The No-arbitrage Pricing of Non-traded Assets

Robert A. Jarrow

The Peter Carr Memorial Conference

June 2 - 4

Outline

- \bullet Introduction
- The Original Market
	- The set-up, terminology
	- \circ The fundamental theorems
	- Assumptions
- The Restricted Market
- The Result
- \bullet Examples

Introduction

- The pricing of non-traded assets is an important area within finance.
	- private loans,
	- illiquid publicly traded debt,
	- insurance contacts,
	- private equity,
	- real estate, and
	- real options.
- The purpose of the paper is to provide a no-arbitrage methodology for pricing non-traded assets in an otherwise frictionless market.
- Non-traded assets are a special case of pricing derivatives in an incomplete market.
- In an incomplete market, there is no unique price for a derivative.
- Two approaches to select a unique price.
	- Use a preference function: variance and risk minimizing hedging, indifference pricing.
	- Assume certain risks are non-priced.
		- · Merton 1976 jump risk
		- · Hull and White 1987 volatility risk
		- · Jarrow, Lando, and Yu 2005 default risk.
- This paper revisits, formalizes, and generalizes this later approach to general semimartingale price processes.
- This method
	- avoids the necessity of assuming a particular preference or objective function to determine a unique price, and
	- with the abundance of assets traded in current markets, sufficient securities exist to hedge most systematic risks.
- This implies that the remaining non-traded risks are non-priced or idiosyncratic, hence, the above methodology applies.

The Set-up

- Continuous time, continuous trading on a finite horizon $[0, T]$.
- $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ is a filtered complete probability space where
	- $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$ satisfies the usual hypothesis
	- \mathcal{F}_0 is the trivial σ algebra,
	- $\mathcal{F}_T = \mathcal{F}$, and
	- \circ $\mathbb P$ is the statistical probability measure.

The Original Market

- The market is assumed to be competitive and frictionless.
	- Competitive means that traders have no quantity impact on the market price.
	- Frictionless means that there are no transaction costs and no trading constraints.
- Traded in the economy are n risky assets and a money market account (mma) whose value is unity for all times.
- Risky asset prices.

$$
\circ S_t \coloneqq (S_1(t), \dots, S_n(t)) \text{ for } 0 \le t \le T.
$$

- A non-negative semimartingale adapted to F.
- No cash flows are paid to the risky assets.
- Let $\mathbb{F}^s \coloneqq (\mathcal{F}_t^s)$ $(t_t)_{0 \le t \le T}$ be the filtration generated by S.
- $\mathbb{F}^s \subset \mathbb{F}$ and $\mathbb{F}^s \neq \mathbb{F}$. Important to distinguish non-traded assets.
- Trading strategies are $(\alpha_0, \alpha \coloneqq (\alpha_1, \ldots, \alpha_n)) \in (\mathcal{O}, \mathcal{L}(S, \mathbb{F}))$
	- \circ $\mathscr O$ the $\mathbb F$ optional σ -algebra
	- $\in \mathscr{L}(S, \mathbb{F})$ the set of \mathbb{F} predictable processes for which the stochastic integral with respect to S exists.
- To exclude doubling strategies, only consider trading strategies that are admissible (the value of the trading strategy is bounded below).
- An admissible self financing trading strategy (s.f.t.s) with initial wealth x and wealth process X is an $(\alpha_0, \alpha := (\alpha_1, \ldots, \alpha_n)) \in (\mathscr{O}, \mathscr{L}(S, \mathbb{F}))$ such that

$$
X_t = \alpha_0(t) + \alpha_t \cdot S_t = x + \int_0^t \alpha_u \cdot dS_u \ge c, \forall t \in [0, T]
$$

c a constant and $x \cdot y$ denotes the inner product.

• We denote by $\mathcal{A}(x,\mathbb{F})$ the set of admissible s.f.t.s. $(\alpha_0,\alpha) \in (\mathcal{O},\mathcal{L}(S,\mathbb{F}))$ given an initial wealth x .

• A simple arbitrage opportunity is an admissible s.f.t.s. $(\alpha_0, \alpha) \in \mathcal{A}(x, \mathbb{F})$ with initial wealth $x = 0$ and wealth process X such that

$$
\mathbb{P}(X_T \ge 0) = 1, \text{ and}
$$

$$
\mathbb{P}(X_T > 0) > 0.
$$

- A Free Lunch with Vanishing Risk (FLVR) is an admissible s.f.t.s. that is an extension of a simple arbitrage opportunity that includes (the limits of) approximate simple arbitrage opportunities.
- An equivalent local martingale measure Q is any probability measure on (Ω, \mathcal{F}) such that for $A \in \mathcal{F}$, $\mathbb{Q}(A) = 0$ iff $\mathbb{P}(A) = 0$ and S is a Q local martingale with respect to F.
- Define $\mathcal{M}_l(\mathbb{F})$ to be the set of equivalent local martingale measures (ELMM) with respect to \mathbb{F} .
- The first fundamental theorem of asset pricing states that $\mathcal{M}_l(\mathbb{F}) \neq \emptyset$ if and only if the market satisfies NFLVR.

• An admissible s.f.t.s. with wealth process X is said to be dominating for asset i if there exists an admissible s.f.t.s $(\alpha_0, \alpha) \in \mathscr{A}(x, \mathbb{F})$ such that $x < S_i(0)$ and

$$
x + \int_0^T \alpha_u \cdot dS_u = S_i(T) \quad \text{a.s.}
$$

- The market is said to satisfy No Dominance (ND) if for all assets $i = 0, 1, ..., n$ there exist no such dominating s.f.t.s.
- Define $\mathcal{M}(\mathbb{F})$ to be the set of equivalent martingale measures (EMM) under which S is a $\mathbb Q$ martingale.
- The third fundamental theorem states that $\mathcal{M}(\mathbb{F}) \neq \emptyset$ if and only if the market satisfies NFLVR and ND.

• A market is defined to be complete with respect to some $\mathbb{Q} \in \mathcal{M}_l(\mathbb{F})$ if for any non-negative payoff $C_T \in L^1_+(\Omega, \mathcal{F}_T, \mathbb{Q})$ at time T, there exists a $x \geq 0$ and $(\alpha_0, \alpha) \in \mathscr{A}(x, \mathbb{F})$ such that

$$
x + \int_0^T \alpha_u \cdot dS_u = C_T,
$$

wealth process

$$
C_t = \alpha_0(t) + \alpha_t \cdot S_t = x + \int_0^t \alpha_u \cdot dS_u
$$

is a $\mathbb Q$ martingale with respect to $\mathbb F$.

- The payoff $C_T \in L^1_+(\Omega, \mathcal{F}_T, \mathbb{Q})$ can be interpreted as the cash flow to a non-traded asset or a derivative. Note \mathcal{F}_T and not \mathcal{F}_T^s $\overset{\cdot s}{T}$.
- By the second fundamental theorem of asset pricing, given there exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$, the market is complete with respect to $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ if and only if the EMM is unique.
- In a complete market, $\mathbb{E}^{\mathbb{Q}}[\cdot]$ gives the unique present value operator to determine the arbitrage-free price:

$$
\mathbb{E}^{\mathbb{Q}}[C_T | \mathcal{F}_t]
$$

• ASSUMPTION 1: (NFLVR, ND, and Incomplete Original Market)

• There exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$, and

- the original market is incomplete with respect to Q.
- In an incomplete market satisfying NFLVR and ND, there exist payoffs $C \in$ $L^1_+(\Omega,\mathcal F_T,\mathbb Q)$ that cannot be replicated using the mma and the *n* risky assets.
- And, there are an infinite number of martingale measures $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$. Hence, there is no unique arbitrage-free price for any such payoff C.
- Define the original market as the collection $(S, \mathbb{F}, L^1_+(\Omega, \mathcal{F}_T, \mathbb{Q}))$ for a given $\mathbb{Q} \in \mathcal{M}(\mathbb{F}).$
- PROBLEM: To determine a unique price for C.

The Restricted Market

- Given $\mathcal{M}(\mathbb{F}) \neq \emptyset$. Fix a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ and define $\mathbb{Q}^s \coloneqq \mathbb{Q} \mid_{\mathcal{F}^s_T}$ on $(\Omega, \mathcal{F}^s_T)$ T^s .
- For the given $\mathbb{Q} \in \mathcal{M}(\mathbb{F}),$ the restricted market is defined as the collection

 $\left(S, \mathbb{F}^s, L_+^1(\Omega, \mathcal{F}_T^s\right)$ $\overline{T}^s,\overline{\mathbb{Q}}^s)\big)$.

• LEMMA: (The Restricted Market also satisfies NFLVR and ND) \circ S is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s , i.e. $\mathbb{Q}^s \in \mathcal{M}(\mathbb{F}^s)$.

• ASSUMPTION 2: (Complete Restricted Market)

◦ Fix a Q ∈ M(F).

• The restricted market is complete with respect to $\mathbb{Q}^s = \mathbb{Q} |_{\mathcal{F}^s_T}$.

- This assumption implies that \mathbb{Q}^s is unique on $(\Omega, \mathcal{F}^s_T)$ T^s .
- By the definition of market completeness, for any $\tilde{C}_T \in L^1_+(\Omega, \mathcal{F}_T^s)$ T^s , \mathbb{Q}^s) at time T, there exists a $x \geq 0$ and $(\alpha_0, \alpha) \in \mathscr{A}(x, \mathbb{F}^s)$ such that

$$
x + \int_0^T \alpha_u \cdot dS_u = \tilde{C}_T,
$$

wealth process

$$
\tilde{C}_t = \alpha_0(t) + \alpha_t \cdot S_t = x + \int_0^t \alpha_u \cdot dS_u
$$

is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s ,

$$
x = \mathbb{E}^{\mathbb{Q}^s}[\tilde{C}_T] = \mathbb{E}^{\mathbb{Q}}[\tilde{C}_T]
$$

The Result

- Choose an arbitrary $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$.
	- Show later that the price of the non-traded asset is independent of the EMM selected.
- Fix a non-traded asset's payoff $C_T \in L^1_+(\Omega, \mathcal{F}_T, \mathbb{Q}) \cap L^1_+(\Omega, \mathcal{F}_T, \mathbb{P})$.
- Consider the related payoff $\tilde{C}_T \coloneqq \mathbb{E}^{\mathbb{P}}[C_T | \mathcal{F}^s_T]$, the "traded part" of C.
- This payoff is in the restricted market because it is \mathcal{F}^s_T measurable.
- By completeness, there exists a $x \geq 0$ and $(\alpha_0, \alpha) \in \mathscr{A}(x, \mathbb{F}^s)$ such that

$$
x + \int_0^T \alpha_u \cdot dS_u = \tilde{C}_T,
$$

\n
$$
x = \mathbb{E}^{\mathbb{Q}^s}[\tilde{C}_T],
$$

\n
$$
\tilde{C}_t = \alpha_0(t) + \alpha_t \cdot S_t = \mathbb{E}^{\mathbb{Q}^s}[\tilde{C}_T] + \int_0^t \alpha_u \cdot dS_u
$$

is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s .

• The unique risk neutral value is $\mathbb{E}^{\mathbb{Q}^s}[\tilde{C}_T]$, which can be replicated using the mma and traded risky assets.

- Use this s.f.t.s. $(\alpha_0, \alpha) \in \mathscr{A}(x, \mathbb{F}^s)$ in the original market to construct a partial hedge for the non-traded asset's payoff.
- The hedging error ε_T is

$$
\varepsilon_T = C_T - \tilde{C}_T.
$$

 ε_T is the "non-traded" part of the payoff C_T .

• LEMMA: (Expected Hedging Error with respect to \mathbb{F}^s)

 $\mathbb{E}^{\mathbb{P}}(\varepsilon_T|\mathcal{F}_t^s)=0$, which implies $\mathbb{E}^{\mathbb{P}}(\varepsilon_T)=0$.

• Using the given $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$, the arbitrage-free value under \mathbb{Q} of the nontraded risky asset's payoff is:

$$
\mathbb{E}^{\mathbb{Q}}\left(C_{T}\right)=\mathbb{E}^{\mathbb{Q}^{s}}(\tilde{C}_{T})+\mathbb{E}^{\mathbb{Q}}\left(\varepsilon_{T}\right)
$$

• To determine $\mathbb{E}^{\mathbb{Q}}(\varepsilon_T)$?

• ASSUMPTION 3: (Non-priced Hedging Error Risk)

• For all $\mathbb{Q} \in \mathcal{M}(\mathbb{F}), \qquad \mathbb{E}^{\mathbb{Q}}(\varepsilon_T) = \mathbb{E}^{\mathbb{P}}(\varepsilon_T).$

- Valid if hedging error is diversifiable risk (in a large portfolio).
- By the lemma, this implies $\mathbb{E}^{\mathbb{Q}}(\varepsilon_T) = 0$.
- THEOREM: (Arbitrage-Free Price of the Non-traded Asset) $\mathbb{E}^{\mathbb{Q}}(C_T) = \mathbb{E}^{\mathbb{Q}^s}(\mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T)).$
	- First take expectation using $\mathbb P$ over randomness not in $\mathbb F^s$.
	- Then take expectation over \mathbb{F}^s with unique \mathbb{Q}^s .

Summary

1) Partial hedge with $\tilde{C}_T = E^{\mathbb{P}}(C_T | \mathcal{F}_T^s)$. Unique price $E^{\mathbb{Q}^s}(\tilde{C}_T)$. 2) Difference $\varepsilon_T = C_T - \tilde{C}_T$ is idiosyncratic risk, i.e. $E^{\mathbb{Q}}(\varepsilon_T) = 0$. 3) Result: $E^{\mathbb{Q}}(C_T) = E^{\mathbb{Q}^s}(\tilde{C}_T)$.

- A special case, when the randomness underlying the non-traded asset's cash flows is independent of market prices S under \mathbb{P} .
- COROLLARY: (S Independent of C_T under \mathbb{P})

$$
\mathbb{E}^{\mathbb{Q}}\left(C_{T}\right)=\mathbb{E}^{\mathbb{P}}\left(C_{T}\right).
$$

- The arbitrage-free price of the non-traded asset is equal to the expected cash flow under the statistical probability \mathbb{P} .
- This special case is useful in the determination of arbitrage-free insurance premiums.
- To understand how to use, some examples

Private Debt

- mma's value is unity.
- Let a privately owned company issue a zero-coupon bond promising to pay 1 dollar at time T.
- Trading is equity for a similar company

$$
S_t = S_0 e^{\mu t - \frac{1}{2}\sigma^2 + \sigma W_t}
$$

• W_t is a BM with $W_0 = 0$ under \mathbb{P} .

• Default indicator

$$
Z_T(\omega) = \begin{cases} 1 & with \quad prob \quad \lambda(S_T) \in (0,1) \\ 0 & with \quad prob \quad 1 - \lambda(S_T) \end{cases}
$$

where $\lambda(\cdot) : \mathbb{R} \to [0, \infty)$ is Borel measurable.

• $\lambda(S_T)$ is the probability of default at time T

• The zero-coupon bond has time T payoff

$$
C_T(\omega) = \begin{cases} \delta & \text{if } Z_T(\omega) = 1 \\ 1 & \text{if } Z_T(\omega) = 0 \end{cases}
$$

where $\delta \in (0,1)$ is the recovery rate.

- **F** is the filtration generated by W_t for all $t \in [0, T)$ and (W_T, Z_T) at time T.
- Assume the original market (the similar company's stock and the mma) satisfies NFLVR and ND using \mathbb{F} , so that there exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ under which S is a $\mathbb Q$ martingale wrt $\mathbb F$.
- Fix $a \mathbb{Q} \in \mathcal{M}(\mathbb{F})$.
- The restricted market is complete, hence there exists a unique $\mathbb{Q}^s \in \mathcal{M}(\mathbb{F}^s)$ where $\mathbb{Q}^s = \mathbb{Q} |_{\mathcal{F}_T^s}$ such that S_t is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s , and

$$
S_t = S_0 e^{-\frac{1}{2}\sigma^2 + \sigma \tilde{W}_t}
$$

where $\tilde{W}_t = \frac{\mu}{\sigma} + W_t$ is a BM under \mathbb{Q}^s .

- Assumptions 1 2 are satisfied by construction.
- Assuming assumption 3 holds, i.e. $\varepsilon_T = C_T \mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T)$ is idiosyncratic risk, then

$$
\mathbb{E}^{\mathbb{Q}}(C_T) = \mathbb{E}^{\mathbb{Q}^s} \left(\mathbb{E}^{\mathbb{P}} \left(C_T | \mathcal{F}^s_T \right) \right) = \mathbb{E}^{\mathbb{Q}^s} \left(\delta \cdot \lambda(S_T) + (1 - \lambda(S_T)) \right).
$$

• This is a simple case of the models contained in the credit risk literature for the pricing of credit derivatives. Applies to publicly traded debt that is very illiquid.

Insurance

- mma's value is unity.
- A term insurance contract on an event over the time period $[0, T]$.
- The contract is repriced and repurchased every T periods.
	- e.g. yearly term life insurance.
- The insurance premium of p dollars is paid at time 0 to insure the event over $[0, T].$
- If the event occurs over $[0, T]$, K dollars is paid at time T.
	- \circ The payoff K could be a random variable.
- \bullet It costs the insurance company c dollars to issue the insurance contract.
	- This cost is incurred at time 0.

Independent Event Risk (Life Insurance)

- The contract's payoff K is a constant.
- Death event

$$
Z_T(\omega) = \begin{cases} 1 & with \quad prob \quad \lambda \in (0,1) \\ 0 & with \quad prob \quad 1-\lambda \end{cases}
$$

 \circ λ is the actuarial probability of death in [0, T].

- Let S be the market prices of the traded risky assets, and $\mathbb F$ the filtration generated by S_t for all $t \in [0, T)$ and (S_T, Z_T) at time T.
- Assume that Z_T is independent of market prices S under \mathbb{P} .

◦ Reasonable assumption for the death of an individual.

• Cash flow to the insurance policy at time T :

$$
C_T(\omega) = \begin{cases} p - c - K & \text{if } Z_T(\omega) = 1 \\ p - c & \text{if } Z_T(\omega) = 0 \end{cases}
$$

• Assume the market consisting of S and the mma satisfies NFLVR and ND, so that there exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ under which S is a \mathbb{Q} - martingale with respect to F.

- The restricted market is complete, hence there exists a unique $\mathbb{Q}^s \in \mathcal{M}(\mathbb{F}^s)$ where $\mathbb{Q}^s = \mathbb{Q} |_{\mathcal{F}_T^s}$ such that S_t is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s .
- Assumptions 1 2 are satisfied by construction.
- Assuming $\varepsilon_T = C_T \mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T)$ is idiosyncratic risk, then

$$
\mathbb{E}^{\mathbb{Q}}(C_T) = \mathbb{E}^{\mathbb{P}}(C_T) = p - c - \lambda K.
$$

• The arbitrage-free insurance premium is that p such that $\mathbb{E}^{\mathbb{Q}}(C_T) = 0$, i.e.

$$
p = \lambda K + c.
$$

• This is the actuarial value.

Dependent Event Risk (Car Insurance)

- The car insurance payoff is $K(\omega)$ having a uniform distribution over $[0, k]$ with mean $\frac{k}{2}$ under \mathbb{P} .
- k is the value of the car at time 0.
- K is the damage to the car in the event of an auto accident.
- The market price of oil, a traded commodity, is

$$
S_t = S_0 e^{\mu t - \frac{1}{2}\sigma^2 + \sigma W_t}
$$

where S_0, μ, σ are strictly positive constants and W_t is a standard Brownian motion with $W_0 = 0$ under \mathbb{P} .

• Car accident event

$$
Z_T(\omega) = \begin{cases} 1 & with \quad prob \quad \lambda(S_T) \in (0,1) \\ 0 & with \quad prob \quad 1 - \lambda(S_T) \end{cases}
$$

• $\lambda(S_T)$ is the actuarial probability of car accident in [0, T]

- $\lambda(S_T)$ a decreasing function of oil prices.
- As oil prices decrease, cars are driven more frequently, and the probability of an accident increases.
- We assume that Z_T , K (the loss to the car in the event of an accident), and market prices S are independent under \mathbb{P} .
	- The car accident event and the damages resulting are independent of the price of oil, due to random events surrounding the accident while driving of a car.
- The cash flow to the insurance policy at time T is:

$$
C_T(\omega) = \begin{cases} p - c - K(\omega) & \text{if } Z_T(\omega) = 1 \\ p - c & \text{if } Z_T(\omega) = 0 \end{cases}
$$

- **F** is the filtration generated by W_t for all $t \in [0, T)$ and (W_T, K, Z_T) at time T .
- We assume the original market satisfies NFLVR and ND, so that there exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ under which S is a \mathbb{Q} - martingale with respect to \mathbb{F} .
- The restricted market is complete, hence there exists a unique $\mathbb{Q}^s \in \mathcal{M}(\mathbb{F}^s)$ where $\mathbb{Q}^s = \mathbb{Q} |_{\mathcal{F}_T^s}$ such that S_t is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s , and

$$
S_t = S_0 e^{-\frac{1}{2}\sigma^2 + \sigma \tilde{W}_t}
$$

where $\tilde{W}_t = \frac{\mu}{\sigma} + W_t$ is a Brownian motion under \mathbb{Q}^s .

- Assumptions 1 2 are satisfied by construction.
- Assuming $\varepsilon_T = C_T \mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T)$ is idiosyncratic risk, then

$$
\mathbb{E}^{\mathbb{Q}}(C_T) = \mathbb{E}^{\mathbb{Q}^s} (\mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T))
$$

$$
= p - c - \frac{k}{2} \mathbb{E}^{\mathbb{P}}(\lambda(S_T)).
$$

• The arbitrage-free insurance premium is that p such that $\mathbb{E}^{\mathbb{Q}}(C_T) = 0$, i.e.

$$
p = \frac{k}{2} \mathbb{E}^{\mathbb{Q}^s} \left(\lambda(S_T) \right) + c.
$$

• This is NOT the actuarial value of the insurance contract's payoff $(\frac{k}{2})$ $(\frac{k}{2}\lambda)$ plus $costs(c).$

Private Equity

- mma's value is unity.
- Let a privately owned company have outstanding equity.
- Trading is equity for a similar company

$$
S_t = S_0 e^{\mu t - \frac{1}{2}\sigma^2 + \sigma W_t}
$$

where W is a BM with $W_0 = 0$ under \mathbb{P} .

- Let $Z_T(\omega)$ be a \mathcal{F}_T measurable, normally distributed $(0, 1)$ random variable under P.
- The cash flow to the private equity at time T is

$$
C_T = S_T e^{\alpha(S_T) - \frac{1}{2}\beta(S_T)^2 + \beta(S_T)Z_T}
$$

where $\alpha(\cdot) : \mathbb{R} \to [0, \infty)$ and $\beta(\cdot) : \mathbb{R} \to [0, \infty)$ are Borel measurable.

• **F** is the filtration generated by W_t for all $t \in [0, T)$ and (W_T, Z_T) at time T.

- We assume the original market satisfies NFLVR and ND, so that there exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ under which S is a \mathbb{Q} - martingale with respect to \mathbb{F} .
- Fix $a \mathbb{Q} \in \mathcal{M}(\mathbb{F})$.
- The restricted market is complete, hence there exists a unique $\mathbb{Q}^s \in \mathcal{M}(\mathbb{F}^s)$ where $\mathbb{Q}^s = \mathbb{Q} |_{\mathcal{F}_T^s}$ such that S_t is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s , and

$$
S_t = S_0 e^{-\frac{1}{2}\sigma^2 + \sigma \tilde{W}_t}
$$

where $\tilde{W}_t = \frac{\mu}{\sigma} + W_t$ is a BM under \mathbb{Q}^s .

- Assumptions 1 2 are satisfied by construction.
- Assuming assumption 3 holds, i.e. $\varepsilon_T = C_T \mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T)$ is idiosyncratic risk,

$$
\mathbb{E}^{\mathbb{Q}}(C_T) = \mathbb{E}^{\mathbb{Q}^s}(\mathbb{E}^{\mathbb{P}}(C_T|\mathcal{F}_T^s)) = \mathbb{E}^{\mathbb{Q}^s}(S_T e^{\alpha(S_T)}).
$$

Real Estate

- mma's value is unity.
- Trading is a REIT (real estate investment trust) or a real estate based ETF (electronic traded fund)

$$
S_t = S_0 e^{\mu t - \frac{1}{2}\sigma^2 + \sigma W_t} \tag{1}
$$

where S_0, μ, σ are strictly positive constants and W_t is a standard Brownian motion with $W_0 = 0$ under \mathbb{P} .

- Let $Z_T(\omega)$ be a \mathcal{F}_T measurable, normally distributed $(0, 1)$ random variable under P.
- The cash flow to selling the house at time T is

$$
C_T = S_T e^{\alpha(S_T) - \frac{1}{2}\eta^2 + \eta Z_T}
$$

where η is a strictly positive constant and $\alpha(\cdot) : \mathbb{R} \to [0, \infty)$ is Borel measurable.

- **F** is the filtration generated by W_t for all $t \in [0, T)$ and (W_T, Z_T) at time T.
- We assume the original market satisfies NFLVR and ND, so that there exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ under which S is a \mathbb{Q} - martingale with respect to \mathbb{F} .

• The restricted market is complete, hence there exists a unique $\mathbb{Q}^s \in \mathcal{M}(\mathbb{F}^s)$ where $\mathbb{Q}^s = \mathbb{Q} |_{\mathcal{F}_T^s}$ such that S_t is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s , and

$$
S_t = S_0 e^{-\frac{1}{2}\sigma^2 + \sigma \tilde{W}_t}
$$

where $\tilde{W}_t = \frac{\mu}{\sigma} + W_t$ is a Brownian motion under \mathbb{Q}^s .

- Assumptions 1 2 are satisfied by construction.
- Assuming $\varepsilon_T = C_T \mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T)$ is idiosyncratic risk, then

 $\mathbb{E}^{\mathbb{Q}}(C_T) = \mathbb{E}^{\mathbb{Q}^s}(\mathbb{E}^{\mathbb{P}}(C_T|\mathcal{F}^s_T))$ $= \mathbb{E}^{\mathbb{Q}^s} \left(S_T e^{\alpha(S_T)} \right).$

Real Options

- mma's value is unity.
- Consider an oil company that is deciding whether or not to extract oil from a well at time T.
- The market price of oil, a traded commodity, is

$$
S_t = S_0 e^{\mu t - \frac{1}{2}\sigma^2 + \sigma W_t}
$$

where W_t is a BM with $W_0 = 0$ under \mathbb{P} .

• Due to the oil extraction methods, after taking into account impurities which affect the price of oil received before refinement, the cash flow from the extracted oil at time T is

$$
S_T e^{-\frac{1}{2}\eta^2 + \eta Z_T}
$$

where $Z_T(\omega)$ is a \mathcal{F}_T measurable, normal $(0, 1)$ under $\mathbb P$ and $\eta > 0$.

- **F** is the filtration generated by W_t for all $t \in [0, T)$ and (W_T, Z_T) at time T.
- The (real) option to extract oil at time T has payoff

$$
C_T = max \left[S_T e^{-\frac{1}{2}\eta^2 + \eta Z_T} - K, 0 \right]
$$

where $K > 0$ is the cost of the extraction.

- We assume the original market satisfies NFLVR and ND, so that there exists a $\mathbb{Q} \in \mathcal{M}(\mathbb{F})$ under which S is a \mathbb{Q} - martingale with respect to \mathbb{F} .
- Fix $a \mathbb{Q} \in \mathcal{M}(\mathbb{F})$.
- The restricted market is complete, hence there exists a unique $\mathbb{Q}^s \in \mathcal{M}(\mathbb{F}^s)$ where $\mathbb{Q}^s = \mathbb{Q} |_{\mathcal{F}_T^s}$ such that S_t is a \mathbb{Q}^s martingale with respect to \mathbb{F}^s , and

$$
S_t = S_0 e^{-\frac{1}{2}\sigma^2 + \sigma \tilde{W}_t}
$$

where $\tilde{W}_t = \frac{\mu}{\sigma} + W_t$ is a Brownian motion under \mathbb{Q}^s .

- Assumptions 1 2 are satisfied by construction.
- Assuming assumption 3 holds, i.e. $\varepsilon_T = C_T \mathbb{E}^{\mathbb{P}}(C_T | \mathcal{F}^s_T)$ is idiosyncratic risk, then

$$
\mathbb{E}^{\mathbb{Q}}(C_T) = \mathbb{E}^{\mathbb{Q}^s}(\mathbb{E}^{\mathbb{P}}(C_T|\mathcal{F}^s_T)) = \mathbb{E}^{\mathbb{Q}^s}(S_T N(d_1) - K N(d_2))
$$

where $N(\cdot)$ is the standard $(0, 1)$ normal distribution function,

$$
d_1 \coloneqq \frac{\log(S_T/K) + \frac{1}{2}\eta^2}{\eta}, \quad \text{and} \quad d_2 \coloneqq d_1 - \eta.
$$

Conclusion

- This is an important application of the arbitrage-free pricing methodology because it applies to a wide range of assets in the economy, including private debt, illiquid publicly traded debt, insurance contracts, private equity, real estate, and real options.
- The methodology can be applied without assuming a particular preference or objective function.
- Its application only requires that the hedging error, properly defined, is nonpriced.
- This non-priced hedging error condition is a very reasonable approximation in current markets given the plethora of traded securities.