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Towards a theory of volatility trading

29

Towards a Theory of Volatility
Trading

Peter Carr and Dilip Madan
Morgan Stanley; University of Maryland

We review three methods which bave emerged for trading realised volatil-
ity. The first method involves taking static positions in options, such das
straddles, while the second method involves delta-hedging an option posi-
tion. If the investor is successful in bedging away the price risk, then a
prime determinant of the profit or loss from this strategy is the difference
between the realised volatility and the anticipated volatility used in pric-
ing and bedging the option. The final mmethod involves buying or selling a
“vol swap”. This contract pays the buyer the difference betfween the
realised volatility and the fixed swap rate determined at the outset of the
contract. We also uncover the link between volatility contracts and some
recent work on local volatility.
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The Carr-Madan spanning formula

@ Assume that European options with all possible strikes and
expirations are traded.

@ The Carr-Madan spanning formula shows that any
twice-differentiable payoff at time T may be statically hedged
using a portfolio of European options expiring at time T.

Lemma (Carr-Madan spanning formula)
Consider a generalized European payoff g(St). Then

oo

)
g(5r) = / g"(K) (K — Sr)* dK + / &"(K) (St — K)* dK
+&(F) +&'(F) (St - F). (1)




00@0000000000O000O0O00O0O00000000

Proof

e Following [CM1998], the value of a claim with a generalized
payoff g(S7) at time T is given by

g(Sr) = /0 " g(K)5(St — K) dK
= [ statsr—Kya [T gatsr - k) a
0 F

@ Integrating by parts gives

)
¢(Sr) = g(F)— /0 ¢/(K)0(K — St) dK

+/F°O &/ (K)O(ST — K) dK.
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@ ... and integrating by parts again gives

g(S1)

B /F g"(K)(K—ST)+dK+/OO g"(K) (St — K)" dK
0 F

+g(F)—g'(F) [(F=ST)" — (St — F)"]

_ /F g"(K) (K — St)+ dK + /OO g"(K) (S7 — K)* dK
0 F

+g(F) +&'(F) (ST — F).

e Equation (1) shows how to decompose any payoff g(S7) into
hockey-stick payoffs.
e In particular, any such payoff can be hedged with a static
position in European vanilla options and forward contracts.
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The fair value of the payoff g(S7)

With F = E[S7],

F ~
Elg(57)] = &(F) + /0 dK B(K) g"(K)

i " dK E(K) g"(K) )

where P and C represent undiscounted put and call prices.

@ The fair value of g(S7) is thus expressed in terms of an (in
general) infinite strip of puts and calls.
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Remarks on spanning of European-style payoffs

e From equations (1) and (2), we see that any European-style
twice-differentiable payoff may be replicated using a portfolio
of European options with strikes from 0 to oc.

e The weight of each option equal to the second derivative of
the payoff at the strike price of the option.

@ This portfolio of European options is a static hedge because
the weight of an option with a particular strike depends only
on the strike price and the form of the payoff function and not
on time or the level of the stock price.

o Note further that (1) is completely model-independent
(assuming continuity of paths of the underlying).
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The log-contract and quadratic variation

Now consider a contract whose payoff at time T is
X1 = log(S7/F). Then g"(K) = —1/St and it follows
from equation (2) that

E[log<5FT>] = —/OF%I-”(K)—/FOO%QK) (3)

’ ‘ST:K
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Rewriting (3) in terms of the log-strike variable k := log (K /F), we
get the promising-looking expression

E[mg(SFTﬂ - —/0 dkp(k)—/ooo dk (k)

— 00

- / " dkq(k) (4)

with
min[C(Fek ,PN Fek

representing out-of—the-money option prices expressed in terms of
percentage of the strike price.

@ Henceforth we assume zero interest rates and dividends, so
E[St] = S0, C=C, P=P, and so on.
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The variance contract

With zero rates and dividends, F = Sp and applying It6's Lemma,

path-by-path
log| — ] = log|—=
g\ F g S

= /OT dlog (5¢)

T dSt /T Vi
- e[ Vg 5
S ), 2 (5)
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Hedging the variance contract

@ The second term on the RHS of (5) is immediately
recognizable as half the quadratic variation (X) 1 over the
interval [0, T].

@ The first term on the RHS represents the payoff of a hedging
strategy which involves maintaining a constant dollar amount
in stock (if the stock price increases, sell stock; if the stock

price decreases, buy stock so as to maintain a constant dollar
value of stock).



000000000 0e000000000O00000000

Hedging the variance contract

@ Since the log payoff on the LHS can be hedged using a
portfolio of European options as noted earlier, it follows that
quadratic variation may be replicated in a completely

model-independent way so long as the stock price process is a
diffusion.

@ In particular, volatility may be stochastic or deterministic and
(5) still applies.
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The log-strip hedge for a variance contract

e Now taking the risk-neutral expectation of (5) and comparing
with equation (4), we obtain

[ ] = e[ (F)]

o
- / a(k) dk. (6)
— 0o
@ We see that the fair value of quadratic variation is given by
the value of an infinite strip of European options in a
completely model-independent way so long as the underlying
process is a diffusion.
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One application: The VIX index

@ In 2004, the CBOE listed futures on the VIX - an implied
volatility index.

@ Originally, the VIX computation was designed to mimic the
implied volatility of an at-the-money 1 month option on the
OEX index. It did this by averaging volatilities from 8 options
(puts and calls from the closest to ATM strikes in the nearest
and next to nearest months).

@ The CBOE changed the VIX computation: " CBOE is
changing VIX to provide a more precise and robust measure of
expected market volatility and to create a viable underlying
index for tradable volatility products.”
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The VIX formula

@ Here is the revised VIX definition (converted to our notation)
as specified in the CBOE white paper:

2 AK; 1 [F 2
vIX2=Z=Y —LQiK)- = |—-1
Tzi: rz QiK) T[Kg ]
where Q; is the price of the out-of-the-money option with
strike K; and Kj is the highest strike below the forward price
F.

@ We recognize this formula as a straightforward discretization
of the variance log-strip (6) and makes clear the reason why
the CBOE implies that the new index permits replication of
volatility.
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History of the VIX

VIX since 2000 2000-01-03 / 2022-05-23
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Figure 1: The VIX index since 2000. (sPx and VIX data from Yahoo!)
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VIX futures and options

@ The variance log-strip underlies the construction of the VIX
index.

e Since 2013, more vega is traded in VIX futures and options
than is traded in SPX.
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VIX open interest and volume
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Figure 2: VIX futures open interest and volume (from [Pos2021])
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The corridor variance contract
@ Now consider a contract whose payoff at time T is

S
gc(St) = 2 |0g?2 Tk <Sr<Ki}
St K_ 1
+2 |:_K_2 — |Og570 + f(_:| H{ST<K_}

St K, 1
2 -2 logt 4+ —| 1 .
+ |: K+2 o8 So + K+:| {St>K+}

e Just the log-contract in the inner interval, linearly extrapolated.
@ Then gc(-) and g((-) are continuous. Moreover

2
8c(ST) = <5 Lik_<sr=kiy-
.
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The payoff g¢
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Figure 3: The log contract payoff —2 log S/Sp in blue; the payoff g¢(S)
in red.
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Hedging the corridor variance contract

Similarly, the model-free hedging strategy is to:
@ Hold a strip of options with strikes between K_ and K.

@ Maintain a constant dollar amount in stock, if the stock price
is between K_ and K.

e No rehedging if the stock price is outside this interval.
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@ Applying It6's Lemma path-by-path and taking expectations
as before gives

E [/OT ve Lik_<s.<k.} dt]
ke
= Flecl®r)=2 / (k) ok, -

where ki :=log K1 /Sp.

@ We see that the fair value of a corridor variance contract that
pays only when K_ < §; < K is given by a strip of options
with strikes above K_ and below K.
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Forward starting corridor variance contracts

@ We get the forward-starting version by trading the spread:

T
E U Ve Lik_<si<k,} dt}

T, T
= E U Ve Lik_<si<k} dt} —E [/ Ve Lik_<si<k,} dt
0 0

ky
= 2 [ lalk T~ gl 7)) k. (8)
@ In this way, we can trade instantaneous variance v; conditional
onS;e(K_,Ky)and t e (T_, T}).
e A localized variance contract.
@ An immediate practical corollary is that local variance surfaces
should be as smooth as possible.
e Localized variance spreads can in principle be traded.
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Dupire's local variance

@ Recall that Dupire's local variance is given by
ve(K, T) =E[vr| ST = K].

@ In the limit T — T, K1 — K, we obtain

T
E[/ ve lik_ <si<iy dt| = Elvr Ik <srex,y] dT

~ w(K,T)E [H{K—S5T§K+}] dT
~ vwK, T)p(K,T)dKdT, (9)

where p(K, T) = 0k k C(K, T) is the risk-neutral density.
@ Also on the RHS,

2 /k+ [q(k, Ty) — q(k, T_)] dk ~207q(k, T)dkdT (10)
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The Dupire Formula

Equating the RHS (10) with the LHS (9) and using that

C(K, T dK
q(k, T) = (K’) and dk = e

we get

The Dupire Formula

k,T)  0rC(K,T)
Kp(K,T) L1K20kkC(K, T)
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Weighted variance contracts

@ Consider the weighted variance contract fo a(St) vt dt.

e Following [Fuk2014], an application of 1t6's Lemma gives the
quasi-static hedge:

/T a(Se) ve dt = A(ST) — A(So) — /T A(S)dS, (1)
0 0

with
x) =2

o The LHS of (11) is the payoff to be hedged.

e The last term on the RHS corresponds to rebalancing.

e The first term on the RHS corresponds to a static position in
options given by the spanning formula (1).
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The gamma contract

@ The payoff of a gamma contract is sio fOT St vy dt.

@ Thus a(x) = x and

2 X Y z 2
A(x) = — d/dz: 1—x+xlogx}.
=g [ & [ Ge=ct £x)

@ The static options hedge is the spanning strip for 2 Ss—g log ‘Z.—g

e The contract with payoff %Z log Z—Z is known as the entropy

contract.



0000000000000 O000O000O0O000000e0

A cool formula for the variance contract

@ Define

k ops(k)VT
- +
ags(k)V'T 2
and further define the inverse functions g4 (z) = di*(2).

Intuitively, z measures the log-moneyness of an option in
implied standard deviations.

dy =

@ Then, as a corollary of result of Matytsin's,

o0

E [/OT vtdt] = 2F [Iog SFT} = /dz N'(z)o%s(g-(2)) T.

—00
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A cool formula for the gamma contract

o Fukasawa [Fuk2012] derives an expression for the value of a
generalized European payoff in terms of implied volatilities.

@ As one application, he derives the following expression for the
value of a gamma contract.

E [/OT % vtdt} =2FE [SFT log SFT] = 7 dz N'(z) 0%s (g:(2)) T.

— 00

(note gy instead of g_ in the variance contract case).

@ In particular, if we have a parameterization of the volatility
smile (such as SVI), computing the fair value of the
covariance contract is straightforward.
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Optimal positioning in derivative securities
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Optimal positioning in derivative
securities

Peter Carr' and Dilip Madan?
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2 Robert H Smith School of Business, University of Maryland, College Park,
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Abstract

We consider a simple single period economy in which agents invest so as to
maximize expected utility of terminal wealth. We assume the existence of
three asset classes, namely a riskless asset (the bond), a single risky asset (the
stock), and European options of all strikes (derivatives). In this setting, the
inability to trade continuously potentially induces investment in all three asset
classes. We consider both a partial equilibrium where all asset prices are
initially given, and a more general equilibrium where all asset prices are
endogenously determined. By restricting investor beliefs and preferences in
each case, we solve for the optimal position for each investor in the three
asset classes. We find that in partial or general equilibrium, heterogeneity in
preferences or beliefs induces investors to hold derivatives individually, even
though derivatives are not held in aggregate.
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Optimal investing with options

e Following [CM2001], consider investing initial wealth W; in a
derivative claim with payoff f(S7). By definition of the
pricing measure, W; = EQ[f(ST)| Ftl.

o Expected utility of terminal wealth is given by

{r] = E7 [UWr)| ] = [ pe(ST) U(F(ST) dSr.

where U is the investor's utility function.

o Now find the f that maximizes U;[f] subject to
W; = EQ[£(ST)| Fel.
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@ The Lagrangian of this optimization problem is

£lf) = [ pe(Sr)U(F(ST) dSt — A [E9 [F(57)] 2] - Wi

where
EQ[f(ST)| Fe] = / po(St) f(ST) dST.

@ The first order condition is then

pp(ST) U'(f(ST)) — A poe(ST) = 0. (12)

@ Integrating wrt St gives

A= [ pp(S7) U(F(S7))dST.

R20
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@ We then obtain a risk-adjusted measure

_ pe(ST) U'(f(ST))
PaST) = T (5r) UNF(5r)) dST

@ Thus, the optimal payoff f is such that the risk-adjusted
physical measure pp equals the pricing measure pg.

@ Solving (12) for f(-) gives

f(S)= U <)\ Zig)) ) (13)

which is Equation (10) of [CM2001].
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Marco Avellaneda quote

@ Let's now suppose we know the utility function of the
representative investor...

Giordano Bruno (1585)

Se non é vero, & ben trovato?.

“From Wiktionary: Even if it is not true, it is a good story




Log utility

@ Suppose that the representative investor Z maximizes log W.
e j.e. that 7 is a Kelly investor.

o If UW)=logW, U(W)=1/W and (13) becomes

1 palST)
f(ST) pp(ST)’

@ Rearranging and integrating gives

AES(A(ST)|F] = [ pe(Sr)dsy = 1.

o It follows that the Kelly-optimal derivative payoff is given by

pe(ST)

f(St) =E2[f(S7)| Fe] (ST’

(14)
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An equilibrium argument

e From now on, let S; be the price of the market portfolio (SPX
say).

@ In equilibrium, the market portfolio is optimal for the
representative investor 7.

@ Thus
dP  pp(ST) ST

— = = — 15
4Q " polSr) S 1)
— the Long numeraire portfolio or growth optimal portfolio.

@ The change of measure is just the stock price.

e The change of measure is a Q-martingale since S is a
martingale under Q.
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Another argument

@ The same result follows from the argument, originally due to
Mark Davis, that in equilibrium, market option prices should
be such that the utility of an optimal stock portfolio cannot
be increased by trading options.
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The Kelly optimal investment policy and drift under P

@ Dynamics of the stock price under P are

ds
— = pedt +/ve dZy.
St
@ What proportional 7 of wealth W should be held in stock at
time t7
o We have

dS.
th:WtWt?t:WtWt {tht+\/vtdZ£P}.
t
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o Applying It6's Formula,

T

T T
1
IogW7-:Ioth+/ wsusdu—I—/ WS\/VstS—E/ 7r§vsdu.
t t t

o It follows that utility is maximized pathwise if 7w, = p,/vy.
@ We found that 7 = 1 is optimal, so we must have p; = v;.

e The equity risk premium, the extra return that investors
require for taking on risk, is equal to instantaneous variance.

@ Taking 0 = 0.15, we get an equity risk premium of around
2.25% per annum, which seems not unreasonable.
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Ross recovery

@ In this simple framework, we know the change of measure
dP/dQ.

@ So we can get the PP distribution knowing the Q distribution.

@ This is reminiscent of Ross recovery, on which Carr and Yu
[CY2012] wrote a fascinating paper.
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Risk, Return,

and Ross Recovery

PETER CARR AND JIMING YU

The risk return relation is a staple of modern
Sfinance. When risk is measured by volatility, it
is well kenown that option prices convey risk. One
of the more influential ideas in the last twenty
years is that the conditional volatility of an asset

price can also be inferred from the market prices of

options written on that asset. Under a Markovian
restriction, it follows that risk-neutral transition
probabilities can also be d d from option
prices. Recently, Ross has shown that real-world
transition probabilities of a Markovian state vari-
able can be recovered from its risk-neutral transition

probabilities along with a restriction on preferences.
In this article, we show how to recover real-world
transition probabilities in a bounded diffusion con-
text in a preference-free manner. Our approach is
instead based on restricting the form and dynamics
of the numeraire portfolio.

market forecasts. Yet when it comes to pre-
dicting the average return, the conventional
wisdom is that option prices are silent in this
respect.

Recently, Stephen Ross has written a
working paper [2011], that challenges this con-
ventional wisdom. Under the assumptions of
his model, option prices forecast not only the
average return, but also the entire return dis-
tribution. Further tweaking the nose of con-
ventional wisdom, option prices even convey
the conditional return distribution,when the

conditioning variable is a Markovian state vari-
able that determines aggregate consumption.
Those of us raised on the Black-Merton—
Scholes (BMS) paradigm find Ross’s claims to
be startling. If one can value options without
knowledge of expected return, then how can
>

e v
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Carr and Yu

@ In that paper too, we have that the equity risk premium
associated with the numeraire portfolio is the instantaneous

variance.

@ ... but that is a story for another day ...

@ Instead, we will focus on the variance risk premium.
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Variance risk premiums

Variance Risk Premiums

Peter Carr
Bloomberg LP and Courant Institute, New York University

Liuren Wu
Zicklin School of Business, Baruch College

‘We propose a direct and robust method for quantifying the variance risk premium on
financial assets. We show that the risk-neutral expected value of return variance, also
known as the variance swap rate, is well approximated by the value of a particular portfolio
of options. We propose to use the difference between the realized variance and this synthetic
variance swap rate to quantify the variance risk premium. Using a large options data set,
we synthesize variance swap rates and investigate the historical behavior of variance risk
premiums on five stock indexes and 35 individual stocks. (JEL G10, G12, G13)
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Why trade variance?

@ Banks buy variance to hedge short vega risk.

@ Hedge funds sell variance to capture the variance risk
premium.

o If realized variance is less than the strike, this trade makes
money - so-called volatility arbitrage.

o In a top-cited paper, Carr and Wu [CW2009] studied the
variance premium, the amount that this short variance trade is
expected to make.
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History of variance contracts

@ Variance contracts took off as a product in the aftermath of
the LTCM meltdown in late 1998 when implied stock index
volatility levels rose to unprecedented levels.

o LTCM had dominated the market as sellers of variance.
e Probably the first and biggest ‘volatility arbitrageurs’ ever.

@ Hedge funds took advantage of this squeeze by selling
variance contracts at historically incredibly high levels.
o The key to their willingness to sell variance contracts rather
than sell options was that a variance contract is a pure play on

realized variance — no labor-intensive delta hedging or other
path dependency is involved.
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Definition of the variance risk premium

@ According to our definition (which is the negative of Carr and
Wu's), the variance risk premium is simply
J—"t].

T T
EQ[/ v, du Ft}—EP{/ v, du
t t

e How much we expect to make selling a variance contract.
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Variance risk premium under log utility

@ With the change of measure

dP _ pe(S7) _ St

dQ — po(ST) St

computation of the variance risk premium is straightforward.

@ The fair value of the variance contract is given by

Vi(T) :=EC [/tT vy du

@ On the other hand, expected integrated variance under P is

given by
-
.7-}] =E© [/ ivudu
Y:

T
EF [/ v, du
t

]—“t} = 2EQ[X, 7| Fi].

]-}] =:G(T).
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@ Thus the variance risk premium is given by

T T
EQ[/ v, du ]-'t}—EP[/ v, du
t t

= V(T)—Ge(T) = —L(T),

-

where £.(T) denotes the value of the leverage contract.

e Both V;(T) and G;(T) have model-free prices in terms of the
log- and entropy-contracts respectively.

e Thus, under log-utility, we have model-free expressions for
both equity risk and variance risk premial

@ What is the empirical variance risk premium?
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Variance risk premium

Variance risk premium 2000-01-03 / 2021-12-31
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Figure 4: Realized variance risk premium from 2000 to 2021 per $1mm
notional.

Variance and gamma contract estimates use data from OptionMetrics.
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Cumulative P&L

Equity of short variance trade 2000-01-03 / 2021-12-31
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Figure 5: Cumulative P&L of the short variance trade.
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Profitability of the short variance trade

@ Figure 5 clearly shows that the short variance trade is
profitable on average.

e But with huge drawdowns.

@ Assuming we traded a 1-month $1mm variance contract
contract every day, our average P&L would have been
454 4 5,283 dollars per day.

@ The equivalent average risk premium according to our formula

T T
EQ[/ v, du }"t}—EP{/ vy du
t t

was 228 dollars per day.

]-}] = —L(T)
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Regressions

@ Let V denote the price of the 30-day variance contract and
RV denote the subsequently realized 30-day variance.

@ Carr and Wu estimated the following relations:

RV = a+bV+e
logRV = a+blogRV +e.

@ Performing linear regressions on our dataset gives

RV = —0.0001635+ 0.9234 V + ¢
log RV = —0.04774 4 1.07221 log V +e.

The first regression has an R? of 0.37 and the second has an
R? of 0.56.
e In other words, the variance contract is a good predictor of
realized variance — see Figure 6.
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VIX? vs actual variance

Log of VIX"2 2000-01-03 / 2021-12-31
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Figure 6: VIX? is a good predictor of realized variance.
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Time series of the leverage contract

The leverage contract 2000-01-03 / 2021-12-31
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Figure 7: The leverage contract is very spiky!



000000000000 e00000

Variance risk premium and the leverage contract

@ Recall that in our simple framework, the variance risk
premium is given by the leverage contract.
e We (probably) can't predict spikes in volatility, but we can
measure leverage!
e Why not sell variance contracts only after a spike in leverage?
e In other words, sell only when the variance risk premium is
high.
@ For example, suppose we only sell variance on days when the
leverage contract is greater than 0.0015. What does the
equity plot look like?
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Time series of the leverage contract with sell barrier

The leverage contract 2000-01-03 / 2021-12-31
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Figure 8: The leverage contract with a sell level at 0.0015.
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Cumulative P&L of the conditional short variance trade

Equity of conditional short variance trade 2000-01-03 / 2021-12-31
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Figure 9: Cumulative P&L of the conditional short variance trade. Back
to the drawing board!



0000000000000 00e00

Summary

@ Using the Carr-Madan spanning formula, we computed various
model-free quantities including

e The variance contract.
e The gamma contract.
@ Under log utility, the Carr-Madan optimal portfolio is the
market portfolio, which we take to be SPX.
o The change of measure dP/dQ = S7/5:.
o The equity risk premium is just instantaneous variance.
o It follows that the variance risk premium of Carr and Wu is
given by the leverage swap.
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Epilog

@ Be curious.
@ Look for beauty.
@ Work very hard.

@ ... be like Peter Carr.
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