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The periodic NLS

(i∂t + ∆)u = ±|u|p−1 u, (t, x) ∈ R× Td. (NLS)

(NLS) is an infinite dimensional Hamiltonian system with Hamiltonian

H[u](t) := 1
2

∫
Td
|∇u|2 dx± 1

p+ 1

∫
Td
|u|p+1 dx = H[u](0).

It also conserves the mass m(u) :=
∫
Td |u|

2dx

Here p is odd; the sign only matters for the global dynamics or Gibbs
measure.

The scaling critical threshold: scr := d

2 −
2

p− 1

Theorem (Local-in-time well-posdedness for NLS on Td)
Assume scr ≥ 0, then NLS is LWP for data in Hs provided that s > scr.

(Bourgain ’93, Bourgain-Demeter ’15→ Strichartz estimates on tori.)
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How about s = scr = 0↔ L2; say cubic NLS on T2? Unknown!

If s < scr ill-posedness may occur (Christ-Colliander-Tao, others . . . ).

Question: What happens ‘generically’? That is what happens if we randomize
the data and study the generic behavior of solutions?

Approach is physically meaningful; linked to the statistical ensemble point of
view: instead of individual solutions, are interested in the family of solutions
that are distributed according to some canonical law (e.g. Gaussian law).

Deterministic −→ Nondeterministic→ Random data

A key point: for random initial data −→ better linear and nonlinear estimates
than those for arbitrary functions of the same regularity←− (linear and
multilinear) large deviation estimates and other type of random matrix
estimates.
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Random Data Theory of NLS

Consider NLS with the following canonical random data:

uω(0) = f(ω) =
∑
k∈Zd

gk(ω)
〈k〉α

eik·x, α := s+ d

2 (ID)

where {gk} are i.i.d. complex Gaussian r.v., Egk = 0, E|gk|2 = 1.

The law of distribution for f(ω) is formally the Gaussian measure:

dρα ∼ exp (−‖u‖2Hα) ·
∏
x∈Td

du(x).

This dρα is supported in Hs−(Td) :=
⋂
ε>0H

s−ε(Td).

Almost surely in ω the random initial data f(ω) belongs to Hs− s := α− d

2 .
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Almost sure local well-posedness

By switching to almost-sure point of view, we can cross the scaling barrier
and get almost sure local well-posedness for values s < scr.

Historically people only know weak solutions in the supercritical case (no
uniqueness, and we know little about this).

In groundbreaking work, Bourgain ’96 showed that if we consider
canonical random data in some deterministically supercritical space
s < scr then almost surely one can get strong solutions!.

these almost sure strong solutions ←→ classical well-posed solutions

measurable functions ←→ continuous functions
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There have been numerous follow-up works to Bourgain’s, but fundamental
questions remained open:

What’s the optimal value of s for almost-sure LWP to hold?

How does a given initial random data get transported by the NLS flow?

I If it is Gaussian initially, how does this Gaussianity propagate?

I What’s the description of the solution beyond the linear evolution?

Such questions are important in many topics such as:

— invariance of Gibbs measures (statistical mechanics; CQFT; SPDE).

— wave turbulence (density and statistics of the interacting waves).
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(Weak) wave turbulence

Consider NLS with well-prepared data; e.g. random homogeneous data

u(0) = f(ω) = N−α
∑
k

φ( k
N

)gk(ω)eik·x, φ ∈ S

i.e. of a single frequency N with Fourier modes uniformly distributed on
the ball |k| . N ; and study the evolution of the ensemble average

E|û(t, k)|2, k ∈ Zd

for long times.

It is believed that this quantity stays constant for a long time, and starts
to evolve at a kinetic timescale, according to an equation called “wave
kinetic equation”.

Buckmaster-Germain-Hani-Shatah; Deng-Hani; Collot-Germain (2018–2020)
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Invariant Gibbs measures

If α = 1 we have random data:

u(0) = f(ω) =
∑
k∈Zd

gk(ω)
〈k〉

eik·x, s := 1− d

2

This data represents the typical element in the support of the Gibbs
measure associated to NLS.

Gibbs measures lie nicely at the intersection of PDE and statistical
physics1.

In 2D and 3D such Gibbs measures are supported on distributions
H0−(T2) and H−

1
2−(T3) respectively.

1Naturally arise in Stat Mech, CQFT, and as limits of grand canonical thermal states in
many-body quantum mechanics(see Frölich-Knowles-Schlein-Sohinger; Lewin-Nam-Rougerie)
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From the Hamiltonian structure of NLS with H(u) (= Energy) the Gibbs
measure can be formally defined as

dµ ∼ e−H(u) ·
∏
x∈Td

du(x) = exp (− 1
p+ 1‖u‖

p+1
Lp+1)︸ ︷︷ ︸

weight

dρ1

In some cases this measure can be rigorously defined as a weighted
Gaussian measure.

dµ can be formally seen to be invariant under the flow of NLS due to a
formal Liouville’s theorem and conservation of the (renormalized)
Hamiltonian H.

Construction -and its properties under various dynamics- is a major
problem in statistical mechanics and constructive quantum field theory
(intimately related to the so-called Φ4 model when p = 3).

Glimm-Jaffe, Lebowitz-Rose-Speer, Simon, Nelson, Aizenman, Fröhlich, . . .
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Construction

d = 1, 2: construction can be done for any p.
I Measure is absolutely continuous w.r.t. Gaussian measure

d = 3: construction can be done for p = 3.
I But measure is not absolutely continuous w.r.t. Gaussian measure!

d ≥ 4: it cannot be done for any p
(Frölich, Aizenman, Aizenman- Duminil-Copin, . . . ).

Invariance under NLS flow together with existence of global strong solutions
on its statistical ensemble.

Difficulty for dynamics: Gibbs msr. supported in H1−d/2− (rough if d ≥ 2).

The invariance of dµ as above was justified for
I d = 1, all p ≥ 3 odd (Bourgain ’94).
I d = 2, p = 3 (Bourgain ’96).

How about d = 2, p ≥ 5 ? Open 1996→ 2019 (Y. Deng–A.N.–H. Yue)

How about d = 3, p = 3 ? Open, and very hard!
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Fundamental questions

What’s the optimal value of s for almost-sure LWP to hold?

How does a given initial random data get transported by the NLS flow?

I If it is Gaussian initially, how does this Gaussianity propagate?

I What’s the description of the solution beyond the linear evolution?

Invariance of Gibbs measure and a.s. existence of strong solutions to
NLS on T2 and any odd power nonlinearity p ≥ 5.

Question:

Why is d = 3, p = 3 (scr = 1
2 ) so much harder than d = 2, p = 5 (scr = 1

2 )?
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Answers
With Yu Deng and Haitian Yue, we answer these questions. We find the
optimal value

spr := − 1
p− 1 ≤ scr,

the critical index in probabilistic scaling, as the threshold for NLS with random
data.

In particular:

We obtain local-in-time strong solutions for random data in the full
probabilistic subcritical range s > spr for any dimension2 and give a
precise description of the solution in terms of multilinear gaussians.

We prove invariance of Gibbs measure and existence of global strong
solutions in its statistical ensemble on T2 for any odd power p ≥ 3.

I Key: Support of the Gibbs measure dµ in 2D is H0−, which is
probabilistically subcritical for any such p.

2Assume (d, p) 6= (1, 3)
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Probablistic scaling heuristics

The heuristics behind the probabilistic scaling critical exponent spr are based
on the basic idea of the square root cancellation of sums of independent
random variables.
For example in Central Limit Theorem, with high probability one has∣∣∣∣ N∑

k=1
Xk

∣∣∣∣ . √N instead of N,

where {Xk} are i.i.d. mean zero random variables.

We also have the multilinear version, where we consider for example∑
j<kXjXk

Let us now calculate spr the threshold for the random data problem for NLS
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Probabilistic Scaling
Start with a frequency scale N and random initial data

u0 = f = N−α
∑
|k|∼N

gk(ω)eik·x α = s+ d

2

then f has unit size in Hs. If NLS is a.s. LWP then the second iteration

u(1)(t) =
∫ t

0
ei(t−s)∆(|eis∆f |p−1 · eis∆f) ds

should be bounded in Hs for fixed time t.

Fix |t| ∼ 1, and for |k| ∼ N calculate the Fourier coefficients of u(1)(t),

û(1)(t, k) ∼ N−pα
∑

k1−···+kp=k

1
〈Ω〉 · gk1(ω)gk2(ω) · · · gkp(ω),

where |kj | ∼ N , Ω = |k|2 − |k1|2 + · · · − |kp|2 is the resonance factor, and ±
represent possible complex conjugates.
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For simplicity we may restrict to Ω = 0, reducing to the sum

û(1)(t, k) ∼ N−pα
∑

k1−···+kp=k
|kj |∼N,Ω=0

gk1(ω)gk2(ω) · · · gkp(ω).

If we assume k1 6= k2, k2 6= k3 and so on, these r.v. are independent. This
leads to the square root cancellation (gain). We conclude that

|û(1)(t, k)| ∼ N−pα
( ∑
k1−···+kp=k
|kj |∼N,Ω=0

1
)1/2

∼ N−pαN (pd−d−2)/2.

again by dimension counting.

Then, u(1)(t) is bounded in Hs if and only if

−pα+ pd− d− 2
2 +

=α︷ ︸︸ ︷
s+ d

2 ≤ 0⇔ s ≥ − 1
p− 1 := spr.

Andrea R. Nahmod (UMass Amherst) RTT and propagation of randomness 14 / 41



Probabilistic scaling v.s. deterministic scaling
Recall spr = − 1

p−1 and let sG = 1− d
2 Gibbs measure supported in HsG−(Td).

d = 2, p = 3

s
0 1

2
1− 1

2
−1

sG−spr scr

d = 2, p = 5

s
0 1

2

scr

1− 1
2 − 1

4
−1

sG−spr

d = 2, p large

s
0 1

2
1− 1

2 − 1
p−1

−1

sG−spr

1 − 2
p−1

scr

d = 3, p = 3

s
0 1

2

scr

1− 1
2

−1

sG−spr

Andrea R. Nahmod (UMass Amherst) RTT and propagation of randomness 15 / 41



Main result I

Theorem 1 (Y. Deng–A.N.–H.Yue 2020)

Let p ≥ 3 odd and for s > − 1
p−1 = spr, and let α = s+ d

2 . Consider (NLS)

on Td under suitable renormalization, with α-random initial data (ID).
Then almost surely in ω, there exists a strong local solution that is unique in a
suitable sense.
Furthermore, this solution has an explicit expansion in terms of multilinear
Gaussians with adapted random tensor coefficients.

s

spr := − 1
p−1

0 scr := d
2 −

2
p−1

Known DeterministcNew Probabilistic

Bourgain: T2, p = 3 (scr = 0), Prob. LWP for some s < 0.
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Remarks

The renormalization we need is the Wick ordering. An infinite L2 mass
implies that the potential energy is almost-surely infinte and the
nonlinearity |u|p−1u of (NLS) does not make sense a.s. as distributions.
This ‘infinity’ has to be removed by suitably renormalizing the
nonlinearity.

Uniqueness is in the sense that, our solution is the unique limit for all
possible choices of canonical approximations (or regularizations).

Note one barely misses a.s. LWP for the d = 3 cubic NLS in H−
1
2− when

spr = − 1
2 .

Andrea R. Nahmod (UMass Amherst) RTT and propagation of randomness 17 / 41



Main Result II. Long time.

As a byproduct of the proof Th. 1, we have that for smooth well prepared
random data (e.g. random data arising in derivation of WKE in wave
turbulence theory) the time of existence is longer than the deterministic one;
i.e. no energy cascade until a long time, longer than deterministic time.
Randomization effectively extends the time of perturbative regime.

Take p = 3 (cubic). In the deterministic case, the first energy cascade
happens at the timescale of CR equation3 which is N2(s−scr).
We show that in the randomized case, the first energy cascade only happens
at the much later timescale N2(s−spr)−

We have:

3Faou-Germain-Hani and Buckmaster-Germain-Hani-Shatah
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Main result II. Long time

Theorem 2 (Deng-N.–Yue 2020)

Fix (s, α) as before, let N be dyadic and φ be Schwartz. Let u solve
(NLS) with random homogeneous data defined by

u(0) = f(ω) = N−α∑
k

φ

(
k

N

)
gk(ω)eik·x.

Then, with high probability, there is no energy cascade between
Fourier modes, i.e. |û(t, k)|2 ≈ |û(0, k)|2 with negligible error for large
N , up to the time T = N (p−1)(s−spr)−.

With high probability, ‖u(0)‖Hs ∼ 1.
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Main result III. Invariance and global strong solutions.

Our third main result (proved before Theorem 1) is

Theorem 3 (Deng-N.–Yue 2019)

Let d = 2 and p ≥ 3 odd. Then the renormalized NLS is almost surely globally
well-posed on the support of the Gibbs measure dµ (which is in H0−).
The global nonlinear flow Φt maps a full measure set Σ to itself, forms a
one-parameter group (i.e. Φt+s = ΦtΦs), and keeps the Gibbs measure dµ
invariant under the flow:

µ(E) = µ(Φt(E))

for any Borel set E ⊂ Σ.

s

− 1
p−1
spr

0
scr(p = 3)

1 − 2
p−1

scr(p ≥ 7)

sG− 1
2

scr(p = 5)
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Remarks

The renormalization involved is also the Wick ordering, and the
uniqueness of the solution is in the sense of Theorem 1.

Weak solutions (with no uniqueness) that preserve dµ (in some sense)
were previously obtained by Oh-Thomann.

The only case where the measure is constructed but not known to be
invariant is d = 3, p = 3. We expect this to be much harder than d = 2,
as this is critical under the probabilistic scaling
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Bourgain’s method (‘96)
Before describing our new methods let us review the existing approach thus
far for studying random data local well-posedness due to Bourgain.

Bourgain considered the cubic (Wick ordered) NLS equation on T2

iut + ∆u = |u|2u− 2u(
∫
|u|2dx)︸ ︷︷ ︸

C(u)

with random initial data:

uω0 (x) :=
∑
k∈Z2

gk(ω)
〈k〉

eik·x, x ∈ T2.

The initial data (in support of the Gibbs measure) is in H0−, and is thus is
deterministically supercritical but probabilistic subcritical:

spr = −1
4 < 0− < 0 = scr.
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Then

Bourgain’s main idea is to make a linear-nonlinear decomposition, where
the linear part is rough and random, and the nonlinear part is smoother.

He constructed solutions of form u = eit∆f(ω) + v and showed v has
positive regularity.

Idea: Solve the difference initial value problem via a Banach fixed point
argument on a ball in a smoother space:

ivt + ∆v = C( eit∆f(ω)︸ ︷︷ ︸
R:=rough-random

+ v︸︷︷︸
smoother-deterministic=:D

)

v(x, 0) = 0, x ∈ T2

Tools:

I multilinear large deviation estimates
I integer lattice counting estimates↔ analytic number theory
I TT ∗ arguments↔ random matrix estimates (correct way to exploit

randomness in absence of gain of regularity).
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The theory of random tensors

We now focus on the proof of Theorem I which relies on the theory of
random tensors. For simplicity here we assume p = 3.

Theorem II is a special case.

To prove Theorem III -which precedes Theorems I, II– we introduced the
method of random averaging operators (RAO) which lays out the
foundation for the more general random tensors’ theory (RTT)

RAO has a much simpler form than random tensors and less
notation-heavy, and suffices in many cases where one is not too close to
probabilistic criticality.

We don’t discuss the RAO in detail, but they come in the RTT as they
are the simplest and basic cases of random tensors→ the(1, 1)-tensors.
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Simple example (p=3): (1,1) tensor terms

Let I = Duhamel operator. Denote := eit∆fN (ω) and := uNδ .
Naturally we can also define

:= IC(eit∆fN (ω), uNδ , uNδ),

:= IC
(
IC(eit∆fN (ω), uNδ , uNδ), uNδ , uNδ

)
,

and so on , · · · .
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The sum of these trees forms on an infinite series of trees:

ΨN,Nδ = := + + + · · · .

which is equivalent to the para-linearized equation:{
(i∂t + ∆)ΨN,Nδ = C(ΨN,Nδ , uNδ , uNδ);
ΨN,Nδ(0) = fN (ω).

⇐⇒ = + .

By solving this equation, we have that the k-th Fourier mode of ΨN,Nδ

is in the following form:

F
( )

(k) =
∑
k1

hkk1
gk1(ω)
〈k1〉α

where hkk1 is the (1, 1) random tensor (matrix); indep. of gk1(ω).
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Random averaging operators→ Gibbs measure
Ansatz for the solution is

u =
∑
N

ΨN,Nδ + remainder =
∑
N

+ remainder

= ulin +
(∑
N

+ + · · ·
)

+ remainder

= ulin + P(ulin) + remainder

Idea: We para-linearize NLS and view the key high-low interactions where the
high frequencies come from ulin as a linear operator P applied to ulin. We
expand the solution u in Fourier space, where uk(t) := û(t, k), as

uk(t) = gk(ω)
〈k〉α

+
∑
k1

hkk1

gk1(ω)
〈k1〉α

+ (remainder)k (RAO)

where hkk1 is the (1, 1) random tensor (matrix) independent from gk1 and
containing all the randomness information of the low frequency components
of the solution u and prove suitable operator norm estimates for hkk1 .
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Higher order random tensors: how they arise.
To prove Result 1 we need arbitrary high order expansions↔ multilinear
expressions↔ random (q, 1) tensors h = hkk1···kq , which depend on the low
frequency components of the solution.

Ansatz: expand the solution u to NLS in Fourier space; and write
uk(t) := û(t, k) as

uk(t) =
∑
q

∑
k1,··· ,kq

hkk1···kq (t)
q∏
j=1

g±kj (ω)
〈kj〉α

+ (remainder)k (EXP)

where (g+, g−) := (g, g) and assume there is no pairing, i.e. kj′ 6= kj if the
corresp. ± signs are the opposite in the given q-tuple.

These quantities hkk1···kq , where t is viewed as a parameter, are the
random tensors which will be the main subject of study

The convergence of the expansion (EXP) is completely determined by
the properties and estimates of these tensors.

The high-order tensors hkk1···kq are from the high-order iteration trees,
as in the following examples:
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the properties and estimates of these tensors.

The high-order tensors hkk1···kq are from the high-order iteration trees,
as in the following examples:
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Higher order random tensors: how they arise.
To prove Result 1 we need arbitrary high order expansions↔ multilinear
expressions↔ random (q, 1) tensors h = hkk1···kq , which depend on the low
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Simple example (p=3): (2,1) tensor term

The (2, 1) tensors are from the multilinear expressions satisfying:

I There are 2 terminal leaves which are Gaussian term eit∆fN (ω);
I The other terminal leaves are low frequency components uNδ .

Denote

:= IC(eit∆fN1(ω), eit∆fN2(ω), uNδ)

where I is the Duhamel operator, N = max(N1, N2) and N1, N2 > Nδ.
Then (modulo details about the temporal frequency):
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The k-th Fourier mode of is

F( )(k) ∼
∑

k=k1−k2+k3
|k|2=|k1|2−|k2|2+|k3|2

gk1(ω)
〈k1〉α

gk2(ω)
〈k2〉α

û(k3)

=
∑
k1,k2

( ∑
|k3|≤Nδ

1{ k=k1−k2+k3
|k|2=|k1|2−|k2|2+|k3|2

}û(k3)

︸ ︷︷ ︸
hkk1k2

)
gk1(ω)
〈k1〉α

gk2(ω)
〈k2〉α

where |k1| ∼ N1, |k2| ∼ N2 and |k3| ≤ Nδ. Note that here hkk1k2 is a (2,1)
random tensor -say- maps k1, k2 → k.

Andrea R. Nahmod (UMass Amherst) RTT and propagation of randomness 30 / 41



One more example for (2,1) tensor term

IC
(
IC(eit∆fNa , uNδ , uNδ), IC(eit∆fNb , uNδ , uNδ), IC(uNδ , uNδ , uNδ)

)
:=

where N = max(Na, Nb) and Na, Nb > Nδ.

Similarly

F
( )

(k) =
∑
|a|∼Na
|b|∼Nb

hkab ·
ga(ω)
〈a〉α

gb(ω)
〈b〉α

Note that here hkab is a (2, 1) random tensor (which maps a, b → k)
associated to the term .

Andrea R. Nahmod (UMass Amherst) RTT and propagation of randomness 31 / 41



In our previous slide we denoted by a = k11 and b = k21. Then

hkab = hkk11k21 =
( ∑
k12,k13,k22,k23,
k31,k32,k33

1(?)kk11k21

∏
l∈{12,13,22,
23,31,32,33}

û(kl)
)

where

(?)kk11k21 := {(k12, k13, k22, k23, k31, k32, k33) : |kl| ≤ Nδ, l ∈ {12, 13, 22, 23, 31, 32, 33}
k = (k11 − k12 + k13)− (k21 − k22 + k23) + (k31 − k32 + k33)

|k|2 = (|k11|2− |k12|2 + |k13|2)− (|k21|2− |k22|2 + |k23|2) + (|k31|2− |k32|2 + |k33|2)}
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Random tensors framework

RTT allow us to get a handle on the exploding complexity that arises
from the higher order tree iterations.

We develop an algebraic theory which focuses on the structure of the
tensors h occurring in (EXP) and how they are built from smaller tensors;
using certain operations such as tensor products, contractions, etc.
gives rise to two algebraic operations: merging and trimming.

We also develop the analytic theory, which entails choosing suitable
norms for the tensors h = hkk1...kq which behave well with our algebraic
theory. We prove several multilinear estimates to provide suitable
bounds for the (merged and trimmed) tensors and remainder in (EXP).
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Algebraic Theory: Merging I
No pairing case: {a, c, d, f} ∩ {b, e} = ∅

hk1a, |k1|≤N1︷ ︸︸ ︷ hk2bc, |k2|≤N2︷ ︸︸ ︷ hk3def , |k3|≤N3︷ ︸︸ ︷
︸ ︷︷ ︸w�

︸ ︷︷ ︸
hkabcdef , |k|≤N :=max(N1,N2,N3)

IC(“(1, 1)”, “(2, 1)”, “(3, 1)”) yields the (6, 1) tensor:

hkabcdef =
∑

k1,k2,k3

(hb)kk1k2k3︸ ︷︷ ︸
base tensor=

·hk1a hk2bc hk3def .

NLS nonlinearity is a multilinear form thus represented by an explicit constant (in ω)tensor.
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Algebraic Theory: Merging II
Pairing case: {a, c, d, f} ∩ {b, e} 6= ∅, a = b.

hk1a, |k1|≤N1︷ ︸︸ ︷ hk2bc, |k2|≤N2︷ ︸︸ ︷ hk3def , |k3|≤N3︷ ︸︸ ︷
︸ ︷︷ ︸w�

︸ ︷︷ ︸
hkabcdef , |k|≤N :=max(N1,N2,N3)

The corresponding (4, 1) tensor in this case is:

hkcdef =
∑
a=b

hkabcdef
|ga(ω)|2

〈a〉2α.

Andrea R. Nahmod (UMass Amherst) RTT and propagation of randomness 35 / 41



Algebraic Theory: Trimming
For example, in the no pairing case if -say- after merging N3 < Nδ and
N1, N2 ≥ Nδ, we need to trim the tree to guarantee independence.

hkabcdef , |k|≤N :=max(N1,N2,N3)︷ ︸︸ ︷

w�

︸ ︷︷ ︸
h′
kabc

, |k|≤N

where

h′kabc :=
∑
d,e,f

hkabcdef
gd(ω)
〈d〉α

ge(ω)
〈e〉α

gf (ω)
〈f〉α
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Analytic theory

A crucial component of the RTT is the choice of norms for the tensors
h = hkk1...kq .

It turns out that the suitable norms here are the operator norms when
the tensors are viewed as linear mappings from a function of part of the
variables to a function of the remaining variables.

For example for a tensor h = hkxyz we define

‖h‖2kx→yz := sup


∑
y,z

∣∣∣∣∣∣
∑
k,x

hkxyz · zkx

∣∣∣∣∣∣
2

:
∑
k,x

|zkx|2 = 1


In some instances, we just use the `2 norm of h in all its variables (eg.
Hilbert-Schmidt norm), for example for h = hab, we have

‖h‖2ab =
∑
a,b

|hab|2.
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Analytic theory
Only such norms are needed in the proof. Importantly, they behave well
with the algebraic process of merging and trimming.

For example, for merged tensors

hbczw =
∑
a,e,f

(h1)abc(h2)aef (h3)efzw

we have the following multilinear estimate

‖h‖bz→cw ≤ ‖h1‖ab→c‖h2‖ef→a‖h3‖z→wef

The formula of h does not depend on the order of hj , but the right hand
side of the inequality does.
So we actually get a set of inequalities by reordering the tensors, from
which we may choose at our disposal.

Similarly we have general estimates for trimmed tensors assuming
suitable independence. For example:
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Random Matrices Estimates

Suppose that
h′kxz =

∑
yw

hkxyzw · gy(ω)gw(ω),

where the random tensor h = hkxyzw is independent with gy and gw.
Then with high probability we have that

‖h′‖kx→z . Nε max
(
‖h‖kxyw→z, ‖h‖kxy→zw, ‖h‖kxw→zy, ‖h‖kx→zyw

)
where N is the max size of kxyzw, and ε > 0 is arbitrarily small.

The proof of this (and a more general) estimate goes back to Bourgain’s ‘96
paper and relies on high order TT ∗ argument and multilinear estimates as
mentioned above.

Even in the simplest of cases it seems nontrivial to find a direct proof! We
think these elegant inequalities are of independent interest in the study of
random matrices with general Gaussian entries.
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To conclude
Armed with both the algebraic and analytic theory of the RTT we can go back
to NLS and analyze the norms of the tensors appearing in

uk(t) =
∑
q

∑
k1,··· ,kq

hkk1···kq (t)
q∏
j=1

g±kj (ω)
〈kj〉α

+ (remainder)k (EXP)

These bounds are in fact quite simple. We aim at proving essentially that

‖hkk1...kq‖kk1...kr→kr+1...kq .
q∏
j=1

Nβ
j ( max

r+1≤j≤q
Nj)−β (TB)

for any r, where 〈kj〉 ∼ Nj and β ≡ α−.

Moreover we prove a Fourier weighted estimate that localizes h as a
multilinear Fourier multiplier; i.e. in the support of hkk1...kq we have that

k ≈ ±k1 · · · ± kq
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The proof of (TB) is done by induction. The first main ingredient is of course
the random tensor framework descried above. The other ingredients are:

The base tensor estimate: to bound its norm which appears in all
merging estimates we simply apply Schur’s test and reduce matters to
integer lattice counting estimates which follow from elementary number
theory.

The selection algorithm: this is needed in the inductive step where we
need to control the norms of the merged tensors. Here a delicate
selection algorithm is needed in order to exploit the flexibility (order in
which we estimate) in the multilinear merging estimates.
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Localization hyperplanes of (n, 1) tensors
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Figure: Localization hyperplanes of random (1, 1) and (2, 1) tensors

Many thanks for your attention!!


