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Executive Summary 1/3

« A great deal of mathematics is about breaking
down complex structures into simpler ones, and
then applying the totum summa partium
principle.

— For example, Taylor series break down a complex function
into @ sum of simpler, power functions.

« The Carr-Madan spanning formula (1998) breaks
down any single-asset European option as a

weighted sum of cash, forward contracts, and
vanilla options:

European payoff = cash + forward contracts
+ Xk qk call(K) + Xk qx put(K)

— Most successful application: log-contract > VIX
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Executive Summary 2/3

- After expounding the spanning formula in
connection with related results, we explain how it

can be generalized to two classes of multi-asset
European options:

— Dispersion options
— European options with homogeneous payoff, e.g. best-of

 The main mathematical tool for breaking
down the multi-asset option as a sum of
basket vanillas, known as Radon
transform, is also used in medical
imaging to reconstruct e.qg. the slice of a
patient's brain.

— The Radon transform is closely related to the
multidimensional Fourier transform.
3 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)
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Executive Summary 3/3

« When a pure theorist
may be satisfied with
an abstract, general
solution leaving out
technical details, we
tested our theory with
relevant applications
and derived first-time
explicit solutions
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Source: Redbubble.com | Credit: LeMuesch
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Sample term sheet for a dispersion

option

On the Redemption Date, the Issuer will pay to the holder the following farrant on five shares in USD quanto

amount in U_5. dollars:

N = Bonus
Bonus = max (0%, Dispersion — Strike)
5 .
Dispersion = E w; xabs — - Basketsna
hare;ys)

i=1

e the investor receives a Bonus linked to the performance of five
trike Level. The product has no capital protection at any time
any capital invested. Investment is therefore highly speculative
prs who can afford to lose their entire investment amount.

e Bankers, M A (credit rating Aa3, unsecured)

Issue Price per Warrant
Listing

Trade Date (T)

Strike Date

Issue Date
Redemption Date
Underlying Shares

Settlement Amount

Where

with

Business Day Convention
Governing law

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)

,000
= UsD 1,000
ko

UsD g0

None

[today]

T

T+ 5 days

T+ 3 years
i Name Ticker Shm:mm.l Weight w;
1 Apple AAPL [114] 20%
2 Microsoft MSFT [210] 20%
3 Airbus AIR [54] 20%
4  Yamaha 7951 [s000] 20%
5 Beyond Meat BYND [170] 20%

On the Redemption Date, the Issuer will pay to the holder the following
amount in U_S. dollars:
N x Bonus
Bonus = max (0%, Dispersion — Strike)

. . Share}mal
Dispersion = Z w;xabs - - Basketgna
= Sharepy

Strike = 20%

Basketiniim = 1

sm;’lnal
. Eh““\‘mnu

Shsu"e}m-m-_,I1 with i from 1 to 5 is the official closing price of Underlying
Share i on the Strike Date

Share}'n-m-_,l with i from 1 to 5 is the official closing price of Underlying
Share i on the Redemption Date

Following Business Day

u.s. law

Basketpnw = To_, Wi X

Worcester Polytechnic Institute



Notations

- Ramp function ¢* . Heaviside’s step function H(t)
A max (0, t) 1
0 . 0

« Dirac’s delta function §(t)

Too

0

T
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Part 1

The Carr-Madan spanning formula

9 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)



Carr-Madan spanning formula 1/4

- Any European option with payoff function f is statically
replicated with a continuum of vanilla options

So
FOD =[G+ Gr=S) +[ U K=5p* dk
cash fwd contract ~° put payoff

+ f"(K) EST —K)t dK
30 call payoff
— S = terminal price of underlying asset
— f(x) = option payoff at time T when terminal price = X
— S, = any price (typically current underlying price)
— K = call or put strike price

10 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute



Carr-Madan (1998) proof 2/4

- Set S, = 0 for ease (span only with calls): we want to
prove

F(Sp) = F(O) + f'(0)Sy + j £ Sy — K)*dK
0
« By sifting property of Do(i)rac’s delta function §(-)
F(Sp) = j FU)S(Sy — K)dK
0

- Integrate by parts
£ = [FUOHES, = KIS + | fUOHCS: — K)dK
=£(0) 0
- Integrate by parts again _
FGS0) = FO) + [/ 0O = KM + [ £ (K)(S7 — K aik
=f'(0) St 0
11 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute




Another proof 3/4

« Start with _
RHS = £(0) + f'(0)Sy + f £ (K)(Sy — K)*dK
0

 For K > S; the call payoff is zero, and for K < S;
the payoff is simply S; — K

ST
RHS = £(0) + f/(0)Sy + f FK)(Sy — K)dK
0

- Integrate by parts:
ST

RHS = £(0) + f'(0)Sy + [f'(K)(Sr — K. + | f'(K)dK
0

« After calculations and simplifications RHS = f(S;)
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Yet another proof 4/4

« F.O. Taylor series with remainder in integral form

O = F@+f @& - + | f'O&=-0d

N -

remainder

—

- Take x =S;,a=0,t =K
ST

f(Sr) =f0)+f(0)Sr+ | f(K)(Sr—K)dK

0
- Rewrite the integral as

f £ (Sy — K)* dK
0

« Donel!
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Application to the log-contract 1/2

« The log-contract introduced by Neuberger (1990)

pays the log-return to maturity of the underlying
asset:

S
f(Sr) =In-

« This contract is interesting because it has
constant dollar gamma - variance swaps 2> VIX

- Problem: the log-contract does not trade...

- Solution: Carr-Madan replication

S Sr—3S, jSo dK
In=L = - =
0

S S

14  Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute



Application to the log-contract 2/2

 Carr-Madan:
Sv S+ —S So dK ° dK
In— ==L °_j —Z(K—ST)+—J — (S —K)*
0 K S

So S0

 Ito-Doeblin:
Sp_('ds; 1 (", . .
In—=| ——=| ofdt, o, = instantvolatility
So o St 2J,
« Hence realized variance is replicated with
— Dynamic position of 1/S in underlying asset until maturity

— Static positions in cash, forward contracts and OTM calls and puts

1jT , deSt St — So jSO dK *dK
g 0] dt: - + _(K_ST)++f _(ST—K)+

- And the price of realized variance (= variance swap strike)
is determined in a model-free way > VIX
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2021 generalization to non-vanilla
“replicant” options

- Bossu-Carr-Papanicolaou (2021) generalized the

spanning formula to single-asset, non-vanilla
"replicant” options:

b
F(Sp) = c + Sy + j b (K)G(Sy, K)AK

— ¢ = unknown cash quantity
— g = unknown asset quantity
— ¢(K) = unknown replicant option quantity

— G(Sr, K) = known payoffs of a family of replicant options
indexed by K € (a,b), e.qg.

= Straddles: ¢(S;,K) = |S; — K|
= Butterflies: G(S;,K) =(c—|S; —K|)',c¢>0

- Integral equation F(x) = | G(x,y)¢p(y)dy with
integral kernel G(x,y)
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Part 2

2022 generalizations to
European multi-asset
options

« Bossu-Carr-
Papanicolaou,
Quantitative Finance
(feature article)

« Bossu, Applied
Mathematical
Finance
(forthcoming)

2
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Static replication of European standard dispersion
options

SEBASTIEN BOSSU*

t. PETER CARRS| and ANDREW PAPANICOLAOUY

TThe Business School, Worcester Polytechnic Institute, Worcester, MA, USA

iNew York University Courant Institute of Mathematical Sciences, New York, NY, USA
§Finance and Risk Engineering, NYU Tandon School of Engineering, Brooklyn,

{Department of Mathematics, North Carolina State University, Raleigh, NC. USA

(Received 1 March 2021; accepted 4 February 2022; published online 23 March 2022)

Dispersion options may be replicated using vanilla basket calls
whose basket weights span an n-dimensional continuum

1. Introduction

Over the past few decades, an array of derivative instru-
ments and trading strategies have appeared where the payoff’
is based on some measure of statistical dispersion of one
or more underlying assets. In the single-asset category, real-
ized volatility and variance swaps appeared in the 199%0s,
then VIX futures and options in the 2000s as well as other
volatility-related exotic options. In the multi-asset category,
examples include vanilla price dispersion trades, realized vari-
ance dispersion trades, correlation swaps, or call and put

options written on cross-sectional price dispersion? as illus-
trated in figure 1. Significant market activity for dispersion
instruments can be observed in annual reports of many large
quantitative hedge fund: Accurate pricing and hedging of
these instruments is notoriously more complex compared to
other multi-asset options such as basket options (e.g. Brigo
et al. 2004) or worst-of and best-of options.

In our preceding publication (2021) we considered the
inverse problem of replicating a single-asset European option
with cash, the asset and a “continuous portfolio’ of arbitrary
‘replicant’ options indexed by a single real variable such as
a strike price. In this paper we extend our framework to

*Corresponding author. Email: sbossu@nyu.edu

'We dedicate this article to the memory of Peter Carr, a prodigious
rescarcher, NYU colleague, mentor, advisor and friend who just
passed on March 1st, 2022—our deepest sympathics go to his fam-
ily. A man of ideas, Peter was a role model and source of inspiration
for us all. always interested in new ways of bridging the gap between
theory and practice. His knowledge of the quantitative finance liter-
ature and the people in the ficld was unparalicied. We will always
remember his vision and ethos as we continue to work in the field
that he taught us so much about.
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the multi-asset class of ‘standard dispersion’ options written

#11n the financial industry, price dispersion is more commonly
defined as mean absolute deviation corresponding to the “taxicab’
£)-norm, whereas our approach is based on the Euclidean £3-norm
for case of mathematics. We do not discuss to what extent our £2
approach may approximate £ instruments because an exact replica-
tion of the latter will be derived in a follow-up paper using different
mathematical methods.

11 For example: Infinity Q Alpha Fund SEC Form N-CSR 31 Aug.
2020, pp. 5, 8-, Assenagon Alpha Annual Report 31 Jan. 2020, p. 7.



2022 generalizations to European
multi-asset options 1/4

« Carr-Madan (1998): single-asset European payoffs are replicable with vanilla
calls and puts whose strikes span a continuum of R

f(Sr) = [cash+forward contracts]
So

+ f"(K) (K —ST)"; dK + f"(K) (St —K)* dK
0 put payoff So call payoff

« Bossu-Carr-Papanicolaou (202_2? and Bossu f2022, forth.): multi-asset European
p?{%{glffs are replicable with vanilla basket calls whose weights span a continuum
0

f(xy, -+, x,) = [cash+forward contracts]

b [ [ @ = 0% g w)dw,
vanilla basket
call payoff
— x,,%x, = performances (e.g. price ratios or returns to maturity) of n underlying assets

— fg_Ziw-xi — k)T = known payoff of a vanilla basket call with basket weights w,,---,w,, and
ixed moneyness k

— ¢(wy, -, wy) = unknown quantity of vanilla basket calls that replicate the target option f

18  Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute



2022 generalizations to European
multi-asset options 2/4

f(xli”'rxn) — Jf(zlwlxl - k)+¢(W1)"'iWn)dW1 de

- Benefits:

— Theoretical: Multi-asset option f can be priced with the same
model used for vanilla basket calls

— Practical: May help identify approximate static hedges,
harmonize pricing methodology...
- Limitations:
— Need to discretize (similar to Carr-Madan / VIX)
— Weights w; may be negative - spread of baskets
— Vanilla basket calls are OTC - limited market information

= BUT vanilla basket calls are the most liquid options within multi-
asset exotics

— Some quantities ¢(wy, -+, w,) may be infinite

. 54§y be resolved with integration by parts, especially in 3D and

19 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute



2022 generalizations to European
multi-asset options 3/4

« We solved this multidimensional replication
problem for two classes of multi-asset options:

— “Standard dispersion options” with payoff

f(X1,"‘,Xn) =f0< ZX12>

l

= (Bossu-Carr-Papanicolaou, 2022)

— Any multi-asset option with absolutely homogeneous
payoff (Bossu, 2022, forthcoming)
f(ﬂxlr“';lxn; Ak) — |A|f(x17'";xn; k)

= Application: best-of / worst-of options

« Work is ongoing for a complete extension to any
European multi-asset option

20 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute



2022 generalizations to European
multi-asset options 4/4

« General solution for absolutely homogeneous payoff
f(x1'°°°ixn;k) 5

d
¢(W1' '“!Wn) — (R_l [a_k]; (xli X k)]) (WlJ '“;Wn)

— R Yg(xq, -+, x,; k)] is the inverse Radon transform of a
function g

« Proof: We want ¢ such that
f(xg, - xn5 k) = j”'j(ziwixi — k)T p(wy, -+, wy)dwy -+ dwp,

— Differentiate both sides twice against k
0%f
m (xlr ot ;xn; k) — RnS(ZlWlxl - k)(p(wlr Ty Wn)dwl Tt de

— RHS is the Radon transform of ¢ = total sum of ¢ over the
hyperplane Hy, = {(wy, -, wy) € R: Zwix; =k} (dim. n—1)

— ¢ = inverse Radon transform

21 Carr-Madan generalizations (Bossu, Carr, Papanicolaou) Worcester Polytechnic Institute



2D inverse Radon transform 1/2

 (a) horizontal and
vertical rays go

p M — through a rectangular

/ solid
¥ X, — Detector reads the total
(o) Mmass

* (b) solid reconstruction
by backprojecting mass

p P T— information from each
i A e axis
[_,4.5_5 °/Hf y
-

(&)
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2D inverse Radon transform 2/2

Radiation

(c)

Fig. 3. Reconstructive tomography as applied to (a) transmission imaging, and (b)
emission imaging. (c) A typical scanning pattern consists of linear translations at
successive angular increments.

Source: Brooks & Di Chiro (1976) “Principles of Computer
Assisted Tomography”
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Part 3

Main application results
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Application 1

“"Mexican hat” dispersion straddle in 2D

2_ .2 e,
— X1 —X e
F(x,x)=1—e 1772 P

oy = M (B U8R (3 KBy Sy
$mex(1; k) = —— 72 mr5\2 2 r un9 :/ x
— 1= wf +ws X, |

— D(t) = et f_too es’ds (Dawson’s special
function)

C

_;
C‘ i
T AN

- Static decomposition into basket
calls:

2 2
1—e 177

= f (Wyxy + wyx, — k)T Ppmex (,/W12 + w3 k) dw;dw,

25 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute




Application 2

Standard dispersion call in 3D

+
(\/xf + x4 + 1% — k) = (const.) X
U Wy, + wax, + waxs — )T (1 — wi — wi — w$)dwidw,dws

« The 3-asset standard dispersion call is replicated by a

portfolio of (infinitely leveraged) vanilla basket calls
whose weights span the sphere of radius 1

- Integration by parts - alternative decomposition

<\/x12+x§+x§—k>

1
—_ dWldWZdW3 [; (W1X1 + W2X2 + W3X3 - k)+

23 w2 2=
wi+wi+wz=1

_gH(Wlxl + szz + W3X3 - k)

26 ~ Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute
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Application 3

Standard dispersion call in 2D

+
(\/x12+x22—k>

(Wyx; +wpx, —k)7*
= (const.) X U (1 —w? — w2y dw;dw,

w2t+wi<1

- 2-asset SD call is replicated by a portfolio of vanilla
basket calls whose weights span the disc of radius 1

- This integral does not converge in a classical sense
(the denominator is O at the boundary) and must be
regularized.

- 2 2
— (const.) x j J arcsin+/wi + w;

(w2 + w2)3/2
w2+w2<1

S(wyix; + wyxy, — k)dwidw,

+(const.) X ﬂ [(Wyx, + wox, — k)T + k Hlwyx, + wyx, — k)]dwydw,
w2+wZ=1
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Application 4

Standard dispersion put

« SD put-call parity: SD Put = SD Call - SD Forward

(k—s)*=k—-s+(s—-k)*, S:=\/x12+---+x,%

« NB: kK - s is combo of cash and zero-strike SD Call
— Q: is zero-strike SD Call replicable with vanilla basket calls?

— A1: general solution for positive-strike SD Call vanishes as k>0
= Not a valid solution for zero-strike call s

— A2: zero-strike call s turns out to replicated by an equally
weighted portfolio of zero-strike basket calls

s = \/xlz + -+« + x2 = (const.) X U (Wix, + -+ wyx, ) tdwy - dw,,

w2+ +wi=1

28  Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute
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Application 5

Replication of best-of call in 2D

(max(xy,x;) — k)™

_ (wyx; + waxy, — k)7
= (const.) X Jf 0= w1 — WD = (ws T w) D) dw,;dw,

« 2-asset best-of call is replicated by a portfolio of
vanilla basket calls whose weights span the entire
plane R?

« This integral does not converge in a classical
sense and must be reqgularized with care.

— Denominator = 0 along the four diagonals w; + w, = +1,
w; —w, = £1.
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Conclusion

« European multi-asset options can be replicated
with a continuum of vanilla basket calls.

« A major implication is that they should be priced
with the same model used for vanilla basket calls,
under penalty of arbitrage.

« Our results are part of ongoing research effort to
extend the Carr-Madan and Breeden-Litzenberger
formulas to multi-asset options, leveraging on
advanced mathematical tools and theory such as
Radon transforms that have vast potential for
further applications in quantitative finance and
indeed other scientific fields.
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Ongoing further research

 Dimension 1: discrete Carr-Madan
— Single underlying asset
— Perfect hedge with an infinite series of calls and puts
— Imperfect hedge with a finite number of calls and puts

- Dimension n: static hedging with a finite number
of basket calls/puts

— Multi-asset: best-of, dispersion, ...
— Numerical methods: least squares, machine learning...
— Risk analysis and delta-hedging of residual error

- Extensions of Ross recovery theorem
— Perron-Frobenius...

31 Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute
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Appendix A

The mathematics of dispersion option replication

« Replication problem in vector notations:

F(Ixll) = | x-w=k)*o(lwll)dw
Rn

« Substitute x = sv where s = ||x||, and v = x/||x]||, is a unit vector
PO = [ Gvew= g (lwl)dw

R
- Differentiate twice against s
F'(s) = (v-w)28(sv-w—Ek)o(llwll)dw
Rn

. lS(o)ifting property of Dirac’s delta function: f(t)6(t — k) = f(k)5(t —
2

k
) = | 66w w =g Iwl)dw
R'n

« Rearrange to get a Radon transform inverse problem

Flxllz) = 5(x-w—k)p(l[wlly)dw

Rn

Carr-Madan generalizations (Bossu, Carr, Papanicolaou)  \Worcester Polytechnic Institute



Appendix A

The mathematics of dispersion option replication

- Radon transform inverse problem for radial functions can be
shown to simplify to a fractional mtegral equation

fo(s) = j (2= 12T 2rpy(r)dr

0 G(s, r)

- When n = 3 is odd the exponent = ®is an integer and the

equation may be solved by standérd calculus techniques (e.g.
Leibniz rule)

n-—3

d \ 2 ’
(@) [fo(s)] = (const) x fo 2rpo (r)dr
n-3
d d \ 2
- (E) [fo(s)] = (const) X 25¢,(s)
i\
(@) [fo(s)] = (const) X ¢y(s)

« When n is even there is a residual half-integral.

35 Carr-Madan generalizations (Bossu, Carr, Papanicolaou) Worcester Polytechnic Institute



Appendix B

Inverse Radon transform of radial functions

- If p(y) = ¢(lyl) is radial, then Re is also radial and collapses
to a one-dimensional integral

(Rop)(x, k) = Rné‘(x -y — k)p(lyldy
= joor"‘lc,b(r)drj d(rx-u—k)du
0 lu|=1

« The inner integral is a line integral over the unit circle (2D) /
surface integral over the unit (hyper-)sphere (nD)

 Slice integration (“"Catalan formula”)

— For any unit vector v

! n-3
j gu-v)du = A4, ><j g®)(1 —t?)z dt
lu|=1 -1

n-1

— A, = ZnT/F["T_l] = surface area of unit sphere of R*1
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Appendix B

Inverse Radon transform of radial functions

« Slice integration: Substitute x = |x|v where |v| =1

1 n-3
j §(rx-u — K)du = 4, % j S|t — K)(1 — t2) 7 dt
lu|=1 -1

- Radon transform of radial ¢:

_ An > n—2 Z_k_2> ?
R 1) = i | o ¢<r>(|x| — ) ar

which is also radial as a function of |x| only.
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Appendix B

Inverse Radon transform of radial functions

- After change of variable r » k/r and other
simplifications, the Radon transform inverse
problem

fxl, k) = RP)(x, k)
collapses to a 1D integral equation of the form

fo(s) = f rbo(r) (s2 — 72)a1dy
0

where a = nT_l >0, s = |x], fo(s) = (const.) X k?s™"2f(s, k),

¢o(r) = (const.) x (g)n+1 b (E)

r

 RHS = left-sided modified Erdelyi-Kober
fractional integral of the function ¢,

- Solution: ¢, = fractional derivative of f, against s
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Appendix B

Inverse Radon transform of radial functions

- Fractional integral equation solution:

r n-1

(d>2f() dd
m 0 T no
ho(r) =<
2 < d )n/z ' SfO(S) dS n even
W \dr? 0 Vr2 —s?

- For a dispersion option f,(s) = s"F"(s)/m 2

bo(k/lyl)
[y dyEk c+ qul}
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