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OUTLINE Peter loved everything Black-Scholes....

1) A simple derivation of Black-Scholes
2) Arbitraging Black-Scholes

3) High strikes implied variance cannot rise
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A SIMPLER PROOF OF BLACK-SCHOLES-MERTON PDE

It provides another proof of the Black-Scholes-Merton result

Without hedging argument

Without arbitrage argument

Without change of measure

Without local time/Tanaka

e Simply Itdé’s lemma and basic accounting
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COST OF EXTENDING THE MATURITY

a5 _ udt + odW  Assume no carry European payoff f

- =
o to £(S):  df = f'(S)dS +-2S2f"(S)dt
Cost of extending the maturity of the f payoff:

o2S%
2

It is a payoff at time T that can be decomposed with the Carr-

f"(S7) (no Itd anymore now)

Madan formula
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2 MIRACLES

o254

—£(Sr)

For general payoff it leads to an integral over strikes

For the Call payoff there are 2 miracles, at least good surprises:
- Integral reduces to 1 point evaluation

- The Dirac function can be evaluated as limit of Call options
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FORWARD EQUATION FOR CALL OPTIONS

252 ' 2K2
For fGS)=E-K)" 162Tf (ST):UZ 6k (St)
2172 32
It has a value at time 0 of = ZK ZKZ (from Breeden-
Litzenberger)
2172 32
So dC _ 0%K? d%C

aT — 2 9K

Bloomberg



ANOTHER BEAUTY OF FORWARD EQUATIONS

More good surprises in the presence of carry:

- Interest rates (if constant or function of time) lead to a constant term ITM,
which can be expressed as a first derivative wrt K

- Dividend yields or foreign rate for a currency option (if constant or function
of time) lead to Calls themselves

- So the forward equation is a forward PDE, which allows for fast
computation

aC  0?K292%C : d)KaC .
or — 2 okz v oK

- When interest rates or dividend yields are a function of S it requires an
integral and we obtain a PIDE instead of a PDE
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BITRAGING BLACK-SCHOLES




COPPER VOLATILITY DYNAMICS

Skew close to flat everyday

Level changes from one day to the next

90) Asset ~ 91 Actions ~ 92) Views ~ 93) Settings ~ Volatility Surface
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FLAT CASE: CAN WE ARBITRAGE PARALLEL MOVES?

OTM options have more convexity in volatility

Symmetric Strangle has more Volga than an ATM Straddle

Strangle — Gamma ratio Straddle (W portfolio) has all derivatives of order 1 and 2

cancelled except the volga

I
Straddle Strangle Strangle — F_Zstraddle
1

ATII\/I
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REALLY?

Sign of the P&L of the W portfolio

ResidualVvariance

- Maximum (Minimum) principle applied to the heat equation in (Spot, Residual variance) shows there is no arbitrage with
options of just 1 maturity

- Always a red (negative) region in any neighborhoods of the start point
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VARIANCE PF

- Price of log in BS:

a?(T —t
LTS t,0) = E[InSy |S, = S, 0, = o] = In§ — Lo 1)

2

- Log Calendar Spread captures o?:

LY2(S,t,0) — LY (S, ¢, 0) o’
LCS(S,¢t, = —
(S, t,0) T, T, >
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VARIANCE SQUARE PF

- Price of a log square:

a’(T —t)
2

L>T(S,t,0) = E[In?S;|S; =S,0, =] = (InS — )24+ 0%(T —1t)

- Butterfly of log square at equidistant times (Ty, T,, T5) captures o*:

12713 (S, t,0) — 2 12Tz (S, t,0) + 12T (5,t,0) B 4

o)

BL(S,t,0) =
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WRAPPING UP

- Trading g%: =2 LCS(S, t,0)
- Trading o*: 4 BL*(S,t,0)

- Portfolio:

4BL*(S,t,0) + 405 LCS(S,t,0) + 0 = 0* — 2050% + 0 = (6% — 0§)?

- Captures all volatility moves at any time for any S
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PLIED VARIANCE
" CAN NEVER RISE




LONG TERM RATE CAN NEVER FALL

e Dybvig, Ingersoll and Ross (1996): In an arbitrage-free world without
transaction costs, Long Forward and Zero Rates can never fall!

e Long Zero-Coupon rate attime t

z;(t) = {TET%}Z(t' T) (if it exists)

e lllustrative Example: The Perpetual Bond

— Today'’s yield curve is flat at

exp(roT)

— Infinite stream of zero-coupon bonds with face value TT+D)
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PERPETUAL BOND

Bond Value

55

65

7
Discount rate (%)

75

85

95

Ranks
14000

12000

10000

8000

6000

4000

2000

Value today:

Vo(ro) = %72 1T(T+1)

Value tomorrow:

Vse(rse) = exp(rs:Ot) Z+°° exp((ro—7s0)T)

T(T+1)
Finite if rg; = 1y

Arbitrage-Free assumption:
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WHAT ABOUT LONG TERM VARIANCE SWAP?

e [f the instantaneous variance v; is a martingale.

S
For instance, S " Ve dW,

e Then the Variance Swap Term Structure at t:
1 T
VStZ’T = mEt [L Uudu] - Ut

e Independent of T — Flat! No constraint on its evolution.
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FAR OTM IMPLIED VARIANCE CAN NEVER RISE
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For fixed T, Implied Variance at t: IV, = ¢2(T — t)

Series of Call(K) / K*2
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Considering a Portfolio of L1

K? Ck,(00)
Calls(K)
Value today:

1
Vo (00) = 2}51 %2
Value tomorrow:

_ wv+oo 1 Cxr-se(ose)
VSt(USt) = ZKzl F—CKT(O'O)

Finite if Vs, < 1V,

— P[IV5, > IV,] = 0
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FX OPTIONS ARE QUOTED IN DELTA

12.0 3M Skew of EURUSD on Nov 15 2016
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FX OPTIONS ARE QUOTED IN DELTA

Implied Volatility (%)
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FLAT FAR OTM VOLATILITY

3M Skew of EURUSD on Nov 11 2016
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HIGH STRIKE VOLATILITY THROUGH TIME
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CONCLUSION

 Long Term rate can never fall.
 Long Term VS can fall or rise.

 Deep OTM implied variance can never rise.
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Thank You
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