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The Carr-Madan spanning formula

Assume that European options with all possible strikes and
expirations are traded.

The Carr-Madan spanning formula shows that any
twice-differentiable payoff at time T may be statically hedged
using a portfolio of European options expiring at time T .

Lemma (Carr-Madan spanning formula)

Consider a generalized European payoff g(ST ). Then

g(ST ) =

∫ F

0

g ′′(K ) (K − ST )+ dK +

∫ ∞

F

g ′′(K ) (ST − K )+ dK

+g(F ) + g ′(F ) (ST − F ). (1)
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Proof

Following [CM1998], the value of a claim with a generalized
payoff g(ST ) at time T is given by

g(ST ) =

∫ ∞
0

g(K ) δ(ST − K ) dK

=

∫ F

0
g(K ) δ(ST − K ) dK +

∫ ∞
F

g(K ) δ(ST − K ) dK .

Integrating by parts gives

g(ST ) = g(F )−
∫ F

0
g ′(K ) θ(K − ST ) dK

+

∫ ∞
F

g ′(K ) θ(ST − K ) dK .
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... and integrating by parts again gives

g(ST )

=

∫ F

0
g ′′(K ) (K − ST )+ dK +

∫ ∞
F

g ′′(K ) (ST − K )+ dK

+g(F )− g ′(F )
[
(F − ST )+ − (ST − F )+

]
=

∫ F

0
g ′′(K ) (K − ST )+ dK +

∫ ∞
F

g ′′(K ) (ST − K )+ dK

+g(F ) + g ′(F ) (ST − F ).

Equation (1) shows how to decompose any payoff g(ST ) into
hockey-stick payoffs.

In particular, any such payoff can be hedged with a static
position in European vanilla options and forward contracts.
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The fair value of the payoff g(ST )

With F = E[ST ],

E [g(ST )] = g(F ) +

∫ F

0
dK P̃(K ) g ′′(K )

+

∫ ∞
F

dK C̃ (K ) g ′′(K ) (2)

where P̃ and C̃ represent undiscounted put and call prices.

The fair value of g(ST ) is thus expressed in terms of an (in
general) infinite strip of puts and calls.
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Remarks on spanning of European-style payoffs

From equations (1) and (2), we see that any European-style
twice-differentiable payoff may be replicated using a portfolio
of European options with strikes from 0 to ∞.

The weight of each option equal to the second derivative of
the payoff at the strike price of the option.

This portfolio of European options is a static hedge because
the weight of an option with a particular strike depends only
on the strike price and the form of the payoff function and not
on time or the level of the stock price.

Note further that (1) is completely model-independent
(assuming continuity of paths of the underlying).
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The log-contract and quadratic variation

Now consider a contract whose payoff at time T is
XT = log(ST/F ). Then g ′′(K ) = − 1/ST

2
∣∣
ST=K

and it follows

from equation (2) that

E
[

log

(
ST
F

)]
= −

∫ F

0

dK

K 2
P̃(K ) −

∫ ∞
F

dK

K 2
C̃ (K ) (3)



Carr-Madan spanning Optimal trading Trading variance

Rewriting (3) in terms of the log-strike variable k := log (K/F ), we
get the promising-looking expression

E
[

log

(
ST
F

)]
= −

∫ 0

−∞
dk p(k) −

∫ ∞
0

dk c(k)

:= −
∫ ∞
−∞

dk q(k) (4)

with

q(k) :=
min[C̃ (Fek), P̃(Fek)]

Fek

representing out-of–the-money option prices expressed in terms of
percentage of the strike price.

Henceforth we assume zero interest rates and dividends, so
E [ST ] = S0, C̃ = C , P̃ = P, and so on.
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The variance contract

With zero rates and dividends, F = S0 and applying Itô’s Lemma,
path-by-path

log

(
ST
F

)
= log

(
ST
S0

)
=

∫ T

0
d log (St)

=

∫ T

0

dSt
St
−
∫ T

0

vt
2
dt (5)
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Hedging the variance contract

The second term on the RHS of (5) is immediately
recognizable as half the quadratic variation 〈X 〉T over the
interval [0,T ].

The first term on the RHS represents the payoff of a hedging
strategy which involves maintaining a constant dollar amount
in stock (if the stock price increases, sell stock; if the stock
price decreases, buy stock so as to maintain a constant dollar
value of stock).
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Hedging the variance contract

Since the log payoff on the LHS can be hedged using a
portfolio of European options as noted earlier, it follows that
quadratic variation may be replicated in a completely
model-independent way so long as the stock price process is a
diffusion.

In particular, volatility may be stochastic or deterministic and
(5) still applies.
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The log-strip hedge for a variance contract

Now taking the risk-neutral expectation of (5) and comparing
with equation (4), we obtain

E
[∫ T

0
vtdt

]
= −2E

[
log

(
ST
F

)]
= 2

∫ ∞
−∞

q(k) dk. (6)

We see that the fair value of quadratic variation is given by
the value of an infinite strip of European options in a
completely model-independent way so long as the underlying
process is a diffusion.
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One application: The VIX index

In 2004, the CBOE listed futures on the VIX - an implied
volatility index.

Originally, the VIX computation was designed to mimic the
implied volatility of an at-the-money 1 month option on the
OEX index. It did this by averaging volatilities from 8 options
(puts and calls from the closest to ATM strikes in the nearest
and next to nearest months).

The CBOE changed the VIX computation: ”CBOE is
changing VIX to provide a more precise and robust measure of
expected market volatility and to create a viable underlying
index for tradable volatility products.”
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The VIX formula

Here is the revised VIX definition (converted to our notation)
as specified in the CBOE white paper:

VIX 2 =
2

T

∑
i

∆Ki

K 2
i

Qi (Ki ) −
1

T

[
F

K0
− 1

]2
where Qi is the price of the out-of-the-money option with
strike Ki and K0 is the highest strike below the forward price
F .

We recognize this formula as a straightforward discretization
of the variance log-strip (6) and makes clear the reason why
the CBOE implies that the new index permits replication of
volatility.
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History of the VIX

Figure 1: The VIX index since 2000. (SPX and VIX data from Yahoo!)
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VIX futures and options

The variance log-strip underlies the construction of the VIX
index.

Since 2013, more vega is traded in VIX futures and options
than is traded in SPX.
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VIX open interest and volume

Figure 2: VIX futures open interest and volume (from [Pos2021])
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The corridor variance contract

Now consider a contract whose payoff at time T is

gC (ST ) = −2 log
ST
S0

1{K−≤ST≤K+}

+2

[
− ST

K−
2
− log

K−
S0

+
1

K−

]
1{ST<K−}

+2

[
− ST

K+
2
− log

K+

S0
+

1

K+

]
1{ST>K+}.

Just the log-contract in the inner interval, linearly extrapolated.

Then gC (·) and g ′C (·) are continuous. Moreover

g ′′C (ST ) =
2

ST
2
1{K−≤ST≤K+}.
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The payoff gC

Figure 3: The log contract payoff −2 log S/S0 in blue; the payoff gC (S)
in red.
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Hedging the corridor variance contract

Similarly, the model-free hedging strategy is to:

Hold a strip of options with strikes between K− and K+.

Maintain a constant dollar amount in stock, if the stock price
is between K− and K+.

No rehedging if the stock price is outside this interval.
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Applying Itô’s Lemma path-by-path and taking expectations
as before gives

E
[∫ T

0
vt 1{K−≤St≤K+} dt

]
= E [gC (ST )] = 2

∫ k+

k−

q(k) dk. (7)

where k± := logK±/S0.

We see that the fair value of a corridor variance contract that
pays only when K− ≤ St ≤ K+ is given by a strip of options
with strikes above K− and below K+.
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Forward starting corridor variance contracts

We get the forward-starting version by trading the spread:

E
[∫ T+

T−

vt 1{K−≤St≤K+} dt

]
= E

[∫ T+

0
vt 1{K−≤St≤K+} dt

]
− E

[∫ T−

0
vt 1{K−≤St≤K+} dt

]
= 2

∫ k+

k−

[q(k,T+)− q(k ,T−)] dk. (8)

In this way, we can trade instantaneous variance vt conditional
on St ∈ (K−,K+) and t ∈ (T−,T+).

A localized variance contract.

An immediate practical corollary is that local variance surfaces
should be as smooth as possible.

Localized variance spreads can in principle be traded.
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Dupire’s local variance

Recall that Dupire’s local variance is given by

v`(K ,T ) = E [vT | ST = K ] .

In the limit T± → T , K± → K , we obtain

E
[∫ T+

T−

vt 1{K−≤St≤K+} dt

]
≈ E

[
vT 1{K−≤ST≤K+}

]
dT

≈ v`(K ,T )E
[
1{K−≤ST≤K+}

]
dT

≈ v`(K ,T ) p(K ,T ) dK dT , (9)

where p(K ,T ) = ∂K ,KC (K ,T ) is the risk-neutral density.

Also on the RHS,

2

∫ k+

k−

[q(k ,T+)− q(k ,T−)] dk ≈ 2 ∂Tq(k ,T ) dk dT (10)
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The Dupire Formula

Equating the RHS (10) with the LHS (9) and using that

q(k ,T ) =
C (K ,T )

K
and dk =

dK

K
,

we get

The Dupire Formula

v`(K ,T ) =
2 q(k,T )

K p(K ,T )
=

∂TC (K ,T )
1
2 K

2∂K ,KC (K ,T )
.
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Weighted variance contracts

Consider the weighted variance contract
∫ T
0 α(St) vt dt.

Following [Fuk2014], an application of Itô’s Lemma gives the
quasi-static hedge:

∫ T

0
α(St) vt dt = A(ST )− A(S0)−

∫ T

0
A′(Su) dSu (11)

with

A(x) = 2

∫ x

1
dy

∫ y

1

α(z)

z2
dz .

The LHS of (11) is the payoff to be hedged.
The last term on the RHS corresponds to rebalancing.
The first term on the RHS corresponds to a static position in
options given by the spanning formula (1).



Carr-Madan spanning Optimal trading Trading variance

The gamma contract

The payoff of a gamma contract is 1
S0

∫ T
0 St vt dt.

Thus α(x) = x and

A(x) =
2

S0

∫ x

1
dy

∫ y

1

z

z2
dz =

2

S0
{1− x + x log x} .

The static options hedge is the spanning strip for 2 ST
S0

log ST
S0

The contract with payoff ST

S0
log ST

S0
is known as the entropy

contract.
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A cool formula for the variance contract

Define

d± = − k

σBS(k)
√
T
± σBS(k)

√
T

2

and further define the inverse functions g±(z) = d−1± (z).
Intuitively, z measures the log-moneyness of an option in
implied standard deviations.

Then, as a corollary of result of Matytsin’s,

E
[∫ T

0
vtdt

]
= −2E

[
log

ST
F

]
=

∞∫
−∞

dz N ′(z)σ2BS (g−(z))T .
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A cool formula for the gamma contract

Fukasawa [Fuk2012] derives an expression for the value of a
generalized European payoff in terms of implied volatilities.

As one application, he derives the following expression for the
value of a gamma contract.

E
[∫ T

0

St
F

vtdt

]
= 2E

[
ST
F

log
ST
F

]
=

∞∫
−∞

dz N ′(z)σ2BS (g+(z))T .

(note g+ instead of g− in the variance contract case).

In particular, if we have a parameterization of the volatility
smile (such as SVI), computing the fair value of the
covariance contract is straightforward.
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Optimal positioning in derivative securities
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Abstract
We consider a simple single period economy in which agents invest so as to
maximize expected utility of terminal wealth. We assume the existence of
three asset classes, namely a riskless asset (the bond), a single risky asset (the
stock), and European options of all strikes (derivatives). In this setting, the
inability to trade continuously potentially induces investment in all three asset
classes. We consider both a partial equilibrium where all asset prices are
initially given, and a more general equilibrium where all asset prices are
endogenously determined. By restricting investor beliefs and preferences in
each case, we solve for the optimal position for each investor in the three
asset classes. We find that in partial or general equilibrium, heterogeneity in
preferences or beliefs induces investors to hold derivatives individually, even
though derivatives are not held in aggregate.

1. Introduction
The portfolio selection problem pioneered by Markowitz [36]
and Merton [37] generally does not formally consider deriva-
tive securities as potential investment vehicles. Similarly, the
asset allocation approach favoured by practitioners does not3

consider derivatives as a distinct asset class. If derivatives (for-
wards, futures, swaps, options and exotics) are considered at
all, they are only viewed as tactical4 vehicles for efficiently
re-allocating funds across broad asset classes, such as cash,
fixed-income, equity and alternative investments. While the
question of optimal derivatives positioning has been addressed
in the literature, few papers5 have focused directly on the de-
mand for derivatives, especially in a general equilibrium.

3 For example, three recent comprehensive texts on asset allocation are Gibson
[25], Vince [50], or Leibowitz et al [34], none of which cover derivatives.
4 See Evnine and Henriksson [21] and Tilley and Latainer [49] for discussions
on the use of options in an asset allocation framework.
5 Some guidance may be gleaned from the standard literature in which
dynamic trading in the underlying assets completes markets. For example,
the Cox and Huang [14] solution to the Merton [37] problem can be used to
obtain the payoff that is actually being replicated through dynamic trading in
the underlying assets.

The absence of a direct focus on optimal derivatives
positioning is partly due to the complexity of the problem
and partly due to the overwhelming success of the arbitrage-
based models for pricing derivatives. Since these models are
dynamically complete in the underlying assets, these models
are subject to the Hakansson [27, 28] ‘catch 22’: although
derivatives can be perfectly priced in these economies, there is
no justification for their existence. In these models, the optimal
position in derivatives is usually either indeterminate or
infinite, depending on whether an investor agrees or disagrees
with the derivative’s market price. Since these models were
developed for the purpose of pricing, they are ill-suited for
the development of a normative theory, capable of guiding
investors, regulators and other market participants about the
efficacy of derivatives markets.

The purpose of this paper is to delineate the optimal
derivatives positions for investors when they cannot trade
continuously. In contrast to most of the literature on optimal
allocation across derivatives, we pay particular attention to
positioning in a general equilibrium setting. We show that
under reasonable market conditions, derivatives comprise an
important, interesting and separate asset class, imperfectly

1469-7688/01/010019+19$30.00 © 2001 IOP Publishing Ltd PII: S1469-7688(01)16162-2 19
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Optimal investing with options

Following [CM2001], consider investing initial wealth Wt in a
derivative claim with payoff f (ST ). By definition of the
pricing measure, Wt = EQ [ f (ST )| Ft ].

Expected utility of terminal wealth is given by

Ut [f ] = EP [U(WT )| Ft ] =

∫
ρP(ST )U (f (ST )) dST ,

where U is the investor’s utility function.

Now find the f that maximizes Ut [f ] subject to
Wt = EQ [ f (ST )| Ft ].
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The Lagrangian of this optimization problem is

L[f ] =

∫
ρP(ST )U (f (ST )) dST − λ

[
EQ [ f (ST )| Ft ]−Wt

]
where

EQ [ f (ST )| Ft ] =

∫
ρQ(ST ) f (ST ) dST .

The first order condition is then

ρP(ST )U ′(f (ST ))− λ ρQ(ST ) = 0. (12)

Integrating wrt ST gives

λ =

∫
R>0

ρP(ST )U ′(f (ST )) dST .
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We then obtain a risk-adjusted measure

ρQ(ST ) =
ρP(ST )U ′(f (ST ))∫

R>0
ρP(ST )U ′(f (ST )) dST

.

Thus, the optimal payoff f is such that the risk-adjusted
physical measure ρP equals the pricing measure ρQ.

Solving (12) for f (·) gives

f (S) = U ′
−1
(
λ
ρQ(S)

ρP(S)

)
(13)

which is Equation (10) of [CM2001].
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Marco Avellaneda quote

Let’s now suppose we know the utility function of the
representative investor...

Giordano Bruno (1585)

Se non è vero, è ben trovatoa.

aFrom Wiktionary: Even if it is not true, it is a good story
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Log utility

Suppose that the representative investor I maximizes logW .

i.e. that I is a Kelly investor.

If U(W ) = logW , U ′(W ) = 1/W and (13) becomes

1

f (ST )
= λ

ρQ(ST )

ρP(ST )
.

Rearranging and integrating gives

λEQ [ f (ST )| Ft ] =

∫
R>0

ρP(ST ) dST = 1.

It follows that the Kelly-optimal derivative payoff is given by

f (ST ) = EQ [ f (ST )| Ft ]
ρP(ST )

ρQ(ST )
. (14)
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An equilibrium argument

From now on, let St be the price of the market portfolio (SPX
say).

In equilibrium, the market portfolio is optimal for the
representative investor I.

Thus
dP
dQ

=
ρP(ST )

ρQ(ST )
=

ST
St

(15)

– the Long numeraire portfolio or growth optimal portfolio.

The change of measure is just the stock price.

The change of measure is a Q-martingale since S is a
martingale under Q.
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Another argument

The same result follows from the argument, originally due to
Mark Davis, that in equilibrium, market option prices should
be such that the utility of an optimal stock portfolio cannot
be increased by trading options.
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The Kelly optimal investment policy and drift under P

Dynamics of the stock price under P are

dSt
St

= µt dt +
√
vt dZ

P
t .

What proportional πt of wealth W should be held in stock at
time t?

We have

dWt = πt Wt
dSt
St

= πt Wt

{
µt dt +

√
vt dZ

P
t

}
.
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Applying Itô’s Formula,

logWT = logWt +

∫ T

t

πs µs du +

∫ T

t

πs
√
vs dZs −

1

2

∫ T

t

π2
s vs du.

It follows that utility is maximized pathwise if πu = µu/vu.

We found that πt = 1 is optimal, so we must have µt = vt .

The equity risk premium, the extra return that investors
require for taking on risk, is equal to instantaneous variance.

Taking σ = 0.15, we get an equity risk premium of around
2.25% per annum, which seems not unreasonable.
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Ross recovery

In this simple framework, we know the change of measure
dP/dQ.

So we can get the P distribution knowing the Q distribution.

This is reminiscent of Ross recovery, on which Carr and Yu
[CY2012] wrote a fascinating paper.
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Risk, Return, 
and Ross Recovery
PETER CARR AND JIMING YU
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 Courant Institute, 
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JIMING YU

is a vice president at a large 
financial institution in 
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The risk return relation is a staple of modern 
finance. When risk is measured by volatility, it 
is well known that option prices convey risk. One 
of the more inf luential ideas in the last twenty 
years is that the conditional volatility of an asset 
price can also be inferred from the market prices of 
options written on that asset. Under a Markovian 
restriction, it follows that risk-neutral transition 
probabilities can also be determined from option 
prices. Recently, Ross has shown that real-world 
transition probabilities of a Markovian state vari-
able can be recovered from its risk-neutral transition 
probabilities along with a restriction on preferences. 
In this article, we show how to recover real-world 
transition probabilities in a bounded diffusion con-
text in a preference-free manner. Our approach is 
instead based on restricting the form and dynamics 
of the numeraire portfolio.

Give me a lever long enough and a ful-
crum on which to place it, and I shall 
move the world.

—Archimides

Finance is ultimately the study of 
the relationship between risk and 
return. One of the most commonly 
accepted tenets of this relationship is 

that the expected return on an asset increases 
along with its risk. When risk is measured 
by volatility, it is widely agreed that option 
prices convey the degree of risk that the 

market forecasts. Yet when it comes to pre-
dicting the average return, the conventional 
wisdom is that option prices are silent in this 
respect.

Recently, Stephen Ross has written a 
working paper [2011], that challenges this con-
ventional wisdom. Under the assumptions of 
his model, option prices forecast not only the 
average return, but also the entire return dis-
tribution. Further tweaking the nose of con-
ventional wisdom, option prices even convey 
the conditional return distribution,when the 
conditioning variable is a Markovian state vari-
able that determines aggregate consumption.

Those of us raised on the Black–Merton–
Scholes (BMS) paradigm find Ross’s claims to 
be startling. If one can value options without 
knowledge of expected return, then how can 
one use option prices to infer expected return? 
On the other hand, if expected returns are 
increasing in volatility, then higher option 
prices imply higher volatility and higher 
expected return.

The authors of this article set out to get 
to the bottom of this conundrum. In trying to 
understand the foundations of Ross’s model, 
we discovered an alternative set of sufficient 
conditions that leads to the same startling 
conclusion. Our framework is not yet broad 
enough to encompass the unbounded dif-
fusions that describe a standard model such 
as BMS. Hence, it may well be that option 
prices are silent regarding expected return 
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Carr and Yu

In that paper too, we have that the equity risk premium
associated with the numeraire portfolio is the instantaneous
variance.

... but that is a story for another day ...

Instead, we will focus on the variance risk premium.
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Variance risk premiums

Variance Risk Premiums
Peter Carr
Bloomberg LP and Courant Institute, New York University

Liuren Wu
Zicklin School of Business, Baruch College

We propose a direct and robust method for quantifying the variance risk premium on
financial assets. We show that the risk-neutral expected value of return variance, also
known as the variance swap rate, is well approximated by the value of a particular portfolio
of options. We propose to use the difference between the realized variance and this synthetic
variance swap rate to quantify the variance risk premium. Using a large options data set,
we synthesize variance swap rates and investigate the historical behavior of variance risk
premiums on five stock indexes and 35 individual stocks. (JEL G10, G12, G13)

It has been well documented that return variance is stochastic. When investing
in a security, an investor faces at least two sources of uncertainty, namely the
uncertainty about the return as captured by the return variance, and the uncer-
tainty about the return variance itself. It is important to know how investors deal
with the uncertainty in return variance to effectively manage risk and allocate
assets, to accurately price and hedge derivative securities, and to understand
the behavior of financial asset prices in general.

We develop a direct and robust method for quantifying the return variance
risk premium on an asset using the market prices of options written on this
asset. Our method uses the notion of a variance swap, which is an over-the-
counter contract that pays the difference between a standard estimate of the
realized variance and the fixed variance swap rate. Since variance swaps cost
zero to enter, the variance swap rate represents the risk-neutral expected value
of the realized variance. We show that the variance swap rate can be synthesized
accurately by a particular linear combination of option prices. We propose to

We thank Yacine Aı̈t-Sahalia (the editor), an anonymous referee, and Turan Bali, David Bates, Menachem
Brenner, Mikhail Chernov, Robert Engle, Stephen Figlewski, Rajna Gibson, Alfredo Ibanez, George Jiang, Dilip
Madan, Steven Posner, Anders Bjerre Trolle, Benjamin Wurzburger, Jin Zhang, Chu Zhang, and seminar partici-
pants at the 5th Conference on Financial Risks at Verona (Italy), the 2005 American Finance Association meetings,
Baruch College, Hong Kong University of Science and Technology, New York University, and University of
Zurich for comments. We also thank David Hait and OptionMetrics for providing the option data, Alex Mayus
for clarifying trading practices, and Rui Yao for help on data processing. We assume full responsibility for any
remaining errors. Liuren Wu gratefully acknowledges the support by a grant from The City University of New
York PSC-CUNY Research Award Program. Send correspondence to Liuren Wu, Department of Economics
and Finance, Zicklin School of Business, Baruch College, CUNY, One Bernard Baruch Way, Box B10-225,
New York, NY 10010, telephone: (646) 312-3509, fax: (646) 312-3451. E-mail: Liuren Wu@baruch.cuny.edu.

C© The Author 2008. Published by Oxford University Press on behalf of The Society for Financial Studies.
All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org
doi:10.1093/rfs/hhn038 Advance Access publication April 10, 2008



Carr-Madan spanning Optimal trading Trading variance

Why trade variance?

Banks buy variance to hedge short vega risk.

Hedge funds sell variance to capture the variance risk
premium.

If realized variance is less than the strike, this trade makes
money - so-called volatility arbitrage.
In a top-cited paper, Carr and Wu [CW2009] studied the
variance premium, the amount that this short variance trade is
expected to make.
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History of variance contracts

Variance contracts took off as a product in the aftermath of
the LTCM meltdown in late 1998 when implied stock index
volatility levels rose to unprecedented levels.

LTCM had dominated the market as sellers of variance.
Probably the first and biggest ‘volatility arbitrageurs’ ever.

Hedge funds took advantage of this squeeze by selling
variance contracts at historically incredibly high levels.

The key to their willingness to sell variance contracts rather
than sell options was that a variance contract is a pure play on
realized variance – no labor-intensive delta hedging or other
path dependency is involved.
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Definition of the variance risk premium

According to our definition (which is the negative of Carr and
Wu’s), the variance risk premium is simply

EQ
[∫ T

t
vu du

∣∣∣∣Ft

]
− EP

[∫ T

t
vu du

∣∣∣∣Ft

]
.

How much we expect to make selling a variance contract.



Carr-Madan spanning Optimal trading Trading variance

Variance risk premium under log utility

With the change of measure

dP
dQ

=
ρP(ST )

ρQ(ST )
=

ST
St
,

computation of the variance risk premium is straightforward.

The fair value of the variance contract is given by

Vt(T ) := EQ
[∫ T

t
vu du

∣∣∣∣Ft

]
= −2EQ [Xt,T | Ft ].

On the other hand, expected integrated variance under P is
given by

EP
[∫ T

t
vu du

∣∣∣∣Ft

]
= EQ

[∫ T

t

Su
St

vu du

∣∣∣∣Ft

]
=: Gt(T ).
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Thus the variance risk premium is given by

EQ
[∫ T

t
vu du

∣∣∣∣Ft

]
− EP

[∫ T

t
vu du

∣∣∣∣Ft

]
= Vt(T )− Gt(T ) =: −Lt(T ),

where Lt(T ) denotes the value of the leverage contract.

Both Vt(T ) and Gt(T ) have model-free prices in terms of the
log- and entropy-contracts respectively.

Thus, under log-utility, we have model-free expressions for
both equity risk and variance risk premia!

What is the empirical variance risk premium?
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Variance risk premium

Figure 4: Realized variance risk premium from 2000 to 2021 per $1mm
notional.
Variance and gamma contract estimates use data from OptionMetrics.



Carr-Madan spanning Optimal trading Trading variance

Cumulative P&L

Figure 5: Cumulative P&L of the short variance trade.
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Profitability of the short variance trade

Figure 5 clearly shows that the short variance trade is
profitable on average.

But with huge drawdowns.

Assuming we traded a 1-month $1mm variance contract
contract every day, our average P&L would have been
454± 5, 283 dollars per day.

The equivalent average risk premium according to our formula

EQ
[∫ T

t
vu du

∣∣∣∣Ft

]
− EP

[∫ T

t
vu du

∣∣∣∣Ft

]
= −Lt(T )

was 228 dollars per day.
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Regressions

Let V denote the price of the 30-day variance contract and
RV denote the subsequently realized 30-day variance.

Carr and Wu estimated the following relations:

RV = a + b V + ε

logRV = a + b logRV + ε.

Performing linear regressions on our dataset gives

RV = −0.0001635 + 0.9234V + ε

logRV = −0.04774 + 1.07221 logV + ε.

The first regression has an R2 of 0.37 and the second has an
R2 of 0.56.

In other words, the variance contract is a good predictor of
realized variance – see Figure 6.



Carr-Madan spanning Optimal trading Trading variance

VIX 2 vs actual variance

Figure 6: VIX 2 is a good predictor of realized variance.
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Time series of the leverage contract

Figure 7: The leverage contract is very spiky!
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Variance risk premium and the leverage contract

Recall that in our simple framework, the variance risk
premium is given by the leverage contract.

We (probably) can’t predict spikes in volatility, but we can
measure leverage!

Why not sell variance contracts only after a spike in leverage?
In other words, sell only when the variance risk premium is
high.

For example, suppose we only sell variance on days when the
leverage contract is greater than 0.0015. What does the
equity plot look like?
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Time series of the leverage contract with sell barrier

Figure 8: The leverage contract with a sell level at 0.0015.
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Cumulative P&L of the conditional short variance trade

Figure 9: Cumulative P&L of the conditional short variance trade. Back
to the drawing board!
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Summary

Using the Carr-Madan spanning formula, we computed various
model-free quantities including

The variance contract.
The gamma contract.

Under log utility, the Carr-Madan optimal portfolio is the
market portfolio, which we take to be SPX.

The change of measure dP/dQ = ST/St .
The equity risk premium is just instantaneous variance.

It follows that the variance risk premium of Carr and Wu is
given by the leverage swap.
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Epilog

Be curious.

Look for beauty.

Work very hard.

... be like Peter Carr.
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