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Stochastic target problem

Consider a system described by a stochastic process X t,x,ν controlled by ν and
starting at x at time t.

Stochastic target problem: Look for the values x such that the system
reaches a set K at a terminal time T by choosing an appropriate control ν:

Characterize the reachability sets

V (t) =
{
x ∈ Rd : X t,x,ν

T ∈ K a.s. for some admissible control ν
}

for t ∈ [0,T ].

B. Djehiche, KTH Mass Transport Towards a Target
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Motivating examples

• Optimal reservoir management problem (Upstream Sector in Petroleum
Industry): Find the minimal amount x of liquid (e.g. water) to be injected
(fracking) in a well at time t, to retrieve a desired amount X t,x,ν

T of (shale)
crude oil or gas, at time T , for some control ν (e.g. pipe dimension, pressure
etc..)

Other areas of application include

• Super-replication problem (Finance):
Find the minimal initial endowment such that there exists an investment
strategy allowing the terminal wealth to be greater than a given payoff.

• Evacuation strategies in Crowd dynamics

B. Djehiche, KTH Mass Transport Towards a Target
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• If we assume the flow property

X t,x
t = x , X t,x,ν

s = X
r,X t,x,ν

r ,ν
s , for any r ∈ [t, s], x ∈ Rd ,

the Geometric Dynamic Programming Principle (DPP) yields an HJB for the
set

V (t) =
{
x ∈ Rd : X t,x,ν

T ∈ K a.s. for some admissible control ν
}

:

I If X t,x,ν
s is Brownian diffusion, v(t, ·) = 1− 11V (t)(·) is shown to solve an

HJB equation (Soner and Touzi (2002), Bouchard et al. (2009)).

• In general, the minimal amount of water needed to extract shale oil/gas is
too high to be afforded.

B. Djehiche, KTH Mass Transport Towards a Target
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Extension of the stochastic target problem

Possible solution: relax the a.s. constraint to obtain a lower price (Föllmer and
Leuckert (1999), Bouchard et al. (2009)):

• Solve the injection problem under terminal profit & loss constraint:

V`(t) =
{
x ∈ Rd : E[`(X t,x,ν

T )] > 0 for some control ν
}
.

• Example: Take `(x) = 11K (x)− p with p ∈ [0, 1] to obtain

V`(t) =
{
x ∈ Rd : P(X t,x,ν

T ∈ K) > p for some control ν
}
.

I Main idea: use the martingale representation theorem (a type of Riesz
representation theorem) to express the expectation constraint as an a.s.
constraint of an extended process.
If Y is a function of the Brownian motion up to time T , then there exists
a unique process ’control’ α such that

Y = E[Y ] +

∫ T

0

αsdBs .

B. Djehiche, KTH Mass Transport Towards a Target
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Our case-study

Consider the stochastic target problem for controlled diffusion of mean-field
type:

X t,χ,ν
s = χ+

∫ s

t

b(X t,χ,ν
u ,PX

t,χ,ν
u

, νu)du +

∫ s

t

σ(X t,χ,ν
u ,PX

t,χ,ν
u

, νu)dBu,

where

I PX
t,χ,ν
u

= X t,χ,ν
u #P denotes the probability law of X t,χ,ν

u under P,

I b, σ deterministic functions of (x , y , z).

I B is a standard Brownian motion,

I χ square-integrable and Ft-adapted.

Still with the time consistent constraint E[`(X t,x,ν
T )] > 0, x ∈ Rd .

B. Djehiche, KTH Mass Transport Towards a Target
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The particle picture: mean-field limit

For i = 1, 2, . . . ,, the B i ’s are independent Brownian motion.
Consider

X t,i,n
s = χi,n +

∫ s

t

b(X t,i,n
u ,

1

n

n∑
j=1

δ
X

t,j,n
u

, νu)du +

∫ s

t

σ(X t,χ,ν
u ,

1

n

n∑
j=1

δ
X

t,j,n
u

, νu)dB i
u,

If χi,n ' χi with χi independent with the same probability law as χ, then

X t,i,n ' X t,i,ν ,
1

n

n∑
j=1

δX t,j,n ' PX t,χ,ν , as n→∞,

where the X t,i,ν are independent with the same probability law as X t,χ,ν .

B. Djehiche, KTH Mass Transport Towards a Target
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Extended problem: conditional law

• Problem: While X t,χ,ν , χ square-integrable r.v., defines a flow,
X t,x,ν , x ∈ Rd does not have the above flow property!

• In general X t,χ,ν 6= X t,x,ν |x=χ.

• Condition on the Brownian motion B and apply the martingale representation
theorem to obtain

E[`(X t,χ,ν
T )] =

∫
`(x)dPB

X
t,χ,ν
T

(x) −
∫ T

t

αsdBs

for some control α,

where PB
X

t,χ,ν
T

(x) is the conditional probability law of X t,χ,ν
T given B i.e.

PX
t,χ,ν
T

(x) =

∫
Py

X
t,χ,ν
T

(x)PB(dy).

B. Djehiche, KTH Mass Transport Towards a Target
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The constraint E[`(X t,χ,ν
T )] > 0 can be rewritten as

L(PB

X̃
t,χ̃,ν̃
T

) > 0 or PB

X̃
t,χ̃,ν̃
T

∈ L−1([0,+∞)) a.s.

with ν̃ = (ν, α), χ̃ = (χ, 0),

X̃ t,χ̃,ν̃ = (X t,χ,ν ,

∫ .

t

αsdBs),

L(µ) =

∫
(`(x)− y)m(dx , dy),

m(dx , dy) := PB

X̃
t,χ̃,ν̃
T

(dx , dy),

suggesting a stochastic target problem which involves PB
X

t,χ,ν
T

.

B. Djehiche, KTH Mass Transport Towards a Target
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Quenched mean-field SDE

Desintegrating PX
t,χ,ν
T

w.r.t. B, the dynamics of X t,χ,ν can be written as

X t,χ,ν
s = χ +

∫ s

t

b(X t,χ,ν
u , PB

X
t,χ,ν
u

, νu)du +

∫ s

t

σ(X t,χ,ν
u , PB

X
t,χ,ν
u

, νu)dBu.

Such general formulation is related to the probabilistic analysis of large scale
particle systems.

In those systems, one is interested in the behavior of particles conditional on
the environment (‘quenched’ behavior/property) (see e.g. Le Doussal and
Machta (1989)).

B. Djehiche, KTH Mass Transport Towards a Target
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Interpretation of the target problem

By considering a probability law µ as initial condition, instead of χ, our target
problem can be interpreted as a transport problem:

What is the collection of initial distributions µ of a system of particles, such
that the terminal conditional law PB

X
t,χ,ν
T

, given the environment (modeled by

B) satisfies the constraint?

The reachability set reads

V(t) =
{
µ : there exists (χ, ν) s.t. PB

χ = µ and PB
X

t,χ,ν
T

∈ G a.s.
}
.

B. Djehiche, KTH Mass Transport Towards a Target
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Probabilistic setting

T > 0 fixed time horizon.

Ω◦ = {ω◦ ∈ C([0,T ],Rd) : ω◦0 = 0}

F◦ = (F◦t )t≤T filtration generated by the canonical process B(ω◦) := ω◦,
ω◦ ∈ Ω◦.

P◦ Wiener measure on (Ω◦,F◦T ).

F̄◦ = (F̄◦t )t≤T the P◦-completion of F◦.

Ωı := [0, 1]d endowed with σ-algebra F ı := B([0, 1]d) and the Lebegues
measure Pı.

B. Djehiche, KTH Mass Transport Towards a Target
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Probability space

We then define the product filtered space (Ω,F ,F,P) by

I Ω := Ω◦ × Ωı,

I P = P◦ ⊗ Pı,

I F = FT where F = (Ft)t≤T is the completion of (F◦t ⊗F ı)t≤T .

We canonically extend the random variable ξ defined on Ωı and the process B
on Ω by setting ξ(ω) = ξ(ωı) and B(ω) = B(ω◦) for any ω = (ω◦, ωı) ∈ Ω.

B. Djehiche, KTH Mass Transport Towards a Target
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Advantages of this set up

Yields the following key ingredients to show the Geometric DPP and derive the
HJB equation using Lions lifting argument:

• If ν is F-progressively measurable, then

νs(ω
◦, ωı) = u(s,B·∧s(ω

◦), ξ(ωı)), s ∈ [0,T ],

with u a Borel function.

• Jankov-von Neumann’s measurable selection theorem: there exists a
measurable map ϑ such that (G closed set)

PB

X
θ,χ′,ϑ(χ′)
T

∈ G P◦ − a.s. for P− a.e. χ′

where P is the probability measure induced by ω◦ 7→ X t,χ,ν
θ (ω◦, .).

B. Djehiche, KTH Mass Transport Towards a Target
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Wasserstein space

We define

P2 :=

{
µ probability measure on (Rd ,B(Rd)) s.t.

∫
Rd

|x |2µ(dx) < +∞
}
.

This space is endowed with the 2-Wasserstein distance defined by

W2(µ, µ′) := inf
{∫

Rd×Rd

|x − y |2π(dy , dy) :

s.t. π(· × Rd) = µ and π(Rd × ·) = µ′
} 1

2
,

for µ, µ′ ∈ P2. For later use, we also define the collection P F̄◦
2 of F̄◦-adapted

continuous P2-valued processes.

B. Djehiche, KTH Mass Transport Towards a Target
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Controlled quenched diffusion

Let U be a closed subset of Rq for some q > 1 and U the set of U-valued
F-progressive processes.

Given

I θ ∈ T̄ ◦ (the set of [0,T ]-valued F̄◦-stopping times),

I χ ∈ L2(Ω,Fθ,P;Rd),

I ν ∈ U ,

we let X θ,χ,ν denote the solution of

X = E[χ|Fθ∧·] +

∫ θ∨·

θ

b
(
Xs ,PB

Xs
, νs
)
ds +

∫ θ∨·

θ

a
(
Xs ,PB

Xs
, νs
)
dBs ,

B. Djehiche, KTH Mass Transport Towards a Target
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Existence, uniqueness and stability

We suppose that b, a are continuous, bounded and there exists a constant L
such that

|b(x , µ, ·)− b(x ′, µ′, ·)|+ |a(x , µ, ·)− a(x ′, µ′, ·)| 6 L
(
|x − x ′|+W2(µ, µ′)

)
for all t ∈ [0,T ], x , x ′ ∈ Rd and µ, µ′ ∈ P2.

Proposition

For all θ ∈ T̄ ◦, ν ∈ U and χ ∈ L2(Fθ), the SDE admits a unique strong
solution X θ,χ,ν , and it satisfies

E
[

sup
[0,T ]

|X θ,χ,ν |2
]
< +∞,

PB
X

t,χ,ν
T

= PB

X
θ,X

t,χ,ν
θ

,ν

T

(Flow property).

Moreover, if (tn, χn)→ (t, χ) and (νn)n ⊂ U converges to ν dt ⊗ dP-a.e., then

lim
n→∞

E[W2(PB

X
tn,χn,νn

T

,PB
X

t,χ,ν
T

)2 ] = 0.

B. Djehiche, KTH Mass Transport Towards a Target
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First formulation

Look for the set of initial measures for the conditional law PB
χ such that the

terminal conditional law of X t,χ,ν
T given B belongs to a fixed closed subset G of

P2:

V(t) =
{
µ ∈ P2 : there exists (χ, ν) ∈ L2(Ft)× U s.t. PB

χ = µ and PB
X

t,χ,ν
T

∈ G
}
.

This formulation is not convenient for setting a Geometric DPP:

• In V(t) only the probability distribution µ should matter and not a particular
representation χ.

B. Djehiche, KTH Mass Transport Towards a Target
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Strong formulation

The following strong formulation allows to take any representing random
variable χ for µ.

Proposition

A measure µ ∈ P2 belongs to V(t) if and only if for all χ ∈ L2(Ft) such that
PB
χ = µ there exists ν ∈ U for which PB

X
t,χ,ν
T

∈ G:

V(t) =
{
µ ∈ P2 : ∀χ ∈ L2(Ft) s.t. PB

χ = µ ∃ν ∈ U for which PB
X

t,χ,ν
T

∈ G
}
.

This defines a mass transport problem towards a given target along the path of
a mean-field diffusion.

B. Djehiche, KTH Mass Transport Towards a Target
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Dynamic programming principle

Theorem

Fix t ∈ [0,T ] and θ ∈ T̄ ◦ with values in [t,T ]. Then,

V(t) =
{
µ ∈ P2 : ∃(χ, ν) ∈ L2(Ft)× U s.t. PB

χ = µ and PB
X

t,χ,ν
θ

∈ V(θ)
}
.

Note that this DPP holds only for stopping times in T̄ ◦ i .e. stopping time
w.r.t. the Brownian filtration.

B. Djehiche, KTH Mass Transport Towards a Target
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The value function

Let v : [0,T ]× P2 → R be the indicator function of the complement of the
reachability set V:

v(t, µ) = 1− IV(t)(µ) , (t, µ) ∈ [0,T ]× P2.

Aim: provide a characterization of v as a (discontinuous viscosity) solution of a
fully non-linear second order parabolic partial differential equation.

B. Djehiche, KTH Mass Transport Towards a Target
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Lifting on P2

Aim: define derivatives for functions defined on P2.

• Issue: P2 is not a vector space.

Possible approach: Lions Lifting

For a function w : P2 → R, we define its lift as W : L2(Ωı,F ı,Pı;Rd)→ R
such that

W (X ) = w(PX ) , for all X ∈ L2(Ωı,F ı,Pı;Rd) .

Allows to consider functions defined on the Hilbert space L2(Ωı,F ı,Pı;Rd).

B. Djehiche, KTH Mass Transport Towards a Target
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Derivatives on P2

We then say that w is Fréchet differentiable (resp. C1) on P2 if its lift W is
(resp. continuously) Fréchet differentiable on L2(Ωı,F ı,Pı;Rd).

Then DW (X ) ∈ L2(Ωı,F ı,Pı;Rd) admits the representation

DW (X ) = ∂µw(PX )(X )

with ∂µw(PX ) : Rd → Rd measurable map, called the derivative of w at PX .

We have ∂µw(µ) ∈ L2(Rd ,B(Rd), µ;Rd) for µ ∈ P2.

We denote by ∂x∂µw(µ)(x) the gradient of x ∈ Rd 7→ ∂µw(µ)(x).

We have the following identification

E
[
D2W (X )(YZ)YZ>

]
= E

[
Tr
(
∂x∂µw(µ)(X )YY>

)]
(1)

for any Y ∈ L2(Ωı,F ı,Pı;Rd×d), Z ∼ N(0, Id) and Z ⊥⊥ (X ,Y )

B. Djehiche, KTH Mass Transport Towards a Target
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Chain rule

Proposition

Let w ∈ C1,2
b ([0,T ]× P2). Given (t, χ, ν) ∈ [0,T ]× L2(Ft)× U , set

X = X t,χ,ν . Then,

w(s,PB
Xs

) = w(t,PB
χ)

+

∫ s

t

EB

[
∂tw(r ,PB

Xr
) + ∂µw(r ,PB

Xr
)(Xr )br

]
dr

+
1

2

∫ s

t

EB

[
Tr
(
∂x∂µw(r ,PB

Xr
)(Xr )ara

>
r

)]
dr

+
1

2

∫ s

t

EB

[
ẼB

[
Tr
(
∂2
µw(r ,PB

Xr
)(Xr , X̃r )ar ã

>
r

)]]
dr

+

∫ s

t

EB

[
∂µw(r ,PB

Xr
)(Xr )ar (Xr ,PB

Xr
, νr ))

]
dBr

for all s ∈ [t,T ], where (X̃ , ã) is a copy of (X , a) on (Ω̃, F̃ , P̃).
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Chain rule on L2

Given X ∈ L2(Ω,F ,P;Rd), denote W (t,X ) the r.v. ω0 ∈ Ω0 7→W (t,X (ω0, ·))
a r.v. in L2(Ωı,F ı,Pı;Rd).

Corollary

Let W : [0,T ]× L2(Ωı,F ı,Pı;Rd)→ R be C1,2
b . Set X = X t,χ,ν . Then,

W (s, X̃s) = W (t, χ̃)

+

∫ s

t

ẼB

[
∂tW (r , X̃r ) + DW (r , X̃r )br (X̃r , P̃B

Xr
, ν̃r )

]
dr

+
1

2

∫ s

t

ẼB

[
D2W (r , X̃r )(Xr )ara

>
r (X̃r , P̃B

X̃r
, ν̃r )

]
dr

+

∫ s

t

ẼB

[
DW (r , X̃r )ar (X̃r , P̃B

X̃r
, ν̃r ))

]
dBr ,

for all s ∈ [0,T ].

B. Djehiche, KTH Mass Transport Towards a Target



Introduction
Quenched mean-field SDE
Stochastic target problem

The dynamic programming PDE
Conclusion

A ’quenched’ PDE

We show that V : [0,T ]× L2(Ωı,F ı,Pı;Rd)→ R (lift of v) is a viscosity
solution on [0,T )× L2(Ωı,F ı,Pı;Rd) of the quenched PDE

−∂tW (t, ξ) +H
(
t, ξ,DW (t, ξ),D2W (t, ξ)

)
= 0,

where H = limε→0+Hε,

Lu(ξ,P,Q) := EB

[
b>(ξ,Pξ, u)P + 1

2
Q
(
a(ξ,Pξ, u)Z

)
a(ξ,Pξ, u)Z

]
,

Hε(t, ξ,P,Q) := supu∈Nε(t,ξ,P)

{
− Lu(ξ,P,Q)

}
,

Nε(t, ξ,P) :=
{
u ∈ L0(Ω,F ,P;U) : |EB [a(χ,Pξ, u)P]| ≤ ε

}
,

P ∈ L2(Ω,F ,P;U), Q self-adjoint operator on L2(Ω,F ,P;U),

where EB [ · ] means conditioning w.r.t. (Br , r ≤ T ).
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Continuity assumption

We need the following assumption. It ensures the existence of a regular
feedback control ’close’ to the kernel N0.

Continuity Assumption: Let O be an open subset of
[0,T ]× [L2(Ω,F ,P;Rd)]2 such that N0 6= ∅ on O. Then, for every ε > 0,
(t0, χ0,P0) ∈ O and u0 ∈ N0(t0, χ0,P0), there exists an open neighborhood O′
of (t0, χ0,P0) and a measurable map û : [0,T ]×Rd ×Rd ×Ωı → U such that:

(i) EB [|ût0 (χ0,P0, ξ)− u0|] 6 ε,

(ii) there exists C > 0 for which

E[|ût(χ,P, ξ)− ût(χ
′,P ′, ξ)|2] ≤ CE[|χ− χ′|2 +W2

2 (PP ,PP′)]

for all (t, χ,P), (t, χ′,P ′) ∈ O′,

(iii) ût(χ,P, ξ) ∈ N0(t, χ,P) P◦ − a.e., for all (t, χ,P) ∈ O′,
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Viscosity property

We also suppose that there exists a constant C and a function m : R+ → R
such that m(t) −−→

t→0
0 and

|b(x , µ, u)− bt′(x , µ, u
′)|+ |a(x , µ, u)− a(x , µ, u′)| 6 m(t − t′) + C |u − u′|.

for all t, t′ ∈ [0,T ], x ∈ Rd , µ ∈ P2 and u, u′ ∈ U.

Theorem

The function V is a viscosity supersolution of the HJB equation.

If in addition the Continuity Assumption holds, then V is also a viscosity
subsolution of the HJB equation.
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Parabolic boundary conditions

Define the function g by

g(ξ) = 1− IG (Pξ) , ξ ∈ L2(Ωı,F ı,Pı;Rd)

and g∗ and g∗ its lower and upper semi-continuous envelopes.

Theorem

Under (H1), the function V satisfies

V ∗(T , .) = g∗ and V∗(T , .) = g∗

on L2(Ωı,F ı,Pı;Rd).
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Conclusion and perspectives

I Introduced a seemingly new stochastic target problem with potential
financial and engineering applications.

I Obtained a dynamic programming principle

I Obtained a random PDE and derived some of its properties

Extensions and open problems

I Uniqueness (or a comparison result) for the PDE

I Target problem for PXT (unconditional law)

I Numerics for the quenched PDE.

I Processes quenched by other environments such as jump processes, long
memory processes (fractional BM etc..)
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Thank You!
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