Data Science SONYC

NYC, February 8, 2018

Fabio Miranda

PhD Candidate

Together with Harish Doraiswamy, Yitzchak Lockerman, Marcos Lage, Charlie Mydlarz, Justin Salamon, Yurii Piadyk, Fernando Chirigati, Juliana Freire, and Claudio T. Silva

SONYC Data Science

- Analysis of SONYC data 34 years worth of data
- Analysis of SONYC together with multiple data sets
 - E.g.: How construction permits impact SPL captured by SONYC
- Data collected from traditional and *unsuspecting* sensors
 - SONYC, census, crime, building permits, public transportation, tweets

Opportunity: leverage this data to make new insights about how people are using cities, frame new policies and make cities more efficient

Challenges of Data Science

- SONYC: 34 years worth of data
 - How to handle and query large data?
 - How to visualize this data?
 - How to gain new insights from the data?

Objectives for SONYC

- Interactive querying of noise data
 - Techniques to support interactive, low latency queries of SPL data
 - Drive exploratory visualization
- Visual interface
 - Build a visual interface for noise data exploration
 - Explore noise in the context of the city and related data
- Analysis of city-wide noise
 - Data analytics to gain insights into possible patterns of noise over space and time
 - Use the generated data (SPL) together with open data
 - Generate a city-wide time-varying noise map

Objective

- Support queries having constraints at multiple time resolutions
 - Average SPL each hour of the day
 - Average SPL day of the week
 - Average SPL each day of the week, between 8am 6pm
- Support range queries at multiple resolutions
 - Average SPL between March 1st and March 15th, at hour resolution
- Support updates from new data

	Size		Q	1	Q2		Q3		Q4	
	(MB)	Overhead	Time(ms)	Speedup	Time(ms)	Speedup	Time(ms)	Speedup	Time(ms)	Speedup
Nanocube	41799	10349 %	116		4.6		2491.8		40083	
Pandas	1600	300%	1670		9355		10399		11070	
InfluxDB	412	3%	10574		42913		35259		29058	
TimescaleDB	7867	1866%	20385		60206		130594		101036	
KairosDB	1301	225%	229110		629886		240168		75267	

Objective

- Support queries having constraints at multiple time resolutions
 - Average SPL each hour of the day
 - Average SPL day of the week
 - Average SPL each day of the week, between 8am 6pm
- Support range queries at multiple resolutions
 - Average SPL between March 1st and March 15th, at hour resolution
- Support updates from new data
- Small memory overhead
- Allow low latency queries over large time series (< 1 second)

• Time Lattice

- Data structure that supports multiple resolution queries at interactive rates
- Makes use of the implicit hierarchy present in temporal resolutions to materialize a sub-lattice of a data cube

	Size		Q1		Q2		Q3		Q4	
	(MB)	Overhead	Time(ms)	Speedup	Time(ms)	Speedup	Time(ms)	Speedup	Time(ms)	Speedup
Nanocube	41799	10349 %	116		4.6		2491.8		40083	
Pandas	1600	300%	1670		9355		10399		11070	
InfluxDB	412	3%	10574		42913		35259		29058	
TimescaleDB	7867	1866%	20385		60206		130594		101036	
KairosDB	1301	225%	229110		629886		240168		75267	
Time Lattice	407	1.75%	40	-	15	-	12	-	92	-

	Size		Q1		Q2		Q3		Q4	
	(MB)	Overhead	Time(ms)	Speedup	Time(ms)	Speedup	Time(ms)	Speedup	Time(ms)	Speedup
Nanocube	41799	10349 %	116	2.9x	4.6	0.3x	2491.8	194x	40083	433x
Pandas	1600	300%	1670		9355		10399		11070	
InfluxDB	412	3%	10574	261X	42913	2860x	35259	2754x	29058	314x
TimescaleDB	7867	1866%	20385		60206		130594		101036	
KairosDB	1301	225%	229110		629886		240168		75267	
Time Lattice	407	1.75%	40	-	15	_	12	_	92	-

Constant insertion time: ideal for streaming

Linear memory overhead

Handling Large Spatio-Temporal Data

- Developing a set of GPU-based techniques
- STIG [Doraiswamy et al. 2015]

Query	MongoDB	Postg	reSQL	Co	omDB
	Time	Time	Speedup	Time	Speedup
1	0.075	503.9	6718x	20.6	274x
2	0.080	501.9	6273x	23.3	291x
3	0.067	437.8	6534x	21.6	322x
4	0.070	437.1	6244x	32.6	465x

Time in Seconds

Handling Large Spatio-Temporal Data

• Raster join [Tzirita Zacharatou, Doraiswamy et al., 2017]

Time Lattice Interface: Noise Profiler

- Noise Profiler
 - Enable domain experts to specify, execute and visualize queries over the SPL data from across the city.
 - Compare data from one or more sensors
 - Support multiple metrics as the aggregate in the queries (e.g. equivalent continuous A-weighted sound pressure level)

Time Lattice Interface: Noise Profiler

Time Lattice Interface: Noise Profiler

Analysis of after hour variances

THE REAL DEAL New York Miami Los Angeles

Q Search

April 2016 Issue

The after-hours construction boom

Why buildings are rising on nights and weekends

By Kathryn Brenzel | April 01, 2016 12:00PM

f 🍠 in 🖂 <

(Photo: Shutterstock)

NEW YORK POST

Buildings Dept. approves night construction, angering residents

By Isabel Vincent and Melissa Klein

January 31, 2016 | 1:51am

Shuttersto

Analysis of after hour variances

Find spatio-temporal relationships

- Data Polygamy [Chirigati et al., 2016]
 - 100's of spatio-temporal data sets
 - Relationships occur only over certain points in space and time
 - Millions of possibilities
 - How to efficiently identify interesting relationships?

Quantify and compare "activity"

- Urban Pulse [Miranda et al., 2017]
 - Signature for different locations
 - Data oblivious
 - Rank and compare locations
 - Query similar locations

Rockefeller Center

Union Square

Hours

			00	00)00	5
ays										
	2	3		4		5	5		6	
nyc-14							_	~		
•	•	(•		•		
onths										
1 2 0 0	3	4	5	6	7	8	9	10	11 ()	
nyc-14										
	-			-	0		0	0	0	-

Quantify and compare "activity"

- Urban Pulse [Miranda et al., 2017]
 - Signature for different locations
 - Data oblivious
 - Rank and compare locations
 - Query similar locations

Alcatraz

Analysis of sound propagation

- Potential approach
 - Make use of highly detailed building models available in NYC
 - Use ray tracing to propagate sound over time
- Initial technology already in place [Miranda, Doraiswamy et al., 2018]
 - Interactively compute shadow accumulation over time
 - Makes use of accurate 3D geometry
 - Uses GPU for efficient ray propagation

Quantifying shadow

Shadow accumulation

[Mapping the Shadows of New York City - The New York Times]

Quantifying shadow

Shadow accumulation

Quantifying shadow

- Shadow accumulation
 - Uses ray tracing to accumulate shadow over time
 - Allows for interactivity
 - Analysis of shadow impact from proposed buildings on public spaces

[Miranda, Doraiswamy et al., 2018]

Outcomes

• Papers:

Published:

Eurovis

- Open source projects:
 - Raster Join: github.com/ViDA-NYU/raster-join
 - Urban Pulse: github.com/ViDA-NYU/urban-pulse
 - Time Lattice: soon

• Media coverage

New York Times

Thank you!

The Economist

R Q N) HEREFORM THE REPORT Urban Pulse Uses Social Media Data to Show Cities in a New Light The sper source platem candid none work for uchlises and planmers resing a befor inclusion of places and be pupply who are then.

Architecture Digest

Curbed

