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Outline

1 Why Path-Dependent Volatility (PDV)?

2 Is Volatility Path-Dependent? How much? How?

3 The continuous-time empirical Markovian PDV model

With Peter Carr in mind...
Discussing volatility modeling with Peter was always so inspiring...
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Path-Dependent Volatility

dSt
St

= σ(Su, u ≤ t) dWt

Zero rates, repos, dividends for simplicity

Volatility drives the dynamics of the asset price S

Feedback loop from prices to volatility

Pure feedback model: volatility is an endogenous factor

Main references:
Econometrics:
The whole GARCH literature
Derivatives research (macro, pricing models, calibration):
Hobson-Rogers ’98, Guyon ’14
Econophysics (micro, statistical models):
Zumbach ’09-10, Chicheportiche-Bouchaud ’14, Blanc-Donier-Bouchaud ’16
Recent models with a PDV component:
Gatheral-Jusselin-Rosenbaum ’20, Parent ’21
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Hobson-Rogers, Mathematical Finance, 1998
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Guyon, Risk, October 2014
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Cutting edge: Derivatives pricing

Path-dependent volatility
So far, path-dependent volatility models have drawn little attention compared with local volatility and stochastic volatility
models. In this article, Julien Guyon shows they combine benefits from both and can also capture prominent historical
patterns of volatility

T
hree main volatility models have been used so far in the finance
industry: constant volatility, local volatility (LV) and stochas-
tic volatility (SV). The first two models are complete: since

the asset price is driven by a single Brownian motion, every payoff
admits a unique self-financing replicating portfolio consisting of cash
and the underlying asset. Therefore, its price is uniquely defined as
the initial value of the replicating portfolio, independent of utilities
or preferences. Unlike the constant volatility models, the LV model is
flexible enough to fit any arbitrage-free surface of implied volatilities
(henceforth, ‘smile’), but then no more flexibility is left. Calibrating to
the market smile is useful when one sells an exotic option whose risk
is well mitigated by trading vanilla options – then the model correctly
prices the hedging instruments at inception.

For their part, SV models are incomplete: the volatility is driven
by one of several extra Brownian motions, and as a result perfect
replication and price uniqueness are lost. Modifying the drift of the
SV leaves the model arbitrage-free, but changes option prices.

Using SV models allows us to gain control of key risk factors such
as volatility of volatility (vol-of-vol), forward skew and spot-vol corre-
lation. SV models generate joint dynamics of the asset and its implied
volatilities (henceforth, spot-vol dynamics) that are much richer than
the LV ones. For instance, using a very large mean reversion together
with a large vol-of-vol and a very negative spot-vol correlation, one
can generate an almost flat implied-volatility surface, together with
very negative short-term forward skews. If an LV model were used to
match this smile, the LV surface would be almost flat as well, produc-
ing vanishing forward skew. As a result, cliquets of forward-starting
call spreads would be much cheaper in the LV model. This is still true
even if the smile is not flat: the LV model typically underprices these
options. Using SV models prevents possible mispricings.

To allow SV models to perfectly calibrate to the market smile, one
can use stochastic local volatility (SLV) models; ie, multiply the SV
by an LV (the so-called leverage function), which is fitted to the smile
using the particle method (see Guyon & Henry-Labordère 2012). This
modifies the spot-vol dynamics, but only slightly: usually the leverage
function, seen as a function of the asset price, becomes flatter and
flatter as time t grows, so the SLV dynamics become closer and closer
to pure SV ones (Henry-Labordère 2009).

At this point, a question naturally arises: can we build complete
models that have all the useful properties of SLV models, namely, rich
spot-vol dynamics and calibration to the market smile? For instance,
can we build a complete model that fits a flat smile and yet produces
very negative short-term forward skews? It is tempting but wrong to
quickly answer ‘no’by arguing that the only complete model calibrated
to the smile is the LV model.This is not true: in this article, we will show
that path-dependent volatility (PDV) models, which are complete, can
produce rich spot-vol dynamics and, furthermore, can perfectly fit
the market smile. The two main benefits of model completeness are

price uniqueness and parsimony: it is remarkable that so many popular
properties of SLV models can be captured using a single Brownian
motion. Although perfect delta-hedging is unrealistic, incorporating
the path-dependency of volatility into the delta is likely to improve
the delta-hedge. Not only that, we will see that, thanks to their huge
flexibility, PDV models can generate spot-vol dynamics that are not
attainable using SLV models.

Below, we first introduce the class of PDV models and then explain
how we calibrate them to the market smile. Subsequently, we investi-
gate how to pick a particular PDV.

Path-dependent volatility models
PDV models are those models where the instantaneous volatility �t

depends on the path followed by the asset price so far:

dSt

St

D �.t; .Su; u 6 t // dWt

where, for simplicity, we have taken zero interest rates, repo and
dividends. In practice, the volatility �t � �.t; St ; Xt / will often be
assumed to depend on the path only through the current value St and
a finite set Xt of path-dependent variables, which may include, for
example, running or moving averages, maximums/minimums, realised
variances, etc.

PDV models have been widely overlooked, compared with LV and
SV. The most famous PDV models are probably the Arch model by
Engle (1982) and its descendants Garch (Bollerslev 1986), Ngarch,
Igarch, etc. But these are discrete-time models that are hardly used in
the derivatives industry. The two other main contributions so far are
from Hobson & Rogers (1998) and Bergomi (2005). In its discrete
setting version, Bergomi’s SV model is actually a mixed SV-PDV
model in which, given a realisation of the variance swap volatility
at time Ti D i� for maturity TiC1,

q
�i

Ti
, the (continuous-time)

volatility of the underlying on ŒTi ; TiC1� is path-dependent: it reads
�.St =STi

/, where � is calibrated to both �i
Ti

and a desired value of
the forward at-the-money (ATM) skew for maturity �. By restriking
S at Ti , the distribution of STiC1

=STi
is made independent of STi

,
which allows us to decouple the short-term forward skew and the
spot/volatility correlation.

By contrast, the Hobson-Rogers model is a pure PDV model in
which the volatility �t D �.Xt / is a deterministic function of Xt D
.X1

t ; : : : ; Xn
t /, where:

Xm
t D

Z t

�1

�e��.t�u/

�
ln

St

Su

�m

du

When n D 1, the volatility depends only on the offset:

X1
t D ln St �

Z t

�1

�e��.t�u/ ln Su du

risk.net 1
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Why Path-Dependent Volatility?
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A philosophical argument

-
past present future

available info -

The arrow of time

Markovian assumption: the future depends on the past only through the
present

Often made just for simplicity and ease of computation, not a fundamental
property

Example: assume that the price of an option depends only on current time
t and current asset price St: P (t, St)

In fact, often, the present does not capture all information from the
past −→ P (t, (Su, u ≤ t))
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An intuitive argument: a simple quizz

June 3, 2022 June 3, 2023

SPX 4,000 5,400
VIX ?

-
a4, 000

a 5, 400
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An intuitive argument: a simple quizz

June 3, 2022 May 3, 2023 June 3, 2023

SPX 4,000 6,000 5,400
VIX ?

-
a4, 000

a6, 000

a 5, 400
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An intuitive argument: a simple quizz
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Figure: VIX vs SPX
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A financial and scaling argument

The two basic quantities that possess a natural scale are the volatility
levels and the asset returns

A good model should relate these two quantities: Path-dependent
volatility

LV model links the volatility level to the asset level, does not make much
financial sense: well chosen PDV models need not be recalibrated as often
as the LV model.

SV models connect the volatility return to the asset price return. Has
limitations:

Only very high levels of vol of vol allow fast large movements of volatility
Typically a very large mean-reversion is postulated to keep volatility within
its natural range.

PDV models directly linking past returns to vol level capture fast large
changes in vol more easily and naturally, while maintaining volatility in its
natural range.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Figure: VIX and SPX daily returns 2000–2021
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A financial and scaling argument

volatility depends on asset

LV level level
SV returns returns

PDV level returns
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Path-dependent volatility vs Stochastic volatility

dSt
St

= at dWt

dat = b(t, at) dt+ σ(t, at)
(
ρ dWt +

√
1− ρ2dW⊥t

)
at = a0 +

∫ t

0

b(u, au) du+

∫ t

0

σ(u, au)

(
ρ

1

au

dSu
Su

+
√

1− ρ2dW⊥u
)

ρ = 0: SV is strictly path-independent
The asset price is a slave process with absolutely no feedback on volatility:

at = f
(
dW⊥u , 0 ≤ u ≤ t

)
= g

(
W⊥u , 0 ≤ u ≤ t

)
ρ /∈ {−1, 0, 1}: SV is partially path-dependent

Partial feedback from asset price to volatility through spot-vol correl(s):

at = f

(
dSu

Su
, dW⊥u , 0 ≤ u ≤ t

)
= g

(
Su,W

⊥
u , 0 ≤ u ≤ t

)
ρ = ±1: SV is fully path-dependent

Pure feedback but path-dependence f, g is complicated, not explicit:

at = f

(
dSu

Su
, 0 ≤ u ≤ t

)
= g (Su, 0 ≤ u ≤ t)
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Joint calibration of SV models to SPX and VIX smiles

The joint calibration of classical parametric SV models to SPX and VIX smiles
leads to

Very large vol of vol

Very large mean-reversions (several time scales)

Correlations = ±1 =⇒ Path-dependent volatility

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Joint calibration of SV models to SPX and VIX smiles

Figure: SPX smile as of January 22, 2020, T = 30 days
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Joint calibration of SV models to SPX and VIX smiles

Figure: VIX smile as of January 22, 2020, T = 28 days
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Joint calibration of SV models to SPX and VIX smiles

ATM skew:

Definition: ST =
dσBS(K,T )

dK
K

∣∣∣
K=FT

SPX, small T : ST ≈ −1.5

Classical one-factor SV model: ST −→
T→0

1

2
× spot-vol correl× vol of vol

Calibration to short-term ATM SPX skew =⇒
vol of vol ≥ 3 = 300%� short-term ATM VIX implied vol

=⇒ Use
very large vol of vol
very large mean-reversion(s) (so that VIX implied vol � vol of vol)
−1 spot-vol correlation(s)

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Calibration of two-factor Bergomi model as of October 8, 2019

Figure: Left: ATM skew of SPX options as a function of maturity. Right: implied
volatility of the squared VIX as a function of maturity. Calibration of the order 2 of
the SPX ATM skew and the order 1 expansion of the VIX2 implied volatility, either
jointly or separately. Calibration as of October 8, 2019.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Calibration of two-factor Bergomi model as of October 8, 2019

Parameter ω k1 k2 θ1 ρ ρS1 ρS2

Calib to SPX ATM skew only 6.71 18.20 1.20 0.77 0.89 -0.92 -0.99

Calib to VIX2 implied vol first 6.24 19.25 1.59 0.75 0.65 -0.92 -0.89
Joint calibration 6.66 22.01 1.04 0.78 0.96 -0.99 -0.99

Comparison with Sets I, II, III in [Bergomi 2016]:

Parameter ω k1 k2 θ1 ρ

Set I in [Bergomi 2016] 3.00 2.63 0.42 0.69 -0.7
Set II in [Bergomi 2016] 3.48 5.35 0.28 0.76 0
Set III in [Bergomi 2016] 3.72 7.54 0.24 0.77 0.7

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Calibration of two-factor Bergomi model as of October 8, 2019

Parameter ω k1 k2 θ1 ρ ρS1 ρS2

Calib to SPX ATM skew only 6.71 18.20 1.20 0.77 0.89 -0.92 -0.99

Calib to VIX2 implied vol first 6.24 19.25 1.59 0.75 0.65 -0.92 -0.89
Joint calibration 6.66 22.01 1.04 0.78 0.96 -0.99 -0.99

Large vol of vol ≈ 2× [Bergomi 2016]

Large mean-reversions ≈ 3 to 4× [Bergomi 2016]

All correlations ±1 =⇒ PDV model (via 2 path-dependent factors)

dSt
St

=
√
ξtt dWt, ξut = ξu0 f

u(t,X1
t , X

2
t )

Xi
t = −

∫ t

0

e−ki(t−u)dWu = −
∫ t

0

e−ki(t−u)
1√
ξuu

dSu
Su

X1
t , X

2
t are path-dependent variables: they depend only on the path of S

Exponential convolution kernel e−k(t−u) =⇒ X1
t , X

2
t are Markovian:

dXi
t = −kiXi

t dt− dWt

Similar to Hobson-Rogers ’98
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An information-theoretical/financial economics argument

Contrary to SV models, PDV models do not require adding extra sources
of randomness to generate rich spot-vol dynamics: they explain volatility
in a purely endogenous way.

=⇒ Unlike SV models, PDV models are complete models: derivatives
have a unique, unambiguous price, independent of any preferences or
utility functions.

All the information exchanged by market participants is recorded in
the underlying asset prices, not just in current prices, but in the history
of all past prices.

Reality is a bit more complex, but we will show that it is actually quite
close to this, so it makes sense to start building a model by extracting
all the information that past asset prices contain about volatility.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Path-dependent volatility is generic for option pricing

All SV models have an equivalent PDV model in the sense that all
path-dependent options (not only vanilla options) written on the
underlying asset have the same prices in both models.

Brunick and Shreve ’13: Given a general Itô process dSt = σtSt dWt,
there exists a PDV model dŜt = σ(t, (Ŝu)u≤t)Ŝt dŴt such that the
distributions of the processes (St)t≥0 and (Ŝt)t≥0 are equal; the
equivalent PDV is given by

σ(t, (Su)u≤t)
2 = E[σ2

t |(Su)u≤t].

=⇒ The price process (St)t≥0 produced by any SV or stochastic local
volatility (SLV) model can be exactly reproduced by a PDV model.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Empirical evidence
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Empirical evidence

Much of the GARCH literature

Time reversal asymmetry in finance: Zumbach-Lynch ’01, Zumbach ’09,
Chicheportiche-Bouchaud ’14...: “Financial time series are not statistically
symmetrical when past and future are interchanged” (BDB ’16)

Leverage effect:
Past returns affect (negatively) future realized volatilities, but not the other
way round” (BDB ’16)
t→ −t and r → −r asymmetry

ZL ’01: time reversal asymmetry even in absence of leverage effect:
Weak Zumbach effect: “Past large-scale realized volatilities are more
correlated with future small-scale realized volatilities than vice versa” (BDB
’16). Most easily captured by PDV models.
t→ −t asymmetry, but r → −r symmetry

Strong Zumbach effect: “Conditional dynamics of volatility with respect
to the past depend not only on past volatility trajectory but also on the
historical price path” (GJR ’20) ⇐⇒ There is some price-path-
dependency in the volatility dynamics

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Empirical evidence

Our Machine Learning approach confirm those findings and moreover answer
those 2 crucial questions:

1 How exactly does volatility depend on past price returns (price trends
and past squared returns)?

2 How much of volatility is path-dependent, i.e., purely endogenous?

That is, explain volatility as an endogenous factor as best as we can,
empirically.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Objectives

(1) Learn path-dependent volatility empirically

Learn how much of volatility is path-dependent, and how it depends on
past asset returns.

Empirical study: learn implied volatility (VIX) and future Realized
Volatility (RV) from SPX path [+ other equity indexes].

Historical PDV or Empirical PDV or P-PDV.

(2) Build a continuous-time Markovian version of empirical PDV model

Extremely realistic sample paths + SPX and VIX smiles.

(3) Jointly calibrate Model (2) to SPX and VIX smiles

Modify parameters of historical PDV model to fit market smiles: P 6= Q.

Implied PDV or Risk-neutral PDV or Q-PDV.

(4) Add SV to account for the (small) exogenous part: PDSV

SV component built from the analysis of residuals true vol
predicted PDV vol

≈ 1.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Is Volatility Path-Dependent?

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Is volatility path-dependent? A Machine Learning approach

Objective: learn from data how much the volatility level depends on
past asset returns.

Learn Volatility (VIX or RV) from SPX path:

Volatilityt = f(Su, u ≤ t) + ε

−→ Historical PDV / Empirical PDV / P-PDV

Feature engineering: find relevant SPX path features.

Try various models: various sets of features and parametric forms for fθ.

Select the one(s) with the best validation score.

Check how the models perform on the test set.

Training set: 2004–18; test set: 2019–21.

A very challenging test set! Due to the Covid-19 pandemic, the test set
includes very different volatility regimes

As a result of this analysis, we propose a new, simple PDV model
that performs better than existing models.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Feature engineering
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SPX path features should be scale-invariant
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Feature engineering

We focus on two main types of features:

[1] Features that capture a recent trend in the asset price:

in order to learn the leverage effect: volatility tends to be higher when
asset prices fall.

[2] Features that capture recent activity (volatility) in the asset price
(regardless of trend):

in order to learn volatility clustering:
periods of large volatility tend to be followed by periods of large volatility.
implied volatility tends to be larger when historical volatility is larger.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.
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Trend features

The most important example of a trend feature is a weighted sum of past
daily returns

R1,t :=
∑
ti≤t

K1(t− ti) rti

where

rti :=
Sti − Sti−1

Sti−1

K1 : R≥0 → R≥0: convolution kernel that typically decreases towards
zero: the impact of a given daily return fades away over time.
Another example:

Nt :=
∑
ti≤t

KN (t− ti)r−ti or more generally Nϕ
t :=

∑
ti≤t

KN (t− ti)ϕ(rti)

with, e.g., ϕ(r) = r+ or r3 or (r−)2.
Another example: spot-to-moving-average ratio

Ut :=
St
At
, At :=

∑
ti≤t

KA(t− ti)Sti .
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Activity features (or volatility features)

The most important example of a volatility feature is a weighted sum of
past squared daily returns

R2,t :=
∑
ti≤t

K2(t− ti) r2ti .

For simplicity we denote
Σt :=

√
R2,t,

which is the K2-weighted historical volatility.

Higher even moments of past daily returns may also be considered.
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Our model

Volatilityt = β0 + β1R1,t + β2Σt, β0 > 0, β1 < 0, β2 ∈ (0, 1)

Volatilityt denotes either some implied volatility (e.g., the VIX) observed
at t, or the future realized volatility RVt (realized over day “t+ 1”).

Leverage effect: β1 < 0.

Volatility clustering, like in GARCH models: β2 ∈ (0, 1).

Importantly, both factors R1,t and Σt are needed to satisfactorily
explain the volatility.

We find that a simple linear model does the job, explaining a very
large part of the variability observed in the volatility.
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Kernels

This was checked by running a multivariate lasso regression with variables

R
(λj)

1,t and
√
R

(µk)
2,t , where

R
(λ)
n,t :=

∑
ti≤t

K(λ)(t− ti) rnti , K(λ)(τ) := λe−λτ , λ > 0.

For both n = 1 and n = 2, lasso selects a multitude of λ’s which, combined,
form a kernel that looks like a power law, except that for vanishing lags τ the
kernels do not seem to blow up (the largest λ’s are not selected).

=⇒ We choose both kernels to be time-shifted power laws (TSPL):

K(τ) = Kα,δ(τ) := Z−1
α,δ(τ + δ)−α, τ ≥ 0, α > 1, δ > 0,

with only two parameters α > 1, δ > 0.

The time shift δ (a few weeks) guarantees that Kα,δ(τ) does not blow up
when the lag τ vanishes.

If we force δ to be 0, we recover the power-law kernel of rough volatility
models. However, our empirical tests all select positive δ.

Longer memory of R2: α1 > α2.
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Similar models

QARCH (Sentana ’95):

Volatility2t = β0 + β1R1,t + β2R
Q
2,t, RQ

2,t :=
∑

ti,tj≤t

KQ
2 (t− ti, t− tj) rtirtj

Diagonal QARCH model (CB ’14, K2(τ) := KQ
2 (τ, τ)):

Volatility2t = β0 + β1R1,t + β2R2,t (M1)

ZHawkes process (BDB ’16):

Volatility2t = β0 + β1R
2
1,t + β2R2,t (M2)

Discrete-time version of the quadratic rough Heston model (GJR ’20, θ0 = 0):

Volatility2t = β0 + β1(R1,t − β2)2 (M3)

with Mittag-Leffler kernel K1.

Discrete-time version of the threshold EWMA Heston model (Parent ’21):

Volatility2t = β0 + β1(R1,t − β2)21{R1,t≤β2} (M4)

with K1 an exponential kernel, K1(τ) = λe−λτ .
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Our model differs in several ways

1 All the above models, like almost all ARCH models, model the square of the
volatility, the variance. Instead, we directly model the volatility itself.

2 We use the square root Σt of R2,t rather than R2,t itself as one of the linear
factors.

3 We use new, explicit parametric forms for the kernels K1 and K2, capturing
non-blowing-up power-law-like decays.

4 Compared with (M3) and (M4), we empirically prove the importance of
including the historical volatility factor Σt.

5 Compared with (M2), we argue that it is not necessary to include a
quadratic factor R2

1,t, as the quadratic-like dependence of the volatility (resp.
variance) on R1,t is already captured by the factor Σt (resp. R2,t).
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Results: Implied volatility

β0 α1 δ1 β1 α2 δ2 β2

VIX 0.043 2.328 0.053 -10.985 1.793 0.078 0.829
VIX9D 0.041 1.409 0.020 -19.323 1.265 0.014 0.822
IVI 0.014 2.488 0.082 -14.068 1.748 0.090 0.977
VSTOXX 0.053 1.524 0.048 -19.849 2.469 0.184 0.802
VDAX-NEW 0.045 2.431 0.071 -9.745 2.737 0.171 0.832
Nikkei 225 VI 0.044 1.036 0.013 -11.877 2.096 0.079 0.845

Table: Table of optimal parameters for different implied volatility indexes.
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Results: Implied volatility

Train RMSE Train r2 Test RMSE Test r2

VIX 0.0189 0.956 0.0330 0.884
VIX9D 0.0241 0.865 0.0396 0.926
VSTOXX 0.0297 0.889 0.0305 0.902
IVI 0.0248 0.914 0.0307 0.876
VDAX-NEW 0.0295 0.878 0.0293 0.912
Nikkei 225 VI 0.0323 0.890 0.0330 0.788

Table: Table of r2 scores and RMSE for various implied volatility indexes.
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Results: Implied volatility
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Figure: Comparison of r2 scores for the different models (M1)-(M4) and our linear
models. Top: r2 score on train set. Bottom: r2 score on test set. Left: Implied
volatilities. Right: Realized volatilities.
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Results: Implied volatility
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Results: Implied volatility
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Figure: Predicted VIX vs true VIX on train/test set.

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.

Volatility is (Mostly) Path-Dependent



Why Path-Dependent Volatility? Learning Path-Dependent Volatility The Continuous-Time Empirical Path-Dependent Volatility Model

Results: Implied volatility
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Results: Implied volatility
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Results: Realized volatility

Train RMSE Train r2 Test RMSE Test r2

SPX 0.0539 0.717 0.0679 0.652
STOXX 0.0649 0.578 0.0659 0.683
FTSE 100 0.0594 0.616 0.0723 0.603
DAX 0.0564 0.633 0.0550 0.631
Nikkei 225 0.0538 0.551 0.0562 0.485

Table: Table of r2 scores and RMSE for the realized volatility of several indexes
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Results: Realized volatility

β0 α1 δ1 β1 α2 δ2 β2

SPX 0.021 1.770 0.029 -14.876 1.675 0.021 0.649
STOXX 0.043 1.251 0.022 -22.855 1.827 0.033 0.556
FTSE 100 0.014 2.097 0.038 -13.198 1.893 0.045 0.750
DAX 0.021 1.538 0.023 -13.166 1.955 0.043 0.655
Nikkei 225 0.028 34.878 0.399 -2.591 2.586 0.040 0.467

Table: Table of optimal parameters for the realized volatility for different indexes.
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Results: Realized volatility
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Figure: Comparison of r2 scores for the different models (M1)-(M4) and our linear
models. Top: r2 score on train set. Bottom: r2 score on test set. Left: Implied
volatilities. Right: Realized volatilities.
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Results: Realized volatility
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Results: Realized volatility
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Figure: Predicted VIX vs true VIX on train/test set.
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Results: Realized volatility

2.0 1.5 1.0 0.5 0.0 0.5
R1

0

20

40

60

80

100

120

140

RV
SP

X

10

20

30

40

50

60

70

80

20 40 60 80
0

20

40

60

80

100

120

140

RV
SP

X

2.0

1.5

1.0

0.5

0.0

0.5

R 1

Figure: RVSPX vs features on the train data set.
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Results: Realized volatility
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The Continuous-Time Empirical
Path-Dependent Volatility Model
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The Continuous-Time Empirical Path-Dependent Volatility Model

We now consider the continuous-time limit of our empirical PDV model,
where we identify Volatilityt as the instantaneous volatility σt:

dSt
St

= σt dWt,

σt = σ(R1,t, R2,t)

σ(R1, R2) = β0 + β1R1 + β2
√
R2 (1)

R1,t =

∫ t

−∞
K1(t− u)

dSu
Su

=

∫ t

−∞
K1(t− u)σu dWu,

R2,t =

∫ t

−∞
K2(t− u)

(
dSu
Su

)2

=

∫ t

−∞
K2(t− u)σ2

u du.
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The Continuous-Time Empirical Path-Dependent Volatility Model

The dynamics of R1,t and R2,t

dR1,t =

(∫ t

−∞
K′1(t− u)

dSu
Su

)
dt+K1(0)

dSt
St

=

(∫ t

−∞
K′1(t− u)σudWu

)
dt+K1(0)σt dWt

dR2,t =

(∫ t

−∞
K′2(t− u)

(
dSu
Su

)2
)
dt+K2(0)

(
dSt
St

)2

=

(
K2(0)σ2

t +

∫ t

−∞
K′2(t− u)σ2

udu

)
dt

are in general non-Markovian, since for general kernels K1 and K2 the integrals
in the above drifts are not functions of (R1,t, R2,t).

Julien Guyon © 2022 Bloomberg Finance L.P. All rights reserved.

Volatility is (Mostly) Path-Dependent



Why Path-Dependent Volatility? Learning Path-Dependent Volatility The Continuous-Time Empirical Path-Dependent Volatility Model

A (too) simple Markovian approximation: the three-dimensional Markovian
PDV model

The simplest kernels yielding a Markovian model are the (normalized)
exponential kernels K1(τ) := K(λ1)(τ) := λ1e

−λ1τ and
K2(τ) := K(λ2)(τ) := λ2e

−λ2τ , λ1, λ2 > 0. Longer memory of R2: λ2 < λ1.

K′1 = −λ1K1 and K′2 = −λ2K2 so both (R1,t, R2,t) and (St, R1,t, R2,t) have
Markovian dynamics:

dSt
St

= σ(R1,t, R2,t) dWt, σ(R1, R2) = β0 + β1R1 + β2
√
R2,

dR1,t = λ1

(
dSt
St
−R1,t dt

)
= λ1

(
σ(R1,t, R2,t) dWt −R1,t dt

)
, (2)

dR2,t = λ2

((
dSt
St

)2

−R2,t dt

)
= λ2

(
σ(R1,t, R2,t)

2 −R2,t

)
dt.

We call this model the three-dimensional Markovian PDV model (3DMPDV
model).
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The three-dimensional Markovian PDV model

Choosing K1 and K2 to be single exponential kernels fails to capture the mix
of short and long memory in both R1 and R2 observed in the data.

We will capture this mix of short and long memory in a Markovian way by
choosing K1 and K2 to be linear combinations of exponential kernels.

Dynamics of the volatility

σt = β0 + β1R1,t + β2
√
R2,t, (3)

reads

dσt =

(
−β1λ1R1,t +

β2λ2

2

σ2
t −R2,t√
R2,t

)
dt+ β1λ1σt dWt. (4)

Constant instantaneous vol of instantaneous vol but rich drift

Volatility clustering via mean-reversion

Price-path-dependence of volatility dynamics: strong Zumbach effect

Nonnegativity of volatility guaranteed if λ2 < 2λ1
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A better Markovian approximation: the five-dimensional Markovian PDV
model

Approximate TSPL kernel τ 7→ Z−1
α,δ(τ + δ)−α by a linear combination of two

exponential kernels, τ 7→ (1− θ)λ0e
−λ0τ + θλ1e

−λ1τ with θ ∈ [0, 1] and
λ0 > λ1 > 0.

The very large weights given to very recent returns (short memory) are
captured by a very large λ0

The long memory is produced by a small λ1

θ is a mixing factor.
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TSPL vs linear combination of two exponentials
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Figure: TSPL kernel K1 and its approximations by an exponential and by a linear
combination of two exponentials.
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The five-dimensional Markovian PDV model

Introduce parameters θ1, λ1,0, λ1,1 and θ2, λ2,0, λ2,1 for the approximation of
the TSPL kernels K1 and K2. For n ∈ {1, 2} and j ∈ {0, 1}, denote

Rn,j,t :=

∫ t

−∞
λn,je

−λn,j(t−u)
(
dSu
Su

)n
.

dSt
St

= σt dWt

σt = σ(R1,t, R2,t)

σ(R1, R2) = β0 + β1R1 + β2
√
R2

R1,t = (1− θ1)R1,0,t + θ1R1,1,t (5)

R2,t = (1− θ2)R2,0,t + θ2R2,1,t

dR1,j,t = λ1,j

(
dSt
St
−R1,j,t dt

)
= λ1,j

(
σ(R1,t, R2,t) dWt −R1,j,t dt

)
,

dR2,j,t = λ2,j

((
dSt
St

)2

−R2,j,t dt

)
= λ2,j

(
σ(R1,t, R2,t)

2 −R2,j,t

)
dt.
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The five-dimensional Markovian PDV model

The dynamics of the instantaneous volatility reads

dσt = β1 ((1− θ1)λ1,0 + θ1λ1,1)σt dWt+
{
−β1 ((1− θ1)λ1,0R1,0,t + θ1λ1,1R1,1,t)

+
β2
2

((1− θ2)λ2,0 + θ2λ2,1)σ2
t − ((1− θ2)λ2,0R2,0,t + θ2λ2,1R2,1,t)√

R2,t

}
dt

(6)

and satisfies similar qualitative properties as dynamics (4):

The drift of σt produces volatility clustering via a clear trend of mean
reversion of volatility.

The lognormal volatility of σt is constant.

The dynamics of (σt) are price-path-dependent: the drift of σt cannot be
written as a function of just the past values (σu)u≤t of the volatility; it
depends on the past asset returns through R1,0,t and R1,1,t.
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The five-dimensional Markovian PDV model: sample paths

β0 β1 λ1,0 λ1,1 θ1 β2 λ2,0 λ2,1 θ2
0.04 -0.105 62 10 0.21 0.6 40 3 0.42

Table: Parameters for the simulation of the five-dimensional Markovian PDV Model
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The five-dimensional Markovian PDV model: drift of the volatility
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Figure: Drift of σt vs σt for different maturities and for N = 10k paths, T = 1 year.
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The five-dimensional Markovian PDV model: sample paths
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Figure: SPX and VIX timeseries on a typical path of 20 years.
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The five-dimensional Markovian PDV model: scatter plots

12.5 10.0 7.5 5.0 2.5 0.0 2.5
R1

0

25

50

75

100

125

150

175

RV

20

40

60

80

100

20 40 60 80 100
0

25

50

75

100

125

150

175

RV

12

10

8

6

4

2

0

2

R 1

Figure: RV vs features on 5 simulated paths of 20 years.
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Figure: Σ vs R1 and 3D scatter plot of VIX vs R1 and Σ.
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The five-dimensional Markovian PDV model: smiles
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Figure: Model SPX smiles and term-structure of ATM skew.
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Conclusion

Volatility is (mostly) path-dependent, endogenous.

Volatility is very well explained by recent past asset returns only:
train r2 ≈ 0.96, test r2 ≈ 0.88 on SPX and VIX data.

We have found a simple path-dependent volatility model that accurately
explain the current VIX or RV value by recent SPX returns.

We directly model the volatility level (not the vol changes).

By design, dependence on trend features (MA of past returns) =⇒ leverage
effect...

...but it is not enough: volatility features (MA of past squared returns =
historical volatility) are needed too; they capture volatility clustering + weak
Zumbach effect.

Multi-scale trading memory: different time scales of path-dependence are
needed ⇐⇒ various time horizons of investors/traders

Using EWMA yields easy-to-simulate Markovian models
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Conclusion

Volatility is not purely path-dependent: some of it depends on news, new
information.

The (small) exogenous part can then be incorporated using another source of
randomness, e.g.,

dSt
St

= at σ(Su, u ≤ t) dWt

where at is some stochastic volatility, for instance: PDSV

The ratio residuals VIXt
f(Su,u≤t) help define relevant stochastic dynamics for (at).

We believe this is the right way of modeling volatility:
(1) Model the purely endogenous part of volatility as best as we can
(2) Then add the exogenous part, if needed
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