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W-shaped Smiles and the Gaussian Mixture Model

Dan Pirjol (Stevens Institute of Technology)
(joint work with Paul Glasserman)

Peter Carr Memorial Conference, June 2-4, 2022
NYU Tandon School of Engineering
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Introduction
Gaussian Mixture Model

Outline

Motivation: Event-driven implied volatility shapes
Constraints on the implied volatility shapes through level crossings

▶ Upper bound from risk-neutral density crossings with a log-normal
▶ Lower bound from moment equalities

N−Gaussian mixture model
Summary and conclusions

P. Glasserman, D. Pirjol, W-shaped Implied Volatility Curves and the Gaussian
Mixture Model, 2021
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Introduction
Gaussian Mixture Model Implied volatility shapes

Options and implied volatility
Option prices are parameterized in terms of an implied volatility surface
Σ(K,T; t) → volatility which reproduces the market option price when substituted
into the Black-Scholes option formula

Cmkt = CBS(K,T; Σ(K,T))

Figure: AMZN volatility surface as of 2 Dec 2019.

Source: Bloomberg.com
Dan Pirjol W-shaped smiles and the GMM 3 / 36
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Gaussian Mixture Model Implied volatility shapes

ATM concave smiles
Typically the implied volatility curve is U-shaped and convex at the at-the-money
point. Under special circumstances it may become concave.

Figure: The implied volatility for AMZN options with maturity 27-Apr-2018 as of
26-Apr-2018.

1-day maturity options just before earnings announcement.
Source: OptionMetrics

Dan Pirjol W-shaped smiles and the GMM 4 / 36
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Introduction
Gaussian Mixture Model Implied volatility shapes

Examples from VolaDynamics

Concave smiles appear for many names.

Figure: AAPL and FB just before earnings release.

Source: VolaDynamics.com

Dan Pirjol W-shaped smiles and the GMM 5 / 36
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Introduction
Gaussian Mixture Model Implied volatility shapes

Prevalence of ATM concavity near earnings
announcements (Alexiou et al 2021)

Figure: ”... implied volatility curves [...] frequently become concave prior to
earnings announcement day, reflecting a bimodal risk-neutral distribution for the
underlying price. ”

Dan Pirjol W-shaped smiles and the GMM 6 / 36
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Introduction
Gaussian Mixture Model Implied volatility shapes

”What do index options teach us about COVID-19?”
(Jackwerth 2020)

Argues that S& P 500 risk-neutral density became bimodal on 16-Mar-2020.

Dan Pirjol W-shaped smiles and the GMM 7 / 36
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Introduction
Gaussian Mixture Model Implied volatility shapes

Why W-shaped smiles?

Anecdotally, W-shaped smile ⇒ bimodal risk-neutral density (RND)
We ask:

▶ What properties of the RND guarantee a U-shaped smile?

▶ Does a W-shaped smile imply bimodal RND?
▶ Does a bimodal RND imply a W-shaped smile?

▶ More generally: what can be said about the shape of the implied
volatility in the Gaussian mixture model?
This is the simplest model which produces RND with multiple modes.

Dan Pirjol W-shaped smiles and the GMM 8 / 36
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Why W-shaped smiles?

Anecdotally, W-shaped smile ⇒ bimodal risk-neutral density (RND)
We ask:

▶ What properties of the RND guarantee a U-shaped smile?
▶ Does a W-shaped smile imply bimodal RND?
▶ Does a bimodal RND imply a W-shaped smile?

▶ More generally: what can be said about the shape of the implied
volatility in the Gaussian mixture model?
This is the simplest model which produces RND with multiple modes.
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Gaussian Mixture Model Implied volatility shapes

The shape of the smile through its level crossings
We propose to study the shape of the smile through its level crossings.

Definition
Denote nvol(v) the number of times the implied volatility σ(K) crosses the level v.

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

K

n-vol(v)=0

n-vol(v)=2

n-vol(v)=4

σ(K)

We derive upper and lower bounds on nvol(v) in terms of the risk-neutral
distribution of the asset price S.

Dan Pirjol W-shaped smiles and the GMM 9 / 36
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Risk neutral distribution (RND) and the implied volatility

Fix maturity T

The underlying asset price S has a density fS(x)
Forward price F = E[S]
Log-normal random variable with volatility v and same mean F

Xv = FevN(0,1)− 1
2 v2

nvol(v) = number of times the implied vol for S crosses v
npdf(v) = number of times the density of S crosses the density of Xv

Proposition (Upper bound on nvol(v))
Assume that the risk-neutral density of S differs from that of Xv on an interval.
Then nvol(v) ≤ npdf(v)− 2

Dan Pirjol W-shaped smiles and the GMM 10 / 36
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Introduction
Gaussian Mixture Model Implied volatility shapes

Simple consequences

Call implied volatility function σBS(·) U-shaped if σ′
BS has a single sign

change (-,+) or (+,-)
Call σBS(·) W-shaped if it has 3 sign changes (-,+,-,+)

Corollary
If npdf(v) = 2, then the implied volatility does not cross the level v
If npdf(v) = 3, then the implied volatility crosses v at at most one strike.
If σBS(K) is U-shaped, then npdf(v) ≥ 4 for all v in some interval.
If σBS is W-shaped, and the limits of σBS(K) agree as K → 0 and K → ∞,
then npdf(v) ≥ 6 for all v in some interval.

Dan Pirjol W-shaped smiles and the GMM 11 / 36
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Gaussian Mixture Model Implied volatility shapes

Lower bound on implied volatility crossings

Proposition
Suppose S and Xv have m matching moments

E[Sαi ] = E[Xαi
v ] , i = 1, . . . ,m

1 < α1 < · · · < αm, and the densities of S and Xv differ on some interval. Then
the implied volatility σBS(K) under S crosses level v at least m times: nvol(v) ≥ m.

Could replace moments with any strictly convex, linearly independent
functions
Argument uses the Carr-Madan formula, and the Karlin-Studden (1965)
theory of Tchebycheff systems

Dan Pirjol W-shaped smiles and the GMM 12 / 36
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Gaussian Mixture Model Implied volatility shapes

Proof for m = 1
Assume that E[ϕ(S)] = E[ϕ(Xv)] for some convex payoff ϕ, e.g. ϕ(x) = x2.
The lower bound implies that σBS(K) crosses v at least once.

Proof.
The function hv(K) := E[(S − K)+]− E[(Xv − K)+] has zeros at the points where
the smile crosses the level v.
By Carr-Madan decomposition

E[ϕ(S)] = ϕ(F) +
∫ F

0
ϕ′′(K)E[(K − S)+]dK +

∫ ∞

F
ϕ′′(K)E[(S − K)+]dK

and similar for E[ϕ(Xv)]. Taking differences gives

E[ϕ(S)]− E[ϕ(Xv)] =

∫ ∞

0
ϕ′′(K)hv(K)dK = 0

Since ϕ′′(K) > 0, this can vanish only if hv(K) has at least one zero.

Dan Pirjol W-shaped smiles and the GMM 13 / 36
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Gaussian Mixture Model Implied volatility shapes

WWW...W-shaped smile, unimodal distribution

The log-normal distribution is not determined by its moments
Heyde (1963) constructed a family of densities that have all the same
integer moments as a log-normal distribution
Assuming that S has a Heyde-type RND with same moments as Xv, the
lower bound implies nvol(v) = ∞
Density can be chosen to be unimodal.
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1.20

1.25

1.30

1.35

1.40

1.45

1.50

x

fH

ϵ=0.005
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Summary of results so far

The number of crossings of the smile with the level v is bounded from above
by the number of density crossings of the RND of S with a lognormal Xv

W-smiles require a risk-neutral density which crosses a log-normal at least 6
times.
The number of crossings of the smile with the level v is bounded from below
by the number of independent convex payoffs (e.g. moments) which are
priced identically by S and Xv

The modality of the RND is not a good predictor of smile shape. In
particular, a unimodal RND can produce a smile crossing a level infinitely
many times.

Some control over the number of the density crossings of S and Xv is possible in
parametric models for the RND ⇒ Gaussian mixture model

Dan Pirjol W-shaped smiles and the GMM 15 / 36



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction
Gaussian Mixture Model

Smiles ordering in the GMM
Classification of smile shapes

Gaussian Mixture Model (GMM)

General properties of the smile in the N-components GMM

▶ Upper bound on nvol depends only on N
▶ Lower bound on nvol gives predictions for the range of the implied vol

Tail asymptotics of the GMM

▶ The extreme strike asymptotics of the implied vol depends only on vmax
▶ The approach to the asymptotic limit depends on the location of the

mixture component with maximal vol

Dependence on mixture parameters
Application: Classification of smile shapes in the N = 3 GMM

Dan Pirjol W-shaped smiles and the GMM 16 / 36
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Smiles ordering in the GMM
Classification of smile shapes

Gaussian Mixture Model

log S is distributed as a mixture of N Gaussians

log S ∼ N(logµi −
1
2v2

i , v2
i ) i = 1, . . . ,N

with weights w1,w2, . . . ,wN

Forward price constraint
∑N

i=1 wiµi = F
Option prices are convex combinations of Black-Scholes prices

E[(S − K)+] =
N∑

i=1
wiCBS(K;µi, vi)

Popular in financial practice, both as a static model for vol surfaces, and as the
basis for a local vol model - Brigo, Mercurio (2002)
What shapes can the implied volatility take? How are they related to the mixture
parameters?

Dan Pirjol W-shaped smiles and the GMM 17 / 36
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Smiles ordering in the GMM
Classification of smile shapes

Gaussian Mixture Model

Proposition
In the N-component Gaussian mixture model with distinct volatilities vi ̸= vj for
i ̸= j, nvol(v) ≤ 2N − 2, for all v > 0.

The proof combines the model-independent upper bound nvol(v) ≤ npdf − 2 with
results of Hummel, Gidas (1984) and Kalai, Moitra, Valiant (2010) on zeros of
linear combinations of Gaussians.

Corollary
A 2-component Gaussian mixture cannot produce a W-shaped smile. (The
implied volatility crosses any level at most twice.)

In order to produce a W-shaped smile, the risk-neutral distribution must allow at
least three components: up/middle/high

Dan Pirjol W-shaped smiles and the GMM 18 / 36
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Smiles ordering in the GMM
Classification of smile shapes

What about N = 3 components?
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Figure: Implied volatility (left) and S density (right) in the N = 3 Gaussian
mixture model for location parameters µi = (0.8, 1.0, 1.2) and volatilities
vi = (0.1, 0.5, 0.1). The 5 curves shown are obtained by varying the weight of the
middle component w2 = 0.1 (green), w2 = 0.2 (blue), w2 = 0.5 (black), w2 = 0.8
(red) and w2 = 0.9 (orange).
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Smiles ordering in the GMM
Classification of smile shapes

Unimodal density with W-shaped volatility
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Figure: Unimodal S distribution producing a W-shaped smile in the N = 3
Gaussian mixture model. Model parameters:
µi = (0.8, 1.0, 1.2), vi = (0.1, 0.5, 0.1),wi = (0.05, 0.9, 0.05). The smile crosses
the line v = 0.475 four times (left). The pdfs of S and Xv cross 6 times (right).
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Smiles ordering in the GMM
Classification of smile shapes

Tail asymptotics for the Gaussian mixture model

Proposition
In the N-Gaussian mixture model, the implied volatility has the small/large strike
asymptotics

lim
K→0

σBS(K) = lim
K→0

σBS(K) = vmax := max
i

vi

Largest volatility component dominates in the tails...
... regardless of weight on that component

Dan Pirjol W-shaped smiles and the GMM 21 / 36
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Approach to the asymptotic limit

Proposition (K → ∞ asymptotics)
Overshoot: If there is a vmax component with location parameter greater than F,
then σBS(K) approaches vmax from above as K → ∞
No overshoot: If all vmax components have location parameters smaller than F,
then σBS(K) approaches vmax from below as K → ∞.
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Approach to the asymptotic limit

Proposition (K → 0 asymptotics)
Overshoot: If there is a vmax component with location parameter smaller than F,
then σBS(K) approaches vmax from above as K → 0
No overshoot: If all vmax components have location parameters greater than F,
then σBS(K) approaches vmax from below as K → 0.
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Approach to the asymptotic limit: No limiting overshoot

Proposition
If the only vmax component is located at F, then σBS(K) approaches vmax from
below as K → 0 and K → ∞.

Proof.
The proof of all asymptotic results follows from:

The option price representation in the GMM as convex combinations of BS
prices
the extreme strikes asymptotics of the Black-Scholes formula from
Gulisashvili (2010) and Gao and Lee (2014)
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Wings asymptotics

It may seem that the GMM cannot capture the steep left wing of the smile
required by the asymptotics σ2

BS(K) ≃ cL| logK/F|.
In fact this is possible by taking µmin → 0.
Follows from the lower bound on nvol(v).

Corollary
The implied vol crosses vc(κ) at least once, where vc(κ) is the solution of
E[S−κ] = E[X−κ

v ].

lim
κ→0

v2
c(κ) =

N∑
i=1

wiv2
i + 2

N∑
i=1

wi log
F
µi

This grows to ∞ as µi → 0.
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Wings asymptotics - Example

N = 3 Gaussian mixture with means µ1 < 1 < µ2 (forward F = 1).
Non-central components have equal volatilities (v0, v, v0) with v0 < v -
ensures no-overshoot as K → 0 and K → ∞.
Fix µ2 = 1, µ3 = 1.2 and vi = (0.2, 0.4, 0.2) and take µ1 → 0.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

μ2=1.2,v=0.4,v0=0.2,p=0.5

Figure: N = 3 GMM with µ1 = 0.1 (blue), 0.01 (black) and 0.001 (red).
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Smiles ordering vs mixture parameters ordering

The N-component GMM has parameters

(mean, vol): (µ1, v1), · · · , (µN, vn)

with weights
w1, · · · ,wn

Two particular mixtures:
Volatility mixture: µ1 = · · · = µN = F, different vi

Appears naturally when considering uncorrelated stochastic volatility models

dSt = St
√

VtdWt + rStdt ⇒ ST = F(T)evTN(0,1)− 1
2 v2

T , v2
T =

∫ T

0
V2

t dt

Location mixture: v1 = · · · = vN, different µi
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Stochastic comparisons

For any two random variables X,Y
X ≤st Y means E[f(X)] ≤ E[f(Y)] for all increasing f
X ≤icx Y means E[f(X)] ≤ E[f(Y)] for all increasing convex f
X ≤cx Y means E[f(X)] ≤ E[f(Y)] for all convex f
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Comparing Location Mixtures

A location mixture has components with a common volatility v1 = · · · = vN,
and different locations µi

Represent a location mixture through a random variable
M = {µ1, µ2, · · · , µN} with probabilities w1, · · · ,wN.

Proposition
For any two location mixtures with associated random variables M1,M2,

M1 ≤icx M2 ⇒ σBS(K;M1) ≤ σBS(K;M2) , for all K ≥ 0

For any mixture M, the underlying asset is bounded in convex order as

XF,v ≤cx S ≤ w̄1Xµmin,v + w̄2Xµmax,v

with w̄1µmin + w̄nµmax = F.
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Comparing Location Mixtures - Example

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.200

0.202

0.204

0.206

0.208

0.210

K

μ=(0.95,1.0,1.05),v=(0.2,0.2,0.2)

Figure: Implied volatility curves in the N = 3 Gaussian mixture model with
uniform volatility vi = v = 0.2 are above the level v and bounded from above by
the N = 2 mixture with extreme location parameters {µ1, µ3} (dashed curve).
Location parameters µi : (0.95, 1, 1.05). From bottom to top:
w1 = w3 = 0.1 − 0.4, with w2 = 1 − 2w1.
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Symmetric mixtures

Suppose we have N = 2n components with parameters of the form

(Fµ1, v1), (F/µ1, v1), · · · , (Fµn, vn), (F/µn, vn)

Weights
p1w1, p1(1 − w1), · · · , pnwn, pn(1 − wn)

Within each pair, wiµi + (1 − wi)
1
µi

= 1

Proposition
In the symmetric Gaussian mixture model, the implied volatility is symmetric in
log-strike, i.e. the implied volatilities at K and F2/K coincide, for all K > 0.
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Symmetric mixture: N = 3

Symmetric mixture, with components (F/µ, v0), (F, v), (Fµ, v0) with v > v0

Weights {p 1
µ+1 , 1 − p, p µ

µ+1}

The combined constraints nvol ≤ 4, symmetry in log-strike and extreme
strikes asymptotics allow only four distinct smile shapes
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WM-shaped

They are mapped explicitly to the model parameters (µ, v0, v, p).
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Empirical example: AMZN smile
Can we reproduce the observed AMZN smile on 26-Apr-2018 with a N = 3
Gaussian mixture model?

Start with a symmetric mixture with four parameters µ, v, v0, p
Minimize a target function = weighted sum of squared pricing errors

1000 1500 2000 2500
0.5

1.0

1.5

2.0

2.5

K

σ

AMZN 26-Apr-18

1200 1300 1400 1500 1600 1700 1800
0.000

0.001

0.002

0.003

0.004

S

Figure: Fit parameters: µ = 1.06, v = 0.192, v0 = 0.043, p = 0.982

Reasonable fit in the central region. Increase v1 for steeper left wing.
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Empirical example: AMZN smile
Best fit to N = 3 GMM matching the left wing of the smile.
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fit2

wi : 0.003, 0.440, 0.557
µi/F : 0.944, 0.946, 1.043

vi : 0.25, 0.033, 0.039 .
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Concluding remarks

A bimodal density does not imply a W-shaped smile
A W-shaped smile does not imply a bimodal density
In fact, a unimodal density can produce an arbitrary number of volatility
level crossings
A two-component Gaussian mixture cannot produce a W-shaped smile...
... but a three-component mixture provides a lot of flexibility
Stochastic comparison results predict how implied volatility in the mixture
model changes with the mixture parameters
Combining constraints from level crossings and extreme strike asymptotics
restricts the number of allowed smile shapes in the GMM. E.g. for N = 3
there are only 4 distinct smile shapes.
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