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Overview

Provide an analytic expression for the joint characteristic function of
the log-price and variance in the Heston model that addresses the dis-
continuity problem.

Consider option valuation using the fast Fourier transform (FFT) and
convolution.

Apply shifting and damping transforms to improve boundary errors and
prove an error estimate.

Numerical experiments and comparisons to Carr and Madan (1999)
illustrate the speed and accuracy of our approach.
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Fourier Methods in Option Pricing

Let St be the (spot) price of the underlying asset at time t.

Write xt for the log of the stock price.

The characteristic function of xT is

φT (u) = E[exp (iuxT )].

For constant interest rates r and no dividends, the price of the European
call option is

C = SΠ1 − Ke−rTΠ2

where

Π2 = P(ST > K ) =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu lnKφT (u)

iu

)
du

Π1 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iu lnKφT (u − i)

iuφT (−i)

)
du.
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Carr and Madan (1999)

Let k be the log strike price and CT (k) the price of the call option with
strike exp (k) and maturity T .

The risk-neutral density of the log price xT is qT (x).

Then the characteristic function is

φT (u) =

∫ ∞
−∞

e iuxqT (x)dx .

The price at time-zero of the call option is

CT (k) =

∫ ∞
k

e−rT (ex − ek)qT (x)dx .
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Carr and Madan (1999)

Define cT (k) = exp (αk)CT (k) for α > 0 so that cT (k) is square
integrable.
The Fourier transform of cT (k) is

ψT (v) =

∫ ∞
−∞

e ivkcT (k)dk.

Carr and Madan (1999) show that

ψT (v) =
e−rTφT (v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v
.

Taking the inverse Fourier transform

CT (k) =
exp (−αk)

2π

∫ ∞
−∞

e−ivkψT (v)dv

=
exp (−αk)

π

∫ ∞
0

e−ivkψT (v)dv . (1)
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Carr and Madan (1999)

The integral (1) can be approximated as

CT (k) ≈ exp (−αk)

π

N∑
j=1

e−ivjkψT (vj)η

where vj = η(j − 1).

The FFT can be used to efficently calculate the sum.

There are various numerical issues that must be handled with care and
we also need to specify the model for S .

Many papers have been written addressing numerical issues, model
specific issues, and related Fourier methods.

We shall consider the Heston (1993) model and methods inspired by
Carr and Madan (1999).
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Heston (1993) Model

Consider a filtered probability space (Ω,F , {Ft}t≥0,P).

The filtration {Ft}t≥0 is generated by two independent Wiener pro-
cesses satisfying the usual conditions of completeness and right conti-
nuity.

The Heston model underP can be written as

dSt = µStdt +
√
vtSt

(
ρdW1t +

√
1− ρ2dW2t

)
, (2)

dvt = κ (θ − vt) dt + σ
√
vtdW1t , (3)

where ρ ∈ [−1,+1] is the correlation coefficient between W1t and W2t

the two independent Wiener process.

Assume 2κθ ≥ σ2, so that the zero boundary is unattainable and
vt > 0.
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Heston Model

Assume the market price of risk (Λ1,Λ2) satisfies

µ− r
√
vt

= ρΛ1 +
√

1− ρ2Λ2. (4)

Define an equivalent measure QΛ on Ft by

dQΛ

dP

∣∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

(
Λ2

1s + Λ2
2s

)
ds +

∫ t

0

Λ1sdW1(s) +

∫ t

0

Λ2sdW2(s)

)
.

To obtain a complete Heston model let Λ1t = Λ
√
vt , for Λ > 0.

Λ2 is uniquely determined by equation (4).
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Heston Model

By Girsanov’s theorem

dW Λ
1 (t) = dW1(t) + Λ

√
vtdt,

dW Λ
2 (t) = dW2(t) +

µ− r − Λρvt√
(1− ρ2)vt

dt,

are independent Wiener processes under QΛ.

The risk-neutral Heston dynamics are

dSt = rStdt +
√
vtSt

(
ρdW Λ

1t +
√

1− ρ2dW Λ
2t

)
,

dvt = κ̄
(
θ̄ − vt

)
dt + σ

√
vtdW

Λ
1t ,

where κ̄ = (κ+ σΛ) and θ̄ = κθ/κ̄ for κ̄ 6= 0.
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Heston Model

Let xt = log
(
St
S0

)
then the joint process Xt = (xt , vt)

T is given by

dXt = η(vt , t)dt +
√
vtξdW

Λ
t , (5)

where

η(vt , t) =

(
r− 1

2
vt

κ̄(θ̄−vt)

)
and ξ =

(
ρ
√

1−ρ2

σ 0

)
.

We consider the characteristic function of the joint variable X = (x , v).
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Pricing Formula

The time-t price of the call option with strike K and expiry T is

Ct =e−rτEQ [(ST − K )+ |St , vt
]

=StES [1ST>K |St , vt ]− Ke−rτEQ [1ST>K |St , vt ] ,

where F (t,T ) = er(T−t)St is the forward price, as seen from t, and
the equivalent martingale measure S is dS

dQ = ST
F (t,T ) .

Write P1 = S and P2 = Q, under which

P1(ST ,K ) =P1(ST ≥ K ),

P2(ST ,K ) =P2(ST ≥ K ),

and the pricing formula becomes

Ct = StP1 (ST ,K )− Ke−rτP2 (ST ,K ) . (6)
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Characteristic Function

The characterisitic function in the Heston (1993) model can be written
in different ways and its properties and use in finance have been studied
by many authors: e.g.,

Kahl and Jäckel (2005), Gatheral (2006), Albrecher et al. (2007),

Lord and Kahl (2010), Lucic (2015), Cui et al. (2017).

The characteristic function of Xt = (xt , vt)
T under measure P with

parameter U = (p, q)T given the current state X = (x , v)T is defined
by

ϕ(U,X , t) = EPi

[
e iU

TXT |Xt = (x , v)T
]
, (7)

with boundary ϕ(U,X ,T ) = e iU
TX .

C. Hyndman (Concordia) cFFT-Heston 6-4-2022 12 / 36



Characteristic Function

Theorem 1

The joint characteristic function of Xt = (xt , vt)
T under measure Pi is

ϕi (p, q) = exp
(
ip (x + rτ) + iq (v + aτ) +

γ + λ

σ2
(1− ζ) v

− γ − λ
σ2

aτ +
2a

σ2
ln ζ
)
, (8)

where c1 = 1
2 , c2 = −1

2 , a = κ̄θ̄, b1 = κ̄ + Λσ − ρσ, b2 = κ̄ + Λσ for
i = 1, 2,

γ =

√
σ2 (p2 − 2icip) + (bi − iσρp)2, (9)

λ =bi − iσρp − iσ2q, (10)

ζ =
2γ

γ + λ+ (γ − λ)e−γτ
. (11)
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Characteristic Function

We use the kernel functions obtained from the joint characteristic func-
tion of the increment (XT − Xt)

ψi (p, q) =E
[
e iU

T (XT−Xt)
∣∣Xt = X

]
=e−iU

TXϕi (p, q)

= exp

(
iprτ + iqaτ +

γ + λ

σ2
(1− ζ) v − γ − λ

σ2
aτ +

2a

σ2
ln ζ

)
.

(12)
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Characteristic Function

Figure 1: Heston’s characteristic function
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Characteristic Function

Figure 2: Joint characteristic function
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Convolution Method

The premise of the convolution method is that the conditional density
φ(y |x , v) depends only on the difference of x and y

φ(y |x) = φ(y − x).

Drăgulescu and Yakovenko (2002) showed that for small ∆t, the dis-
tribution of xt evolves in Gaussian manner in discrete time with the
given variance v

φ (xt |x , v) =
1√

2πv∆t
exp

(
−
(
xt − x − (r − 1

2v)∆t
)2

2v∆t

)
= φ (xt − x |v) .
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Convolution Method

Then the Fourier transform of Pi is

F [Pi (x)] (u) = F

[
Ei

[
1ST≥K

∣∣∣∣x = ln
S

K

]]
(u) (13)

= F

[∫
R
δ(y)φi (y |x)dy

]
(u)

= F [(δ(y) ∗ φi (y − x)) (x)] (u)

= F [δ(y)] (u)F [φi (−y)] (u), (14)

where

δ(x) =

{
1 if x ≥ 0

0 otherwise.
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Convolution Method

The Fourier transform of the density function in (14) is

F [φi (−y)] (p) =

∫
R
e−ipyφ(−y)dy

=

∫
R
e ip(y−x)φi (y − x)dy

=e−ipx
∫
R
e ipyφi (y |x )dy

=e−ipxEi

[
e ipxT |x

]
=e−ipxϕi (p) = ψi (p). (15)

We simplify (14) as

F [Pi (x)] (p) = F [δ(x)] (p)ψi (p),

and recover Pi by

Pi (x) = F−1 [F [δ(x)] (p)ψi (p)] . (16)
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Convolution Method

Apply the change of variables to x = ln S
K with varying S the pricing

formula (6) becomes

C (S ,K , v , t) = SP1 (S ,K )− Ke−rτP2 (S ,K )

=S F−1 [F [δ(x)] (p)ψ1(p)] (x)− Ke−rτF−1 [F [δ(x)] (p)ψ2(p)] (x)

Discretize the real space as

xn =

(
n − N

2

)
∆x , for n = 0, 1, · · · ,N − 1, and ∆x =

L

N
,

and the frequency space as

pn =

(
n − N

2

)
∆p, for n = 0, 1, · · · ,N − 1, and ∆p =

2π

L
.
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Convolution Method

The cFFT estimation of P̃i using the formula given in equation (16)
are given by

P̃i = (−1)nD−1

[{
wkD

[
{wn(−1)nδ(xn)}N−1

n=0

]
(pk)ψi (pk)

}N−1

k=0

]
n

,

for some weight scheme wn.

Then the pricing formula is approximated by

C (S ,K , v , t) ≈SP̃1 − Ke−rτ P̃2.

We refer to this as cFFT Scheme I.
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cFFT Scheme II

Scheme II approaches the pricing formula similar to Carr and Madan
(1999), but we apply the Fourier transform on the log-price region.
Let α < 0 be a dampling parameter, we obtain the following Fourier
transform

F [eαxC (x)] =e−rτ
∫
R

Re
(
e−iuxeαxEQ [(KexT − K )+

∣∣x = ln( S
K )
])

dx

=e−rτRe

(∫
R
e−iuxeαx

∫
R
g(y)φ̃2(x − y)dydx

)
=e−rτF [eαxg(x)]ψ2(u + αi), (17)

where

g(x) = (Kex − K )+ and φ̃(x) = φ(−x).

The call option can be recovered from reverting and undamping (17)

C (x) = e(−rτ−αx)F−1 [F [eαxg(x)]ψ2(u + αi)] (x). (18)

Scheme II can be implemented similar to Scheme I.
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Error Analysis

Two error sources:

Truncation error associated with the sampling region (−L
2 ,

L
2 ).

Discretization error associated with the sampling frequency (∆x , ∆u).

Let |ei | =
∣∣∣Pi − P̃i

∣∣∣, for i = 1, 2.

For the cFFT-I Scheme I

|e(x)| =
∣∣∣C (x)− C̃ (x)

∣∣∣
=
∣∣∣Kex (P1(x)− P̃1(x)

)
− Ke−rτ

(
P2(x)− P̃2(x)

)∣∣∣
≤Kex |e1|+ Ke−rτ |e2| . (19)

cFFT-I and cFFT-II have the following error estimates

|e| ≤ O
(
e−

πD
L
N
)

+O
(
N−m

)
,

for m ≥ 2.

C. Hyndman (Concordia) cFFT-Heston 6-4-2022 23 / 36



Error Analysis

Discretization error is at least order two, which is the same as Lord
et al. (2008).

Truncation error is negative exponential to the frequency.

From (19) error would increase when x approaches the boundary.

We introduce the boundary control schemes to improve the boundary
error.
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Boundary control: damping and shifting

For a target function f write

C (x) = EPi [f (xT ) |x0 = x ]

we add a damping parameter α < 0 making eαxC (x) integrable.

Hyndman and Oyono Ngou (2017) introduced a shifting method on
the target function to address the boundary error.

The basic idea of shifting the target function is to map it from non-
periodic to a periodic function which would be considered as the signal.
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Boundary control: damping and shifting

Consider h(x) with explicit expectation E [h(xt) |x ].

Shifting: f α(x)→ f̃ α(x) = eαx (f (x)− h(x)), x ∈ [x0, xn].

The candidate for shifting function h(x) such that the damping of the
shifted target function f̃ α(x) = eαx (f (x)− h(x)) is smoothly con-
nected at the boundaries

f̃ α(x0) =f̃ α(xn),

df̃ α

dx
(x0) =

df̃ α

dx
(xn).
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Boundary control: damping and shifting

cFFT-I cFFT-II

α = 0 α < −1
h(x) = Ax + B h(x) = Aex + B

A = f (xN)−f (x0)
xN−x0

A =
eαxN f ′N−e

αx0 f ′0
e(α+1)xN−e(α+1)x0

B = xN f (x0)−x0f (xN)
xN−x0

B = xN f (x0)−x0f (xN)
xN−x0

f ′0 = −3f (x0)+4f (x1)−f (x2)
2∆x

f ′N =
3f (xN)−4f (xN−1)+f (xN−2)

2∆x

f̃ α(x) = f (x)− h(x) f̃ α(x) = eαx (f (x)− h(x))

We can recover cFFT-I (cFFT-II) by reversing the shifting (and dampling)
scheme.
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Numerical Results

To illustrate accuracy, we compare our method to the numerical results
using the integral method.

To illustrate performance, we compare our method to the Carr and
Madan (1999) FFT method.

First, we present the results of CFFT-I method that is applied to esti-
mate the probabilities in the Heston model.

Then we apply CFFT-II to price the European call with Heston model
and show the effect of different boundary control schemes.

At the end, we present a table that summarizes the performance of
CFFT-II method in certain cases.
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Numerical Results

Figure 3: Pi by CFFT-I
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Numerical Results

Figure 4: Error of CFFT-I
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Numerical Results

Figure 5: Error of CFFT-II
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Numerical Results

Figure 6: CFFT-II with different schemes
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Numerical Results

Table 1: Heston model: CPU time, Call option and error
CPU time (ms) S=100,K=80 S=100,K=100 S=100,K=120

CFFT-II FFT call error call error call error

N=2000 0.124 0.155 25.77846 5.93e-05 13.45867 2.60e-04 5.97903 1.40e-04
N=4000 0.175 0.294 25.77841 8.04E-06 13.45887 6.50e-05 5.97885 4.29e-05
N=8000 0.251 0.544 25.77841 4.60e-06 13.45892 1.63e-05 5.97889 4.73e-06

r = 0.03, v = 0.1, Λ = 1, ρ = −0.8, κ = 3, θ = 0.1, σ = 0.25, T = 1, L = 10,
α = −2
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Conclusion

Mathematical and implementation details can be found in:

Gao, Xiang. Stochastic control, numerical methods, and machine learn-
ing in finance and insurance. PhD Thesis, Concordia University, May
2021.

https://spectrum.library.concordia.ca/988412/ or the forth-
coming arXiv preprint.

Thank you!
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