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SONYC Data Science

• Analysis of SONYC data – 34 years worth of data

• Analysis of SONYC together with multiple data sets
• E.g.: How construction permits impact SPL captured by SONYC

• Data collected from traditional and unsuspecting sensors
• SONYC, census, crime, building permits, public transportation, tweets

Opportunity: leverage this data to make new insights 
about how people are using cities, frame new policies 

and make cities more efficient



Challenges of Data Science

• SONYC: 34 years worth of data
•How to handle and query large data?
•How to visualize this data?
•How to gain new insights from the data?



Objectives for SONYC

• Interactive querying of noise data
• Techniques to support interactive, low latency queries of SPL data
• Drive exploratory visualization

• Visual interface
• Build a visual interface for noise data exploration
• Explore noise in the context of the city and related data

• Analysis of city-wide noise
• Data analytics to gain insights into possible patterns of noise over space and 

time
• Use the generated data (SPL) together with open data
• Generate a city-wide time-varying noise map
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Vision

Urbane

[Ferreira et al., 2015]
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Urbane: A 3D Framework to Support Data Driven

Decision Making in Urban Development
Category: Research

Fig. 1. Urbane provides architects, developers, and planners with a new, data and analysis rich way of reading the city ultimately

facilitating better decision making. Users can explore properties of neighborhoods and buildings using the data exploration view to

identify underdeveloped sites for potential development. Then, using the visual interface together with the map view, they can simulate

the affect of such development. For example, the views to the freedom tower (highlighted in green) of the buildings highlighted in

red would be adversely impacted if the new constructions (colored purple) are built. The supplemental video gives an overview of

different features and visualizations supported by Urbane.

Abstract—Architects working with developers and city planners typically rely on experience, precedent and data analyzed in isolation

when making decisions that impact the character of a city. These decisions are critical in enabling vibrant, sustainable environments

but must also negotiate a range of complex political and social forces. This requires those shaping the built environment to balance

maximizing the value of new development with the impact on the character of a neighborhood. As a result architects are focused on

two issues throughout the decision making process: a) what defines the character of an existing neighborhood? and b) how will new

development change the existing neighborhood? In the first, character can be influenced by a variety of factors and understanding

the interplay between diverse data sets is crucial; including safety, transportation access, school quality and access to entertainment.

In the second, the impact of new development is measured, for example, by how it impacts the view from the buildings that surround

it. In this paper, we work collaboratively with architects to design, Urbane, a 3-dimensional multi-resolution framework that enables

a data-driven approach for decision making in the design of new urban development. This is accomplished by integrating multiple

data layers and spatial analysis techniques facilitating architects to explore and assess the effect of these attributes on the character

and value of a neighborhood. This results in more informed decisions that can be made faster. Several of these data layers, as

well as spatial impact analysis, involve working in 3-dimensions and operating in real time. Efficient computation and visualization is

accomplished through the use of techniques from computer graphics. We demonstrate the effectiveness of Urbane through a case

study of development in Manhattan depicting how a data-driven understanding of the value and impact of speculative buildings can

benefit the design-development process between architects, planners and developers.

Index Terms—Urban data analysis; GIS; impact analysis; visual analytics; architecture; city development

1 INTRODUCTION

Why do two neighborhoods feel similar? Or different? Why does
a new building change the quality of a neighborhood and another
doesn’t? While the experience of a city is inherently subjective, the
characteristics that shape the quality of it are not. These character-
istics can be difficult to obtain, measure or analyze by those shap-
ing the future of a city. Architects working with developers and city
planners typically rely on experience, precedent and data analyzed in
isolation when making decisions that impact the character of a city.

These decisions while being critical in enabling vibrant and sustain-
able environments, must also negotiate a range of complex political
and social forces. This requires those shaping the built environment
to balance maximizing the value of new development with the impact
on the character of a neighborhood. As a result architects are focused
on two issues throughout thedesign process: a) what defines thechar-
acter of an existing neighborhood? and b) how will new development
change the existing neighborhood?
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Handling Large Temporal Noise Data

• Objective
• Support queries having constraints at multiple time resolutions

• Average SPL each hour of the day

• Average SPL day of the week

• Average SPL each day of the week, between 8am – 6pm

• Support range queries at multiple resolutions
• Average SPL between March 1st and March 15th, at hour resolution

• Support updates from new data



Handling Large Temporal Noise Data

Size Q1 Q2 Q3 Q4

(MB) Overhead Time( ms ) Speedup Time( ms ) Speedup Time( ms ) Speedup Time( ms ) Speedup

Nanocube 41799 10349 % 116 4.6 2491.8 40083

Pandas 1600 300 % 1670 9355 10399 11070

InfluxDB 412 3% 10574 42913 35259 29058 

TimescaleDB 7867 1866% 20385 60206 130594 101036

KairosDB 1301 225% 229110 629886 240168 75267



Handling Large Temporal Noise Data

• Objective
• Support queries having constraints at multiple time resolutions

• Average SPL each hour of the day

• Average SPL day of the week

• Average SPL each day of the week, between 8am – 6pm

• Support range queries at multiple resolutions
• Average SPL between March 1st and March 15th, at hour resolution

• Support updates from new data

• Small memory overhead

• Allow low latency queries over large time series (< 1 second)



Handling Large Temporal Noise Data

• Time Lattice
• Data structure that supports multiple resolution queries at interactive rates

• Makes use of the implicit hierarchy present in temporal resolutions to 
materialize a sub-lattice of a data cube



Handling Large Temporal Noise Data

Size Q1 Q2 Q3 Q4

(MB) Overhead Time( ms ) Speedup Time( ms ) Speedup Time( ms ) Speedup Time( ms ) Speedup

Nanocube 41799 10349 % 116 4.6 2491.8 40083

Pandas 1600 300 % 1670 9355 10399 11070

InfluxDB 412 3% 10574 42913 35259 29058 

TimescaleDB 7867 1866% 20385 60206 130594 101036

KairosDB 1301 225% 229110 629886 240168 75267

Time Lattice 407 1.75% 40 - 15 - 12 - 92 -



Handling Large Temporal Noise Data

Time Lattice 407 1.75% 40 - 15 - 12 - 92 -

Size Q1 Q2 Q3 Q4

(MB) Overhead Time( ms ) Speedup Time( ms ) Speedup Time( ms ) Speedup Time( ms ) Speedup

Nanocube 41799 10349 % 116 2.9x 4.6 0.3x 2491.8 194x 40083 433x

Pandas 1600 300 % 1670 9355 10399 11070

InfluxDB 412 3% 10574 261X 42913 2860x 35259 2754x 29058 314x

TimescaleDB 7867 1866% 20385 60206 130594 101036

KairosDB 1301 225% 229110 629886 240168 75267



Handling Large Temporal Noise Data

Constant insertion time: 
ideal for streaming

Linear memory overhead



Handling Large Spatio-Temporal Data

• Developing a set of GPU-based techniques

• STIG [Doraiswamy et al. 2015]

1 2 3 4 5 6 7 8

Query MongoDB PostgreSQL ComDB

Time Time Speedup Time Speedup

1 0.075 503.9 6718x 20.6 274x

2 0.080 501.9 6273x 23.3 291x

3 0.067 437.8 6534x 21.6 322x

4 0.070 437.1 6244x 32.6 465x

Time in Seconds



Handling Large Spatio-Temporal Data

• Raster join [Tzirita Zacharatou, Doraiswamy et al., 2017]
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Time Lattice Interface: Noise Profiler

• Noise Profiler
• Enable domain experts to 

specify, execute and 
visualize queries over the 
SPL data from across the 
city.

• Compare data from one or 
more sensors

• Support multiple metrics 
as the aggregate in the 
queries (e.g. equivalent 
continuous A-weighted 
sound pressure level)



Time Lattice Interface: Noise Profiler



Time Lattice Interface: Noise Profiler
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Analysis of after hour variances



Analysis of after hour variances



Find spatio-temporal relationships

• Data Polygamy [Chirigati et al., 2016]
• 100’s of spatio-temporal data sets

• Relationships occur only over certain 
points in space and time

• Millions of possibilities

• How to efficiently identify interesting 
relationships?



Quantify and compare "activity"

• Urban Pulse [Miranda et al., 2017]
• Signature for different locations

• Data oblivious

• Rank and compare locations

• Query similar locations

Union SquareRockefeller Center



Quantify and compare "activity"

AlcatrazRockefeller Center
San 

Francisco

• Urban Pulse [Miranda et al., 2017]
• Signature for different locations

• Data oblivious

• Rank and compare locations

• Query similar locations



Analysis of sound propagation

• Potential approach
• Make use of highly detailed building 

models available in NYC

• Use ray tracing to propagate sound 
over time

• Initial technology already in place 
[Miranda, Doraiswamy et al., 2018]
• Interactively compute shadow 

accumulation over time

• Makes use of accurate 3D geometry

• Uses GPU for efficient ray propagation



Quantifying shadow

• Shadow accumulation 

[Mapping the Shadows of New York City - The New York Times]



Quantifying shadow

• Shadow accumulation 



Quantifying shadow

• Shadow accumulation 
• Uses ray tracing to accumulate 

shadow over time

• Allows for interactivity

• Analysis of shadow  impact from 
proposed buildings on public spaces

[Miranda, Doraiswamy et al., 2018]



Recap

2017 2018
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Outcomes
• Papers:

Published:

Submitted:

IEEE SciVis TVCG PVLDB

Eurovis

• Open source projects:
• Raster Join: github.com/ViDA-NYU/raster-join
• Urban Pulse: github.com/ViDA-NYU/urban-pulse
• Time Lattice: soon

New York Times The Economist Architecture 
Digest

Curbed

• Media coverage

Thank you!

https://github.com/ViDA-NYU/raster-join
https://github.com/ViDA-NYU/urban-pulse

