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Variance Term Structures

The absence of arbitrage delivers a risk neutral density at each option
maturity. A simple calculation yields v(t) the variance of the log price
at maturity t.

The use of a Lévy process may be ruled out on observing that v(t) is
not proportional to t.
For an underlying Lévy process L = (L(t), t ≥ 0) an arbitrary
variance function may be accommodated by defining

XSS (t)
(d )
=
√
v(t)L(1)

where the equality is in the distribution. The subscript SS denotes
space scaling.
Alternatively one may employ a time change to define

XTC (t)
(d )
= L(v(t)).

For an underlying Brownian motion the two approaches are
equivalent. In general they are different.
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Additive Processes and Option Pricing

In principle markets can quote prices for forward starting options that
begin at a future date and end at a later date.

Such prices quoted today deliver distributions for future returns
consistent with the marginal distributions at each maturity.

The result is an additive process or process of independent but not
identically distributed increments.

Sato (1991) showed how to build such processes by space scaling
(SS) a limit law or self decomposable law at unit time.

The limit laws were characterized by Lévy (1937) and Khintchine
(1938).

Separating out the processes for the positive and negative moves and
selecting the maximal entropy unit time distribution on the half line
given by the gamma distribution one arrives at space scaling a
bilateral gamma distribution at unit time.
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Time Elasticity of Variance

The time elasticity of variance is defined by

γ(t) =
tv ′(t)
v(t)

It measures the percentage increase in variance for a percentage
increase in the time to maturity.

We recognize that an additional month at one month is not
comparable to an additional month at five years or sixty months.

The function γ(t) may be approximated from data on option prices
with maturities in a neighborhood of a given maturity t.
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Time Elasticity of Variance in SPY options

Such an exercise was conducted daily for SPY options for 1011 days
over the four years 2018− 2021.

Two sets of estimates for γ using the first five and last six maturities
were obtained.
We present a Figure for the two estimates in volatility terms using a
time change approach applied to a unit time bilateral gamma model.
Generally the time elasticity of variance is higher at the front than at
the back. It is also well above unity at the front and closer to but
above 1/2 at the back end.
In stressed periods like the start of COVID in March of 2020 the time
elasticity drops below 1/2 at the front and then rises towards it at the
back end.
The comparison with 1/2 implies that at the money implied
volatilities drop to zero in normal times as maturity drops to zero.
In stressed times implied volatilities rise towards infinity as we
approach zero from above.
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Time Elasticity of Variance Term Structures

The variance was approximated using σ2(t)t where σ(t) is the ATM
implied volatility.

A Gaussian Process Regression was trained to build the function v(t).

Numerical differentiation was employed to construct the elasticities
γ(t).

This was done for all 1011 days and the shapes were quantized to
form eight representative shapes.

The Figure presents the shapes and the proportion of points
represented by each shape.

We observe cases with the elasticity rising or falling monotonically.

There are also cases with humps.

The shapes we build into the models allow for at most one interior
maximum or minimum but not two such points.
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SS and TC Elasticities of Variance

One may model jointly the price logarithim X (t) using increasing
functions f (t), g(t)

X (t) = g(t)L(f (t)).

Letting m(t) be the risk neutral mean of X (t) one may identify the
SS and TC elasticities by

tg ′

g
=

tv ′

v
− tm

′

m
tf ′

f
= 2

tm′

m
− tv

′

v
.

GPR may be used to build the functions m(t) and v(t) with
numerical differentiation then delivering the SS and TC elasticities.
The Figures present representative shapes for SS and TC elasticities
along with the proportion of 1011 days represented.
We observe that the time changing elasticities are significant larger
than the corresponding space scaling elasticities.
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SS and TC Relative Contributions

One may identify the SS and TC additive Lévy systems and for the
bilateral gamma the relative contributions are

kss (x , t)
ktc (x , t)

∝
γg
γf

|x |
g(t)

We observe from equation that space scaling makes contributions at
small levels of t and larger levels of x .
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Structure of SS and TC

Define the process Y (t) as the compensated pure jump Lévy process
with Lévy density

kY (y) = −sign(y)h′(y).

where h(x) is the self decomposability signature with

h(x) = |x |kL(x).
X (t) as an additive process can be decomposed in terms of two Lévy
processes A,B driven by the time change and space scale respectively

A(v) =
∫ v

0
g(eu)dL(f ′(eu)eu)

B(v) =
∫ v

0
g(eu)dY

(
eu f (eu)g ′(eu)

g(eu)

)
With X the law at unit time we have

X (t)− X = A(ln t) + B(ln t)
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Space Scaling and perpetual motion

In the presence of space scaling define

g(t) = exp
(∫ ln(t)

0
γ(es )ds

)

Then

A(v) + B(v) = exp
(∫ v

0
γ(es )ds

)
W (v)

dW = −γ(ev )W (v)dv + dZ

dZ = dY
(
eu f (eu)g ′(eu)

g(eu)

)
+ dL

(
f ′(eu)eu

)
Hence the process X is a scaled version of a solution to an OU
equation reflecting perpetual motion via the effects on current motion
of past shocks.

Dilip B. Madan (Robert H. Smith School of Business )
Peter Carr Memorial Conference Tandon School of Engineering New York University 11

/ 27



Space Scaling and perpetual motion

In the presence of space scaling define

g(t) = exp
(∫ ln(t)

0
γ(es )ds

)
Then

A(v) + B(v) = exp
(∫ v

0
γ(es )ds

)
W (v)

dW = −γ(ev )W (v)dv + dZ

dZ = dY
(
eu f (eu)g ′(eu)

g(eu)

)
+ dL

(
f ′(eu)eu

)

Hence the process X is a scaled version of a solution to an OU
equation reflecting perpetual motion via the effects on current motion
of past shocks.

Dilip B. Madan (Robert H. Smith School of Business )
Peter Carr Memorial Conference Tandon School of Engineering New York University 11

/ 27



Space Scaling and perpetual motion

In the presence of space scaling define

g(t) = exp
(∫ ln(t)

0
γ(es )ds

)
Then

A(v) + B(v) = exp
(∫ v

0
γ(es )ds

)
W (v)

dW = −γ(ev )W (v)dv + dZ

dZ = dY
(
eu f (eu)g ′(eu)

g(eu)

)
+ dL

(
f ′(eu)eu

)
Hence the process X is a scaled version of a solution to an OU
equation reflecting perpetual motion via the effects on current motion
of past shocks.

Dilip B. Madan (Robert H. Smith School of Business )
Peter Carr Memorial Conference Tandon School of Engineering New York University 11

/ 27



Relative incremental variance contributions

The relative incremental variance contribution of space scaling to
time changing may be evaluated as RST where

RST = 2
γg
γf

where γg ,γf are the time elasticities of g and f .
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Modeling Time Elasticities of Variance

For a distribution function H(t) on the positive half line we may then
write a general form for the elasticity as

γ(t) = a+ (b− a)H(t)

For the choice of a distribution function on the half line consider the
exponential for the monotone case and more generally the gamma
distribution that will permit the presence of a humped shape.

This gives us two models for the time elasticity of variance that we
designate exponential/gamma time elasticity of variance. The specific
functions are

γe (t) = b+ (a− b)e−γt

γg (t) = a+
(b− a)cγ

Γ(γ)

∫ t

0
sγ−1e−csds
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The Time Change Functions

The specific time change functions fe (t) and fg (t) are given by

fe (t) = tb exp((b− a) (expint(γt)− expint(γ))

fg (t) = ta exp

(
(a− b)

[ cγ
2F2(γ,γ;γ+1,γ+1;−c )

γ2Γ(γ)

− (ct)
γ
2F2(γ,γ;γ+1,γ+1;−ct)

γ2Γ(γ)

])
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Bilateral Gamma Details

The model may be explained in terms of two standard independent
gamma processes γp(t) and γn(t) with unit mean and variance rates.

For scale parameters bp , bn and speed parameters cp , cn we may write
the bilateral gamma Lévy process LBG = (LBG (t), t ≥ 0) as

LBG (t) = bpγp(cpt)− bnγn(cnt).

The characteristic function for the bilateral gamma is

φBG (u, t) = E [exp(iuLBG (t)]

=

(
1

1− iubp

)cp t ( 1
1+ iubn

)cnt
The Lévy density is given by

kBG (x) = cn
exp

(
− |x |bn

)
|x | 1x<0 + cp

exp
(
− x
bp

)
x

1x>0.
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BG Moments

Denoting by d , v2, s, k the drift rate, variance rate, and the skewness
and kurtosis at unit time we have that

d = bpcp − bncn
v =

√
b2pcp + b2ncn

s = 2
b3pcp − b3ncn

v3

k = 3+ 6
b4pcp + b

4
ncn

v4
.
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Results for the exponential time change case

The fit was conducted on around 15 maturities that included the first
five traded maturities, the last five traded maturities and five
maturities selected in the intermediate range. The median number of
options was 1345 with an interquartile range of between 1135 to 1585.

The average percentage error had a median value of 6.45 percent and
the interquartile range was between 5.52 percent to 7.53 percent.

We filtered out values of γ below 0.05 and above 5 for in these cases
the term structure for the elasticity of variance is flat.

In the remaining 33 percent of cases there was backwardation in 68
percent of the cases and an upward sloping term structure in
remaining 32 percent of the cases.

Figure presents the ratio of the terminal elasticity to the initial
elasticity.

We observe that the backwardation is primarily in the post COVID
period.
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Results for the gamma time change case

The data employed was the same as that for the exponential case.

The median average percentage error was 6.53 percent with an
interquartile range between 5.65 and 7.54 percent.

The gamma case delivers a humped term structure for the elasticity
of variance and the hump maturity is given by (γ− 1)/c.
We select the points where the hump maturity is between 0.25 and
1.5.

There were 375 dates with this property out of the 1011 estimation
dates.

Figure presents the ratio of the terminal to the initial elasticity of
variance in the humped cases.

Prior to 2020 the hump was an internal maximum while in the
backwardation period the hump is an internal minimum.

The median hump maturity is 0.8186 with an interquartile range
between 0.5809 and 1.0802.
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Results for the exponential space scaling coupled with time
changing

The space scaling made a considerable improvement in the quality of
the fit.

The median average percentage error was now 2.36 percent with an
interquartile range between 2.04 and 2.78 percent.

When we filter out the flat elasticities, for the time change 87.34
percent of the cases are not flat and for the space scale 95.55 percent
of the cases are not flat. In 86.15 percent of the cases both the space
scale elasticities and the time change elasticities are not flat.

First we note that the time change elasticity is mostly increasing as is
evidenced by the ratio of terminal to initial elasticities presented in
Figure
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Space Scaling Exponential Elasticities

For the space scale elasticity, the terminal elasticity is essentially zero
or below 0.01 in 726 of the 871 cases with nonconstant elasticities of
both types.

The median initial space scale elasticity is 0.3995 with an interquartile
range between 0.3578 and 0.4449.

So there is generally space scaling occurring near zero that declines to
zero at the far end where the activity is time change.

The median time change elasticity at the front end is 0.3531 with an
interquartile range from 0.2552 to 0.5080.

The time change and space scale elasticities begin at comparable
levels with the former rising in importance while the latter diminishes
towards zero.

Figure presents the ration of terminal to initial space scale elasticities
where the terminal elasticity is above 0.01.
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Results for gamma based space scaling coupled with time
changing

In the gamma based case combining space scaling and time changing
the number of parameters increases to 12 and the estimation time
rises considerably.

In this case we estimated the parameters every five days for a total
number of cases of 203.

The median average percentage error was 0.0237 with an interquartile
range from 0.021 to 0.031.

In 103 of the 203 cases both humps were between a quarter and a
year and a half.
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Gamma based SS and TC

For these cases the initial time change elasticity is essentially zero and
below 0.001 in 77 of the 103 cases. Hence the time change elasticity
rises from zero to the terminal elasticity that had a median value of
0.5425 with an interquartile range from 0.3979 to 0.8672.

The space scale elasticity generally drops towards a positive value.

In the gamma case the terminal space scale elasticities tend to be
above zero.

We learn from these estimations that space scaling plays an important
role that is effective at the lower maturities while at the back end it is
time change elasticities that dominate.

The richer term structure of the gamma based case makes effective
contributions in the modeling of the time elasticities of variance.
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above zero.

We learn from these estimations that space scaling plays an important
role that is effective at the lower maturities while at the back end it is
time change elasticities that dominate.

The richer term structure of the gamma based case makes effective
contributions in the modeling of the time elasticities of variance.
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Result on splitting the positive and negative sides at the
short end

We begin by reporting on separate time elasticities of variance
estimated using options at the short end.

The Table reports selected percentiles for variance elasticities of the
positive and negative moves.

We observe that the up variance elasticities are substantially lower
than the down elasticities.

Table 1
Positive and Negative Move

Variance Elasticities
Percentile Positive Negative

25 0.1828 0.9808
50 0.3308 1.1592
75 0.4826 1.3314
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Result on splitting the gamma case with space scaling and
time changing split for the positive abd negative sides

The number of parameters in this case is 20.

The median average percentage error was 0.0213 with the
interquartile range going from 0.0183 to 0.0251.

The time change had humped elasticities 96.06 percent of the time on
the positive side and 57.64 percent of the time on the negative side.
The corresponding values for space scaling were 61.08 on both sides.

The elasticities of variance for the time change on the positive side
was increasing 98.03 percent of the time while on the negative side it
was increasing just 65.52 percent of the time. Hence backwardation is
present for the time change just on the negative side.

With regard to the space scaling elasticities of variance we have
backwardation on the positive side just 30 percent of the time while
on the negative side there is backwardation 79 percent of the time.
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Conclusion I

The term structure of variance for risk neutral distributions as
observed for options on SPY are characterized by the shapes observed
for the elasticity of variance with respect to the option maturity.

For pure jump Lévy processes with a self decomposable law at unit
time additive processes generated by space scaling and time changing
deliver models synthesizing observed variance term structures.

Monotone time elasticities of variance are modeled using exponential
functions.

Humped time elasticities are captured by gamma functions.

Results for both cases are presented when they are used for just a
time change.

Space scaling is then combined with time changing to make a
significant improvement.
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Conclusion II

It is observed that space scaling generally contributes to the modeling
of front end options while the back end switches towards the
contributions of time changing.

The space scaled and time changed densities are shown to be
consistent with additive processes made up by aggregating over time
the space scaled innovations of the sum of two underlying time
changed Lévy processes taken at log time.

The space scaled process is also a space scaled solution to a time
varying OU equation driven by a time changed Lévy process, taken at
log time, where the OU mean reversion rates are the time elasticities.

The two processes are termed the space scaled and time change
components and their relative contributions, space to time are
determined to be twice the ratio of their elasticities of variance.
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