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OUTLINE
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1) A simple derivation of Black-Scholes

2) Arbitraging Black-Scholes

3) High strikes implied variance cannot rise

Peter loved everything Black-Scholes….



A SIMPLER PROOF OF BLACK-SCHOLES-MERTON PDE

It provides another proof of the Black-Scholes-Merton result

- Without hedging argument

- Without arbitrage argument

- Without change of measure

- Without local time/Tanaka

●Simply Itô’s lemma and basic accounting
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COST OF EXTENDING THE MATURITY 
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𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊 Assume no carry   European payoff f

Itô to 𝑓 𝑆 : 𝑑𝑓 = 𝑓′ 𝑆 𝑑𝑆 +
1

2
𝜎2𝑆2𝑓′′ 𝑆 𝑑𝑡

Cost of extending the maturity of the 𝑓 payoff:

𝜎2𝑆𝑇
2

2
𝑓′′(𝑆𝑇)(no Itô anymore now)

It is a payoff at time T that can be decomposed with the Carr-

Madan formula



2 MIRACLES

𝜎2𝑆𝑇
2

2
𝑓′′(𝑆𝑇)

For general payoff it leads to an integral over strikes

For the Call payoff there are 2 miracles, at least good surprises:

- Integral reduces to 1 point evaluation

- The Dirac function can be evaluated as limit of Call options
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FORWARD EQUATION FOR CALL OPTIONS
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For 𝑓 𝑆 = 𝑆 − 𝐾 + ∶
𝜎2𝑆𝑇

2

2
𝑓′′ 𝑆𝑇 =

𝜎2𝐾2

2
𝛿𝐾 𝑆𝑇

It has a value at time 0 of  
𝜎2𝐾2

2

𝜕2𝐶

𝜕𝐾2 (from Breeden-

Litzenberger)

So     
𝜕𝐶

𝜕𝑇
=

𝜎2𝐾2

2

𝜕2𝐶

𝜕𝐾2



ANOTHER BEAUTY OF FORWARD EQUATIONS

More good surprises in the presence of carry:

- Interest rates (if constant or function of time) lead to a constant term ITM, 

which can be expressed as a first derivative wrt K

- Dividend yields or foreign rate for a currency option (if constant or function 

of time) lead to Calls themselves

- So the forward equation is a forward PDE, which allows for fast 

computation

- When interest rates or dividend yields are a function of S it requires an 

integral and we obtain a PIDE instead of a PDE

7

𝜕𝐶

𝜕𝑇
=
𝜎2𝐾2

2

𝜕2𝐶

𝜕𝐾2 − 𝑟 − 𝑑 𝐾
𝜕𝐶

𝜕𝐾
− 𝑑 ⋅ 𝐶



ARBITRAGING BLACK-SCHOLES
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COPPER VOLATILITY DYNAMICS

- Skew close to flat everyday

- Level changes from one day to the next



FLAT CASE: CAN WE ARBITRAGE PARALLEL MOVES?

- OTM options have more convexity in volatility

- Symmetric Strangle has more Volga than an ATM Straddle

- Strangle – Gamma ratio Straddle (W portfolio) has all derivatives of order 1 and 2 

cancelled except the volga

- Captures the volatility of volatility at no costStraddle Strangle
𝑺𝒕𝒓𝒂𝒏𝒈𝒍𝒆 −

𝚪𝟐
𝚪𝟏
𝑺𝒕𝒓𝒂𝒅𝒅𝒍𝒆

s 0 0 0

v x x 0

t x x 0

ss x x 0

sv 0 0 0

vv x x x

ATM



REALLY?

- Maximum (Minimum) principle applied to the heat equation in (Spot, Residual variance) shows there is no arbitrage with 

options of just 1 maturity

- Always a red (negative) region in any neighborhoods of the start point



VARIANCE PF

- Price of log in BS: 

𝐿1,𝑇 𝑆, 𝑡, 𝜎 = 𝐸 ln 𝑆𝑇 𝑆𝑡 = 𝑆, 𝜎𝑡 = 𝜎 = ln 𝑆 −
𝜎2(𝑇 − 𝑡)
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- Log Calendar Spread captures 𝜎2: 

𝐿𝐶𝑆 𝑆, 𝑡, 𝜎 =
𝐿1,𝑇2 𝑆, 𝑡, 𝜎 − 𝐿1,𝑇1(𝑆, 𝑡, 𝜎)

𝑇2 − 𝑇1
= −

𝜎2

2



VARIANCE SQUARE PF

- Price of a log square:

𝐿2,𝑇 𝑆, 𝑡, 𝜎 = 𝐸 ln2 𝑆𝑇 𝑆𝑡 = 𝑆, 𝜎𝑡 = 𝜎 = (ln 𝑆 −
𝜎2 𝑇 − 𝑡

2
)2 + 𝜎2 𝑇 − 𝑡

- Butterfly of log square at equidistant times (𝑇1, 𝑇2, 𝑇3) captures 𝜎4: 

𝐵𝐿2(𝑆, 𝑡, 𝜎) =
𝐿2,𝑇3(𝑆, 𝑡, 𝜎) − 2𝐿2,𝑇2(𝑆, 𝑡, 𝜎) + 𝐿2,𝑇1(𝑆, 𝑡, 𝜎)

𝑇3
2 − 2𝑇2

2 + 𝑇1
2 =

𝜎

4

4



WRAPPING UP

- Trading 𝜎2: −2 𝐿𝐶𝑆(𝑆, 𝑡, 𝜎)

- Trading  𝜎4:  4 𝐵𝐿2(𝑆, 𝑡, 𝜎)

- Portfolio: 

4𝐵𝐿2 𝑆, 𝑡, 𝜎 + 4𝜎0
2𝐿𝐶𝑆 𝑆, 𝑡, 𝜎 + 𝜎0

4 = 𝜎4 − 2𝜎0
2𝜎2 + 𝜎0

4 = (𝜎2 − 𝜎0
2)2

- Captures all volatility moves at any time for any S



DEEP OTM IMPLIED VARIANCE 
CAN NEVER RISE
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LONG TERM RATE CAN NEVER FALL
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● Dybvig, Ingersoll and Ross (1996): In an arbitrage-free world without 

transaction costs, Long Forward and Zero Rates can never fall! 

● Long Zero-Coupon rate at time 𝑡

𝑧𝐿(𝑡) = lim
𝑇→+∞

𝑧(𝑡, 𝑇) (if it exists)

● Illustrative Example: The Perpetual Bond

− Today’s yield curve is flat at 𝑟0

− Infinite stream of zero-coupon bonds with face value
exp 𝑟0𝑇

𝑇(𝑇+1)



PERPETUAL BOND
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● Value today:

V0 r0 = σ𝑇=1
+∞ 1

𝑇(𝑇+1)
= 1

● Value tomorrow:

V𝛿𝑡 𝑟𝛿𝑡 = exp(𝑟𝛿𝑡𝛿𝑡)σ𝑇=1
+∞ exp((𝑟0−𝑟𝛿𝑡)𝑇)

𝑇(𝑇+1)

+∞ if 𝑟𝛿𝑡 < 𝑟0

Finite if 𝑟𝛿𝑡 ≥ 𝑟0

● Arbitrage-Free assumption:

𝑃[𝑟𝛿𝑡 < 𝑟0] = 0



WHAT ABOUT LONG TERM VARIANCE SWAP?
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● If the instantaneous variance 𝑣𝑡 is a martingale. 
𝑑𝑆𝑡
𝑆𝑡

= 𝑣𝑡 𝑑𝑊𝑡

𝑑𝑣𝑡
𝑣𝑡

= 𝛼 𝑑𝑍𝑡

● Then the Variance Swap Term Structure at 𝑡:

𝑉𝑆𝑡,𝑇
2 =

1

𝑇 − 𝑡
𝐸𝑡 න

𝑡

𝑇

𝑣𝑢𝑑𝑢 = 𝑣𝑡

● Independent of T → Flat! No constraint on its evolution. 

For instance,



FAR OTM IMPLIED VARIANCE CAN NEVER RISE 
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● Considering a Portfolio of 
1

𝐾2

1

𝐶𝐾,𝑇(𝜎0)

Calls(K)

● Value today: 

V0 𝜎0 = σ𝐾=1
+∞ 1

𝐾2

● Value tomorrow:

V𝛿𝑡 𝜎𝛿𝑡 = σ𝐾=1
+∞ 1

𝐾2

CK,T−𝛿𝑡(𝜎𝛿𝑡)

𝐶𝐾,𝑇(𝜎0)

+∞ if IV𝛿𝑡 > 𝐼𝑉0

Finite if IV𝛿𝑡 ≤ 𝐼𝑉0

→ 𝑃 IV𝛿𝑡 > 𝐼𝑉0 = 0

For fixed T, Implied Variance at 𝑡: 𝐼𝑉𝑡 ≡ 𝜎𝑡
2 𝑇 − 𝑡



FX OPTIONS ARE QUOTED IN DELTA
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FX OPTIONS ARE QUOTED IN DELTA
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FLAT FAR OTM VOLATILITY
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3M Skew of EURUSD on Nov 11 2016



HIGH STRIKE VOLATILITY THROUGH TIME
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CONCLUSION
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• Long Term rate can never fall.

• Long Term VS can fall or rise.

• Deep OTM implied variance can never rise.



Thank You
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