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Executive Summary 1/3

• A great deal of mathematics is about breaking 
down complex structures into simpler ones, and 
then applying the totum summa partium
principle.
─ For example, Taylor series break down a complex function 

into a sum of simpler, power functions.

• The Carr-Madan spanning formula (1998) breaks 
down any single-asset European option as a 
weighted sum of cash, forward contracts, and 
vanilla options:

European payoff = cash + forward contracts

+ σ𝑲𝒒𝑲 𝐜𝐚𝐥𝐥 𝑲 + σ𝑲𝒒𝑲 𝐩𝐮𝐭 𝑲

─ Most successful application: log-contract → VIX

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)2
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Executive Summary 2/3

• After expounding the spanning formula in 
connection with related results, we explain how it 
can be generalized to two classes of multi-asset 
European options:

─ Dispersion options

─ European options with homogeneous payoff, e.g. best-of

─ The Radon transform is closely related to the 
multidimensional Fourier transform.

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)3

• The main mathematical tool for breaking 
down the multi-asset option as a sum of 
basket vanillas, known as Radon 
transform, is also used in medical 
imaging to reconstruct e.g. the slice of a 
patient's brain.
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Executive Summary 3/3

• When a pure theorist 
may be satisfied with 
an abstract, general 
solution leaving out 
technical details, we 
tested our theory with 
relevant applications 
and derived first-time 
explicit solutions

4 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)

Source: Redbubble.com |   Credit: LeMuesch
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Sample term sheet for a dispersion 
option

7 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)
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Notations

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)8

• Heaviside’s step function 𝐻(𝑡)• Ramp function 𝑡+

• Dirac’s delta function 𝛿(𝑡)

max 0, 𝑡 1

0

0

∞

0



Part 1
The Carr-Madan spanning formula

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)9
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Carr-Madan spanning formula 1/4

• Any European option with payoff function 𝑓 is statically 
replicated with a continuum of vanilla options

𝑓 𝑆𝑇 = 𝑓 𝑆0
cash

+ 𝑓′ 𝑆0 𝑆𝑇 − 𝑆0
fwd contract

+න
0

𝑆0

𝑓′′ 𝐾 𝐾 − 𝑆𝑇
+

put payoff

𝑑𝐾

+න
𝑆0

∞

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 +

call payoff

𝑑𝐾

─ 𝑆𝑇 = terminal price of underlying asset

─ f(x) = option payoff at time T when terminal price = x

─ 𝑆0 = any price (typically current underlying price)

─ K = call or put strike price

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)10
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Carr-Madan (1998) proof 2/4

• Set 𝑆0 = 0 for ease (span only with calls): we want to 
prove

𝑓 𝑆𝑇 = 𝑓 0 + 𝑓′ 0 𝑆𝑇 +න
0

∞

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 +𝑑𝐾

• By sifting property of Dirac’s delta function 𝛿(⋅)

𝑓 𝑆𝑇 = න
0

∞

𝑓 𝐾 𝛿 𝑆𝑇 − 𝐾 𝑑𝐾

• Integrate by parts

𝑓 𝑆𝑇 = 𝑓 𝐾 𝐻 𝑆𝑇 − 𝐾 0
∞

=𝑓(0)

+න
0

∞

𝑓′ 𝐾 𝐻 𝑆𝑇 − 𝐾 𝑑𝐾

• Integrate by parts again

𝑓 𝑆𝑇 = 𝑓 0 + 𝑓′ 𝐾 𝑆𝑇 − 𝐾 +
0
∞

=𝑓′ 0 𝑆𝑇

+න
0

∞

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 +𝑑𝐾

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)11
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Another proof 3/4

• Start with

RHS = 𝑓 0 + 𝑓′ 0 𝑆𝑇 +න
0

∞

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 +𝑑𝐾

• For 𝐾 > 𝑆𝑇 the call payoff is zero, and for 𝐾 < 𝑆𝑇
the payoff is simply 𝑆𝑇 − 𝐾

RHS = 𝑓 0 + 𝑓′ 0 𝑆𝑇 +න
0

𝑆𝑇

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 𝑑𝐾

• Integrate by parts:

RHS = 𝑓 0 + 𝑓′ 0 𝑆𝑇 + 𝑓′ 𝐾 𝑆𝑇 − 𝐾 0
𝑆𝑇 +න

0

𝑆𝑇

𝑓′ 𝐾 𝑑𝐾

• After calculations and simplifications RHS = 𝑓 𝑆𝑇

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)12
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Yet another proof 4/4

• F.O. Taylor series with remainder in integral form

𝑓 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 + න
𝑎

𝑥

𝑓′′ 𝑡 𝑥 − 𝑡 𝑑𝑡

remainder

• Take 𝑥 = 𝑆𝑇 , 𝑎 = 0, 𝑡 = 𝐾

𝑓 𝑆𝑇 = 𝑓 0 + 𝑓′ 0 𝑆𝑇 +න
0

𝑆𝑇

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 𝑑𝐾

• Rewrite the integral as

න
0

∞

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 + 𝑑𝐾

• Done!

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)13
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Application to the log-contract 1/2

• The log-contract introduced by Neuberger (1990) 
pays the log-return to maturity of the underlying 
asset:

𝑓 𝑆𝑇 = ln
𝑆𝑇
𝑆0

• This contract is interesting because it has 
constant dollar gamma → variance swaps → VIX

• Problem: the log-contract does not trade…

• Solution: Carr-Madan replication

ln
𝑆𝑇
𝑆0

=
𝑆𝑇 − 𝑆0
𝑆0

−න
0

𝑆0 𝑑𝐾

𝐾2
𝐾 − 𝑆𝑇

+ −න
𝑆0

∞𝑑𝐾

𝐾2
𝑆𝑇 − 𝐾 +

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)14
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Application to the log-contract 2/2

• Carr-Madan:

ln
𝑆𝑇
𝑆0

=
𝑆𝑇 − 𝑆0
𝑆0

−න
0

𝑆0 𝑑𝐾

𝐾2
𝐾 − 𝑆𝑇

+ −න
𝑆0

∞𝑑𝐾

𝐾2
𝑆𝑇 − 𝐾 +

• Ito-Doeblin:

ln
𝑆𝑇
𝑆0

= න
0

𝑇 𝑑𝑆𝑡
𝑆𝑡

−
1

2
න
0

𝑇

𝜎𝑡
2𝑑𝑡 , 𝜎𝑡 = instant volatility

• Hence realized variance is replicated with
─ Dynamic position of 1/S in underlying asset until maturity

─ Static positions in cash, forward contracts and OTM calls and puts

1

2
න
0

𝑇

𝜎𝑡
2𝑑𝑡 = න

0

𝑇 𝑑𝑆𝑡
𝑆𝑡

−
𝑆𝑇 − 𝑆0
𝑆0

+න
0

𝑆0 𝑑𝐾

𝐾2
𝐾 − 𝑆𝑇

+ +න
𝑆0

∞𝑑𝐾

𝐾2
𝑆𝑇 − 𝐾 +

• And the price of realized variance (= variance swap strike) 
is determined in a model-free way → VIX

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)15
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2021 generalization to non-vanilla 
“replicant” options

• Bossu-Carr-Papanicolaou (2021) generalized the 
spanning formula to single-asset, non-vanilla 
"replicant" options:

𝑓 𝑆𝑇 = 𝑐 + 𝑞𝑆𝑇 +න
𝑎

𝑏

𝜙 𝐾 𝐺 𝑆𝑇 , 𝐾 𝑑𝐾

─ c = unknown cash quantity

─ q = unknown asset quantity

─ 𝜙 𝐾 = unknown replicant option quantity

─ 𝐺 𝑆𝑇 , 𝐾 = known payoffs of a family of replicant options 
indexed by 𝐾 ∈ (𝑎, 𝑏), e.g.

▪ Straddles: 𝐺 𝑆𝑇 , 𝐾 = 𝑆𝑇 − 𝐾

▪ Butterflies: 𝐺 𝑆𝑇 , 𝐾 = 𝑐 − 𝑆𝑇 − 𝐾 +, 𝑐 > 0

• Integral equation 𝐹(𝑥) = ∫ 𝐺 𝑥, 𝑦 𝜙 𝑦 𝑑𝑦 with 
integral kernel 𝐺(𝑥, 𝑦)

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)16



Part 2
2022 generalizations to 
European multi-asset 
options

• Bossu-Carr-
Papanicolaou, 
Quantitative Finance 
(feature article)

• Bossu, Applied 
Mathematical 
Finance
(forthcoming)

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)17
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2022 generalizations to European 
multi-asset options 1/4

• Carr-Madan (1998): single-asset European payoffs are replicable with vanilla 
calls and puts whose strikes span a continuum of ℝ

𝑓 𝑆𝑇 = cash+forward contracts

+න
0

𝑆0

𝑓′′ 𝐾 𝐾 − 𝑆𝑇
+

put payoff

𝑑𝐾 + න
𝑆0

∞

𝑓′′ 𝐾 𝑆𝑇 − 𝐾 +

call payoff

𝑑𝐾

• Bossu-Carr-Papanicolaou (2022) and Bossu (2022, forth.): multi-asset European 
payoffs are replicable with vanilla basket calls whose weights span a continuum 
of ℝ𝑛

𝑓 𝑥1, ⋯ , 𝑥𝑛 = cash+forward contracts

+න⋯න Σ𝑖𝑤𝑖𝑥𝑖 − 𝑘 +

vanilla basket
call payoff

𝜙 𝑤1, ⋯ , 𝑤𝑛 𝑑𝑤1⋯𝑑𝑤𝑛

─ 𝑥1, ⋯ , 𝑥𝑛 = performances (e.g. price ratios or returns to maturity) of 𝑛 underlying assets

─ Σ𝑖𝑤𝑖𝑥𝑖 − 𝑘 + = known payoff of a vanilla basket call with basket weights 𝑤1, ⋯ ,𝑤𝑛 and 
fixed moneyness 𝑘

─ 𝜙 𝑤1, ⋯ ,𝑤𝑛 = unknown quantity of vanilla basket calls that replicate the target option f

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)18
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2022 generalizations to European 
multi-asset options 2/4

𝑓 𝑥1, ⋯ , 𝑥𝑛 = න⋯න Σ𝑖𝑤𝑖𝑥𝑖 − 𝑘 +𝜙 𝑤1, ⋯ , 𝑤𝑛 𝑑𝑤1⋯𝑑𝑤𝑛

• Benefits:
─ Theoretical: Multi-asset option f can be priced with the same 

model used for vanilla basket calls
─ Practical: May help identify approximate static hedges, 

harmonize pricing methodology…

• Limitations:
─ Need to discretize (similar to Carr-Madan / VIX)
─ Weights 𝑤𝑖 may be negative → spread of baskets

─ Vanilla basket calls are OTC → limited market information
▪ BUT vanilla basket calls are the most liquid options within multi-

asset exotics

─ Some quantities 𝜙 𝑤1, ⋯ ,𝑤𝑛 may be infinite
▪ May be resolved with integration by parts, especially in 3D and 

2D

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)19
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2022 generalizations to European 
multi-asset options 3/4

• We solved this multidimensional replication 
problem for two classes of multi-asset options:

─ “Standard dispersion options” with payoff

𝑓 𝑥1, ⋯ , 𝑥𝑛 = 𝑓0 ෍

𝑖

𝑥𝑖
2

▪ (Bossu-Carr-Papanicolaou, 2022)

─ Any multi-asset option with absolutely homogeneous
payoff (Bossu, 2022, forthcoming)

𝑓 𝜆𝑥1, ⋯ , 𝜆𝑥𝑛; 𝜆𝑘 = 𝜆 𝑓 𝑥1, ⋯ , 𝑥𝑛; 𝑘

▪ Application: best-of / worst-of options

• Work is ongoing for a complete extension to any 
European multi-asset option

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)20
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2022 generalizations to European 
multi-asset options 4/4

• General solution for absolutely homogeneous payoff 
𝑓 𝑥1, ⋯ , 𝑥𝑛; 𝑘

𝜙 𝑤1, ⋯ , 𝑤𝑛 = ℛ−1
𝜕2𝑓

𝜕𝑘2
𝑥1, ⋯ , 𝑥𝑛; 𝑘 (𝑤1, ⋯ , 𝑤𝑛)

─ ℛ−1 𝑔 𝑥1, ⋯ , 𝑥𝑛; 𝑘 is the inverse Radon transform of a 
function 𝑔

• Proof: We want 𝜙 such that

𝑓 𝑥1, ⋯ , 𝑥𝑛; 𝑘 = න⋯න Σ𝑖𝑤𝑖𝑥𝑖 − 𝑘 +𝜙 𝑤1, ⋯ , 𝑤𝑛 𝑑𝑤1⋯𝑑𝑤𝑛

─ Differentiate both sides twice against 𝑘
𝜕2𝑓

𝜕𝑘2
𝑥1, ⋯ , 𝑥𝑛; 𝑘 = න

ℝ𝑛
𝛿 Σ𝑖𝑤𝑖𝑥𝑖 − 𝑘 𝜙 𝑤1,⋯ , 𝑤𝑛 𝑑𝑤1⋯𝑑𝑤𝑛

─ RHS is the Radon transform of 𝜙 = total sum of 𝜙 over the 
hyperplane ℋ𝐱,𝑘 ≔ {(𝑤1,⋯ , 𝑤𝑛) ∈ ℝ𝑛: Σ𝑖𝑤𝑖𝑥𝑖 = 𝑘} (dim. 𝑛 − 1)

─ 𝜙 = inverse Radon transform

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)21
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2D inverse Radon transform 1/2

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)22

• (a) horizontal and 
vertical rays go 
through a rectangular 
solid
─ Detector reads the total 

mass 

• (b) solid reconstruction 
by backprojecting mass 
information from each 
axis
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Source: Brooks & Di Chiro (1976) “Principles of Computer 
Assisted Tomography”

ℛ−1

2D inverse Radon transform 2/2



Part 3
Main application results

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)24
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Application 1
“Mexican hat” dispersion straddle in 2D

𝐹(𝑥1, 𝑥2) = 1 − 𝑒−𝑥1
2−𝑥2

2

𝜙mex 𝑟; 𝑘 =
4𝑘

𝜋𝑟4
1 −

𝑘2

𝑟2
−
8𝑘2

𝜋𝑟5
3

2
−
𝑘2

𝑟2
𝔇

𝑘

𝑟

─ 𝑟 ≔ 𝑤1
2 +𝑤2

2

─ 𝔇 𝑡 ≔ 𝑒−𝑡
2
∫−∞
𝑡
𝑒𝑠

2
𝑑𝑠 (Dawson’s special 

function)

• Static decomposition into basket 
calls:

1 − 𝑒−𝑥1
2−𝑥2

2

=ඵ 𝑤1𝑥1 + 𝑤2𝑥2 − 𝑘 +𝜙mex 𝑤1
2 +𝑤2

2; 𝑘 𝑑𝑤1𝑑𝑤2

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)25

sol.

𝑥1

𝑥2

𝐹

𝑤1
𝑤2

𝜙



Worcester Polytechnic Institute

Application 2
Standard dispersion call in 3D

𝑥1
2 + 𝑥2

2 + 𝑥3
2 − 𝑘

+

= const. ×

ම 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 − 𝑘 +𝛿′ 1 − 𝑤1
2 − 𝑤2

2 − 𝑤3
2 𝑑𝑤1𝑑𝑤2𝑑𝑤3

• The 3-asset standard dispersion call is replicated by a 
portfolio of (infinitely leveraged) vanilla basket calls 
whose weights span the sphere of radius 1

• Integration by parts → alternative decomposition

𝑥1
2 + 𝑥2

2 + 𝑥3
2 − 𝑘

+

= ම

𝑤1
2+𝑤2

2+𝑤3
2=1

𝑑𝑤1𝑑𝑤2𝑑𝑤3 ቈ
1

𝜋
𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 − 𝑘 +

− ቉
𝑘

2𝜋
𝐻 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 − 𝑘

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)26
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Application 3
Standard dispersion call in 2D

𝑥1
2 + 𝑥2

2 − 𝑘

+

= const. × ඵ

𝑤1
2+𝑤2

2<1

𝑤1𝑥1 +𝑤2𝑥2 − 𝑘 +

1 − 𝑤1
2 −𝑤2

2 3/2
𝑑𝑤1𝑑𝑤2

• 2-asset SD call is replicated by a portfolio of vanilla 
basket calls whose weights span the disc of radius 1

• This integral does not converge in a classical sense 
(the denominator is 0 at the boundary) and must be 
regularized.

= const. × ඵ

𝑤1
2+𝑤2

2≤1

arcsin 𝑤1
2 +𝑤2

2

𝑤1
2 + 𝑤2

2 Τ3 2
𝛿 𝑤1𝑥1 + 𝑤2𝑥2 − 𝑘 𝑑𝑤1𝑑𝑤2

+ const. × ඵ

𝑤1
2+𝑤2

2=1

𝑤1𝑥1 + 𝑤2𝑥2 − 𝑘 + + 𝑘 𝐻 𝑤1𝑥1 + 𝑤2𝑥2 − 𝑘 𝑑𝑤1𝑑𝑤2

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)27
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Application 4
Standard dispersion put

• SD put-call parity:   SD Put = SD Call – SD Forward

𝑘 − 𝑠 + = 𝑘 − 𝑠 + 𝑠 − 𝑘 +, 𝑠 ≔ 𝑥1
2 +⋯+ 𝑥𝑛

2

• NB: k – s is combo of cash and zero-strike SD Call

─ Q: is zero-strike SD Call replicable with vanilla basket calls?

─ A1: general solution for positive-strike SD Call vanishes as k→0 

▪ Not a valid solution for zero-strike call s

─ A2: zero-strike call s turns out to replicated by an equally 
weighted portfolio of zero-strike basket calls

𝑠 = 𝑥1
2 +⋯+ 𝑥𝑛

2 = const. × ඵ

𝑤1
2+⋯+𝑤𝑛

2=1

𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛
+𝑑𝑤1⋯𝑑𝑤𝑛

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)28
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Application 5
Replication of best-of call in 2D

max 𝑥1, 𝑥2 − 𝑘 +

= const. ×ඵ
𝑤1𝑥1 + 𝑤2𝑥2 − 𝑘 +

1 − 𝑤1 −𝑤2
2 1 − 𝑤1 +𝑤2

2
𝑑𝑤1𝑑𝑤2

• 2-asset best-of call is replicated by a portfolio of 
vanilla basket calls whose weights span the entire 
plane ℝ2

• This integral does not converge in a classical 
sense and must be regularized with care.

─ Denominator = 0 along the four diagonals 𝑤1 + 𝑤2 = ±1,
𝑤1 − 𝑤2 = ±1.

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)29



Worcester Polytechnic Institute

Conclusion

• European multi-asset options can be replicated 
with a continuum of vanilla basket calls.

• A major implication is that they should be priced 
with the same model used for vanilla basket calls, 
under penalty of arbitrage.

• Our results are part of ongoing research effort to 
extend the Carr-Madan and Breeden-Litzenberger
formulas to multi-asset options, leveraging on 
advanced mathematical tools and theory such as 
Radon transforms that have vast potential for 
further applications in quantitative finance and 
indeed other scientific fields.
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Ongoing further research

• Dimension 1: discrete Carr-Madan

─ Single underlying asset

─ Perfect hedge with an infinite series of calls and puts

─ Imperfect hedge with a finite number of calls and puts

• Dimension n: static hedging with a finite number 
of basket calls/puts

─ Multi-asset: best-of, dispersion, …

─ Numerical methods: least squares, machine learning…

─ Risk analysis and delta-hedging of residual error

• Extensions of Ross recovery theorem

─ Perron-Frobenius…
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Appendix A
The mathematics of dispersion option replication

• Replication problem in vector notations:

𝐹 𝐱 2 = න
ℝ𝑛

𝐱 ⋅ 𝐰 − 𝑘 +𝜙 𝐰 2 𝑑𝐰

• Substitute 𝐱 = 𝑠𝐯 where 𝑠 = 𝐱 2 and 𝐯 = 𝐱/ 𝐱 2 is a unit vector

𝐹 𝑠 = න
ℝ𝑛

𝑠𝐯 ⋅ 𝐰 − 𝑘 +𝜙 𝐰 2 𝑑𝐰

• Differentiate twice against 𝑠

𝐹′′ 𝑠 = න
ℝ𝑛

𝐯 ⋅ 𝐰 2𝛿 𝑠𝐯 ⋅ 𝐰 − 𝑘 𝜙 𝐰 2 𝑑𝐰

• Sifting property of Dirac’s delta function: 𝑓 𝑡 𝛿 𝑡 − 𝑘 ≡ 𝑓(𝑘)𝛿(𝑡 −
𝑘)

𝐹′′ 𝑠 = න
ℝ𝑛

𝑘2

𝑠2
𝛿 𝑠𝐯 ⋅ 𝐰 − 𝑘 𝜙 𝐰 2 𝑑𝐰

• Rearrange to get a Radon transform inverse problem

𝑓( 𝐱 2) = න
ℝ𝑛
𝛿 𝐱 ⋅ 𝐰 − 𝑘 𝜙 𝐰 2 𝑑𝐰
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Appendix A
The mathematics of dispersion option replication

• Radon transform inverse problem for radial functions can be 
shown to simplify to a fractional integral equation

𝑓0(𝑠) = න
0

𝑠

𝑠2 − 𝑟2
𝑛−3
2

𝐺 𝑠,𝑟

2𝑟𝜙0 𝑟 𝑑𝑟

• When 𝑛 ≥ 3 is odd the exponent 
𝑛−3

2
is an integer and the 

equation may be solved by standard calculus techniques (e.g.
Leibniz rule)

𝑑

𝑑𝑠2

𝑛−3
2

𝑓0 𝑠 = const × න
0

𝑠

2𝑟𝜙0 𝑟 𝑑𝑟

𝑑

𝑑𝑠

𝑑

𝑑𝑠2

𝑛−3
2

𝑓0 𝑠 = const × 2𝑠𝜙0 𝑠

𝑑

𝑑𝑠2

𝑛−1
2

𝑓0 𝑠 = const × 𝜙0 𝑠

• When 𝑛 is even there is a residual half-integral.
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Appendix B
Inverse Radon transform of radial functions

• If 𝜑 𝐲 = 𝜙 𝐲 is radial, then ℛ𝜑 is also radial and collapses 
to a one-dimensional integral

ℛ𝜙 𝐱, 𝑘 ≔ න
ℝ𝑛
𝛿 𝐱 ⋅ 𝐲 − 𝑘 𝜙 𝐲 𝑑𝐲

= න
𝟎

∞

𝑟𝑛−1𝜙 𝑟 𝑑𝑟න
𝐮 =1

𝛿 𝑟𝐱 ⋅ 𝐮 − 𝑘 𝑑𝐮

• The inner integral is a line integral over the unit circle (2D) / 
surface integral over the unit (hyper-)sphere (nD)

• Slice integration (“Catalan formula”)

─ For any unit vector v

න
𝐮 =1

𝑔 𝐮 ⋅ 𝐯 𝑑𝐮 = 𝐴𝑛 ×න
−1

1

𝑔 𝑡 1 − 𝑡2
𝑛−3
2 𝑑𝑡

─ 𝐴𝑛 = 2𝜋
𝑛−1

2 /Γ[
𝑛−1

2
] = surface area of unit sphere of ℝ𝑛−1
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Appendix B
Inverse Radon transform of radial functions

• Slice integration:  Substitute 𝐱 = 𝐱 𝐯 where 𝐯 = 1

න
𝐮 =1

𝛿 𝑟𝐱 ⋅ 𝐮 − 𝑘 𝑑𝐮 = 𝐴𝑛 × න
−1

1

𝛿 𝑟 𝐱 𝑡 − 𝑘 1 − 𝑡2
𝑛−3
2 𝑑𝑡

=
𝐴𝑛

𝑟 𝐱 𝑛−2
𝐱 2 −

𝑘2

𝑟2

+
𝑛−3
2

• Radon transform of radial 𝜙:

ℛ𝜙 𝐱, 𝑘 =
𝐴𝑛
𝐱 𝑛−2

න
𝑘/ 𝐱

∞

𝑟𝑛−2𝜙 𝑟 𝐱 2 −
𝑘2

𝑟2

𝑛−3
2

𝑑𝑟

which is also radial as a function of 𝐱 only.
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Appendix B
Inverse Radon transform of radial functions

• After change of variable 𝑟 ↦ 𝑘/𝑟 and other 
simplifications, the Radon transform inverse 
problem

𝑓 𝐱 , 𝑘 = ℛ𝜙 𝐱, 𝑘

collapses to a 1D integral equation of the form

𝑓0 𝑠 = න
0

𝑠

𝑟𝜙0 𝑟 𝑠2 − 𝑟2 𝛼−1𝑑𝑟

where 𝛼 =
𝑛−1

2
> 0, 𝑠 = 𝐱 , 𝑓0 𝑠 = const. × 𝑘2𝑠𝑛−2𝑓 𝑠, 𝑘 ,

𝜙0 𝑟 = const. ×
𝑘

𝑟

𝑛+1
𝜙

𝑘

𝑟

• RHS = left-sided modified Erdelyi-Kober
fractional integral of the function 𝜙0

• Solution: 𝜙0 = fractional derivative of 𝑓0 against 𝑠2
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Appendix B
Inverse Radon transform of radial functions

• Fractional integral equation solution:

𝜙0 𝑟 =

𝑑

𝑑𝑟2

𝑛−1
2

𝑓0(𝑟) 𝑛 odd

2

𝜋

𝑑

𝑑𝑟2

𝑛/2

න
0

𝑟 𝑠𝑓0 𝑠

𝑟2 − 𝑠2
𝑑𝑠 𝑛 even

• For a dispersion option 𝑓0 𝑠 = 𝑠𝑛𝐹′′ 𝑠 /𝜋
𝑛−1

2

𝐹 𝐱 = න
ℝ𝑛

𝐱 ⋅ 𝐲 − 𝑘 +
𝜙0 𝑘/ 𝐲

𝐲 𝑛+1
𝑑𝐲 + 𝑐 + 𝑞 𝐱
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