Tradable Carbon Permits Auctions Under Regulation and Competition THE PETER CARR MEMORIAL CONFERENCE JUNE 2-4, 2022 NYU Tandon School of Engineering & Society of Quantitative Analysts

Bruno Kamdem¹ and Moustapha ${\sf Pemy}^2$

June 4, 2022

¹NYU Tandon School of Engineering, Department of Finance & Risk Engineering, bgk8384@nyu.edu and Johns Horkins Hopkins University, Department of Applied Mathematics & Statistics, bkamdem1@jhu.edu

²Towson University, Department of Applied Mathematics, mpemy@towson.edu

Bruno Kamdem (NYU & JHU)

Tradable Carbon Auctions (The Peter Carr Memorial Conference)

Outline

1 Introduction

- Carbon Tax vs Carbon Permit
- Carbon Emission Rate as Interest Rate

2 An Option Pricing Carbon Model

- A Two-Factor Carbon Model
- Model Derivation

3 Conclusion

Term Structure of Emission Rate to Tame Climate Change

ance & R

Climate Policies

- Since climate change is a pressing existential threat, governments around the world are going to need a mosaic of integrated energy solutions
- How can we reduce our consumption of fossil fuels at lowest cost? To achieve this goal, there are two main climate policies:
 - Carbon tax
 - Permit market ((1)Grandfathering (giving companies permits based on historical output or emissions) (2) Auction)
- A key reason for which economists and investors are attracted to auctions is that the latter give the commodity market the option to self-determine

Carbon Emission Rate as Interest Rate

Carbon Emission Rate

- In this section of our paper, we track the carbon emission rate using a mean reverting process. This approach is not new (similar to interest rate)
- Our work and technique in this section follow the likes of Hull-White (which derives a two-factor interest model using the Vasicek model and the extended CIR model

Oldrich A Vasicek. An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2):177–188, 1977 John Hull and Alan White. Pricing interest-rate derivative securities. The Review of Financial Studies, 3(4):573–592, 1990

A Two-Factor Carbon Model

A Two-Factor Model for Pricing Carbon Derivative

$$\begin{cases} dZ_t = Z_t [(\mu + \lambda u_t)dt + \sigma_1 dW_{1,t}] \\ du_t = (m - bu_t)dt + \sigma_2 dW_{2,t} \\ Z_s = Z, \quad u_s = u, \quad 0 \le s \le t < \infty, \quad b > 0 \end{cases}$$
(1)

- *Z_t*: carbon permit price (geometric Brownian process)
- u_t: emission rate (Ornstein-Uhlenbeck process)
- $W_{1,t}$, $W_{2,t}$: correlated Wiener processes $\rho \in (-1, 1)$, $dW_{1,t}dW_{2,t} = \rho dt$

Model Overview

Introduction	An Option Pricing Carbon Model	
	000000	
Model Derivation		

Itô Isometry

ance & Ri

The Carbon Call Option

$$C(s, t, z, u, K) = z e^{-\mu(t-s) + k(s, t, u) + \frac{1}{2}\sigma_3^2(s, t)} \Big[N(d_1) - K e^{-\mu(t-s)} N(d_2) \Big]$$
(5)

IOHNS HOPKINS

Term Structure of Emission Rate to Tame Climate Change

Decreasing Emission Rate as Decarbonization Rate

- We successfully solve the dynamics of the carbon auction trading system and derive the carbon call option and the carbon put option in closed form
 - The carbon option permit starts as a GBM and is driven by a mean reverting rate
 - The carbon call option is analogous to the classical BS model, but is not the classical BS because the drift is not linear but is exponential
 - As t goes to infinity, our carbon model may behaves as BS because the mean-reverting part is destroyed
 - If *t* is not very large, we still have a mean reverting contribution.
- Term Structure of Carbon Emission Rate
 - We can think of decreasing emission rate as some sort of decarbonization rate. Achieving decarbonization involves pricing carbon through regulation
 - Trajectory needed to meet the Paris Agreement goal of 1.5° and avoid catastrophic climate change requires a proper calibration of the decarbonisation rate.
 - A suitable decarbonization (emission) rate is required to halve global emissions by 2030 and to reach net zero by mid-by mid-century
- Implications
 - Implications for the Commodity Market (structure carbon emission rate to tame extracting and drilling activities)
 - Implications for Regenerative Agriculture (structure the carbon emission rate to stimulate carbon sequestration)

Introduction 00 An Option Pricing Carbon Model

Conclusion

Term Structure of Emission Rate to Tame Climate Change

Peter Carr (a Stellar Intellectual, a Rare Humanist)

"ne mourra jamais pour la deuxième fois"

Finance & Risk Engineering

Bruno Kamdem (NYU & JHU)

Tradable Carbon Auctions (The Peter Carr Memorial Conference)