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Acoustic is concerned with the generation and space-time evolution of small
mechanical perturbation in fluid (sound waves) or in solid (elastic waves). One of
the important equations in acoustics is the Kuznetsov equation

utt − a2∆u − b∆ut =
∂

∂t

(
1

c2

B

2A
(ut)

2 + |∇u|2
)
. (1)

The derivation of equation (1) can be obtained from the general equations of
fluid mechanics. The equation of conservation of mass (continuity):

%t +∇ · (%v) = 0. (2)

The equation of conservation of momentum (Newton’s second law)

%(vt + (v · ∇)v) = ∇ · T. (3)

Conservation of energy (first law of thermodynamics)

%θ(ηt + (v · ∇)η) = −∇ · q + T : D. (4)

D is the deformation tensor given by D = 1
2

(∇v + (∇v)T ),

T is the Cauchy–Poisson stress tensor given by T = (−p + λ(∇ · v))I + 2µD, where I is
the identity matrix.

µ is the shear viscosity (the first coefficient of viscosity) λ = ζ − 2
3
µ, where ζ is the

second coefficient of viscosity (the bulk viscosity).

T : D =
∑

ij TijDij where Tij are the components of T and Dij are the components of D.

B. Said-Houari (UoS) Jordan–Moore–Gibson–Thompson equation 3 / 55



Equations (3) and (4) can be rewritten as

%(vt + (u · ∇)u) = −∇p + µ∆u + (ζ + µ/3)∇(∇ · u). (5)

and
%θ(ηt + (v · ∇)η) = 2µD : D + λ(∇ · v)2 −∇ · q, (6)

respectively.
The equation of state is

p = p(%, η). (7)

First, we assume that the deviation of %, p, η and θ from their equilibrium values %0, p0, η0 and
θ0 are assumed to be small.
By taking the Taylor series expansion of (7) around values at rest %0 and η0 and ignoring the
higher order terms, we get

p(%, η) = p(%0, η0)+

(
∂p

∂%
(%0, η0)

)
(%−%0)+

1

2

(
∂2p

∂%2
(%0, η0)

)
(%−%0)2+

(
∂p

∂η
(%0, η0)

)
(η−η0).

We put

p0 = p(%0, η0), A = %0
∂p

∂%
(%0, η0) = %0c

2, B = %2
0

∂2p

∂%2
(%0, η0), %0

γ − 1

χ
=
∂p

∂η
(%0, η0),

then, the pressure p is given by

p(%, η) = p0 + %0c
2

[
%− %0

%0
+

B

2A

(
%− %0

%0

)2

+
γ − 1

χc2
(η − η0)

]
, (8)

where ∇p0 = 0.
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In the above equations,

v is the acoustic particle velocity,
p is the acoustic pressure,
% is the mass density,
η is the specific entropy,
q is the heat flux,
θ is the absolute temperature,
K is the thermal conductivity,
c is the speed of sound,
χ the coefficient of volume expansion,
γ = cp/cv is the ratio of specific heat,
cp and cv are the specific heat capacities at constant pressure and
constant volume

By assuming that the flow is rotation free, ∇× v = 0 and introducing the
acoustic velocity potential v = −∇u, then it has been shown by
(Kuznetsov, 1971) and (Coulouvrat, 1992), that equation (1), can be
derived from the above set of equations by assuming the Fourier law of
heat conduction

q = −K∇θ. (9)
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Some results on the Kuznetsov equation

We consider Kuznetsov equation

utt − a2∆u − b∆ut =
∂

∂t

(
1

c2

B

2A
(ut)

2 + |∇u|2
)
.

b > 0 corresponds to the viscous case.

I K. Mizohata and S. Ukai (1993) considered the Kuznetsov equation in
RN and showed the global existence of small amplitude solution.

No decay rate was given.

I B. Kaltenbacher and I. Lasiecka, (2012) proved the global existence
and exponential decay of the solution in bounded domain.

b = 0 corresponds to the inviscid case.
I A. Dekkers and A. Rozanova-Pierrat (2019).
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It is known that by modeling heat conduction with the Fourier law, leads
to the paradox of infinite heat propagation speed. That is, any thermal
disturbance at a single point has an instantaneous effect everywhere in the
medium. To overcome this drawback, we may replace (9) with the
Maxwell–Cattaneo heat conduction law:

τqt+q + K∇θ = 0, (τ > 0, relatively small) (10)

By considering (10), instead of (9) and combining it with the equations of
fluid mechanics, we get, instead of (1), the equation (P.M. Jordan,
2014) the Jordan–Moore–Gibson–Thompson equation

τuttt + αutt − c2∆u − b∆ut =
∂

∂t

(
1

c2

B

2A
(ut)

2 + |∇u|2
)

(11)

where b = δ + τc2, with δ is the diffusivity of sound.
The linearized version of equation (58a), known as the
Moore–Gibson–Thompson equation in the acoustics theory:

τuttt + αutt − c2∆u − b∆ut = 0. (12)
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The linearized equation

I B. Kaltenbacher, I. Lasiecka, and R. Marchand (2011)
I B. Kaltenbacher, I. Lasiecka, and M. K Pospieszalska (2012)).

1 b = 0 there arises a lack of existence of a semigroup associated with
the linear dynamics.

2 b > 0 the linear dynamics are described by a strongly continuous
semigroup, which is exponentially stable provided that
γ = α− τc2/b > 0.

3 If γ = 0 the energy is conserved.

The nonlinear problem

I B. Kaltenbacher, I. Lasiecka, and M. K Pospieszalska (2012))
considered the nonlinear model (known as the Westervelt equation):

τuttt + αutt − c2∆u − b∆ut =
∂

∂t

((
1 +

1

c2

) B

2A
(ut)

2

)
(13)

and showed the global existence of small data solution with an
expential decay rate

I B. Kaltenbacher and V. Nikolić, (2019) They rigorously justified the
singular limit problem when τ → 0 and showed that the limit of JMGT
equation as τ → 0 leads to the Kuznetsov equation.
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The Cauchy problem–The linearized equation

In bounded domain Poincaré’s inequality is applicable and the derivation of
the estimates is much easier.

So, our goal is to show the well-posedness and investigate the decay rate
of the solutions of the Moore–Gibson–Thompson equation in an
unbounded domain. Namely, we consider the equation

τuttt+ utt − c2∆u − c2β∆ut︸ ︷︷ ︸
Strongly damped wave equation

= 0 in RN , t > 0, (14)

with the following initial data

u (x , 0) = u0 (x) , ut (x , 0) = u1 (x) , utt (x , 0) = u2 (x) . (15)

For the linear strongly damed wave equation:

D. Hoff and K. Zumbrum (1997)

Y. Shibata, 2000 investigate the Lp − Lq decay estimate of solutions to the
Cauchy problem.
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Well-posedness of problem for 0 < τ < β

First, we write problem (14)-(15) as a first-order evolution equation. By
taking v = ut and w = utt , this problem can be reduced to

d

dt
U(t) = AU(t), t ∈ [0,+∞)

U(0) = U0

(16)

where U(t) = (u, v ,w)T , U0 = (u0, u1, u2)T and A : D(A) ⊂ H −→ H is
the following linear operator

A

 u
v
w

 =

 v
w

1
τ ∆(u + βv)− 1

τw


(we recall that we have taken c = 1 in (14)).
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We introduce the energy space H = H1(RN)× H1(RN)× L2(RN) with the
following inner product

〈(u, v ,w), (u1, v1,w1)〉H

= τ(β − τ)

∫
RN

∇v · ∇v1 dx +

∫
RN

∇(u + τv) · ∇(u1 + τv1) dx

+

∫
RN

(v + τw) · (v1 + τw1) dx +

∫
RN

(u + τv) · (u1 + τv1) dx

+

∫
RN

v · v1 dx

and the corresponding norm
We consider (16) in the Hilbert space H, with the following domain

D(A) =
{

(u, v ,w) ∈ H;w ∈ H1(RN), u + βv ∈ H2(RN)
}
. (17)
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Theorem

Under the dissipative condition 0 < τ < β, the operator A generates a C0-semigroup on H. In
particular, for any U0 ∈ D(A), there exists a unique function

U ∈ C1([0,+∞);H) ∩ C([0,+∞);D(A))

satisfying (16).

Proof.
Instead of considering our problem (16), we now consider the perturbed problem

d

dt
U(t) = ABU(t), t ∈ [0,+∞)

U(0) = U0

(18)

where

AB

 u
v
w

 = (A+ B)

 u
v
w

 =

 v
w

1
τ

∆(u + βv)− 1
τ
w− 1

τ
u − v − 1

τ2 v

 .

If AB generates a C0-semigroup on H. As AB is a bounded perturbation of A, standard
semigroup theory allows us to say that A generates a C0-semigroup on H
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Decay of the solution

Theorem (M. Pellicer & B. Said-Houari, 2019)

Let u be the solution of (14)-(15), with initial condition
U0 = (u0, u1, u2) ∈ D(As) for s ≥ 1. Assume that 0 < τ < β. Let
V = (ut + τutt ,∇(u + τut),∇ut) and assume in addition that
V0 ∈ L1(RN) ∩ Hs(RN). Then, for all 0 ≤ j ≤ s, we have

‖∇jV (t)‖L2(RN) ≤ C (1 + t)−N/4−j/2‖V0‖L1(RN) + Ce−ct‖∇jV0‖L2(RN).
(19)

No decay rate is given for u. In fact we proved that

‖u(t)‖L2 . (1 + t)1−N/4. (20)

Slow decay rate of ‖∇ut‖L2 . (1 + t)−
N
4
−��

3
2
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Ideas of the proof

The energy method in the Fourier space,

The Hausdorff–Young inequality:

‖f̂ ‖Lp′ ≤ ‖f ‖Lp , 1 ≤ p ≤ 2,
1

p
+

1

p′
= 1.

In particular ‖f̂ ‖L2 = ‖f ‖L2 (Plancherel’s identity)

Taking the Fourier transform of equation (14) and the initial data (15). We then
obtain the following ODE initial value problem:

τ ûttt + ûtt + |ξ|2û + β|ξ|2ût = 0 (21)

with ξ ∈ RN . As in (16), after introducing the new variables v̂ = ût and ŵ = ûtt
the previous ODE can be rewritten as the following first order system

ût = v̂ ,

v̂t = ŵ ,

ŵt = −|ξ|
2

τ
û − β|ξ|2

τ
v̂ − 1

τ
ŵ .

(22)
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We can write the previous system in a matrix form as

Ût(ξ, t) = Φ(ξ)Û(ξ, t), (23)

with the initial data
Û0(ξ) = Û(ξ, 0),

where Û(ξ, t) = (û(ξ, t), v̂(ξ, t), ŵ(ξ, t))T and

Φ(ξ) = L + |ξ|2A =

 0 1 0
0 0 1

0 0 −1

τ

+ |ξ|2

 0 0 0
0 0 0

−1

τ
−β
τ

0

 . (24)

Now we define the vector V = (ut + τutt ,∇(u + τut),∇ut). Thus, the pointwise
estimate of the Fourier image of V reads as follows
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Proposition

Let û be the solution of (21). Assume that 0 < τ < β. Then, the Fourier
image of the above vector V satisfies the estimate

|V̂ (ξ, t)|2 ≤ Ce−cρ(ξ)t |V̂ (ξ, 0)|2, (25)

for all t ≥ 0 and certain c ,C > 0, where

ρ(ξ) =
|ξ|2

1 + |ξ|2
. (26)
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Proof of Theorem 2

First, observe that

ρ(ξ) ≥
{

c|ξ|2, if |ξ| ≤ 1,

c, if |ξ| ≥ 1.
(27)

Applying the Plancherel theorem, we obtain∥∥∥∇j
xV (t)

∥∥∥2

L2(RN )
=

∫
RN
|ξ|2j |V̂ (ξ, t) |2dξ

≤ C

∫
RN
|ξ|2j e−cρ(ξ)t |V̂ (ξ, 0) |2dξ

= C

∫
|ξ|≤1

|ξ|2j e−cρ(ξ)t |V̂ (ξ, 0) |2dξ + C

∫
|ξ|≥1

|ξ|2j e−cρ(ξ)t |V̂ (ξ, 0) |2dξ

=: I1 + I2. (28)

Exploiting (27), we infer that

I1 ≤ C‖V̂0‖2
L∞(RN )

∫
|ξ|≤1

|ξ|2j e−c|ξ|2tdξ ≤ C (1 + t)−N/2−j ‖V0‖2
L1(RN )

, (29)

In the high-frequency region (|ξ| ≥ 1), we have

I2 ≤ Ce−ct
∫
|ξ|≥1

|ξ|2j |V̂ (ξ, 0) |2dξ ≤ Ce−ct‖∇jV0‖2
L2(RN )

.

Collecting the above two estimates, we obtain (19). This finishes the proof of Theorem 2.
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First, we may rewrite system (59) as
ût = v̂ ,

v̂t = ŵ ,

τ ŵt = −|ξ|2û − β|ξ|2v̂ − ŵ .

(30)

Lemma

The energy functional associated to system (30) is

Ê(ξ, t) =
1

2

{
|v̂ + τ ŵ |2 + τ(β − τ)|ξ|2|v̂ |2 + |ξ|2|û + τ v̂ |2

}
(31)

and satisfies, for all t ≥ 0, the identity

d

dt
Ê(ξ, t) = −(β − τ)|ξ|2|v̂ |2. (32)

The main goal is to establish a Lyapunov-type inequality in time that satisfies:

d

dt
L(ξ, t) +

|ξ|2

1 + |ξ|2
Ê(ξ, t) ≤ 0, and L(ξ, t) ∼ Ê(ξ, t) (33)
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Now, we define the functional F1(ξ, t) as

F1(ξ, t) = Re
{

(¯̂u + τ ¯̂v)(v̂ + τ ŵ)
}
. (34)

Then, we have the following lemma.

Lemma

For any ε0 > 0, we have

d

dt
F1(ξ, t) + (1− ε0)|ξ|2|û + τ v̂ |2 ≤ |v̂ + τ ŵ |2 + C (ε0)|ξ|2|v̂ |2. (35)

Next, we define the functional F2(ξ, t) as

F2(ξ, t) = −τ Re(¯̂v(v̂ + τ ŵ)). (36)

Lemma

For any ε1, ε2 > 0, we have

d

dt
F2(ξ, t) + (1− ε1)|v̂ + τ ŵ |2 ≤ C (ε1, ε2)(1 + |ξ|2)|v̂ |2 + ε2|ξ|2|û + τ v̂ |2. (37)
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We define the Lyapunov functional L(ξ, t) as

L(ξ, t) = γ0Ê (ξ, t) +
|ξ|2

1 + |ξ|2
F1(ξ, t) + γ1

|ξ|2

1 + |ξ|2
F2(ξ, t), (38)

where γ0 and γ1 are positive numbers that will be fixed later on.
Taking the derivative of (77) with respect to t and making use of (69),
(73) and (75), we obtain

d

dt
L(ξ, t) +

(
γ1(1− ε1)− 1

) |ξ|2

1 + |ξ|2
|v̂ + τ ŵ |2

+
(

(1− ε0)− γ1ε2

) |ξ|2

1 + |ξ|2
(|ξ|2|û + τ v̂ |2)

+
(
γ0(β − τ)− C (ε0)− γ1C (ε1, ε2)

)
|ξ|2|v̂ |2 ≤ 0. (39)
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Consequently, we deduce that there exists a positive constant γ2 such that
for all t ≥ 0,

d

dt
L(ξ, t) + γ2

|ξ|2

1 + |ξ|2
Ê (ξ, t) ≤ 0. (40)

On the other hand, it is not difficult to see that from (77), (68), (72) and
(74) and for γ0, large enough, that there exists two positive constants γ3

and γ4 such that

γ3Ê (ξ, t) ≤ L(ξ, t) ≤ γ4Ê (ξ, t). (41)

Combining (79) and (41), we deduce that there exists a positive constant
γ5 such that for all t ≥ 0,

d

dt
L(ξ, t) + γ5

|ξ|2

1 + |ξ|2
L(ξ, t) ≤ 0. (42)

A simple application of Gronwall’s lemma, leads to the estimate (25), as
L and the norm of V̂ are equivalent.
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Optimality of the result: Eigenvalues expansion

The characteritic equation associated to (23) is

det(L + |ξ|2A− λI ) = τλ3 + λ2 + β|ξ|2λ+ |ξ|2 = 0. (43)

The solutions λj , i = 1, 2, 3 of the previous equation are the eigenvalues of Φ(ξ). We write for
ζ = i |ξ|,

λj (ζ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ2 + ..., j = 1, 2, 3. (44)

or, equivalently,

λj (|ξ|) = λ
(0)
j + λ

(1)
j i |ξ| − λ(2)

j |ξ|
2 + ..., j = 1, 2, 3.

Consequently, we have for |ξ| → 0 that

Re(λj (|ξ|)) =


−

1

τ
+ O(|ξ|), for j = 1,

−
1

2
(β − τ)|ξ|2 + O(|ξ|3), for j = 2, 3.

(45)

for |ξ| → ∞ we have

Re(λj (|ξ|)) =


−

1

β
+ O(|ξ|−1), for j = 1,

−
1

2

(
1

τ
−

1

β

)
+ O(|ξ|−1), for j = 2, 3,

(46)
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To obtain the estimate of ‖u(t)‖L2 , Let us now divide the frequency space into
three regions: low frequency, high frequency and middle frequency region, that is

ΥL =
{
ξ ∈ RN ; |ξ| < ν1 � 1

}
,

ΥH =
{
ξ ∈ RN ; |ξ| > ν2 � 1

}
,

ΥM =
{
ξ ∈ RN ; ν1 ≤ |ξ| ≤ ν2

}
and write the estimate of |û(ξ, t)| in each region.
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Proposition

If 0 < τ < β, the solution Û(ξ, t) of (23) satisfies, for all ξ ∈ ΥL with |ξ| 6= 0,
the estimates:

|û(ξ, t)| ≤ CL

(
|ξ|2|û0|+ |ξ|2|û1|+ |û2|

)
e−c1t

+CL

(
|û0|+ |ξ|2|û1|+ |û2|

)
e−c2|ξ|2t cos(|ξ|t)

+CL

(
|ξ||û0|+

1

|ξ|
|û1|+

1

|ξ|
|û2|
)
e−c2|ξ|2t sin(|ξ|t). (47)

Moreover, if
∫
RN u1(x)dx =

∫
RN u2(x)dx = 0 we have

|û(ξ, t)| ≤ CL

(
|ξ|2|û0|+ |ξ|2|û1|+ |û2|

)
e−c1t

+CL

(
|û0|+ |ξ|2|û1|+ |û2|

)
e−c2|ξ|2t cos(|ξ|t)

+CL (|ξ||û0|+ ‖u1‖L1,1 + ‖u2‖L1,1 ) e−c2|ξ|2t sin(|ξ|t), (48)

where L1,1 is the L1-weighted space defined by

L1,1(RN) =

{
u ∈ L1

(
RN
)

; ‖u1‖L1,1(RN ) =

∫
RN

(1 + |x |)|u(x)|dx <∞
}
. (49)
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Proposition

If 0 < τ < β, the solution û(ξ, t) of (21) satisfies in ΥH the estimate:

|û(ξ, t)| ≤ CH

((
1 +

1

|ξ|
+

1

|ξ|2

)
|û0(ξ)|+

(
1

|ξ|
+

1

|ξ|2

)
|û1(ξ)|+

(
1

|ξ|2
+

1

|ξ|3

)
|û2(ξ)|

)
e−c3t , (50)

for all t ≥ 0, where c3 = min
{

1
β
, 1

2

(
1
τ
− 1
β

)}
and CH = CH(β, τ) > 0 (all positive constants).

Proposition

There exists two positive constants CM and c4 such that the solution û(ξ, t) of (21) satisfies in
ΥM one of the following estimates:

|û(ξ, t)| ≤ CM (|û0(ξ)|+ |û1(ξ)|+ |û2(ξ)|) e−c4t , if |ξ| 6= 0,
√
m1,
√
m2. (51)

or

|û(ξ, t)| ≤ CM(1+t) (|û0(ξ)|+ |û1(ξ)|+ |û2(ξ)|) e−c4t , if |ξ| = 0, or
τ

β
6=

1

9
and |ξ| =

√
m1,
√
m2,

(52)
or

|û(ξ, t)| ≤ CM(1+t+t2) (|û0(ξ)|+ |û1(ξ)|+ |û2(ξ)|) e−
3
β
t
, if

τ

β
=

1

9
and |ξ| =

√
m1 =

√
m2,

(53)
for all t ≥ 0, where c4 is defined in the proof of Lemma ?? and CM = CM(β, τ).
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Theorem (L1–initial data)

Let (u0, u1, u2) ∈ D(As), s ≥ 1, with u0, u1, u2 ∈ L1(RN) ∩ Hs(RN), and 0 < τ < β. Then for
any t ≥ 0 the following decay estimates hold for all 0 ≤ j ≤ s and certain constants C , c > 0
independent of t and of the initial data:∥∥∥∇ju (t)

∥∥∥
L2(RN )

≤ C(‖u0‖L1(RN ) + ‖u1‖L1(RN ) + ‖u2‖L1(RN ))(1 + t)1−N/4−j/2

+C(‖∇ju0‖L2(RN ) + ‖∇ju1‖L2(RN ) + ‖∇ju2‖L2(RN ))e−ct . (54)

Theorem (Improved decay estimates for N + j ≥ 3)

Let (u0, u1, u2) ∈ D(As), s ≥ 1, with u0, u1, u2 ∈ L1(RN) ∩ Hs(RN), and 0 < τ < β. Assume
that N + j ≥ 3. Then, for t ≥ 0, the following decay estimates hold for all 0 ≤ j ≤ s and certain
constants C , c > 0 independent of t and of the initial data:∥∥∥∇ju (t)

∥∥∥
L2(RN )

≤ C(‖u0‖L1(RN ) + ‖u1‖L1(RN ) + ‖u2‖L1(RN ))(1 + t)−(N−2)/4−j/2

+C(‖∇ju0‖L2(RN ) + ‖∇ju1‖L2(RN ) + ‖∇ju2‖L2(RN ))e−ct . (55)

where c = min
{

1
β
, |Re(λ2,3(ξν1 ))|

}
.
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Theorem (L1,1–initial data)

Let 0 < τ < β and let u0, u1, u2 ∈ L1(RN) ∩ Hs(RN). Also, let
(u1, u2) ∈ L1,1(RN) with

∫
RN ui (x)dx = 0, i = 1, 2. Then, for 0 ≤ j ≤ s, the

following decay estimate holds:∥∥∇ju (t)
∥∥
L2(RN )

≤ C (‖u0‖L1(RN ) + ‖u1‖L1,1(RN ) + ‖u2‖L1,1(RN ))(1 + t)−N/4−j/2

+ C (‖∇ju0‖L2(RN ) + ‖∇ju1‖L2(RN ) + ‖∇ju2‖L2(RN ))e
−ct . (56)
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The assumption 0 < τ < β is a also necessary condition for stability

Hence, we first write the characteristic polynomial of the matrix Φ = (L + ξ2A):

p0(λ) = a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 (57)

where

a0 = τ, a1 = 1 + τ |ξ|2, a2 = (β + 1) |ξ|2, a3 =
(
β|ξ|2 + 1

)
|ξ|2, a4 = |ξ|4

Now, as all ai > 0 for i = 0, . . . , 4, we apply the Routh–Hurwitz theorem that ensures that all
the roots of the polynomial p0(λ) have negative real part if and only if all the leading minors
Ai , 1 ≤ i ≤ 4 of the matrix 

a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4


are strictly positive. In our case, we have

A1 = 1 + τ |ξ|2

A2 = |ξ|2
(
|ξ|2τ + β − τ + 1

)
A3 = |ξ|4(β − τ)

(
τ |ξ|4 + (β + 1)|ξ|2 + 1

)
A4 = |ξ|4A3.

Hence, the condition 0 < τ < β is a necessary and sufficient condition to have A3 > 0.
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The nonlinear model

We consider the nonlinear Jordan–Moore–Gibson–Thompson equation:

τuttt + utt − c2∆u − β∆ut =
∂

∂t

(
1

c2

B

2A
(ut)

2 + |∇u|2
)
, (58a)

where x ∈ RN (Cauchy problem), and t > 0. We consider the initial conditions:

u(t = 0) = u0, ut(t = 0) = u1 utt(t = 0) = u2. (58b)

We rewrite the right-hand side of equation (58a) in the form

∂

∂t

(
1

c2

B

2A
(ut)

2 + |∇u|2
)

=
1

c2

B

A
ututt + 2∇u∇ut ,

and introduce the new variables

v = ut and w = utt ,

Without loss of generality, we put c = 1. Then equation (58a) can be rewritten as the following
first order system 

ut = v ,

vt = w ,

τwt = ∆u + β∆v − w +
B

A
vw + 2∇u∇v ,

(59)

with the initial data

u(t = 0) = u0, v(t = 0) = v0, w(t = 0) = w0. (60)
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We introduce the energy norm, Ek (t), and the corresponding dissipation norm, Dk (t), as follows:

E2
k (t) = sup

0≤σ≤t

(∥∥∥∇k (v + τw)(σ)
∥∥∥2

H1
+
∥∥∥∆∇kv(σ)

∥∥∥2

L2
+
∥∥∥∇k+1v(σ)

∥∥∥2

L2

+
∥∥∥∆∇k (u + τv)(σ)

∥∥∥2

L2
+
∥∥∥∇k+1(u + τv)(σ)

∥∥∥2

L2
+ ‖∇kw(σ)‖2

L2

)
, (61)

and

D2
k (t) =

∫ t

0

(∥∥∥∇k+1v(σ)
∥∥∥2

L2
+
∥∥∥∆∇kv(σ)

∥∥∥2

L2
+ ‖∇kw(σ)‖2

L2

+
∥∥∥∆∇k (u + τv) (σ)

∥∥∥2

L2
+
∥∥∥∇k+1(v + τw)(σ)

∥∥∥2

L2

)
dσ. (62)

For some positive integer s ≥ 1 that will be fixed later on, we define

E2
s (t) =

s∑
k=0

E2
k (t) and D2

s (t) =
s∑

k=0

D2
k (t). (63)

B. Said-Houari (UoS) Jordan–Moore–Gibson–Thompson equation 30 / 55



Theorem (Local existence)

Assume that 0 < τ < β and let s > 5
2 = N

2 + 1. Let U0 = (u0, v0,w0)T be such
that

E2
s (0) = ‖(v0 + τw0)‖2

Hs+1 + ‖∆v0‖2
Hs + ‖∇v0‖2

Hs

+ ‖∆(u0 + τv0)‖2
Hs + ‖∇(u0 + τv0)‖2

Hs + ‖w0‖2
Hs ≤ δ̃0 (64)

for some δ̃0 > 0. Then, there exists a small time T = T (Es(0)) > 0 such that
problem (58) has a unique solution u on [0,T )× R3 satisfying

E2
s (T ) + D2

s (T ) ≤ Cδ̃0
,

where E2
s (T ) and D2

s (T ) are given in (63), determining the regularity of u, and
Cδ̃0

is a positive constant depending on δ̃0.

We write

U (t) = Φ(U)(t) = etAU0 +

∫ t

0

e(t−r)AF(U,∇U)(r)dr . (65)

and show that using the contraction mapping principle that there exists a unique
solution of (65).
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Theorem (Global existence)

Assume that 0 < τ < β and let s > 5
2 . Assume that u0, v0,w0 ∈ Hs(R3). Then

there exists a small positive constant α, such that if

E2
s (0) = ‖(v0 + τw0)‖2

Hs+1 + ‖∆v0‖2
Hs + ‖∇v0‖2

Hs

+ ‖∆(u0 + τv0)‖2
Hs + ‖∇(u0 + τv0)‖2

Hs + ‖w0‖2
Hs ≤ α,

then the local solution u exists globally in time.
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Theorem (Decay estimates)

Assume that 0 < τ < β and s > 5
2 . Let u be the global solution of (58).

Let v0 = ut(t = 0), v1 = utt(t = 0) and v2 = uttt(t = 0) satisfying
v0, v1, v2 ∈ L1(RN) ∩ Hs(RN) and (v1, v2) ∈ L1,1(RN) with∫
RN vi (x)dx = 0, i = 1, 2. Assume that ‖V0‖Hs∩L1 is small enough. Then,

the following decay estimates hold: (V := (v + τw ,∇(u + τv),∇v))

‖∇jV(t)‖L2 ≤ C (1 + t)−N/4−j/2,

for all 0 ≤ j ≤ s.
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We define

Ys(t) := E2
s (t) + D2

s (t).

The main goal is to prove by a continuity argument that for s large enough, Ys(t) is uniformly
bounded for all time if the initial energy E2

s (0) = Ys(0) is sufficiently small. Due to the presence
of the term −β∆tu in (58a) and the special nonlinearity, the global existence is proved without
using the decay of the linearized problem.

Proposition

Let s > 5
2

, then the following estimate holds for t in an interval [0,T ] of local existence:

Ys(t) ≤ Ys(0) + CY
3/2
s (t), (66)

where C is a positive constant that does not depend on t,T .

Proposition

Let s > 5
2

. Then, the following estimate holds:

E2
s (t) + D2

s (t) ≤ CE2
s (0) + CEs(t)D2

s (t). (67)
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Proof of global existence (First order energy estimates)

Lemma

The energy functional associated to system (59) is

E1(t) :=
1

2

∫
RN

(
|v + τw |2 + τ(β − τ)|∇v |2 + |∇(u + τv)|2

)
dx (68)

and satisfies, for all t ≥ 0, the identity

d

dt
E1(t) + (β − τ) ‖∇v‖2

L2 = R1, (69)

where

R1 :=

∫
RN

(
B

A
vw + 2∇u∇v

)
(v + τw) dx .
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Next, we define the energy of second order

E2(t) :=
1

2

∫
RN

(
|∇(v + τw)|2 + τ(β − τ)|∆v |2 + |∆(u + τv)|2

)
dx . (70)

The following lemma is proved analogously.

Lemma

The energy functional E2(t) satisfies, for all t ≥ 0, the identity

d

dt
E2(t) + (β − τ) ‖∆v‖2

L2 = R2, (71)

where

R2 := −
∫
RN

(
B

A
vw + 2∇u∇v

)
∆(v + τw)dx .
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Proof of global existence (First order energy estimates)

Now, we define the functional F1(t) as

F1(t) :=

∫
RN

∇(u + τv)∇(v + τw)dx . (72)

Then, we have

Lemma

For any ε0 > 0, we have

d

dt
F1(t) + (1− ε0)

∫
RN

|∆ (u + τv) |2dx

≤
∫
RN

|∇(v + τw)|2dx + C (ε0)

∫
RN

|∆v |2dx + |R̃2| (73)

with

R̃2 = −
∫
RN

(
B

A
vw + 2∇u∇v

)
∆ (u + τv) dx .

B. Said-Houari (UoS) Jordan–Moore–Gibson–Thompson equation 37 / 55



Proof of global existence (First order energy estimates)

Next, we define the functional F2(t) as

F2(t) := −τ
∫
RN

∇v∇(v + τw)dx . (74)

Lemma

For any ε1, ε2 > 0, we have

d

dt
F2(t) + (1− ε1)

∫
RN

|∇(v + τw)|2dx

≤ C (ε1, ε2)

∫
RN

(|∇v |2 + |∆v |2)dx + ε2

∫
RN

|∆(u + τv)|2dx + R3, (75)

where

R3 = τ

∣∣∣∣∫
RN

(
B

A
vw + 2∇u∇v

)
∆vdx

∣∣∣∣ .
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Crucial energy estimate

Now, multiplying the third equation in (59) by w and integrating over R3, we get

1

2

d

dt

∫
R3

τ |w |2 dx +

∫
R3

|w |2dx =

∫
R3

(∆u + β∆v)wdx

+

∫
R3

(B
A
vw + 2∇u∇v

)
wdx

≤ C (‖∆u‖L2 + ‖∆v‖L2 )‖w‖L2 + R̃1

≤ C (‖∆(u + τv)L2 + ‖∆v‖L2 )‖w‖L2 + R̃1

with

R̃1 :=

∫
R3

(B
A
vw + 2∇u∇v

)
wdx .

Applying Young’s inequality, we obtain

1

2

d

dt

∫
R3

τ |w |2 dx +
1

2

∫
R3

|w |2dx ≤ C (‖∆(u + τv)2
L2 + ‖∆v‖2

L2 ) + |R̃1|. (76)
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We define the Lyapunov functional L(t) as

L(t) := γ0 (E1(t) + E2(t) + ε0τ‖w‖L2 ) + F1(t) + γ1F2(t), (77)

we have L(t) ∼ E1(t) + E2(t), for γ0 large enough.
We have

d

dt
L(t) + (γ0(β − τ)− γ1C(ε1, ε2)) ‖∇v‖2

L2

+ (γ0(β − τ)− C(ε0)− γ1C(ε1, ε2)) ‖∆v‖2
L2

+(1− ε0 − γ1ε2) ‖∆ (u + τv)‖2
L2 (78)

+ (γ1(1− ε1)− 1) ‖∇(v + τw)‖2
L2

≤ γ0 (|R1|+ |R2|) + |R2|+ |R̃2|+ γ1|R3|.

Consequently, we deduce that there exists a positive constant γ2 such that for all t ≥ 0,

d

dt
L(t) + γ2

(
‖∇v‖2

L2 + ‖∆v‖2
L2 + ‖∆ (u + τv)‖2

L2 + ‖∇(v + τw)‖2
L2 + ‖w‖L2

)
≤ C

3∑
i=1

|Ri |+ CR̃2. (79)

Integrating (79) form 0 to t, we obtain

E2
0 (t) +D2

0(t) ≤ E2
0 (0) + C

∫ t

0

(
|R1(σ)|+ |R̃1(σ)|+ |R2(σ)|

+ |R̃2(σ)|+ |R3(σ)|
)
dσ, (80)

where

E2
0 (t) ≡ sup

0≤σ≤t
(E(σ) + ‖w(σ)‖2

L2 )

and

D2
0(t) =

∫ t

0

(
‖∇v‖2

L2 + ‖∆v‖2
L2 + ‖w‖2

L2 + ‖∆ (u + τv)‖2
L2 + ‖∇(v + τw)‖2

L2

)
ds.
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Estimate of
∫ t

0 Rj

Basic tools:

Ladyzhenskaya interpolation inequality in 3D

‖f ‖L4 ≤ c‖f ‖1/4
L2 ‖∇f ‖3/4

L2 (81)

Sobolev embedding in 3D:

‖u‖L6 ≤ C‖∇u‖L2 .

Gagliardo–Nirenberg interpolation inequality:∥∥∇ju
∥∥
Lp ≤ C ‖∇mu‖αLr ‖u‖1−α

Lq , 1 ≤ p, q , r ≤ ∞ (82)

where
1

p
=

j

n
+ α

(
1

r
− m

n

)
+

1− α
q

, 0 ≤ j < m (83)

for α satisfying j/m ≤ α ≤ 1

In particular

‖f ‖L3 ≤ C‖f ‖1/2
L2 ‖∇f ‖1/2

L2 (84)
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Lemma

Let 1 ≤ p, q, r ≤ ∞ and 1/p = 1/q + 1/r . Then, we have

‖∇k(uv)‖Lp ≤ C (‖u‖Lq‖∇kv‖Lr + ‖v‖Lq‖∇ku‖Lr ), k ≥ 0, (85)

and the commutator estimate

‖[∇k , f ]g‖Lp = ‖∇k(fg)− f∇kg‖Lp

≤ C (‖∇f ‖Lq‖∇k−1g‖Lr + ‖g‖Lq‖∇k f ‖Lr ), k ≥ 1, (86)

for some constant C > 0.
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|R1| =

∣∣∣∣∫
R3

(
B

A
vw + 2∇u∇v

)
(v + τw) dx

∣∣∣∣
≤ C

∣∣∣ ∫
R3

vw(v + τw)dx
∣∣∣+ C

∣∣∣ ∫
R3
∇u∇v (v + τw) dx

∣∣∣
≡ I1 + I2.

First, we estimate I1 as follows:

I1 = C
∣∣∣ ∫

R3
vw(v + τw)dx

∣∣∣
≤ C‖w‖L2‖v‖2

L4 + C‖v‖L2‖w‖2
L4 .

Using the Ladyzhenskaya interpolation inequality, we have

‖w‖L2‖v‖2
L4 ≤ C‖w‖L2‖v‖1/2

L2 ‖∇v‖
3/2

L2

= C‖v‖1/2

L2 ‖∇v‖
1/2

L2 ‖∇v‖L2‖w‖L2

≤ C(‖v‖L2 + ‖∇v‖L2 )‖∇v‖L2‖w‖L2 (87)

and

‖v‖L2‖w‖2
L4 ≤ C‖v‖L2‖w‖1/2

L2 ‖∇w‖
3/2

L2 . (88)
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Thus, using (88), we get∫ t

0
‖v(σ)‖L2‖w(σ)‖1/2

L2 ‖∇w(σ)‖3/2

L2 dσ

≤ C sup
0≤σ≤t

‖v(σ)‖L2

(∫ t

0
‖w(σ)‖2

L2dσ
)1/4(∫ t

0
‖∇w(σ)‖2

L2dσ
)3/4

≤ CE0(t)D2
0(t). (89)

Then, we deduce that

∫ t

0
I1(σ)dσ≤ CE0(t)D2

0(t). (90)

We can estimate I2 as follows:

I2 =
∣∣∣ ∫

R3
∇u∇v (v + τw) dx

∣∣∣ ≤
∣∣∣ ∫

R3
v∇u∇vdx

∣∣∣+
∣∣∣ ∫

R3
τ∇u∇vwdx

∣∣∣
= J1 + J2. (91)

It is clear that

J2 ≤ C‖∇u‖L∞‖∇v‖L2‖w‖L2 .

Then, Hölder’s inequality implies∫ t

0
J2(σ)dσ ≤ C sup

0≤σ≤t
‖∇u(σ)‖L∞D2

0(t).

Now, we need to estimate the term J1. This is done in the following lemma.
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Lemma

We have the estimate ∫ t

0
J1(σ)dσ ≤ CE0(t)D2

0(t).

Proof.
First, we have, by Hölder’s inequality

J1 ≤ C‖v‖L6‖∇u‖L3‖∇v‖L2 . (92)

Now, applying the interpolation inequality, which holds for N = 3,

‖f ‖L3 ≤ C‖f ‖1/2

L2 ‖∇f ‖
1/2

L2 (93)

we obtain

‖∇u‖L3 ≤ C‖∇u‖1/2

L2 ‖∇2u‖1/2

L2 . (94)

Consequently, using the above estimates, (92) becomes

J1 ≤ C‖∇u‖1/2

L2 ‖∇2u‖1/2

L2 ‖∇v‖2
L2

≤ C(‖∇u‖L2 + ‖∇2u‖L2 )‖∇v‖2
L2 . (95)B. Said-Houari (UoS) Jordan–Moore–Gibson–Thompson equation 45 / 55



Now, using the fact that

‖∇ku‖L2 ≤ C (‖∇k(u + τv)‖L2 + ‖∇kv‖L2 ), k ≥ 1,

together with (95), we obtain∫ t

0

J1(σ)dσ ≤ sup
0≤σ≤t

(‖∇u(σ)‖L2 + ‖∇2u(σ)‖L2 )

∫ t

0

‖∇v(σ)‖2
L2dσ

≤ CE0(t)D2
0(t).

This completes the proof.
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Higher-order energy estimates

Applying the operator ∇k , k ≥ 1 to (59), we get for U := ∇ku, V := ∇kv and W := ∇kw


∂tU = V ,

∂tV = W ,

τ∂tW = ∆U + β∆V −W +
B

A
[∇k , v ]w +

B

A
vW + 2[∇k ,∇u]∇v + 2∇u∇V ,

(96)

where [A,B] = AB − BA.
We define the first energy of order k as

E
(k)
1 (t) ; =

1

2

∫
RN

(
|∇kv + τ∇kw |2 + τ(β − τ)|∇k+1v |2 + |∇k+1u + τ∇k+1v |2

)
dx

=
1

2

∫
RN

(
|V + τW |2 + τ(β − τ)|∇V |2 + |∇(U + τV )|2

)
dx . (97)
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Lemma

For all t ≥ 0, it holds that

d

dt
E1(t)(k) + (β − τ) ‖∇V ‖2

L2 =

∫
RN

R
(k)
1 (t) (V + τW ) dx , (98)

where

R
(k)
1 (t) =

B

A
[∇k , v ]w +

B

A
vW + 2[∇k ,∇u]∇v + 2∇u∇V . (99)

As in the case k = 0, we define the second energy of order k as follows:

E
(k)
2 (t) :=

1

2

∫
RN

(
|∇(V + τW )|2 + τ(β − τ)|∆V |2 + |∆(U + τV )|2

)
dx . (100)

Lemma

The energy functional E2(t) satisfies, for all t ≥ 0, the identity

d

dt
E

(k)
2 (t) + (β − τ) ‖∆v‖2

L2 = −
∫
RN

R
(k)
1 ∆(V + τW )dx . (101)
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We define now the functional F
(k)
1 (t) as

F
(k)
1 (t) :=

∫
RN
∇(U + τV )∇(V + τW )dx . (102)

Lemma
For any ε′0 > 0, we have

d

dt
F

(k)
1 (t) + (1− ε′0)

∫
RN
|∆ (U + τV ) |2dx

≤
∫
RN
|∇(V + τW )|2dx + C(ε′0)

∫
RN
|∆V |2dx +

∫
RN
|R(k)

1 ||∆ (U + τV ) |dx (103)

E2
k (t) +D2

k (t) ≤ E2
k (0) +

5∑
i=1

∫ t

0
I

(k)
i (σ)dσ. (104)

where

5∑
j=1

I
(k)
j =

∫
R3
|R(k)

1 (t)|| (V + τW ) |dx + C

∫
R3
|∇R(k)

1 ||∇(V + τW )|dx

+ C

∫
R3
|R(k)

1 ||∆ (U + τV ) |dx + C

∫
R3
|∇R(k)

1 ||∇V |dx +

∫
R3
|R(k)

1 ||W |dx .

R
(k)
1 (t) =

B

A
[∇k , v ]w +

B

A
vW + 2[∇k ,∇u]∇v + 2∇u∇V .
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T1 =

∫
R3
|[∇k , v ]w || (V + τW ) |dx ≤

∥∥∥[∇k , v ]w
∥∥∥
L6/5
‖(V + τW )‖L6 . (105)

Applying, the commutator estimate (86), we have∥∥∥[∇k , v ]w
∥∥∥
L6/5
≤ C(‖∇v‖L2‖∇k−1w‖L3 + ‖w‖L2‖∇kv‖L3 ) (106)

To estimate the term ‖∇k−1w‖L3 , we apply (82) to find

‖∇k−1w‖L3 ≤ C‖∇kw‖
2k−1

2k

L2 ‖w‖
1

2k

L2 . (107)

Similarly, we have

‖∇kv‖L3 ≤ C‖∇k+1v‖
2k+1

2(k+1)

L2 ‖v‖
1

2(k+1)

L2 . (108)

Plugging (107) and (108) into (106), we obtain

∥∥∥[∇k , v ]w
∥∥∥
L6/5

≤ C‖∇v‖L2‖∇kw‖
2k−1

2k

L2 ‖w‖
1

2k

L2 + C‖w‖L2‖∇k+1v‖
2k+1

2(k+1)

L2 ‖v‖
1

2(k+1)

L2

= C‖∇v‖
2k−1

2k

L2 ‖w‖
1

2k

L2 ‖∇v‖
1

2k

L2 ‖∇kw‖
2k−1

2k

L2

+C‖w‖
2k+1

2(k+1)

L2 ‖v‖
1

2(k+1)

L2 ‖∇k+1v‖
2k+1

2(k+1)

L2 ‖w‖
1

2(k+1)

L2 . (109)
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Plugging (109) into (105), making use of Sobolev embedding theorem and
applying Young’s inequality, we get∫ t

0

T1(σ)dσ ≤ C sup
0≤σ≤t

(‖∇v(σ)‖L2 + ‖w(σ)‖L2 )

×
∫ t

0

‖∇v(σ)‖
1

2k

L2 ‖∇kw(σ)‖
2k−1

2k

L2 ‖∇(V + τW )‖L2

+C sup
0≤σ≤t

(‖v(σ)‖L2 + ‖w(σ)‖L2 )

×
∫ t

0

‖∇k+1v(σ)‖
2k+1

2(k+1)

L2 ‖w(σ)‖
1

2(k+1)

L2 ‖∇(V + τW )‖L2 .(110)

Applying Hölder’s inequality together with Young’s inequality, we obtain∫ t

0

T1(σ)dσ ≤ CE0(t)(D2
0(t) +D2

k(t)). (111)
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Let

Λ3(t) = (‖v‖W 1,∞ + ‖w‖L∞ + ‖∇u‖L∞ + ‖∇2u‖L∞ )(t).

Then, we have

E2
k (t) +D2

k (t) ≤ E2
k (0) + C(Λ3(t) + E0(t) + Ek (t))(D2

0(t) +D2
k−1(t) +D2

k (t))

≤ E2
k (0) + C(Λ3(t) + Es(t))(D2

0(t) +D2
k−1(t) +D2

k (t)). (112)

Summing up (112) over k = 1, . . . , s we find

E2
s (t) + D2

s (t) ≤ E2
s (0) + C(Λ3(t) + Es(t))D2

s (t). (113)

Now, we need to estimate Λ3(t) by Es(t) by using Sobolev embeddings. Due to the embedding
Hs(R3) ↪→W 1,∞(R3) for s > 5/2 we have

Λ3(t) ≤ CEs(t). (114)

Plugging (114) into (113), we conclude that (67) holds true.
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Decay estimates: Proof of Theorem 11

We define (recall that V := (v + τw ,∇(u + τv),∇v))

M(t) := sup
0≤σ≤t

s∑
j=0

(1 + τ)N/4+j/2(‖∇jV(σ)‖L2 + ‖∇jv(σ)‖L2 ).

We also define the quantities

M0(t) := sup
0≤σ≤t

(1 + σ)
N
2
(
‖V (σ)‖L∞ + ‖v (σ)‖L∞

)
,

M1(t) := sup
0≤σ≤t

(1 + σ)
N
2

+ 1
2 ‖∇V (σ)‖L∞ .

So, our goal is to show that M(t) is bounded uniformly in t if ‖V0‖Hs∩L1 = ‖V0‖Hs + ‖V0‖L1

is small enough. We have for U = (u, v ,w), and for 0 ≤ j ≤ s,

‖∇jU(t)‖H ≤ ‖∇jetAU0‖H +

∫ t

0

∥∥∥∇je(t−r)AF(U,∇U)(r)
∥∥∥
H

dr

= ‖∇jetAU0‖H +

∫ t/2

0

∥∥∥∇je(t−r)AF(U,∇U)(r)
∥∥∥
H

dr

+

∫ t

t/2

∥∥∥∇je(t−r)AF(U,∇U)(r)
∥∥∥
H

dr

≡ ‖∇jetAU0‖H + J1 + J2.
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‖∇jU(t)‖H ≤C(1 + t)−N/4−j/2
(
‖V0‖L1(RN ) + ‖∇jV0‖L2(RN )

)
+ CM2(t)(1 + t)−N/4−j/2 + C(1 + t)−N/4−j/2(M0(t) + M1(t))M(t)

This yields

M(t) ≤C
(
‖V0‖L1(RN ) + ‖∇jV0‖L2(RN )

)
+ CM2(t) + C(M0(t) + M1(t))M(t).

Applying for m > N
2

, the estimate

‖V‖L∞ ≤ C ‖∇mV‖
N

2m

L2 ‖V‖
1− N

2m

L2 ,

and similar estimates can be used for ‖v‖L∞ . This yields M0(t) ≤ CM(t), provided that
s ≥ m > N

2
.

Next, to estimate M1(t), we have for m > N+2
2

,

‖∇V‖L∞ ≤ C ‖∇mV‖
N+2
2m

L2 ‖V‖1− N+2
2m

L2 .

This leads to M1(t) ≤ CM(t), provided that s ≥ m > N
2

+ 1. Hence, since
M0(t) + M1(t) ≤ CM(t), then (115) implies that

M(t) ≤ C
(
‖V0‖L1(RN ) + ‖∇jV0‖L2(RN )

)
+ CM2(t).

Consequently, this gives the desired result, provided that ‖V0‖L1(RN ) + ‖∇jV0‖L2(RN ) is small
enough for all 0 ≤ j ≤ s.
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