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Introduction



Question

• Assume you own an asset with current price x . You think

about selling this asset.

• Knowing the (stochastic) asset price dynamics pXtq, what is

the best time to sell the asset?
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Solution Ideas

Two main approaches:

• Universal: Be as close to the maximal asset price as possible:

inf
0ďτďT

E
”MT ´ Xτ

MT

ı

, MT “ sup
0ďtďT

Xt

(Shiryaev, Xu & Zhou [QF ’08], du Toit & Peskir [AAP ’09])

• Subjective: Maximize the utility of the seller:

sup
τ

E
“

U
`

Xτ
˘‰

(Leung & Wang [AF ’18], Pedersen & Peskir [MFE ’16;

Mean–Variance], Henderson [MS ’12; Prospect theory], . . . )
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Distribution Builder



Utility Functions

• We are interested in incorporating personal preferences in the

optimal selling strategy

• Classical: The preferences are given by a utility functions (or,

simplified, by risk aversion coefficients)

• Goes Back to D. Bernoulli (1738), axiomatization by Von

Neumann–Morgenstern, long strain of financial mathematics

literature starting with Merton and Samuelson: portfolio

optimization, optimal selling, . . .
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Utility Functions

• Criticism:

• Rational utility functions do not take into account the actual

preferences of people (Kahnemann–Tversky, Quiggin,...):

Utility functions are not concave, rare extreme events are not

adequately considered, . . .

• Utility functions (or risk aversion) is very hard to measure for

practical purposes: How to estimate? Are estimates

consistent?
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Distribution Builder

Distribution Builder method developed by Sharpe, Goldstein e.a.

for portfolio optimization (Sharpe [Book ’06], Goldstein, Sharpe &

Blythe [TechRep ’07]; Goldstein, Johnson & Sharpe [JCR ’08]):

• Investors are notoriously bad in estimating their utility function

• Try instead to get more direct information from the agent

• Specifically, for terminal time portfolio optimization let the

agent directly choose the desired distribution of terminal

wealth that is reachable with given initial capital
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Distribution Builder

Figure 1: Philosophy of the Distribution Builder (Source: Sharpe) 8



Distribution Builder

Figure 2: An implementation of the Distribution Builder (Source: Sharpe)
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Method



Method

We adapt the distribution builder approach for optimal selling:

• The potential seller should specify its desired target

distribution F of the asset value at the time of the sale (a

stopping time)

• The distribution builder should provide feedback if the desired

distribution F indeed attainable, i.e., there exists a stopping

time τ a.s. finite that

Xτ „ F
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Method

• More generally, we ask if the distribution is super–attainable,

Xτ ą F

(where ą stands for first order stochastic dominance,

PrXτ ď zs ď F pzq for all z)

• Also: Is the distributional optimal? In which sense?

• Is the resulting stopping strategy easily practically

implementable?
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Skorokhod Embedding

• The first question is intimately tied to the Skorokhod

Embedding Problem

• Classical version: Given a Brownian motion W and a

distribution F , does there exist a stopping time τ such that

Wτ „ F

• Many solutions. . . For our purposes we need a generalized

form for diffusions (Azéma & Yor [SdP XIII ’79], Grandits &

Falkner [SPA ’00], Pedersen & Peskir [SPA ’01], Cox &

Hobson [SPA ’04])
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Example – GBM



Geometric Brownian motion

• Assume the asset price follows a geometric Brownian motion

dXt “ µXt dt ` σXt dWt , X0 “ x

• The investor discounts using the rate r . This rate is in

general subjective indicating the investor’s time preference. It

can be a market interest rate, but doesn’t have to (we have

no hedging in the model. . . )

• The discounted asset price follows

dXt “ pµ´ rqXt dt ` σXt dWt , X0 “ x
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Geometric Brownian motion

Theorem

i) If µ´ r ě σ2{2 then any distribution F is super-attainable.

ii) If µ´ r ă σ2{2, a distribution F is super-attainable if and

only if

ż

´z

x

¯A
F pdzq ď 1, A “ 1´

2pµ´ rq

σ2
.

In this case, moreover,

a) If 0 ă µ´ r ă σ2{2 there exist super-attainable distributions F

with m “
ş

z F pdzq ą x .

b) If µ ď r , then m ď x always.
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Geometric Brownian motion

Theorem

i) If µ´ r ě σ2{2 then any distribution F is super-attainable.

ii) If µ´ r ă σ2{2, a distribution F is super-attainable if and

only if

ż

´z

x

¯A
F pdzq ď 1, A “ 1´

2pµ´ rq

σ2
.

In this case, moreover,

a) If 0 ă µ´ r ă σ2{2 there exist super-attainable distributions F

with m “
ş

z F pdzq ą x .

b) If µ ď r , then m ď x always. SELL IMMEDIATELY!
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Geometric Brownian motion

Theorem

i) If µ´ r ě σ2{2 then any distribution F is super-attainable.

DO NOT SELL!

ii) If µ´ r ă σ2{2, a distribution F is super-attainable if and

only if

ż

´z

x

¯A
F pdzq ď 1, A “ 1´

2pµ´ rq

σ2
.

In this case, moreover,

a) If 0 ă µ´ r ă σ2{2 there exist super-attainable distributions F

with m “
ş

z F pdzq ą x .

b) If µ ď r , then m ď x always. SELL IMMEDIATELY!
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Geometric Brownian motion

Theorem

i) If µ´ r ě σ2{2 then any distribution F is super-attainable.

DO NOT SELL!

ii) If µ´ r ă σ2{2, a distribution F is super-attainable if and

only if

ż

´z

x

¯A
F pdzq ď 1, A “ 1´

2pµ´ rq

σ2
.

In this case, moreover,

a) If 0 ă µ´ r ă σ2{2 there exist super-attainable distributions F

with m “
ş

z F pdzq ą x . INTERESTING . . . tell me more!

b) If µ ď r , then m ď x always. SELL IMMEDIATELY!
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Geometric Brownian motion

• But which distribution(s) is/are the best ones too chose for

the investor? Of course they want that the distribution F is

”as large as possible”. . .

• We say a distribution F is optimal if

ż

´z

x

¯A
F pdzq ď 1, A “ 1´

2pµ´ rq

σ2
.

holds with equality.

• Note that all optimal distributions are attainable (but not all

attainable distributions are optimal. . . )
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Geometric Brownian motion

The stopping time τ can be chosen for optimal distributions as a

first hitting time of GBM and its running minimum:

τ “ inftt ą 0 : mt ď Ψµ,σ
F pXtqu

“ inftt ą 0 : pmt ,Xtq P DF u, DF :“ tpm, xq P R2 : m ď Ψµ,σ
F pxqu

where mt “ infsďt Xs and

Ψµ,σ
F pzq “ x

˜

1´ ψF

ˆ

1´
´x

z

¯A
˙

¸´ 1
A

for the function,

ψF pyq “

#

1
F pyq

ş

p´8q,ys
1
σ log z

x F pdzq if F pyq ą 0;

y else.
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Azéma–Yor stopping

Figure 3: Azéma–Yor barrier function Ψς
Fa,b
pXtq for a log-normal target.
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Examples

• Assume the investor is restricted to choose from a specified

parametrized family of distributions (e.g. Log-normal, Pareto,

Weibull, Gamma, . . . )

• Their choice will be optimal for specific parameter

constellations

• Specifically, the problem can be rephrased as a mean-variance

trade–off, similar to the efficient frontier in Markowitz’s model
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Examples
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Figure 4: Attainable frontiers for different distributions and A “ 0.2 (blue),

A “ 0.5 (orange), and A “ 0.8 (green): Lognormal, Pareto, and Gamma

distributions.
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Example – Log-normal

• Log-normal target distribution, Fa,b „ LN pb, a2q

• Attainable if b ď logpxq ´ Aa2

2

• Azéma–Yor barrier for optimal F

Ψµ,σ
Fa,b
pzq “

˜

Φ
´

logpzq´b
a

¯

Φ
´

logpzq´b
a ` aA

¯

¸
1
A

eb´
a2

2
A

where Φ standard-normal cdf
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Conclusion

• We have shown that the distribution builder methodology can

successfully harnessed to provide an accessible and

implementable preference–based optimization of the timing of

an asset sale

• The analysis is based on solutions to the Skorokhod

embedding problem for diffusions

• The results seem sensible and in line with economic intuition
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Thank You

Thank you, Peter, for all your support and advice.
And foremost for all the fun exploring together new
and exciting ideas!
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