

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Elementary compound derivative pricing

Peter Carr¹, Federico Maglione²

 1 NYU Tandor School of Engineering, 2 Scuola Normale Superiore

2-4 June 2022 – The Peter Carr Memorial Conference

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Is it possible to price compound derivatives using just a calculator?

If so, can we also price an American call on an asset that pays a discrete known dividend?

Related literature

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

- [Carr and Torricelli \(2021\)](#page-33-1) propose a class of distributions consistent with risk-neutral pricing for which the pricing of vanilla options is elementary
- We wish to investigate whether such elementary pricing can be extended to the pricing of compound options
- Compound options are used for:
	- the pricing of options on levered equity [\(Geske 1979](#page-33-2)b, [Toft and](#page-34-0) [Prucyk 1997\)](#page-34-0)
	- the modelling of the firm's equity in structural models of default [\(Geske 1977,](#page-33-3) [Hull et al. 2004,](#page-34-1) [Geske et al. 2016\)](#page-33-4)
	- the evaluation of American claims [\(Roll 1977,](#page-34-2) [Geske 1979](#page-33-5)a, [Whaley](#page-34-3) [1981,](#page-34-3) [Prekopa and Szantai 2010\)](#page-34-4)
	- the pricing of some exotic derivatives [\(Carr 1988,](#page-33-6) [Buraschi and Dumas](#page-33-7) [2001,](#page-33-7) [Barone 2013\)](#page-33-8)

Dagum distribution

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Dagum, skew-logistic](#page-3-0) and Singh-Maddala distributions

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

We say that a positive random variable X follows a Dagum distribution, i.e. $X \sim D(m, p, q)$, with $m > 0$, $p > 0$, $q > 0$ if its PDF and CDF are

$$
f_X(x; m, p, q) = \frac{p}{q} \frac{\left[1 + \left(\frac{x}{m}\right)^{-p}\right]^{-\frac{1}{q}-1}}{x} \left(\frac{x}{m}\right)^{-p}
$$

$$
F_X(x; m, p, q) = \left[1 + \left(\frac{x}{m}\right)^{-p}\right]^{-\frac{1}{q}}
$$

- m controls the location of X and $\mathbb{E}X = m$ if $p > 1$; if $0 < p < 1$ the mean does not exist as the integral diverges
- p controls the precision (that is p^{-1} controls the dispersion)
- q controls the skewness of $\ln X$: for $0 < q < 1$ odds moments are positive, for $q > 1$ odds moments are negative, for $q = 1$, ln X is symmetric

Skew-logistic and Singh-Maddala distributions

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Dagum, skew-logistic](#page-3-0) and Singh-Maddala distributions

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

A random variable Y is skew-logistically distributed, i.e. $Y \sim SL(\mu, \sigma, \alpha)$, with $\mu \in \mathbb{R}, \sigma > 0, \alpha > 0$, and PDF and CDF

$$
f_Y(y; \mu, \sigma, \alpha) = \frac{\alpha}{\sigma} \exp\left(-\frac{y-\mu}{\sigma}\right) \left(1 + \exp\left(-\frac{y-\mu}{\sigma}\right)\right)^{-\alpha-1}
$$

$$
F_Y(y; \mu, \sigma, \alpha) = \left(1 + \exp\left(-\frac{y-\mu}{\sigma}\right)\right)^{-\alpha}
$$

and

$$
X \sim D(m, p, q) \iff \ln X \sim SL(\ln m, 1/p, 1/q)
$$

The Singh-Maddala random variable $Z \sim SM(\lambda, \gamma, \kappa)$ with $\lambda > 0$, $\gamma > 0$, $\kappa > 0$, has PDF and CDF given by

$$
f_Z(z; \lambda, \gamma, \kappa) = \frac{\gamma}{\kappa} \frac{\left[1 + \left(\frac{z}{\lambda}\right)^{\gamma}\right]^{-\frac{1}{\kappa} - 1}}{z} \left(\frac{z}{\lambda}\right)^{\gamma}
$$

$$
F_Z(z; \lambda, \gamma, \kappa) = 1 - \left[1 + \left(\frac{z}{\lambda}\right)^{\gamma}\right]^{-\frac{1}{\kappa}}
$$

and

 $X \sim D(m, p, q) \iff 1/X \sim SM(1/m, p, q)$

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 5 / 29

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Dagum, skew-logistic](#page-3-0) and Singh-Maddala distributions

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Conjugate-power Dagum, skew-logistic and Singh-Maddala distributions

We will refer to conjugate-power Dagum (CPD), conjugate-power skew-logistic (CPSL) and conjugate-power Singh-Maddala (CPSM) random variables. These variables are defined via $D(m, p, q)$, for which we further assume that

$$
\frac{1}{p}+\frac{1}{q}=1.
$$

that is the dispersion and skew parameters of the Dagum distribution are $Hölder$ conjugate. Letting

$$
b:=\frac{1}{\rho}\in (0,1)\iff 1-b=\frac{1}{q}\in (0,1)
$$

we have $X \sim$ CDP $(m, b) \equiv D(m, 1/b, 1/(1 – b))$.

- as $p = 1/b > 1$, the mean of the conjugate-power Dagum is finite and equal to m
- given $q = 1/(1 b) > 1$, the conjugate-power skew-logistic random variable is negatively skewed
- [Carr and Torricelli \(2021\)](#page-33-1) show that the Dagum distribution exhibit mild excess kurtosis

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Dagum, skew-logistic](#page-3-0) and Singh-Maddala distributions

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Conjugate-power Dagum asset prices: **Assumptions**

- filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ satisfying the usual conditions and representing a financial market
- no-arbitrage conditions in the economy and that there exists an equivalent martingale measure Q ∼ P
- similarly to [Carr and Torricelli \(2021\)](#page-33-1), we assume that a zero risk-free interest rate is paid
- $S_{\mathcal{T}} \stackrel{\mathbb{Q}}{\sim}$ CPD $(S_0, b(\mathcal{T}))$, with $S_0 > 0$ and $b(\mathcal{T}) \in (0,1)$
- $b(T)$ is referred as the bewilderment function as it controls the dispersion of the distribution. Also, it must to be increasing with respect to the maturity with $\lim_{T>0} b(T) = 0$
- [Carr and Torricelli \(2021\)](#page-33-1) propose to link the bewilderment function to the volatility via

$$
b(\,\mathcal{T})=\sqrt{1-\exp{(-\sigma^2\,\mathcal{T})}}
$$

Conjugate-power Dagum asset prices: Risk-neutrality

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Dagum, skew-logistic](#page-3-0) and Singh-Maddala distributions

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

We need to show that the distribution of S_T under $\mathbb Q$ is actually risk-neutral. If ${\cal S}_T \stackrel{\mathbb{Q}}{\sim}$ CPD $({\cal S}_0, b(T))$, let $b(T) = b$ for convenience and

$$
\mathbb{E}^{\mathbb{Q}}(S_{T}) = \int_{0}^{\infty} u f_{S}^{\mathbb{Q}}(u) du
$$

=
$$
\int_{0}^{\infty} u \frac{1-b}{b} \frac{\left[1+\left(\frac{u}{S_{0}}\right)^{-\frac{1}{b}}\right]^{b-2}}{u} \left(\frac{u}{S_{0}}\right)^{-\frac{1}{b}} du
$$

=
$$
\left(-S_{0}^{\frac{1}{b}}\left(u^{\frac{1}{b}} + S_{0}^{\frac{1}{b}}\right)^{b-1}\right|_{0}^{\infty}\right) = 0 + S_{0}^{\frac{1}{b}} S_{0}^{\frac{b-1}{b}} = S_{0}
$$

as $\lim_{u\uparrow \infty} \left(u^{\frac{1}{b}}+S_0^{\frac{1}{b}}\right)^{b-1}=\lim_{u\uparrow \infty} u^{\frac{b-1}{b}}=\lim_{u\uparrow \infty} 1/u^{\frac{1}{b}}=0$, given $b\in (0,1).$ Hence, the conjugate-power Dagum CDF is risk-neutral.

Married put

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Payoff of a married put written struck at $K > 0$, with maturity $T > 0$

$$
MP_T(S, K, T) = \max\{S_T, K\} = S_T 1_{S_T \geq K} + K 1_{S_T < K},
$$

Using risk-neutral valuation, the price of this claim is

$$
MP_0(S, K, T) = \mathbb{E}^{\mathbb{Q}}\left(MP_T(S, K, T)\right) = \mathbb{E}^{\mathbb{Q}}\left(S_T 1_{S_T \geq K} + K 1_{S_T < K}\right)
$$
\n
$$
= \mathbb{E}^{\mathbb{Q}}\left(S_T 1_{S_T \geq K}\right) + K \mathbb{Q}(S_T < K)
$$

Letting the Radon-Nikodym derivative $\eta_T = \frac{d\widehat{Q}}{dQ} = \frac{S_T}{S_0}$, with $\mathbb{Q} \sim \widehat{\mathbb{Q}}$, the main pricing equation follows

$$
MP_0(S, K, T) = S_0 \mathbb{E}^{\mathbb{Q}} \left(\eta_T \mathbb{1}_{S_T \geq K} \right) + K \mathbb{Q}(S_T < K)
$$
\n
$$
= S_0 \widehat{\mathbb{Q}} \left(S_T \geq K \right) + K \mathbb{Q}(S_T < K) \tag{1}
$$

Trivially,

$$
c_0(S, K, T) = MP_0(S, K, T) - K
$$

$$
p_0(S, K, T) = MP_0(S, K, T) - S_0
$$

[Research question](#page-1-0) [Related literature](#page-2-0) An alternative

Married put: Log-normal asset prices

It is well known that if $R^A_{[0,\,T]}=R^A_{\,T}:=\ln \mathsf{S}_{\mathcal{T}}-\ln \mathsf{S}_0,$ is distributed as

$$
R^A_T \stackrel{\mathbb{Q}}{\sim} \mathcal{N}\left(\mu^{\mathbb{Q}}(T), \sigma(T)^2\right)
$$

then

[distribution for](#page-3-0) asset prices [Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

$$
R^A_T \overset{\widehat{\mathbb{Q}}}{\sim} \mathcal{N}\left(\mu^{\widehat{\mathbb{Q}}}(\mathcal{T}), \sigma(\mathcal{T})^2\right) \equiv \mathcal{N}\left(\mu^{\mathbb{Q}}(\mathcal{T}) + \sigma(\mathcal{T})^2, \sigma(\mathcal{T})^2\right)
$$

that is the change of measure translate into shifting the mean of the distribution of log-returns. Hence

$$
MP_0(S, K, T) = S_0 \Phi \left(\frac{\ln \frac{S_0}{K} + \frac{\sigma^2}{2} T}{\sigma \sqrt{T}} \right) + K \Phi \left(\frac{\ln \frac{K}{S_0} + \frac{\sigma^2}{2} T}{\sigma \sqrt{T}} \right) \tag{2}
$$

whith $\Phi(\cdot)$ the CDF of a standard Normal. Such formula is obviously not elementary.

Married put: Conjugate-power Dagum asset prices

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

To price the married put, $\mathbb{Q}(S_T < K)$ is nothing but the CDF of S_T under \mathbb{Q} . To obtain the distribution of S_T under \widehat{Q} notice that

$$
\begin{aligned} \widehat{\mathbb{Q}}\left(S_T < x\right) &= \Lambda\left(\mathbb{Q}\left(S_T < x\right)\right) = \frac{\int_0^x u f_S^{\mathbb{Q}}(u; S_0, b) \, \mathrm{d}u}{\int_0^\infty u f_S^{\mathbb{Q}}(u; S_0, b) \, \mathrm{d}u} \\ &= \frac{\int_0^x u f_S^{\mathbb{Q}}(u; S_0, b) \, \mathrm{d}u}{S_0} \end{aligned}
$$

given that S_0 is the risk-neutral mean of S_T and Λ : [0, 1] \rightarrow [0, 1] is the Lorenz curve applied to the risk-neutral CDF $F_S^{\mathbb{Q}}$.

In financial terms, the Lorenz curve relates the share measure distribution function $\mathit{F_S^{\mathbb{Q}}}$ to the risk-neutral measure distribution function $\mathit{F_S^{\mathbb{Q}}}$. Essentially, calculating the Lorenz curve of the risk-neutral CDF allows to calculate probabilities under the measure that has S as a numéraire.

Married put: Conjugate-power Dagum asset prices

[Research question](#page-1-0)

Solving the integral

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

$$
\widehat{\mathbb{Q}}(S_T < x) = \frac{1}{S_0} \int_0^x u \frac{1 - b}{b} \frac{\left[1 + \left(\frac{u}{S_0}\right)^{-\frac{1}{b}}\right]^{b-2}}{u\left(\frac{u}{S_0}\right)^{\frac{1}{b}}} du
$$

$$
= \frac{1}{S_0} \left(-S_0^{\frac{1}{b}} \left(u^{\frac{1}{b}} + S_0^{\frac{1}{b}}\right)^{b-1}\Big|_0^x\right)
$$

$$
= 1 - \left[1 + \left(\frac{x}{S_0}\right)^{\frac{1}{b}}\right]^{b-1}
$$

That is S_T under the spot measure is distributed as a conjugate-power Singh Maddala random variable, i.e. $\,S_{\it T} \stackrel{\widehat{\mathbb{Q}}}{\sim}$ CPSM $(S_0, b({\it T}))$,

Married put: Conjugate-power Dagum asset prices

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

The price of a married put under the conjugate-power Dagum model is elementary

 $MP_0(S, K, T) = S_0 \widehat{O}(S_T > K) + K \mathbb{Q}(S_T < K)$ $= S_0 \left[1 + \left(\frac{K}{5}\right) \right]$ S_0 $\bigg\{\frac{1}{b(T)}\bigg\}^{b(T)-1} + K\bigg[1+\bigg(\frac{K}{c}\bigg)$ S_0 $\left(\frac{-1}{b(T)}\right]^{b(T)-1}$ = $\sqrt{ }$ $S_0^{\frac{1}{b(T)-1}}$ $S_0^{\frac{1}{b(\mathcal{T})}}+\mathcal{K}^{\frac{1}{b(\mathcal{T})}}$ $S_0^{\frac{1}{b(T)}}$ 0 \setminus $\frac{1}{2}$ b(T)−1 $^{+}$ $\sqrt{2}$ $\left(K^{\frac{1}{b(T)-1}}\frac{S_0^{-\frac{1}{b(T)}}+K^{-\frac{1}{b(T)}}}{S^{-\frac{1}{b(T)}}}\right)$ $S_0^{-\frac{1}{b(T)}}$ 0 \setminus $\Big\}$ b(T)−1 $= \ldots$ $=\left(S_0^{\frac{1}{b(\mathcal{T})}}+K^{\frac{1}{b(\mathcal{T})}}\right)^{b(\mathcal{T})}$ (3)

as shown in [Carr and Torricelli \(2021\)](#page-33-1).

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Compound married put

Let $T_2 > T_1$ and $K_2 \leq K_1$. The payoff of the compound married put is defined as MP $\left(\begin{array}{c} K_1 \\ \end{array} \right)$ $\left(\begin{array}{c} T_1 \\ \end{array} \right)$

$$
\tau_1\left(S,\begin{pmatrix}K_1\\K_2\end{pmatrix},\begin{pmatrix}T_1\\T_2\end{pmatrix}\right)=MP_{T_1}(MP_{T_1}(S,K_2,T_2),K_1,T_1)
$$

= max{MP_{T_1}(S,K_2,T_2),K_1}.

Using risk-neutral valuation,

$$
MP_0\left(S,\begin{pmatrix}K_1\\K_2\end{pmatrix},\begin{pmatrix}\mathcal{T}_1\\T_2\end{pmatrix}\right)=\mathbb{E}^{\mathbb{Q}}\left(MP_{\mathcal{T}_1}^2\left(S,\begin{pmatrix}K_1\\K_2\end{pmatrix},\begin{pmatrix}\mathcal{T}_1\\T_2\end{pmatrix}\right)\right)
$$

$$
=\mathbb{E}^{\mathbb{Q}}\left(MP_{\mathcal{T}_1}(S,K_2,\mathcal{T}_2)\mathbb{1}_{MP_{\mathcal{T}_1}(S,K_2,\mathcal{T}_2)\geq K_1}\right)
$$

$$
+K_1\mathbb{Q}(MP_{\mathcal{T}_1}(S,K_2,\mathcal{T}_2)< K_1).
$$

As the married put is an increasing function of its argument, there exists a critical value $K_{\star} > 0$ such that

$$
\textit{MP}_{T_1}(S, K_2, T_2) \lessgtr K_1 \iff S_{T_1} \lessgtr K_\star
$$

.

Compound married put

[Research question](#page-1-0)

Therefore,

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0) Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

$$
MP_0\n\left(S,\begin{pmatrix} K_1\\ K_2\end{pmatrix},\begin{pmatrix} T_1\\ T_2\end{pmatrix}\right) = \mathbb{E}^{\mathbb{Q}}\left(MP_{T_1}(S,K_2,T_2)1_{S_{T_1}\geq K^*}\right) + K_1\mathbb{Q}(S_{T_1} < K^*).
$$
\n(4)

The value K_{\star} is model-dependent and in the case of log-normal asset prices must be computed numerically. We show that in the conjugate-power Dagum setting is elementary instead.

In the following we must assume $T := T_1 = T_2/2$, which we refer as symmetric compound married put.

The reason for such restriction is that the bewilderment function is not a pre-specified function, but only require to vanish as the time-to-maturity vanishes and to be bounded in $(0, 1)$. As it depends on the size of time intervals $[0, T_1]$ and $[T_1, T_2]$ only, the only way to work with *identical* bewilderment functions is to assume symmetry in the time steps.

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Symmetric compound married put: Log-normal asset prices

Let $T := T_1 = T_2/2$. Under the assumption of log-normality, log returns are idd normal random variables such that

$$
R^A_{[0,\,T]} \stackrel{\mathbb{Q}}{\sim} R^A_{[T,2\,T]} \stackrel{\mathbb{Q}}{\sim} \mathcal{N}\left(\mu^{\mathbb{Q}}(\,T\,), \sigma(T)^2\right)
$$

By the reproductive property of the normal distribution, it also follows that the total return is

$$
R^A_{[0,2T]} = R^A_{[0,T]} + R^A_{[T,2T]} \stackrel{\mathbb{Q}}{\sim} \mathcal{N}\left(\mu^{\mathbb{Q}}(2T), \sigma(2T)^2\right)
$$

and

$$
MP_0\left(S, \begin{pmatrix} K_1 \\ K_2 \end{pmatrix}, \begin{pmatrix} \mathcal{T} \\ 2\mathcal{T} \end{pmatrix}\right) = S_0 \Phi_2 \left(\frac{\ln \frac{S_0}{K_\star} + \sigma^2 \frac{\mathcal{T}}{2}}{\sigma \sqrt{\mathcal{T}}}, \frac{\ln \frac{S_0}{K_2} + \sigma^2 \mathcal{T}}{\sigma \sqrt{2\mathcal{T}}}; \sqrt{\frac{1}{2}}\right) + K_2 \Phi_2 \left(-\frac{\ln \frac{K_\star}{S_0} + \sigma^2 \frac{\mathcal{T}}{2}}{\sigma \sqrt{\mathcal{T}}}, \frac{\ln \frac{K_0}{S_0} + \sigma^2 \mathcal{T}}{\sigma \sqrt{2\mathcal{T}}} ; -\sqrt{\frac{1}{2}}\right) + K_1 \Phi \left(\frac{\ln \frac{K_\star}{S_0} + \sigma^2 \frac{\mathcal{T}}{2}}{\sigma \sqrt{\mathcal{T}}}\right)
$$
(5)

where $\Phi_2(\cdot,\cdot,\rho)$ is the bivariate CDF of a 2-dimensional standardized Gaussian random vector with correlation ρ .

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 16 / 29

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Symmetric compound married put: Conjugate-power Dagum asset prices

Let $R_{[0,T]}^G = \frac{S_T}{S_0} |S_0$ and $R_{[T,2T]}^G = \frac{S_{2T}}{S_T} |S_T$ and assume a multiplicative random walk with iid factors such that

$$
R^G_{[0,T]} \stackrel{\mathbb{Q}}{\sim} R^G_{[T,2T]} \stackrel{\mathbb{Q}}{\sim} \text{CPD}(1,b(T)).
$$

Unlike what happens in the case of log-normal asset prices, there is no such reproductive property for either sums or products of Dagum distributions, i.e.

$$
R^G_{[0,2T]} = R^G_{[0,T]} \times R^G_{[T,2T]} \overset{\mathbb{Q}}{\times} \text{CPD}(1, b(2T)).
$$

Hence

$$
MP_0(S, K, 2T) \neq \left(S_0^{\frac{1}{b(2T)}} + K^{\frac{1}{b(2T)}}\right)^{b(2T)}
$$

but

$$
MP_T(S, K, 2T) = \left(S_T^{\frac{1}{b(T)}} + K^{\frac{1}{b(T)}}\right)^{b(T)}
$$

Nonetheless, the $\overline{t_{two-period\ married\ put}}$ price can still be computed analytically.

Symmetric compound married put: Conjugate-power Dagum asset prices

Let $b(T) = b$. The critical K_* is defined via

$$
\left(K_\star^{\frac{1}{b}}+K_2^{\frac{1}{b}}\right)^b=K_1,
$$

 $\mathcal{K}_{\star}=\left(\mathcal{K}_{1}^{\frac{1}{b}}-\mathcal{K}_{2}^{\frac{1}{b}}\right)^{b}$

[Research question](#page-1-0) [Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

and elementary

The first expectation in
$$
(4)
$$
 can be expressed as

$$
\mathbb{E}^{\mathbb{Q}} \left(MP_{T}(S, K_{2}, 2T) 1_{S_{T} \ge K_{\star}} \right) = \int_{K_{\star}}^{\infty} MP_{T}(u, K_{2}, 2T) f_{S}^{\mathbb{Q}}(u) du
$$
\n
$$
= \int_{K_{\star}}^{\infty} u \left[1 + \left(\frac{u}{K_{2}} \right)^{-\frac{1}{b}} \right]^{b} \frac{1 - b}{b} \frac{\left[1 + \left(\frac{u}{S_{0}} \right)^{-\frac{1}{b}} \right]^{b-2}}{u \left(\frac{u}{S_{0}} \right)^{\frac{1}{b}}} du
$$
\n
$$
= \int_{K_{\star}}^{\infty} \frac{1 - b}{b} \left(\frac{u}{S_{0}} \right)^{-\frac{1}{b}} \left[1 + \left(\frac{u}{S_{0}} \right)^{-\frac{1}{b}} \right]^{b-2} \left[1 + \left(\frac{u}{K_{2}} \right)^{-\frac{1}{b}} \right]^{b} du.
$$
\n(6)

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 18 / 29

Technical result

Theorem Given random variable $X \sim CPD(\mu, b)$ with PDF f, it follows

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

$$
I(\mu, m, b, a) = \int_{a}^{\infty} x \left[1 + \left(\frac{x}{m} \right)^{-\frac{1}{b}} \right]^{b} f(x; \mu, b) dx
$$

= $a \left(\frac{\mu}{a} \right)^{\frac{1}{b}} F_1 \left(1 - b; 2 - b, -b; 2 - b; - \left(\frac{\mu}{a} \right)^{\frac{1}{b}} , - \left(\frac{m}{a} \right)^{\frac{1}{b}} \right),$

with $m > 0$ and $F_1(a; b_1, b_2; c; x, y)$ the Appell hypergeometric function of the first kind. Moreover, if $\mu = m$

$$
I(\mu, b, a) = \int_{a}^{\infty} x \left[1 + \left(\frac{x}{\mu}\right)^{-\frac{1}{b}} \right]^b f(x; \mu, b) dx
$$

= $a \left(\frac{\mu}{a}\right)^{\frac{1}{b}} {}_2F_1 \left(1 - b; 2 - 2b; 2 - b; - \left(\frac{\mu}{a}\right)^{\frac{1}{b}} \right),$

where $2F_1(\alpha, \beta; \gamma; x)$ is the hypergeometric function. Finally, if $\mu = m$ and $b = 1/2$

$$
I(\mu, a) = \int_{a}^{\infty} x \left[1 + \left(\frac{x}{\mu}\right)^{-2} \right]^{\frac{1}{2}} f(x; \mu, 1/2) dx = \mu \tan^{-1}\left(\frac{\mu}{a}\right).
$$

[Research question](#page-1-0) [Related literature](#page-2-0) An alternative [distribution for](#page-3-0) asset prices [Married put](#page-8-0) Compound [married put](#page-13-0) American call on [asset with known](#page-23-0) discrete dividend [References](#page-33-0)

Symmetric compound married put: Conjugate-power Dagum asset prices

Thus the expectation in [\(6\)](#page-17-0) is equal to

$$
\mathbb{E}^{\mathbb{Q}}\left(MP_{T}(S,K_{2},2T)\mathbb{1}_{S_{T}\geq K_{\star}}\right)=S_{0}^{\frac{1}{b}}\left(K_{1}^{\frac{1}{b}}-K_{2}^{\frac{1}{b}}\right)^{b-1}
$$

$$
\times\ F_1\left(1-b; 2-b,-b; 2-b; \frac{S_0^{\frac{1}{b}}}{K_2^{\frac{1}{b}}-K_1^{\frac{1}{b}}}, \frac{K_2^{\frac{1}{b}}}{K_2^{\frac{1}{b}}-K_1^{\frac{1}{b}}}\right)
$$

and the risk-neutral probability of the $S_T < K_{\star}$ is

$$
\mathbb{Q}(\mathsf{S}_{\mathsf{T}} < \mathsf{K}_{\star}) = \left(1 + \left(\frac{\mathsf{K}_{\star}}{\mathsf{S}_{0}}\right)^{-\frac{1}{b}}\right)^{b-1} = \left(\mathsf{K}_{1}^{\frac{1}{b}} - \mathsf{K}_{2}^{\frac{1}{b}}\right)^{1-b}\left(\mathsf{S}_{0}^{\frac{1}{b}} + \mathsf{K}_{1}^{\frac{1}{b}} - \mathsf{K}_{2}^{\frac{1}{b}}\right)^{b-1}
$$

The price of the symmetric compound married put is

$$
MP_{0}\left(S,\begin{pmatrix}K_{1}\\K_{2}\end{pmatrix},\begin{pmatrix}T\\2T\end{pmatrix}\right)=S_{0}^{\frac{1}{b}}\left(K_{1}^{\frac{1}{b}}-K_{2}^{\frac{1}{b}}\right)^{b-1}\times \\ \times F_{1}\left(1-b;2-b,-b;2-b; \frac{S_{0}^{\frac{1}{b}}}{K_{2}^{\frac{1}{b}}-K_{1}^{\frac{1}{b}}}, \frac{K_{2}^{\frac{1}{b}}}{K_{2}^{\frac{1}{b}}-K_{1}^{\frac{1}{b}}}\right) \\ +K_{1}\left(K_{1}^{\frac{1}{b}}-K_{2}^{\frac{1}{b}}\right)^{1-b}\left(S_{0}^{\frac{1}{b}}+K_{1}^{\frac{1}{b}}-K_{2}^{\frac{1}{b}}\right)^{b-1}.
$$
\n(7)

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 20 / 29

Symmetric compound married put: Conjugate-power Dagum asset prices

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

If the symmetric compound married put is issued at-the-money, that is $S_0 = K_2 < K_1$, the pricing formula in [\(7\)](#page-19-0) simplifies as

$$
MP_0\n\left(S,\n\begin{pmatrix}\nK_1 \\
S_0\n\end{pmatrix},\n\begin{pmatrix}\nT \\
2T\n\end{pmatrix}\right) = S_0^{\frac{1}{b}}\n\begin{pmatrix}\nK_1^{\frac{1}{b}} - S_0^{\frac{1}{b}}\n\end{pmatrix}^{b-1} \times\n\n\times 2F_1\n\begin{pmatrix}\n2 - 2b, 1 - b; 2 - b; \frac{S_0^{\frac{1}{b}}}{S_0^{\frac{1}{b}} - K_1^{\frac{1}{b}}}\n\end{pmatrix} + K_1^{\frac{2b-1}{b}}\n\begin{pmatrix}\nK_1^{\frac{1}{b}} - S_0^{\frac{1}{b}}\n\end{pmatrix}^{1-b}
$$

If furthermore, $b = 1/2$, its price is elementary and equal to

$$
MP_0\left(S, \begin{pmatrix} K_1 \\ S_0 \end{pmatrix}, \begin{pmatrix} T \\ 2T \end{pmatrix} \right)\Big|_{b=1/2} = S_0 \tan^{-1} \left(\frac{S_0}{\sqrt{K_1^2 - S_0^2}} \right) + \sqrt{K_1^2 - S_0^2}
$$

There is no such a parametrization for the Black-Scholes model such that the price of the compound married put (or option) is elementary.

Compound married puts and compound options

Compound married puts can be linked to compound call-on-calls and put-on-calls.

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

For the call-on-call

 MP_{T_1}

$$
\left(S, \begin{pmatrix} K_1 \\ K_2 \end{pmatrix}, \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}\right) = \max\left\{\max\{S, K_2\}, K_1\right\} \n= \max\left\{\max\{S, K_2\} - K_1, 0\right\} + K_1 \n= \max\left\{\max\{S - K_2, 0\} - (K_1 - K_2), 0\right\} + K_1 \n= \text{compound call struck at } K_1 - K_2 \n= c_{T_1}\left(c(S, K_2, T_2), K_1 - K_2, T_1\right) + K_1.
$$

Compound married puts and compound options

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

$$
MP_{T_1}\left(S, \begin{pmatrix} K_1 \\ K_2 \end{pmatrix}, \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}\right) = \max\left\{\max\{S, K_2\}, K_1\right\}
$$

= $\max\left\{K_1 - \max\{S, K_2\}, 0\right\} + \max\{S, K_2\}$
= $\max\left\{(K_1 - K_2) - \max\{S - K_2, 0\}, 0\right\} + \max\{S, K_2\}$
compound put struck at $K_1 - K_2$
on call struck at K_2

$$
= p_{T_1} (c(S, K_2, T_2), K_1 - K_2, T_1) + MP_{T_1} (S, K_2, T_2)
$$

Thus, to ensure no arbitrage

For the put-on-call

$$
MP_0\n\left(S,\begin{pmatrix} K_1\\ K_2\end{pmatrix},\begin{pmatrix} T_1\\ T_2\end{pmatrix}\right) = c_0\Big(c(S,K_2,T_2),K_1 - K_2,T_1\Big) + K_1
$$

= $p_0\Big(c(S,K_2,T_2),K_1 - K_2,T_1\Big) + MP_0(S,K_2,T_2)$

must hold.

Whaley's decomposition

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Letting $0 < D < K_2$ representing the discrete dividend, Whaley's decomposition of the American option price is

$$
C_0(S, K_2, T_2) = \underbrace{c_0(S, K_*, T_1)}_{(a)} + \underbrace{c_0(S, K_2, T_2)}_{(b)}
$$

-
$$
\underbrace{c_0(c(S, K_*, + D - K_2, T_1), K_2, T_2)}_{(c)}
$$
 (8)

- (a) long a European call option with exercise price K_{\star} (to be determined) and maturity T_1 ;
- (b) long a European call option with exercise price K_2 and maturity T_2 ;
- (c) short a compound call-on-call whose mother option is a European option with exercise price K_2 and maturity T_2 which is written on a European option with exercise price $K_{\star} + D - K_2$ and maturity T_1 .

[Roll \(1977\)](#page-34-2) shows that the value K_{\star} is defined implicitly via

$$
c_{T_1}(K_{\star}, K_2, T_2) = K_{\star} + D - K_2,
$$

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

American call with known dividend: Conjugate-power Dagum asset prices

Let $T = T_1 = T_2/2$ (i.e. the dividend is paid *half-way* through the option maturity) and $b = b(T)$.

The value of K_{\star} is found solving

$$
\left(K_{\star}^{\frac{1}{b}} + K_{2}^{\frac{1}{b}}\right)^{b} - K_{2} = K_{\star} + D - K_{2}
$$

that is

$$
(K_{\star}+D)^{\frac{1}{b}}-K_{\star}^{\frac{1}{b}}=K_{2}^{\frac{1}{b}}.
$$

Letting $p = 1/b \in \mathbb{N} \setminus \{1\}$ and factoring the difference of powers

$$
D\sum_{j=0}^{p-1} (K_{\star} + D)^{p-j-1} K_{\star}^{j} = K_{2}^{p}
$$

If $b \in \{1/2, 1/3, 1/4, 1/5\}$ (or, equivalently, $p \in \{2, 3, 4, 5\}$), the Abel-Ruffini theorem ensures the existence of K_* elementary obtainable as a function of polynomials. For example,

$$
K_{\star} = \frac{K_2^2}{2D} - \frac{D}{2}
$$
, for $b = 1/2$ $K_{\star} = \sqrt{\frac{4K_2^3 - D^3}{3D}} - \frac{D}{2}$, for $b = 1/3$

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 25 / 29

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

American call with known dividend: Conjugate-power Dagum asset prices

Rewrite [\(8\)](#page-23-1) in terms of married put prices, that is

$$
C_0(S, K_2, 2T) = MP_0(S, K_*, T) - K_* + MP_0(S, K_2, 2T) - K_2
$$

- MP_0 $\left(S, \begin{pmatrix} K_* + D \\ K_* + D - K_2 \end{pmatrix}, \begin{pmatrix} T \\ 2T \end{pmatrix} \right) + (K_* + D)$

If $K_2 = S_0$ (American option is at-the-money) and $b = 1/2$ (K_{\star} is elementary as well as the function for pricing the $\left(\frac{two-period \text{ married put}}{n}\right)$, then the price becomes

$$
C_0(S, S_0, 2T)\Big|_{b=1/2} = \sqrt{\left(\frac{S_0^2 - D^2}{2D}\right)^2 + S_0^2} + \frac{\pi}{2}S_0 - S_0 + D
$$

$$
- MP_0 \left(S, \left(\frac{S_0^2 + D^2}{2D} - S_0\right), \left(\frac{T}{2T}\right)\right)\Big|_{b=1/2}.
$$

To have an elementary compound married price, we need to further impose

$$
\frac{S_0^2 + D^2}{2D} - S_0 = S_0 \quad \iff \quad D^2 - 4S_0 D + S_0^2 = 0. \tag{9}
$$

The solution of [\(9\)](#page-25-0) such that early exercise is possible (i.e. $D \leq K_2 = S_0$) is $D_{\star} = (2 - \sqrt{3})S_0 \approx 0.27S_0.$

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 26 / 29

American call with known dividend: Conjugate-power Dagum asset prices

Hence

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Hence,
\n
$$
C_0 (S, S_0, 2T) \Big|_{b=1/2}^{D = D_{\star}} = \sqrt{\left(\frac{S_0^2 - D_{\star}^2}{2D_{\star}}\right)^2 + S_0^2 + \frac{\pi}{2} S_0 - S_0 + D_{\star}}
$$
\n
$$
- S_0 \tan^{-1} \left(S_0 / \sqrt{\left(\frac{S_0^2 + D_{\star}^2}{2D_{\star}}\right)^2 - S_0^2}\right)
$$
\n
$$
- \sqrt{\left(\frac{S_0^2 + D_{\star}^2}{2D_{\star}}\right)^2 - S_0^2}
$$
\n
$$
= \sqrt{\left(\frac{S_0^2 - D_{\star}^2}{2D_{\star}}\right)^2 + S_0^2} - \sqrt{\left(\frac{S_0^2 + D_{\star}^2}{2D_{\star}}\right)^2 - S_0^2}
$$
\n
$$
+ S_0 \left(\cot^{-1} \left(S_0 / \sqrt{\left(\frac{S_0^2 + D_{\star}^2}{2D_{\star}}\right)^2 - S_0^2}\right) - 1\right) + D_{\star}
$$

in which we use $\cot^{-1}(x) = \pi/2 - \tan^{-1}(x)$.

American call with known dividend: Conjugate-power Dagum asset prices

[Research question](#page-1-0)

As

and

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

 $\sqrt{(S_0^2 - D_{\star}^2)}$ $2D_{\star}$ $\int^2 + S_0^2 - \sqrt{\left(\frac{S_0^2 + D_x^2}{2D}\right)}$ $2D_{\star}$ $\int^{2} - S_{0}^{2} = \left(2 - \sqrt{3}\right) S_{0} = D_{\star}$

 cot^{-1} $\sqrt{ }$ $\Big\vert S_0$ $\int_A \sqrt{\frac{S_0^2 + D_{\star}^2}{S_0^2 + D_{\star}^2}}$ $2D_{\star}$ $\bigg)^2 - S_0^2$). $\bigg) = \cot^{-1} \left(\sqrt{\frac{1}{3}} \right)$ 3 $=\frac{\pi}{2}$ 3

the price of such American option is stunningly simple and equal to

$$
C_0 (S, S_0, 2T) \Big|_{b=1/2}^{D=D_*} = \left(\frac{\pi}{3} - 1\right) S_0 + 2D_* = \left(3 + \frac{\pi}{3} - 2\sqrt{3}\right) S_0 \approx 0.58 S_0
$$

which is elementary!

Conclusions

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

- We show how to price symmetric compound married puts, call-on-calls and put-on-calls when price ratios are iid conjugate-power Dagum random variables.
- Such distribution is consistent with risk-neutral pricing and allows for negative skewness and mild excess kurtosis.
- We show that, if the compound married put is issued at-the-money and $b = 1/2$, its price is elementary; there is no such parametrization under log-normality (or other known distribution) for which such a result is obtained.
- We show how to price an American call written on an asset that pays a known discrete dividend under the conjugate-power Dagum distribution, thus providing an alternative to the well-known Roll-Geske-Whaley formula.
- We show that the pricing of such American option also reduces to an elementary function under a given parameter combination.

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Thanks for your attention

Two-period married put under

[Research question](#page-1-0)

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

conjugate-power Dagum asset prices

Let $b=b(\mathcal{T}),\,X=R_{[0,\mathcal{T}]}^G,\,Y=R_{[\mathcal{T},2\mathcal{T}]}^G$ and $Z=XY=R_{[0,2\mathcal{T}]}^G.$ The risk-neutral CDF of Z can be found as

$$
F_Z^{\mathbb{Q}}(z) = \mathbb{Q} (Z \le z) = \mathbb{Q} (XY \le z)
$$

= $\int_0^\infty \mathbb{Q} (XY \le z | X = x) f_X^{\mathbb{Q}}(x) dx = \int_0^\infty \mathbb{Q} (Y \le \frac{z}{x}) f_X^{\mathbb{Q}}(x) dx$
= $\int_0^\infty \left[1 + \left(\frac{z}{x}\right)^{-\frac{1}{b}} \right]_0^{b-1} \frac{1-b}{b} \left(1 + x^{-\frac{1}{b}} \right)^{b-2} x^{-\frac{1}{b}-1} dx$
= $\frac{1-b}{b} \int_0^\infty \left(1 + z^{-\frac{1}{b}} x^{\frac{1}{b}} \right)^{b-1} \left(1 + x^{-\frac{1}{b}} \right)^{b-2} x^{-\frac{1}{b}-1} dx$

It can be shown that [\(Gradshteyn and Ryzhik 2014\)](#page-33-9)

$$
F_2^{\mathbb{Q}}(z) = (1-b) \left[z^{\frac{1-b}{b}} \int_0^1 t^{1-b} \left(1 + z^{\frac{1}{b}} t \right)^{b-1} (1+t)^{b-2} dt \right. \left. + \int_0^1 t^{-b} \left(1 + z^{-\frac{1}{b}} t \right)^{b-1} (1+t)^{b-2} dt \right] = F_1 \left(1-b, 1-b, 2-b, 2-b; -z^{-\frac{1}{b}}, -1 \right) + \frac{1-b}{2-b} z^{\frac{1-b}{b}} F_1 \left(2-b, 1-b, 2-b, 3-b; -z^{\frac{1}{b}}, -1 \right)
$$
\n(10)

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 31 / 29

Two-period married put under conjugate-power Dagum asset prices

Provided that

[Research question](#page-1-0) [Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

$$
X \overset{\widehat{\mathbb{Q}}}{\sim} Y \overset{\widehat{\mathbb{Q}}}{\sim} \mathsf{CPSM}\left(1,b(T)\right)
$$

the distribution of Z under the spot measure is

$$
F_Z^{\widehat{Q}}(z) = \int_0^\infty F_Y^{\widehat{Q}}\left(\frac{z}{x}\right) f_X^{\widehat{Q}}(x) dx
$$

=
$$
\int_0^\infty \left\{ 1 - \left[1 + \left(\frac{z}{x}\right)^{\frac{1}{b}}\right]^{b-1} \right\} \frac{1-b}{b} \left(1 + x^{\frac{1}{b}}\right)^{b-2} x^{\frac{1}{b}-1} dx
$$

=
$$
\frac{1-b}{b} \left(\int_0^\infty \left(1 + x^{\frac{1}{b}}\right)^{b-2} x^{\frac{1}{b}-1} dx - \int_0^\infty \left[1 + \left(\frac{z}{x}\right)^{\frac{1}{b}}\right]^{b-1} \left(1 + x^{\frac{1}{b}}\right)^{b-2} x^{\frac{1}{b}-1} dx \right)
$$

and that the survival function is equal to

$$
\overline{F}_Z^{\widehat{\mathbb{Q}}}(z) = F_1\left(1 - b, 1 - b, 2 - b, 2 - b; -z^{\frac{1}{b}}, -1\right) + \frac{1 - b}{2 - b}z^{-\frac{1 - b}{b}}F_1\left(2 - b, 1 - b, 2 - b, 3 - b; -z^{-\frac{1}{b}}, -1\right)
$$
(11)

F. Maglione 2-4 June 2022 – The Peter Carr Memorial Conference 32 / 29

[Research question](#page-1-0) [Related literature](#page-2-0) An alternative [distribution for](#page-3-0) asset prices [Married put](#page-8-0) Compound [married put](#page-13-0) American call on [asset with known](#page-23-0) discrete dividend [References](#page-33-0)

Two-period married put under conjugate-power Dagum asset prices

Given the results in [\(10\)](#page-30-1) and [\(11\)](#page-31-0), it is possible to price a two-period married put as

 $MP_0(S, K, 2\mathcal{T}) = S_0 \widehat{\mathbb{Q}}(S_{2\mathcal{T}} \geq K) + K\mathbb{Q}(S_{2\mathcal{T}} < K) = S_0 \overline{F}_Z^{\widehat{\mathbb{Q}}}\left(\frac{K}{S_0}\right)$ S_0 $+ K F_Z^{\mathbb{Q}}\left(\frac{K}{S} \right)$ S_0 λ $= S_0 \left[F_1 \left(1 - b, 1 - b, 2 - b, 2 - b \right) - \left(\frac{K}{c} \right) \right]$ S_0 $\Big)^{\frac{1}{b}}, -1 \Big)$ $+\frac{1-b}{2}$ 2 − b $\sqrt{\kappa}$ S_0 $\int_{0}^{-\frac{1-b}{b}} F_1\left(2-b,1-b,2-b,3-b;-\left(\frac{K}{c}\right)\right)$ S_0 $\Big)^{-\frac{1}{b}}, -1 \Big)$ \mathbf{I} $+ K \left[F_1 \left(1 - b, 1 - b, 2 - b, 2 - b \right) - \left(\frac{K}{c} \right) \right]$ S_0 $\Big)^{-\frac{1}{b}}, -1 \Big)$ $+\frac{1-b}{2}$ 2 − b K S_0 $\int_{-b}^{\frac{1-b}{b}} F_1\left(2-b, 1-b, 2-b, 3-b; -\left(\frac{K}{c}\right)\right)$ S_0 $\left[\begin{array}{c} \frac{1}{b} \\ -1 \end{array}\right]$ \mathbf{I}

A very interesting result is the price of the at-the-money two-period married put with $b = 1/2$, that is

$$
\textit{MP}_0\left(S,S_0,2\,T\right)\big|_{b=1/2}=S_0\left(\overline{\digamma}_{Z}^{\widehat{\mathbb{Q}}}(1)\big|_{b=1/2}+\left.\digamma_{Z}^{\mathbb{Q}}(1)\right|_{b=1/2}\right)=\frac{\pi}{2}S_0
$$

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Barone, G. (2013), 'European compound options written on perpetual american options', Journal of Derivatives 20(3), 61–74.

Buraschi, A. and Dumas, B. (2001), 'The forward valuation of compound options', Journal of Derivatives 9(1), 8–17.

Carr, P. (1988), 'The valuation of sequential exchange opportunities', Journal of Finance 43(5), 1235–1256.

Carr, P. and Torricelli, L. (2021), 'Additive logistic processes in option pricing', Finance and Stochastics 25, 689–724.

Geske, R. (1977), 'The valuation of corporate liabilities as compound options', Journal of Financial and Quantitative Analysis 12(4), 541-552.

Geske, R. (1979a), 'A note on an analytical valuation formula for unprotected american call options on stocks with known dividends', Journal of Financial Economics 7(4), 375–380.

Geske, R. (1979b), 'The valuation of compound options', Journal of Financial Economics 7(1), 63–81.

Geske, R., Subrahmanyam, A. and Zhou, Y. (2016), 'Capital structure effects on the prices of equity call options', Journal of Financial Economics 36(6), 1639–1652.

Gradshteyn, I. S. and Ryzhik, I. M. (2014), Table of Integrals, Series, and Products, 8th edn, Elsevier, Amsterdam.

[Related literature](#page-2-0)

An alternative [distribution for](#page-3-0) asset prices

[Married put](#page-8-0)

Compound [married put](#page-13-0)

American call on [asset with known](#page-23-0) discrete dividend

[References](#page-33-0)

Hull, J. C., Nelken, I. and White, A. D. (2004), 'Merton's model, credit risk and volatility skews', Journal of Credit Risk 1(1), 3–28.

Prekopa, A. and Szantai, T. (2010), 'On the analytical-numerical valuation of the bermudan and american options', Quantitative Finance 10(1), 59–74.

Roll, R. (1977), 'An analytic valuation formula for unprotected american call options on stocks with known dividends', Journal of Financial Economics 5(2), 251–258.

Toft, K. B. and Prucyk, B. (1997), 'Options on leveraged equity: Theory and empirical tests', Journal of Finance 53(3), 1151-1180.

Whaley, R. E. (1981), 'On the valuation of american call options on stocks with known dividends', Journal of Financial Economics 9(2), 207–211.