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Introduction: CMS Spread Options & Copulas

3

• CMS spread options are options on the spread between two swap rates observed at expiry and settled as a 
% of notional. 

• 𝑉 𝑡 = 𝑃 𝑡, 𝑇 𝐸𝑇 𝑋 𝑇 − 𝑌 𝑇 − 𝐾 + 𝐹𝑡]

• To evaluate this, we require the joint distribution of 𝑋 and 𝑌 in the T-forward measure.

• Marginal-distributions in the T-forward measure

– The marginal distributions of X & Y are known in their respective swap-Annuity measures via standard swaption pricing 
models such as SABR, calibrated to European Swaptions. 

– These can be transformed to the T-forward measure using standard techniques, for example: 

a) Represent the Radon-Nikodym derivative as a function of the swap rate

b) Static replication of the payoff as a continuum of swaptions (as devised by Carr, Madan, 1998)

– 𝐸𝑇 𝑓 𝑆 | 𝐹𝑡 =
𝐴 𝑡

𝑃 𝑡,𝑇
𝐸𝐴 𝑃 𝑇,𝑇

𝐴 𝑇
𝑓 𝑆 |𝐹𝑡 = 

𝐴 𝑡

𝑃 𝑡,𝑇
𝐸𝐴 g(𝑆) 𝑓 𝑆 |𝐹𝑡

• Copula function

– A function 𝐶: 0,1 2 → [0,1] is defined as a (2-dimensional) Copula if:

– 𝐶 𝑢, 0 = 𝐶 0, 𝑣 = 0 ∀ 𝑢, 𝑣 ∈ [0,1]

– 𝐶 𝑢, 1 = 𝑢; 𝐶 1, 𝑣 = 𝑣 ∀ 𝑢, 𝑣 ∈ [0,1]

– 𝐶 𝑢2, 𝑣2 − 𝐶 𝑢2, 𝑣1 − 𝐶 𝑢1, 𝑣2 − 𝐶 𝑢1, 𝑣1 ≥ 0 ∀ 0 ≤ 𝑢1 ≤ 𝑢2 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1

• Joint-distribution

– Now, given marginal CDFs of 𝑋, 𝑌 denoted by 𝐹𝑋 , 𝐹𝑌, a the joint-distribution of 𝑋, 𝑌 can be specified as:

𝑭𝑿,𝒀 𝒙, 𝒚 = 𝑪(𝑭𝑿 𝒙 , 𝑭𝒀 𝒚 )

• 𝑉 𝑡 = ∫ ∫ 𝑥 − 𝑦 + 𝜕𝐹𝑋,𝑌

𝜕𝑥𝜕𝑦
𝑥, 𝑦 𝑑𝑥𝑑𝑦 which can be reduced to a single integral using conditioning. 



Gaussian Copula & Implied Correlations

• The Gaussian Copula, parameterized using a correlation 𝜌, is defined as: 

𝐶𝐺𝐶
𝜌

𝑢, 𝑣 = Φ𝜌(Φ−1 𝑢 ,Φ−1 𝑣 )where Φ𝜌 is a cumulative joint Normal distribution with correlation 𝜌, and Φ

is a cumulative standard normal distribution

• We define implied correlation 𝜌𝑖𝑚𝑝 as the correlation required in a Gaussian copula to recover a given price 

using a Gaussian Copula model to jointly distribute the CMS indices. 

• The implied correlations of prices generated using a Gaussian Copula C𝐺𝐶
𝜌

, plotted as a function of strike will 

be flat with level 𝜌, by definition. 

The joint-density charts above are illustrative, and assume Standard Normal marginal distributions.
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Power-Gaussian Copula & Implied Correlation Smiles

• The Power-Gaussian Copula, introduced in Andersen & Piterbarg [1], parameterized using 𝜌, 𝜃1, 𝜃2, is 
defined as follows: 

𝐶𝑃𝐺𝐶
𝜌,𝜃1,𝜃2 𝑢, 𝑣 = u1−𝜃1v1−𝜃2Φ𝜌(Φ−1 𝑢𝜃1 , Φ−1 𝑣𝜃2 )where Φ𝜌 is a cumulative joint Normal distribution with 

correlation 𝜌, and Φ is a cumulative standard normal distribution.

• Implied correlation 𝜌𝑖𝑚𝑝 is defined as before - as the correlation required in a Gaussian copula to recover 

the price derived from this Power-Gaussian Copula model. 

• As one would expect, the Power-Gaussian allows us to generate an implied correlation smile. 

• We characterize and rationalize the domain of smile shapes that this copula can generate.
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The joint-density charts above are illustrative, and assume Standard Normal marginal distributions.

• We use 𝜌 = 0.9 in each of these examples.

• 𝜃1, = 𝜃2 = 1, 𝜌 = 0.9 is equivalent to a Gaussian 
Copula so we have a symmetric (w.r.t X & Y) 
density concentrated along the diagonal X=Y.

• 𝜃1 = 𝜃2 = 0.5 maintains symmetry, introduces a 
strong decorrelation and fat tails. 

• 𝜃1 = 1; 𝜃2 = 0.5 implies “negative” skew on X-Y.

• 𝜃1 = 0.5; 𝜃2 = 1 implies “positive” skew on X-Y.

• This is consistent with the smile plots we see in 
the next slide.



Power-Gaussian Copula & Implied Correlation Smiles (contd.)

• The four examples of PGC parameter sets generate the following implied correlation smiles:

• The skew injected by lowering 𝜃1 or 𝜃2 can be mathematically justified, and is an artifact of PGC.

• Reducing 𝜃1 or 𝜃2 richens options / decorrelates X & Y across strikes, the reason being two-fold. 

𝐶𝑃𝐺𝐶
𝜌,𝜃1,𝜃2 𝑢, 𝑣 = 𝐶𝐺𝐶

0 𝑢1−𝜃1 , 𝑣1−𝜃2 𝐶𝐺𝐶
𝜌

𝑢𝜃1 , 𝑣𝜃2 , a product of Gaussian copulas.

1) Reduction of 𝜃1& 𝜃2: lim
𝜃1,𝜃2→0

𝐶𝑃𝐺𝐶
𝜌,𝜃1,𝜃2 𝑢, 𝑣 = 𝐶𝐺𝐶

0 𝑢, 𝑣 𝐶𝐺𝐶
𝜌
(1,1), which would make X & Y independent. 

2) Divergence of 𝜃1 & 𝜃2: lim
𝜃1→1;𝜃2→0

𝐶𝑃𝐺𝐶
𝜌,𝜃1,𝜃2 𝑢, 𝑣 = 𝐶𝐺𝐶

0 1, 𝑣 𝐶𝐺𝐶
𝜌

𝑢, 1 = 𝑢𝑣 which describes independence.

• Along with fat-tails (increasing decorrelation), this means “PGC” is limited to concave correlation smiles / 
increase in spread smile convexity relative to a Gaussian Copula. 

• Our goal in generalizing this Copula is to increase the model’s flexibility by allowing it to fit convex 
implied correlation smiles. 
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• 𝜃1 = 1; 𝜃2 = 0.5: The –ve skew in X-Y cheapens 
high-strike options on X-Y, and hence the 
positive slope.

• 𝜃1 = 0.5; 𝜃2 = 1:A similar argument explains the 
case when parameters are flipped.

• 𝜃1 = 0.5; 𝜃2 = 0.5: The fat tails explain a 
richening of the wings, and consequently the 
concave implied correlations. 

• This chart relies on marginal CMS distributions 
derived from calibrated SABR models.



Generalized Power-Gaussian Copula – motivation & intuition

• Motivation: Prior to the recent flattening of the yield-curve, the ATM correlation overpriced low-strikes, 
increasingly so in the wings, which required a convex and decreasing implied correlation smile. 

• As noted in the previous slide, the Power-Gaussian Copula offers us two decorrelation levers:

1) Reduction of 𝜃1, 𝜃2 uniformly to increase dependence on the independence copula.

2) Divergence of 𝜃1, 𝜃2 to decouple the two variables. 

• Notice that the Power-Gaussian Copula is a product of two Gaussian Copulas with correlation 𝜌 & 0.

• We repurpose 1) by replacing 𝐶𝐺𝐶
0 with 𝐶𝐺𝐶

𝜌2, with 𝜌2 being an extra parameter. 

• 𝑪𝑮𝑷𝑮𝑪
𝝆𝟏,𝝆𝟐,𝜽𝟏,𝜽𝟐 𝒖, 𝒗 = 𝑪𝑮𝑪

𝝆𝟐 𝒖𝟏−𝜽𝟏𝒗𝟏−𝜽𝟐 𝑪𝑮𝑪
𝝆𝟏 𝒖𝜽𝟏 , 𝒗𝜽𝟐 , verified to satisfy the Copula definition.

• Product of Gaussian Copulas is discussed more generally by Vladimir Lucic [2] in the context of equity basket 
options including spread options (albeit without attention given to the power-form). 

• When 𝜌2 is set to a high value, it can induce a convex correlation skew & smile by increasing wing 

correlation, as we are no longer using 𝐶𝐺𝐶
0 .

• Parameter intuition: 

– Divergence of 𝜃1, 𝜃2 causes decorrelation across strikes.

– When 𝜌2 ≪ 𝜌1 (e.g. PGC), 𝜃1 < 𝜃2 decorrelates high strikes, 𝜃2 < 𝜃1 decorrelates low strikes, with a concave correlation skew & smile.

– When 𝜌2 ≅ 𝜌1 we see a symmetric convex correlation smile where high and low strikes are pulled towards 𝜌1, 𝜌2 respy. when 𝜃1 < 𝜃2.

– When 𝜌1 < 𝜌2; 𝜃1 < 𝜃2 with |𝜃1 − 𝜃2| sufficiently big so that 𝜌𝑖𝑚𝑝
𝑎𝑡𝑚 < min(𝜌1, 𝜌2), we see a convex skew with +ve correlation slope.

– With the ordering of either 𝜌 or 𝜃 flipped, we would induce a –ve correlation slopes.

• We look at a few examples in the next slide. 
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Generalized Power-Gaussian Copula (convex smiles)
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• In the examples below, we use 𝜌1 = 0.95; 𝜌2 = 0.95, and try different values of 𝜃1; 𝜃2. 

• Symmetric in 𝜃1 & 𝜃2 because 𝜌1 = 𝜌2

• When 𝜃1 = 𝜃2 = 0.5 yield ~flat 0.95 
correlations mildly decorrelated by 
splitting u, v b/w identical copulas. 

• Divergence of 𝜃1 and 𝜃2 give us 
decorrelation, a bi-modal density, thin-
tails resulting in convex smiles. 

• ATM strikes are the most decorrelated, 
wings are stretched towards the Gaussians 
represented by the two modes. 

Joint-densities are generated using standard-normal 
marginals, spread correlations use calibrated CMS 

distributions.



Generalized Power-Gaussian Copula (s-shaped skew)
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• In the examples below, we use 𝜌1 = 0.9; 𝜌2 = 0.99.

• 𝜌1 = 0.9; 𝜌2 = 0.99 with 𝜃1 = 𝜃2 = 0.5 gives 
us a rough interpolation b/w 0.9 & 0.99 as 
𝜃1 = 𝜃2 prevents strong decorrelation.

• A small divergence b/w 𝜃1, 𝜃2, we induces 
decorrelation across strikes.

• 𝜌1 < 𝜌2 induces skew. 𝜃1 > 𝜃2, richens 
high-strike options, and lowers high-strike  
correlation, and vice-versa. 

• Convex smiles are consistent with the 
apparent thin-tailed densities.

• The inflections at the wide end of the 
wings are consistent with the increased 
density at the far end of the plot. 

Joint-densities are generated using standard-normal 
marginals, spread correlations use calibrated CMS 
distributions.
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