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Motivation: noise monitoring
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• SPL measurements alone cannot identify the source of the noise 

• Noise source is relevant to identification of possible noise code violation



Where we left off…
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Fig. 4. A scattering transform iterates on wavelet modulus operators |Wm| to compute cascades of m wavelet convolutions and moduli stored in Umx, and
to output averaged scattering coefficients Smx.

prove that there exists a constant C such that for all x and
any such ⌧ [11]:

kSx⌧ � Sxk  C sup
t

|⌧ 0(t)| kxk , (24)

up to second-order terms. As explained for mel-spectral de-
compositions, the constant C is inversely proportional to the
octave bandwidth of wavelet filters. Over multiple scattering
layers, we get C = C0(maxm Qm). For Morlet wavelets,
numerical experiments on many examples give C0 ⇡ 2.

B. Contraction and Energy Conservation
We show that a scattering transform is contractive and can

preserve energy. We denote kAxk2 the squared Euclidean
norm of a vector of coefficients Ax, such as Wmx, Smx, Umx

or Sx. Since Sx is computed by cascading wavelet modulus
operators |Wm|, which are all contractive, it results that S is
also contractive:

kSx � Sx
0k  kx � x

0k . (25)

A scattering transform is therefore stable to additive noise.
If each wavelet transform is a tight frame, that is ↵ = 0

in (15), each |Wm| preserves the signal norm. Applying this
property to |Wm+1|Umx = (Smx , Um+1x) yields

kUmxk2
= kSmxk2

+ kUm+1xk2
. (26)

Summing these equations 0  m  l proves that

kxk2
= kSxk2

+ kUl+1xk2
. (27)

Under appropriate assumptions on the mother wavelet  , one
can prove that kUl+1xk goes to zero as l increases, which
implies that kSxk = kxk for l = 1 [11]. This property comes
from the fact that the modulus of analytic wavelet coefficients
computes a smooth envelope, and hence pushes energy towards
lower frequencies. By iterating on wavelet modulus operators,
the scattering transform progressively propagates all the en-
ergy of Umx towards lower frequencies, which is captured by
the low-pass filter of scattering coefficients Smx = Umx ? �.

One can verify numerically that kUl+1xk converges to zero
exponentially when l goes to infinity and hence that kSxk

T m = 0 m = 1 m = 2 m = 3

23 ms 0.0% 94.5% 4.8% 0.2%
93 ms 0.0% 68.0% 29.0% 1.9%
370 ms 0.0% 34.9% 53.3% 11.6%
1.5 s 0.0% 27.7% 56.1% 24.7%

TABLE I
AVERAGED VALUES kSmxk2/kxk2 COMPUTED FOR SIGNALS x IN THE

TIMIT SPEECH DATASET [33], AS A FUNCTION OF ORDER m AND
AVERAGING SCALE T . FOR m = 1, Smx IS CALCULATED BY MORLET

WAVELETS WITH Q1 = 8, AND FOR m = 2, 3 BY CUBIC SPLINE WAVELETS
WITH Q2 = Q3 = 1.

converges exponentially to kxk. Table I gives the fraction
of energy kSmxk2

/kxk2 absorbed by each scattering order.
Since audio signals have little energy at low frequencies,
S0x is very small and most of the energy is absorbed by
S1x for T = 23 ms. This explains why mel-frequency
spectrograms are typically sufficient at these small time scales.
However, as T increases, a progressively larger proportion
of energy is absorbed by higher-order scattering coefficients.
For T = 1.5 s, about 56% of the signal energy is captured
in S2x. Section VI shows that at this time scale, important
amplitude modulation information is carried by these second-
order coefficients. For T = 1.5 s, S3x carries 25% of the signal
energy. It increases as T increases, but for audio classification
applications studied in this paper, T remains below 1.5 s, so
these third-order coefficients are less important than first- and
second-order coefficients. We therefore concentrate on second-
order scattering representations:

Sx =

⇣
S0x(t) , S1x(t,�1) , S2x(t,�1,�2)

⌘

t,�1,�2

. (28)

C. Fast Scattering Computation

Subsampling scattering vectors provide a reduced repre-
sentation, which leads to a faster implementation. Since the
averaging window � has a duration of the order of T , we
compute scattering vectors with half-overlapping windows at
t = kT/2 with k 2 Z.

Urban Sound Taxonomy UrbanSound8K dataset

Unsupervised Feature Learning Deep Scattering Signal Representations



Output: 
sound source

• J. Salamon and J. P. Bello, “Deep 
Convolutional Neural Networks and Data 
Augmentation For Environmental Sound 
Classification”, IEEE Signal Processing 
Letters, 24(3), pages 279 - 283, 2017.

Deep Learning with Convolutional Networks and 
Data Augmentation
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Input:  
audio recording
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• Training supervised models requires labeled data 

• Strong label = [start time, end time, source label] 

• Strongly labelled data is:  

1. Scarce  

2. Costly to produce

The Challenge
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[1.0, 2.0, “siren”] 
[1.5, 4.0, “jackhammer”] 
[4.2, 4.5, “car horn”]



1. Crowdsourcing                           Harness the crowd to label data! 

2. Data synthesis                           Create artificial data! 

3. Multiple instance learning           Do more with less! 

4. Deep audio embeddings            Exploit structure in unlabeled data!

Solutions
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Crowdsourcing: harness the crowd to label data
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• Next talk… stay tuned!



Data synthesis: create artificial data
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• Open source python library for soundscape synthesis (IEEE WASPAA 2017) 

• Returns soundscape audio + annotation containing strong labels 

• github.com/justinsalamon/scaper

2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY
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FOREGROUND BACKGROUND 

EVENT SPECIFICATION 
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source file ∈ {1.wav, 2.wav, …} 
source time ∈ {0} 
event time ∈ N(5, 2) 
event duration ∈ U(0.5, 4.0) 
SNR ∈ U(6, 30) 
pitch shift ∈ U(-3, 3) 
time stretch ∈ U(0.8, 1.2) 

TRIM 

NORMALIZE 

TRANSFORM 

COMBINE 

SELECT PARAMETERS 

SOUNDCSAPE 

INSTANTIATION 

& GENERATION 

Soundscape 1 Annotation 1 

Soundscape 2 Annotation 2 

Soundscape N Annotation N 

Figure 1: Block diagram of the Scaper synthesis pipeline.

variants of existing soundscapes. Finally, Scaper is implemented in
Python, which means it does not require any proprietary software
(such as, e.g., Matlab) and is easy to integrate with popular ma-
chine (and deep) learning Python libraries such as scikit-learn [15],
TensorFlow [16] and Keras [17], as well as popular audio analysis
Python libraries such as Essentia [18] and Librosa [19].

In the next section we provide an overview of Scaper, including
design choices and functionality. Next, we demonstrate the utility
of the library through a series of experiments: first, we use Scaper
to generate a large dataset of urban soundscapes and evaluate state-
of-the-art SED algorithms, including a breakdown by soundscape
characteristics. Next, we describe how Scaper was used to gener-
ate audio stimuli for a crowdsourcing experiment on the accuracy
of human sound event annotations as a function of sound visual-
ization and soundscape characteristics. The paper concludes with a
discussion of limitations and suggestions for new use cases.

2. SCAPER

SED is based on the notion that sounds in a soundscape can be
broadly grouped into two categories: foreground sound events
which are salient and recognizable, and background sounds, often
regarded as a single holistic sound which is more distant, ambigu-
ous, and texture-like [20, 21, 22]. Scaper was designed with the
same paradigm in mind: a soundscape is generated as the summa-
tion of foreground events and a background recording. It is up to
the user to curate a soundbank (collection) of their choice and or-
ganize the sounds into foreground and background folders, with a
sub-folder for each sound class (label). As such, Scaper is content-
agnostic and can be readily applied to a variety of audio domains
including urban and rural soundscapes, bioacoustic recordings, in-
door environments (e.g. smart homes) and surveillance recordings.
A block diagram of Scaper’s synthesis pipeline is given in Figure 1.

A key building block of Scaper is the event specification. An
event specification stores all properties of a sound event that Sca-
per can control, namely: the event label (class), source file (i.e. the
specific sound clip to be used), the event duration, the source time
(i.e. when the event starts in the source clip), the event time (when
the event should start in the generated soundscape), the SNR with
respect to the background recording, the event role (foreground or
background), pitch shift (in semitones, does not affect duration)
and time stretch (as a factor of the event duration, does not af-
fect pitch). Thus, a soundscape is defined by a set of event spec-
ifications, which are grouped into a foreground specification (for
all foreground events) and a background specification. To define
a soundscape, the user specifies a desired soundscape duration, a
reference loudness level for the background, and then adds event
specifications. For every property in an event specification the user
provides a distribution tuple, which defines a distribution to sample

the property value from. The distributions currently supported in-
clude const (specifying a constant value), choose (randomly select-
ing from a discrete list of values), uniform, normal and truncnormal
(sampling from a continuous distribution), and additional distribu-
tions can be easily added. As such, the user has control over how
detailed the specification is: from precisely defining every property
of every event using constants to a high-level probabilistic specifica-
tion that only specifies a distribution to sample from for every event
property. Given the foreground and background specifications, the
user can generate infinitely many soundscape instantiations2.

An instantiated specification (i.e. with concrete values that have
been sampled for all properties) is then used as a recipe for generat-
ing the soundscape audio, where all audio processing is performed
using pysox [23]. One aspect of the generation that requires spe-
cial care is the handling of SNR values. In particular, simple peak
normalization does not guarantee that two sounds normalized to the
same level will be perceived as equally loud. To circumvent this,
Scaper uses Loudness Units relative to Full Scale (LUFS) [24], a
standard measure of perceived loudness used in radio, television
and Internet broadcasting. Thus, if an event is specified to have an
SNR of 6, it means it will be 6 LUFS above the background level.
Finally, Scaper saves the soundscape annotation in two formats: the
first is a simple space-separated text file with three columns for the
onset, offset and label of every sound event. This format is useful
for quickly inspecting the events in a soundscape and can be directly
loaded into software such as Audacity to view the labels along with
the audio file. The second format is JAMS [14], originally designed
as a structured format for music annotations, which supports stor-
ing unlimited, structured, file metadata. Scaper exploits this to store
both the probabilistic and instantiated specifications of every sound
event. This means that (assuming one has access to the original
soundbank) Scaper can fully reconstruct the audio of a soundscape
from its JAMS annotation. Scaper is open-source (see footnote 1)
and we encourage contributions from the community to improve the
library and implement new features.

3. THE URBAN-SED DATASET

To illustrate the utility of Scaper, we used it to generate a large
dataset of 10,000 ten-second soundscapes for training and evaluat-
ing SED algorithms. We used the clips from the UrbanSound8K
dataset [25], approximately 1000 per each of ten urban sound
sources (each clip contains one of the ten sources), as the sound-
bank. UrbanSound8K is pre-sorted into 10 stratified folds, and so
we use folds 1–6 for generating 6000 training soundscapes, 7–8
for generating 2000 validation soundscapes and 9–10 for generat-
ing 2000 test soundscapes. Soundscapes were generated using the
following protocol: first, we add a background sound normalized
to -50 LUFS. We use the same background audio file for all sound-
scapes, a 10 second clip of Brownian noise, which resembles the
typical “hum” often heard in urban environments. By using a purely
synthesized background we are guaranteed that it does not contain
any spurious sound events that would not be included in the anno-
tation. Next, we choose how many events to include from a discrete
uniform distribution between 1–9. Every event is added with the
same high-level specification: the label is chosen randomly from all
10 available sound classes, and the source file is chosen randomly
from all clips matching the selected label. The source time is al-
ways 0, to ensure we do not miss the onset of an event. The start

2For an example see: https://git.io/v9GGn

Data synthesis:

http://github.com/justinsalamon/scaper
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• URBAN-SED: new dataset of 10,000 soundscapes created using Scaper

Data synthesis:
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• URBAN-SED: new dataset of 10,000 soundscapes created using Scaper

Data synthesis:



Multiple Instance Learning: do more with less
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• Strong labels (start time, end time, label) are scarce and costly 

• But… weak labels (no timing information) are easier to come by and generate

[1.0, 2.0, “siren”] 
[1.5, 4.0, “jackhammer”] 
[4.2, 4.5, “car horn”]

[“siren”] 
[“jackhammer”] 
[“car horn”]



Multiple Instance Learning: do more with less
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Multiple Instance Learning: do more with less

17

Learning audio event detectors from weakly labeled data
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Abstract

Multiple instance learning (MIL)

IDEA 1: replace max-pooling with soft-max-pooling
The currently best performing methods for detecting events in environmental sound
use deep convolutional or recurrent networks, which require large quantities of
annotated training data to produce reliable models.
Producing large, accurately labeled collections of audio data is often the most 
expensive and labor-intensive stage of research.

Labels: weak vs strong

Model architecture

Evaluation data

In this project, we investigate methods to reduce the burden of labeling training data.
We develop a new model architecture which requires only clip-level labels to train a
temporally localized event detector.
Preliminary results show that the proposed method achieves accuracy comparable to what
is possible with strongly labeled data.

- Strong labels include timing of the events

    - Accurate, but expensive

- Weak labels discard timing

    - Less accurate, but cheaper

We tested on two datasets:

UrbanSED
    - 10000 soundscapes generated by Scaper (Salamon et al., 2017)
    - Synthetic, but naturalistic.  This gives us strong reference data for evaluation
    - 10 event categories: air_conditioner, car_horn, children_playing, dog_bark, drilling, 
engine_idling, gun_shot, jackhammer, siren and street_music
    - 6K/2K/2K train/validation/test

DCASE2017 (Task 4)
    - ~50K weakly labeled clips from AudioSet (Gemmeke et al., 2017)
    - Clips collected from YouTube, annotations are noisy
    - 17 event categories: air horn/truck horn, ambulance (siren), bicycle, bus, car, car alarm, 
car passing by, civil defense siren, fire engine/fire truck (siren), motorcycle, police car (siren), 
reversing beeps, screaming, skateboard, train, train horn, truck
    - 50K/488/1103 train/validation/test

    - Semantics: the event happens somewhere in this recording, at least once

Training data:
     - Each X = {x1, x2, ..., xm} is a set of observations (instances)
       (e.g., xi are audio frames, X is an entire clip)

     - Y = 1 if at least one xi is positive
     - Y = 0 if all xi are negative

Given a collection of weakly labeled sets (Xi, Yi), find an instance-level classifier P(y |x)

This is usually trained by max-aggregating instance predictions:

and then maximizing the likelihood of training data for model parameters θ:

Why doesn't MIL work?
During training, max-pooling limits the flow of information

Gradients are back-propagated through only one instance at each step, and all other 
instances are ignored.

Result: learning is slow, and optimizers often get stuck in local optima.

^

- This gives a weighted average over instance predictions that approximates the max operator

- Instances with high likelihoods receive large weights

- Smooth, differentiable, distributes gradients over the entire input set

- BUT weights are bounded and cannot stray far from uniform:

IDEA 2: Auto-pool

- Learn a parameter α to scale the soft-max operator

    - Large α = sharper, sparse weights (more max-like)
    - Small α = diffuse weights (more like unweighted average)
    - Negative α = inverse weights (more min-like)

- Behaves like soft-max pooling, but allows weights to fully cover [0, 1]

    - This should produce better localization

- For multi-label problems, a different α per class allows us to learn different pooling strategies

Results

UrbanSED

    - Auto-pool achieves highest accuracy
        - F1 (strong) = 0.50
        - F1 (weak) = 0.76

    - Training with strong labels is only slightly better
        - F1 (strong) = 0.55

DCASE2017

    - Soft-max achieves highest accuracy, but auto- and average are comparable
        - F1 (strong) = 0.45
        - F1 (weak) = 0.37

    - Caveat: DCASE reference annotations are unreliable and contain many false negatives

Convolutional architecture based on L3 (Arandjelovic & Zisserman, 2017)

References
- Salamon, Justin, et al. "Scaper: A library for soundscape synthesis and augmentation." Applications of Signal 
Processing to Audio and Acoustics (WASPAA), 2017 IEEE Workshop on. IEEE, 2017.

- Arandjelovic, Relja, and Andrew Zisserman. "Look, listen and learn." 2017 IEEE International Conference on 
Computer Vision (ICCV). IEEE, 2017.

- Gemmeke, Jort F., et al. "Audio set: An ontology and human-labeled dataset for audio events." Acoustics, Speech 
and Signal Processing (ICASSP), 2017 IEEE International Conference on. IEEE, 2017.

Strong Label Prediction Performance



Deep Audio Embeddings: exploit structure in 
unlabeled data
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• Some types of data, even without any labels, have structure

“The quick brown fox jumps over the lazy dog”
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Deep Audio Embeddings: exploit structure in 
unlabeled data
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• Arandjelovic & Zisserman, “Look, listen and learn”, ICCV 2017
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• Datasets 

• Open-source code

Open & Reproducible Science

SKM AudioSetDL l3embeddingMILSEDenvsoundcnn



What next…?
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• Deep embeddings based on Audio-Visual Correspondence 

• Deep embeddings based on spatio-temporal structure in SONYC audio data 

• New multi-label sound recognition model based on deep embeddings and new 
taxonomy targeting sources of interest to the city agencies 

• Model compression and deployment in SONYC sensors 

• Posters & demos! 

• Deep embeddings (Jason Cramer & Ho-Hsiang Lee) 

• Multiple Instance Learning (Brian McFee) 

• Real-time sound classification (Peter Li & Justin Salamon) 

• Scaper (Justin Salamon)

Thanks!


