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“Thank you, Peter Carr.”

• “While working on my class and the book last summer, I 
discovered it was very difficult to teach option pricing to 
master's students who had never seen stochastic calculus 
before, and developed a new derivation that requires only 
college-level calculus.

• “In disbelief, Peter asked me to prove it to him. I stood at the 
whiteboard outside his office and explained it... When I 
finished, he asked me to stop and held up his hand. After 
about a half-minute, he broke out in laughter, with a tear in his 
eye. How can it have been so easy? Why didn't we see this 
before?

• “The proof  remained unerased from his whiteboard for several 
weeks. He offered guidance and urged me to publish it 
immediately.” 

• The paper will appear this summer (2022) in the Journal of  
Derivatives.
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Peter Carr (left) with David Shimko and Maggie Copeland, 1987.

.האמתדיין ברוך 



Review:  Difficult Option Pricing
Black-Scholes-Merton Proof Comments 

𝑑𝑆 = 𝛼𝑆 𝑑𝑡 + 𝜎𝑆 𝑑𝑊 Stochastic differential eq 

𝐶 = 𝐶 𝑆, 𝜏   

𝑑𝐶 =  𝛼𝐶𝑠𝑆 + 0.5𝜎2𝐶𝑆𝑆𝑆
2 − 𝐶𝜏  𝑑𝑡 + 𝜎𝐶𝑆𝑆 𝑑𝑊 Itô’s Lemma 

𝑃 = 𝐶 − ℎ𝑆  

𝑑𝑃 = 𝑑𝐶 − ℎ 𝑑𝑆 Self-financing 

𝑑𝑃 =  𝛼𝐶𝑠𝑆 + 0.5𝜎2𝐶𝑆𝑆𝑆
2 − 𝐶𝜏 − ℎ𝛼𝑆  𝑑𝑡 + (𝜎𝐶𝑆𝑆 − ℎ𝜎𝑆) 𝑑𝑊  

ℎ = 𝐶𝑆 Hedge ratio eliminates risk 

𝑟𝑃 𝑑𝑡 =  𝛼𝐶𝑠𝑆 + 0.5𝜎2𝐶𝑆𝑆𝑆
2 − 𝐶𝜏 − 𝛼𝐶𝑆𝑆  𝑑𝑡 Risk premium vanishes 

𝑟 𝐶 − 𝐶𝑆𝑆 = 0.5𝜎2𝐶𝑆𝑆𝑆
2 − 𝐶𝜏  No arbitrage 

𝐶 𝑆, 0 = 𝑀𝑎𝑥 𝑆 − 𝑋, 0  Solve PDE with boundary 

𝐶 𝑆, 𝜏 = 𝑆𝑁 𝑑1 − 𝑋𝑒−𝑟𝑇𝑁(𝑑2) European call value 

 

h = h(S,)
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Preamble

European call options can be priced in equilibrium without
• stochastic calculus, complete markets, the self-financing 

condition, differential equations, tailored utility functions or 
explicit integration

• Only need the Market Model or the CAPM.

Academics tried this in the past, with disastrous results
• Negative and non-convex option prices
• Free lunch for traders!  (arbitrage profits)
• This occurred because the asset valuation formulae were applied 

directly to derivatives without any adjustment

The problem is solved by imposing a no-arbitrage condition 
in an equilibrium model

• …Before computing the equilibrium
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Response:

“Every equilibrium model

should preclude arbitrage, 

since its presence would necessarily 

upend any purported equilibrium.”

Question:

“So, is this an equilibrium model or 

an arbitrage model?”



Flashback:  The Lintner-Mossin CAPM (1965-66)

• The value of  a single risky asset in 1 period is an 
exogenous random variable “S”

• Mean ,  Variance 2

• The market must fully finance 100% of  the asset

• n = 1, the “supply curve”, 

• i.e. 100% of  the asset offering

• Unconstrained investors maximize risk-adjusted added 
value for any given asset price, i.e. maximize over choice 
of  n

• Return from risk-free asset 

• + Expected risk-adjusted return from risky asset

5

V

n*

1

Market clearing price

𝑉 = 𝜇 − 𝐴𝜎2 𝐵

Asset price

Asset supply curve

One asset version



L-M notation and single-asset derivation

• W = Initial wealth

• V = Asset price today

• B = PV of  riskless ZCB paying $1

• A = Risk aversion parameter, 

• or the cost of  variance risk
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max
𝑛

𝑊 − 𝑛𝑉

𝐵
+ 𝑛𝜇 − 0.5𝐴𝑛2𝜎2

(RF inv + exp risky asset − risk charge)

𝑛∗ =
𝜇 −𝑉/𝐵

𝐴𝜎2 = 1

𝑉 = 𝜇 − 𝐴𝜎2 𝐵



Lintner-Mossin with two risky assets
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• The parameters for the second asset are

• Future value C in one period

• Mean C ,  Variance C
2

• Covariance SC , Dollar Beta = SC/2

• Present Value VC , Position nC

• The market must fully finance 100% of  each asset

• n = nC = 1, the “supply curves”, 

• Unconstrained investors maximize risk-adjusted added value for any given asset 
price, i.e. maximize over choice of  n and nC

Two asset version
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Elliptic paraboloid

Constant Hessian matrix

First term unambiguously negative

Positive determinant

→ Unique global maximum

Select asset prices so that unconstrained investors choose n1=n2=1



L-M two-asset equilibrium valuations

• Investors perform an 
unconstrained 
maximization

• Pricing is set so that 
markets clear

• This produces equilibrium 
valuations and a relative 
pricing formula for asset #2

• Note:  

• n = nC = 1 in the two-asset 
case
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max
𝑛,𝑛𝐶

𝑛𝜇 + 𝑛𝐶𝜇𝐶 +  𝑊 − 𝑛𝑉 − 𝑛𝐶𝑉𝐶 /𝐵 − 1
2
𝐴 𝑛2𝜎2 + 2𝑛𝑛𝐶𝜎𝑆𝐶 + 𝑛𝐶

2𝜎𝐶
2 

𝑉/𝐵 = 𝜇 − 𝐴 𝑛𝜎2 + 𝑛𝐶𝜎𝑆𝐶 

𝑉𝐶/𝐵 = 𝜇𝐶 − 𝐴 𝑛𝜎𝑆𝐶 + 𝑛𝐶𝜎𝐶
2 

𝑽𝑪 = 𝑽𝜷 + 𝑩 𝝁𝑪 − 𝜷𝝁 𝜷 =
𝒏𝝈𝑺𝑪 + 𝒏𝑪𝝈𝑪

𝟐

𝒏𝝈𝟐 + 𝒏𝑪𝝈𝑺𝑪

Solution



Transitional summary

• So far we have only applied the Lintner-Mossin CAPM 

• Nothing new to this paper except for emphasis and interpretation

• We have a relative pricing model of  asset “C” relative to asset “S” with value “V” that 

eliminates the risk aversion parameter:

• This is a risk-neutral model (for assets) since it does not depend on A.

• Now we would like to know if  we can price derivatives with the asset-based CAPM.
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𝑉𝐶 = 𝑉𝛽 + 𝐵 𝜇𝐶 − 𝛽𝜇 𝛽 =
𝑛𝜎𝑆𝐶 + 𝑛𝐶𝜎𝐶

2

𝑛𝜎2 + 𝑛𝐶𝜎𝑆𝐶
𝑛 = 𝑛𝐶 = 1



What if  asset C were a call option on asset S?

• In this case, asset C is a derivative

• It exists in zero net supply, since there must 

be a buyer for every seller

• Therefore, n=1 and nC=0 in equilibrium.

• The CAPM pricing therefore simplifies to

• 𝑉𝐶 = 𝑉𝛽 + 𝐵 𝜇𝐶 − 𝛽𝜇 𝛽 =
𝜎𝑆𝐶

𝜎2

•  can be called the static hedge ratio

11



What is option convexity?

• This means convexity of  the call option pricing function with respect to the 

option strike price X

• Computed as the second derivative, or 
𝜕2𝑉𝐶

𝜕𝑋2 = lim
𝜀→0

𝑉 𝑋+𝜀 −2𝑉 𝑋 +𝑉 𝑋−𝜀 

𝜀2

• The numerator of  the limit term also describes an option “butterfly” position 

composed of  options on the same underlying and maturity

• Buy a call option at strike X+

• Sell two call options at strike X

• Buy a call option at strike X−

• This strategy always has a non-negative payoff

• Therefore, its current value must be non-negative for any X to prevent arbitrage
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X− X X+

0



Underlying asset value at option maturity

Butterfly payoff  at option maturity



The Bachelier European Call

𝜇𝐶 = 𝐸 max 𝑆 − 𝑋, 0 = 𝜇 − 𝑋 𝑁 𝑑 + 𝜎 𝑛 𝑑 𝑑 =
𝜇 − 𝑋

𝜎

Special

Case

𝑉𝐶 = 𝑉 − 𝑋𝐵 𝑁 𝑑 + 𝜎 𝑛 𝑑 𝐵

𝑐𝑜𝑣 𝑆,max 𝑆 − 𝑋, 0 = 𝜎2𝑁 𝑑 𝛽 = 𝑁 𝑑 

These are properties of  the truncated normal distribution (X is the strike price, S is the future asset price):

One period, discrete discounting, no dividends, normally distributed asset price
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This resembles Bachelier except that d is a function of  

Stein’s Lemma



First Try Fails

• Options have negative values at some 

strike prices

• Option prices are not convex with 

respect to the exercise price for X>XC

• This implies butterfly spreads have 

negative value when X>XC

Bachelier Parameters 

Mean 100 

Sigma 20 

r 0.02 

A 0.08 
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XC

Concave

NOT

CONVEX

Convex



How to fix this

• Add a convexity 

constraint to the 

unconstrained 

CAPM optimization

• Use the Lagrangean

method to solve
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𝜕ℒ/𝜕𝑛 = 0 → 𝜇 − 𝑉/ 𝐵 − 𝐴 𝑛𝜎2 + 𝑛𝐶𝜎𝑆𝐶 − 𝛾𝑔1
′ = 0

𝜕ℒ/𝜕𝑛𝐶 = 0 → 𝜇𝐶 − 𝑉𝐶/ 𝐵 − 𝐴 𝑛𝜎𝑆𝐶 + 𝑛𝐶𝜎𝐶
2 − 𝛾𝑔2

′ = 0

𝜕ℒ/𝜕𝛾 = 0 → 𝑔 𝑛, 𝑛𝐶 > 0 ∀ 𝑋 𝑤𝑖𝑡ℎ 𝛾 = 0

𝑜𝑟 𝑔 𝑛, 𝑛𝐶 = 0 ∀ 𝑋 𝑤𝑖𝑡ℎ 𝛾 > 0

max
𝑛,𝑛𝐶,𝛾

ℒ = 𝑛𝜇 + 𝑛𝐶𝜇𝐶 +  𝑊 − 𝑛𝑉 − 𝑛𝐶𝑉𝐶 /𝐵 − 1
2
𝐴 𝑛2𝜎2 + 2𝑛𝑛𝐶𝜎𝑆𝐶 + 𝑛𝐶

2𝜎𝐶
2 − 𝛾𝑔

𝑠. 𝑡.
𝜕2𝑉𝐶

𝜕𝑋2
≡ 𝑔 𝑛, 𝑛𝐶|𝑋 ≥ 0 ∀ 𝑋

The second derivative “g” must be strictly positive on probability distributions with compact support.

Back to the

General Case



Interpreting the Lagrangean solution
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• There is almost always a strike price XC
such that the second derivative is 
negative for X>XC.

• Arbitrage exists if  XC exists.  

• XC is undefined only if the denominator 
is zero.

• 𝜇𝐵 − 𝑉 must equal zero in the option 
pricing formula VC.

𝜕2𝑉𝐶

𝜕𝑋2
=

1

𝜎2
𝑉 − 𝐵𝜇 𝑋 − 𝜇 + 𝐵 𝑓 𝑆 𝑆 = 𝑋

𝑋𝐶 = 𝜇 +
𝐵𝜎2

𝜇𝐵 − 𝑉

𝑉𝐶 = 𝑉𝛽 + 𝐵 𝜇𝐶 − 𝛽𝜇 = 𝐵𝜇𝐶 + 𝛽 𝑉 − 𝐵𝜇 ; 𝛽 =
𝜎𝑆𝐶

𝜎2

𝜕2𝑉𝐶

𝜕𝑋2
= 𝑉 − 𝐵𝜇

𝜕2𝛽

𝜕𝑋2
+ 𝐵

𝜕2𝜇𝐶

𝜕𝑋2



Finally.  Risk-neutral pricing for options.

• To find the price of  a European 
option knowing its terminal probability 
distribution…

• Compute the natural mean of  its payoff  
as a function of  the mean of  the 
underlying asset

• Whenever the mean of  the underlying 
asset appears, replace it with the forward 
price of  the underlying asset in the 
option pricing formula

• Discount the result at the riskless rate
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𝑉𝐶 = 𝐵𝜇𝐶|𝜇←𝑉/𝐵 ≡ 𝐵𝜇𝐶
∗



The “self-financing” condition in discrete time?

• Let’s try the “self-financing” condition 
even though it seems not to apply

• 𝜕𝑉𝐶 = 𝛽 𝜕𝑉 − 𝜇𝐶 − 𝛽𝜇 𝜕𝐵

• This means the remaining terms in the 
full derivative must be 0

• 𝑉 𝜕𝛽 + 𝐵 𝜕 𝜇𝐶 − 𝛽𝜇 = 0

• Adding d to the mix, we can derive

•
𝜕𝑉𝐶

𝜕𝜇
= 𝑉

𝜕𝛽

𝜕𝜇
+ 𝐵

𝜕𝜇𝐶

𝜕𝜇
− 𝜇

𝜕𝛽

𝜕𝜇
− 𝛽 = 0

• For this to be zero, we need

• 𝑉𝐶 = 𝐵𝜇𝐶
∗

• 𝛽∗ =
𝜕𝑉𝐶

𝜕𝑉
=

𝜕𝜇𝐶

𝜕𝜇
|𝜇=𝜇∗

• The “self-financing” condition can therefore be 
used to derive risk-neutral pricing in this model

• Done by forcing 𝜕𝑉𝐶/𝜕𝜇 = 0

• No convexity constraint needed if  self-financing is 
imposed

• Self-financing immediately yields an additional beta-
delta equivalence property
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Conclusions Proved

• All of the following imply risk-neutral static option pricing

• The Market Model or CAPM re-optimized with a no-arbitrage convexity constraint

• The self-financing condition

• Must be reinterpreted for static models

• Setting the derivative of  the incorrect option pricing formula with respect to  equal to 

zero.
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Contributions of  this Paper

• Pedagogical

• Allows undergraduates to learn option derivations

• Shows the link between no-arbitrage and option 
pricing in a static setting.

• Establishes a path to “convergence” of  asset 
pricing and derivative pricing

• Reconciles equilibrium and arbitrage models in a 
broadly applicable way

• Illustrates the power of  the self-financing 
condition in the BSM model

• Fills a gap in the classical finance literature.
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• Option applications

• Eliminates need to specify stochastic processes 
for European options

• Broadens applicability of  option pricing 
formulae, e.g. illiquid options and underlying 
assets

• Portfolio Theory:  Future Research

• Brings co-determined options into portfolio 
analysis, leading to better hedge ratios

• Allows explicit incorporation of  corporate 
limited liability and bankruptcy options into 
portfolio analysis



Simplified Option Price Derivations
David C. Shimko, Journal of  Derivatives, Forthcoming Summer 2022

ACADEMIC ABSTRACT

Prior academic research reveals that mean-variance asset pricing (MVAP) models such as the single-period CAPM fail

to produce rational European option prices. We show two adaptations of MVAP models that may be used to value

derivatives with nonlinear payouts. The first removes static option arbitrage in investors’ optimized aggregate portfolio

selection. The second linearizes the pricing kernel using a static version of the self-financing condition applied in

dynamic option modeling. Both adaptations produce risk-neutral derivative prices in equilibrium for all finite-moment

probability distributions of underlying asset prices with compact support. The derivation does not require stochastic

calculus, frictionless continuous trading assumptions or the solution of differential equations. The resulting model is a

hybrid of equilibrium and arbitrage techniques that values assets and derivatives rationally.
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