracy with and without tracking are

shown in Figure 5.6. Without tracking, both the Average IOU and the percentage

of correctly detected boxes decrease rapidly as the delay in results increases. At

500 ms delay, only 40% of the bounding box are correctly detected. With object

tracking, the decrease in detection accuracy is less steep. At 500 ms delay, close to

70% of the bounding boxes are still correctly detected.
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Chapter 6

Conclusion

This thesis explored the problem of image and video compression in o✏oading

the computation of visual anaylytics model. Using learned compression methods

as well as traditional video codec, we proposed methods that aim to improve split

computing and edge computing systems with increased rate-task performance, lower

model complexity, and lower delay.

We first investigated the use of learned image compression model to compress

the image data for computation o✏oading. Using image compressor trained for

MSE reconstruction leads to low performance when the compressed image is used

for visual analytics tasks. Training the task model on compressed images improved

the task performance. Joint training of the compressor and task model pipeline

using a rate-task loss further improved the rate-task performance.

We next explored feature compression in the split computing framework for

computation o✏oading. We proposed a light-weight trainable feature compression

architecture, that includes feature channel/spatial reduction and expansion and

hyperprior-based entropy coding/decoding. With end-to-end training of the feature



55

compressor and object detector using rate-detection loss, our approach can achieve

higher detection accuracy at low to medium rate range than baseline methods that

perform image compression at the mobile device and object detection on the server.

Furthermore, our approach has significantly lower runtime at the mobile device

than the baseline methods using learned compression models.

Building on the proposed feature compression method, we proposed a scalable

feature compression model that allows for variable bitrate compression and e�cient

adaptation to dynamic network. The intermediate feature is compressed into a

layered bitstream, with the number of scalable layers received by the decoder scaling

with the analytics performance of the task model. The proposed scalable model

using a single set of model weights achieved comparable performance over a large

rate range compared to the non-scalable model that requires model switching. In

addition, the scalable compression method o↵ers extra protection against packet

drop.

Finally, we studied the feasibility of using the H.265 video codec to compress a

video stream for computation o✏oading to an edge server. In particular, we targeted

the problem of object detection for navigation assistance for the blind and visually

impaired population. A large video dataset of pedestrian street scene is collected

and annotated. Using this dataset, we measured the e↵ect of spatial and amplitude

resolution on detection accuracy. We proposed a resolution adaptive compression

strategy to maximize detection accuracy. To reduce the error caused by delay in

receiving the detection results, we proposed a system to perform mobile-side object

tracking on bu↵ered frames to update bounding box location. The proposed system

was e↵ective in correcting the bounding box error caused by delay and recovering

lost detection accuracy.
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