HW1: Shabani – QM1 Due Sept 23rd

- **1.** Find the eigenvectors of Pauli matrix $\sigma_Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
- 2. Assume the Hamiltonian of a quantum two-level system in form of Â = (H₁₁ H₁₂ H₂₁ H₂₂). The Hamiltonian is Hermitian with real H₁₁ and H₂₂ such that H₁₁ > H₂₂.
 a. Show that you can write in the form of = Â₀ + Â₁ where Â₀ is matrix with a global energy shift and Â₁ is in form of Â₁ = (ε Δ i Δ Δ + i Δ -ε)
 b. Find eigenvalues of Â₀ and Â₁.
 c. Express Â₁ in terms of Pauli matrices.
- **3.** A quantum system is said to possess a 'symmetry' if the Hamiltonian operator, H, is invariant under the associated transformation. For example, H acting on x could be the same as H acting on x+d, where d is a constant We can call H acting on x+d, H_B. In general, he symmetry could be translation, rotation etc. If the system is invariant under a symmetry, then one can show we can write $H_{\rm B} = U^{\dagger} HU$ where U is unitary operator.

Show that if H_B and H are invariant then [H,U] = 0.