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Aim : investigate the global well-posedness for the (DNLS) equation

(DNLS)

{
iut + uxx = ±i∂x(|u|2u), x ∈ R

u|t=0 = u0

• (DNLS) involves in several physical problems :

- Asymptotic regimes of the propagation of Alfvén waves in polarized plasmas

- MHD equation in the presence of the Hall effect,...

• A considerable literature dealing with the (DNLS) equation since 2
decades :

- Local well-posedness is fully understood

- Global well-posedness is not completely settled

- Study of associated solitary waves : stability, variational characterization,...
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Local well-posedness :

• Fully understood in the scale of Sobolev spaces

- Well-posedness for Cauchy data u0 in Hs(R), s ≥ 1
2 and blow-up criterion

Hayachi-Ozawa (1992) in H1-setting, Takaoka (1999) for Hs(R), s ≥ 1
2

- Ill-posedness in Hs(R), s < 1
2 :

Biagioni-Linares (2001), Takaoka (2001)

• Main difficulty

- Derivative in the nonlinear term which generates a loss of derivative when
investigating directly this nonlinear term

- One can overcome this difficulty by a gauge transformation

- The improvement from H1 to H
1
2 is technically very costly
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Known results about global well-posedness

• Best results up-to-date

- u0 in H
1
2(R), with small mass ‖u0‖2L2 < 4π : Guo-Wu (2017)

- u0 in H2,2(R) =
{
f ∈ H2 : x2f ∈ L2

}
: Jenkins-Liu-Perry-Sulem (2020)

• Two different approches

- PDE approach

a) First series of results under the assumption ‖u0‖2L2 < 2π : Hayashi-Ozawa
(1994), Colliander-Keel-Staffilani-Takaoka-Tao (2002),...

b) Results under the assumptions ‖u0‖2L2 < 4π : Wu (2015), ...

- Inverse scattering approach (integrability structure) :

Pelinovsky-Saalmann-Shimabukuro (2017), Jenkins-Liu-Perry-Sulem (2018),
(2020)
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Studies in other frameworks

• On the Torus

- Local well-posedness in H
1
2(T) : Herr (2006)

- Local well-posedness in Ĥr
1/2(T) : Deng-Andrea-Nahmod-Yue (2019)

(spaces used by Grünrock)

- Local well-posedness under smallness condition on the mass : Mosincat-Oh

(2015), Mosincat (2017)

- Probabilistic approach : Andrea-Nahmod-Tadahiro-Oh-Rey-Bellet-Staffilani

(2012)

• On the half-line

• A priori estimates in low regularity Klaus-Schippa (2020),...
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Basic properties of the (DNLS) equation

• Symmetry : the change of variable x→ −x =⇒ ±→ ∓

- In what follows

(DNLS)

 iut + uxx = −i∂x(|u|2u)

u|t=0 = u0 ∈ H
1
2(R)

• Invariances

- L2-critical : u(t, x)→ uµ(t, x) =
√
µu(µ2t, µx), µ > 0

- 1/2 derivative gap in the Hs-scale : studies in Ĥr
1/2 / ‖u‖Ĥr

1/2
(R) = ‖〈·〉

1
2û‖

Lr
′

Grünrock (2005) : local well-posedness for u0 ∈ Ĥr
1
2
, 1 < r ≤ 2

• (DNLS) is completely integrable

Infinite number of conservation laws, a Lax pair, explicit solitary waves,...

NYU ABU DHABI, January 2021 6



There are two philosophies concerning the study of global well-posedness for

the (DNLS) equation :

- PDEs methods

behind the results with smallness condition on the mass

- Inverse scattering methods

behind the results in weighted Sobolev spaces

- In this work, we combine the two approaches to improve the known global

well-posedness results
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We prove the global well-posedness of (DNLS) for general initial data in H
1
2 :

For any u0 ∈ H
1
2(R), the Cauchy problem associated with (DNLS) is globally

well-posed, and the corresponding solution u satisfies

sup
t∈R
‖u(t)‖

H
1
2(R)

< +∞

• Our result closes the discussion in the setting of the Sobolev spaces Hs

• If u0 ∈ Hs(R), s ≥ 1/2, then no turbulence occurs

sup
t∈R
‖u(t)‖Hs(R) < +∞
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Keys tools in the known global well-posedness previous results : two

strikingly different strategies

• PDEs arguments : to show that ‖u(t, ·)‖Ḣs is bounded

- Conservation laws : in particular, in H1 framework

M(u) =
∫
R
|u(t, x)|2dx

P (u) = Im
∫
R
u(t, x)ux(t, x)dx+

1

2

∫
R
|u(t, x)|4dx

E(u) =
∫
R

(
|ux(t, x)|2 −

3

2
Im|u(t, x)|2u(t, x)ux(t, x) +

1

2
|u(t, x)|6

)
dx

- Gauge transformation Ga

v(t, x) = Gau(t, x) = eia
∫ x
−∞ |u(t,y)|2dyu(t, x)
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Idea of proof of Hayashi-Ozawa global result : u0 ∈ H1 with ‖u0‖2L2 < 2π

• Gauge transformation v(t, x) = G3
4
u(t, x)

• Conservation laws

M(v) = ‖u0‖2L2, E(v) = ‖∂xv(t, ·)‖2
L2 −

1

16
‖v(t, ·)‖6

L6

• Gagliardo-Nirenberg inequality

‖f‖6
L6 ≤

4

π2
‖∂xf‖2L2‖f‖4L2

Then

‖∂xv(t, ·)‖2
L2 ≤ E(v) +

1

16
‖v(t, ·)‖6

L6 ≤ E(v) +
(

1

2π
‖u0‖2L2

)2
‖∂xv(t, ·)‖2

L2

In H
1
2 setting, the proof is more involved (I-method of Bourgain)

Colliander-Keel-Staffilani-Takaoka-Tao
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• Inverse scattering technics

- They are linked to the integrability structure of the equation

- The integrability structure of the equation imposes a sort of rigidness

- They require some regularity and decay : as for instance the weighted

Sobolev spaces

H2,2(R) =
{
f ∈ H2(R) : x2f ∈ L2(R)

}
in the article of Jenkins-Liu-Perry-Sulem (2020)

- One can weaken the hypothesis on the spaces taking for instance H2 ∩H1,1

as in the article of Pelinovsky-Saalmann-Shimabukuro, but by imposing some

generic conditions on the set of the scattering data

The strategy amounts to solve an inverse problem by recovering u from the

scattering data
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General strategy of proof of the global well-posedness

- By contradiction assuming that there is (tn) such that

µn = ‖u(tn, ·)‖2
Ḣ

1
2(R)

→ +∞

- We rescale u(tn, ·) defining Un = 1√
µn
u(tn, ·µn) : (Un) bounded in H

1
2(R)

- One can then apply the profile decompositions method to (Un) (bubbles) :

Brezis-Coron (1985),..., Gérard (1998), Merle-Vega (1998),..., Kenig-Merle

(2008),... Jaffard (1999), Bahouri-Majdoub-Masmoudi (2011),

Bahouri-Perelman (2014), Bahouri-Cohen-Koch (2011), Tintarev...

Other approaches : P.-L. Lions, Tartar, Murat-Tartar, Gérard,...

- The result we obtain here has additional properties coming from the

integrability structure of the equation

- Finally, we get a contradiction by using scattering transform tools
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• The starting point : Kaup-Newell paper (1978)

- (DNLS) is the integrability condition for the overdetermined system :

∂xψ = −iσ3

(
λ2 + iλU

)
︸ ︷︷ ︸

U(λ)

ψ

∂tψ =
(
− i(2λ4 − λ2 |u|2)σ3 + (2λ3 − λ |u|2)σ3U + iλUx

)
︸ ︷︷ ︸

Υ(λ)

ψ

λ ∈ C, ψ(t, x, λ) a C2-valued function, σ3 the Pauli matrix

σ3 =

(
1 0
0 −1

)
and U(t, x) =

(
0 u(t, x)

u(t, x) 0

)
- u satisfies the DNLS equation if and only if (Lax pair)

∂U
∂t
−
∂Υ

∂x
+ [U ,Υ] = 0

- The scattering transform is defined via the first equation

Lu(λ)ψ = 0, Lu(λ) = iσ3∂x − λ2 − iλU
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- The heart of the matter relies on the study of the operator Lu(λ)

• If u ∈ S, then there are unique solutions ψ−1 , ψ+
2 holomorphic on

Ω+ = {λ ∈ C : Imλ2 > 0}, C∞ on Ω+ (Jost solutions)

ψ−1 (x, λ) = e−iλ
2x

[(
1
0

)
+ ◦(1)

]
, as x→ −∞

ψ+
2 (x, λ) = eiλ

2x

[(
0
1

)
+ ◦(1)

]
, as x→ +∞

This issue amounts to study a Volterra operator type : integrability condition

on u is needed

• Since U is a traceless matrix, au the Wronskian of ψ−1 and ψ+
2 is

independent of x (transmission coefficient 1/au)

au(λ) = det(ψ−1 (x, λ), ψ+
2 (x, λ))

• Other ways to define au : a coefficient in the transfer matrix, regularized

Fredholm determinant that can be defined for u ∈ L2
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• If u = u(t) is a solution of (DNLS), then (using the second equation)

∂tau(t)(λ) = 0⇔ au(t)(λ) = au0(λ)

• au satisfies several useful properties :

- au(0) = 1

- Invariances : auµ(λ) = au

(
λ√
µ

)
, au = au(· − x0), au = aeiθu , ∀θ ∈ R

- Asymptotic behavior (that can be proved using a suitable transform
reducing Lu(λ) to a Zakharov-Shabat spectral problem)

lim
|λ|→∞, λ∈Ω+

au(λ) = e
− i

2‖u‖
2
L2(R)

• We introduce, for ζ ∈ C with Im ζ ≥ 0, ãu(ζ) = e
i
2‖u‖

2
L2(R)au(

√
ζ)

lim
|ζ|→∞, ζ∈C+

ãu(ζ) = 1, |ãu(ζ)| ≥ 1 for ζ ∈ R− and |ãu(ζ)| ≤ 1 for ζ ∈ R+

In particular, ln ãu(ζ) (which is holomorphic on ζ in C+ for |ζ| sufficiently
large) plays an important role in the study of (DNLS)
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• Under the hypothesis that (i) ãu does not vanish on the real line and ii) ãu
has only simple zeros ζ1, . . . , ζN in C+ (that hold generically in S(R)

Beals-Coifman,...), one has (by complex analysis arguments)

ãu(ζ) =
N∏
j=1

(
ζ − ζj
ζ − ζj

)
exp

(
1

2iπ

∫ ∞
−∞

dζ′

ζ′ − ζ
ln |ãu(ζ′)|2

)
which leads to the following asymptotic expansion as |ζ| → +∞, Im ζ ≥ 0 :

ln ãu(ζ) =
∑
k≥1

Ek(u)ζ−k

Ek are, up to a constant, the conservation laws of (DNLS)

P (u) = −8
N∑
j=1

Im ζj +
2

π

∫ ∞
−∞

dξ ln |ãu(ξ)|2

M(u) = 4
N∑
j=1

arg(ζj)−
1

π

∫ ∞
−∞

dξ

ξ
ln |ãu(ξ)|2︸ ︷︷ ︸

≥0
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Crucial properties concerning the zeros of ãu

• The real parts of the zeros of ãu(ζ) are low-bounded uniformly/ ‖u‖
H

1
2

if ãu(ζ0) = 0, then Re(ζ0) ≥ −C(‖u‖
H

1
2
)

• Bounds on the number of the zeros of ãu in the angles, using the

expression of the mass by means of its zeros and the trace on the real line

]
{
ζ ∈ C+ : ãu(ζ) = 0, 0 < θ0 < arg ζ < π

}
≤

1

4θ0
‖u‖2

L2

• Under the hypothesis of Beals-Coifman, if ãu 6= 0 on the ray eiθ0 R+, then

(trace formula and complex analysis)

]
{
ζ ∈ C+ : ãu(ζ) = 0, 0 < θ0 < arg ζ < π

}
=

1

2iπ

+∞ eiθ0∫
0

ã′u(s)

ãu(s)
ds+

1

4π
‖u‖2

L2
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Summary

To u solution of (DNLS), we associate ãu holomorphic in C+ :

• ãu(t) = ãu0, ãuµ(ζ) = ãu

(
ζ
µ

)
, ãu(0) = e

i
2‖u‖

2
L2, ãu(ζ)

|ζ|→∞−→ 1

• Complex analysis formula (that holds generically)

ãu(ζ) =
N∏
j=1

(
ζ − ζj
ζ − ζj

)
exp

(
1

2iπ

∫ ∞
−∞

dζ′

ζ′ − ζ
ln |ãu(ζ′)|2

)
• Stability estimates, bounds on the number of the zeros and their real parts

• ln ãu : holomorphic, trace formula,...

• If ãu(ζ0) = 0, then there exists ψ0 with ‖ψ0‖L2 = 1 such that

Lu(λ0)ψ0 = 0, with ζ0 = λ2
0

NYU ABU DHABI, January 2021 18



First step : Rigidity type theorem

If for u0 ∈ H
1
2, µn = ‖u(tn)‖2

Ḣ
1
2
→ +∞, then there is 1 ≤ L0 ≤

‖u0‖2L2
4π such

that, up to subsequence extraction (Un = 1√
µn
u(tn, ·µn))

Un(y) =
L0∑
`=1

V (`)(y − y(`)
n ) + rn(y) , ‖rn‖Lp(R)

n→∞−→ 0, ∀2 < p <∞

with for all ` 6= `′, |y(`)
n − y(`′)

n |
n→∞−→ ∞, V (`) 6= 0 in H

1
2(R) and ã

V (`) ≡ 1.
Moreover, we have the stability estimates

‖Un‖2L2 =
L0∑
`=1

‖V (`)‖2
L2 + ‖rn‖2L2 + ◦(1), n→∞ ,

- ã
V (`) ≡ 1⇒ ‖V (`)‖2

L2 = 4kπ
orthogonality⇒ a finite number of profiles

- If ‖V (`)‖2
L2 = 4π

(symmetries)⇒ V (`)(x) = 2
√

2√
1+4x2

(extremal of some

Gagliardo-Nirenberg inequality) Berestycki-Lions (1983)
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Scheme of the proof of the profile decomposition

- The standard profile decomposition techniques ensure that (but with L ≥ 0

and V (`) ∈ H
1
2) (up to subsequence extraction)

Un(y) =
L∑
`=0

V (`)(y − y(`)
n ) + rLn(y) , lim sup

n→∞
‖rLn‖Lp

L→∞−→ 0, ∀2 < p <∞

Two additional informations : L ≥ 1 and ã
V (`) ≡ 1

- How to prove that there is at least one profile V (`) 6= 0?

• If all the profiles V (`) = 0, then by construction ‖Un‖L4
n→∞−→ 0 and

since P (Un) = 1
µn
P (u(tn)) = 1

µn
P (u0), we deduce that

Im
∫
R
Un(x)(Un)x(x)dx

n→∞−→ 0

• One cannot conclude with ‖Un‖
Ḣ

1
2

= 1 ! The difficulty is that the

momentum does not allow to control the H
1
2-norm

• In H1-framework, one can easily conclude using the energy
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• We overcome this difficulty by proving that, for R large

enough, ϕu(ρ) = Im(ln ãu(iρ)), ρ > 0 belongs to L1([R,+∞[) and that

‖u‖2
Ḣ

1
2(R)

.R,‖u‖
L2
‖ϕu‖L1([R,+∞[) + ‖u‖4

L4(R)

Trace formula (for |ζ| large enough, with Tu(
√
ζ) = i

√
ζ(iσ3∂x − ζ)−1U)

ln ãu(ζ) =
i

2
‖u‖2

L2(R) −
∞∑
k=2

Tr T ku(
√
ζ)

k
=

i

2

∫
R
dp
p|û(p)|2

p+ 2ζ
−
∞∑
k=4

Tr T ku(
√
ζ)

k
,

which implies that

ϕu(ρ) =
∫
R
dp
p2|û(p)|2

p2 + 4ρ2︸ ︷︷ ︸
L1(ρ ≥ R) &

∫
|p|≥R

|p||û(p)|2dp

+O‖u‖
L2

(
ρ−1−s‖u‖

Ḣ
1
4+s(R)

)

ϕu used in works in other contexts

Killip-Visan (2019) and Koch-Tataru (2018), Klaus-Schippa (2020),...
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• Applying the above estimate to u(tn, ·) and using the conservation of au,

we get

‖u(tn, ·)‖2
Ḣ

1
2(R)

.R,‖u0‖L2
‖ϕu(tn,·)‖L1︸ ︷︷ ︸

=‖ϕu0‖L1

+‖u(tn, ·)‖4L4(R)

which implies that

‖u(tn, ·)‖4L4(R) ≥ cµn, c > 0

• Then, by scale invariance

‖Un‖4L4(R) ≥ c

which implies that there is at least one profile V (`) 6= 0

• A key information : ãu(t) = ãu0
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- Now how to prove that ã
V (`) ≡ 1?

The proof of this property is more involved than the first one. It is based on

two main steps :

Step 1

In this step, we establish that, for all ρ ≥ C(‖u0‖L2) (ϕu(ρ) = Im(ln ãu(iρ))),

ϕ
V (`)(ρ) = 0

and in passing, we prove that ã
V (`) does not vanish

Step 2

In the second step, we complete the proof by proving the following general

result :

Let u ∈ H
1
2 such that ãu has no zeros in C+. If ϕu(ρ0) = 0 for some ρ0 > 0,

then ãu ≡ 1
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1) We prove that, for all ρ ≥ C(‖u0‖L2) (ϕu(ρ) = Im(ln ãu(iρ))),

ϕ
V (`)(ρ) = 0

• A profile decomposition for ϕUn(ρ)

ϕUn(ρ) =
L∑
`=1

ϕ
V (`)(ρ) + Φn,L(ρ) with lim sup

n→∞
Φn,L(ρ)

L→∞−→ 0

(i) Realization of au as a regularized Fredholm determinant (Brascamp,

Gohberg-Krien, Dunford-Schwartz, ...)

(ii) Factorization of aUn using the general profile decomposition of (Un) and

general properties of the regularized Fredholm determinants

• Thanks to the conservation of the ãu(t), the scale invariance and the

asymptotic at infinity, we get

ϕUn(ρ) = ϕu0(µnρ)
n→∞−→ 0, ∀ρ > 0
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• One can then conclude by showing that, for all `,

ϕ
V (`)(ρ) ≥ 0

(i) First, we use the complex analysis formula

ã(ζ) =
N∏
j=1

(
ζ − ζj
ζ − ζj

)
exp

(
1

2iπ

∫ ∞
−∞

dζ′

ζ′ − ζ
ln |ã(ζ′)|2

)

That holds generically, then wn
n→+∞−→ V (`) such that

ϕwn(ρ) =
∑

1≤j≤Nn
Reζnj >0

Im ln
(iρ− ζnj
iρ− ζnj

)

︸ ︷︷ ︸
≥0

−
1

2π

∞∫
−∞

dξ

ξ2 + ρ2
ξ ln |ãwn(ξ)|2

︸ ︷︷ ︸
≥0

+
∑

1≤j≤Nn
Reζnj <0

Im ln
(iρ− ζnj
iρ− ζnj

)
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(ii) Second, we prove that

∑
1≤j≤Nn
Reζnj <0

Im ln
(iρ− ζnj
iρ− ζnj

)
n→+∞−→ 0

which gives the result, thanks to the stability estimates

Now, how to establish the above property ?

Key argument : ã
V (`) does not vanish on C+

By contradiction, assuming that there is `0 and ψ0 such that

L
V (`0)(λ0)ψ0 = 0, with ‖ψ0‖L2 = 1

Writing LUn(λ0)ψ0(· − y(`0)
n ) = Rn(y), we easily find that ‖Rn‖L2

n→+∞−→ 0 the

orthogonality between the profiles
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By scale invariance and the conservation of the transition coefficient

aUn(λ0) = au(tn,·)(
√
µnλ0) = au0(

√
µnλ0)

According to the asymptotic at infinity, this implies that

|aUn(λ0)| ≥
1

2
, n >> 1⇔ LUn(λ0) is invertible

which leads to a contradiction, since LUn(λ0) is invertible and ‖ψ0‖L2 = 1

Then using the stability of the ”transmission coefficient” (here involves the

information : ã
V (`) does not vanish on C+), we deduce that

sup
j=1,...,Nn

Imζn
j

|Reζn
j |

n→∞−→ 0

which ensures the result thanks to the mass conservation ⇒

]
{
ζni ,Re(ζnj ) < 0

}
. ‖wn‖2L2 . ‖V (`)‖2

L2 . ‖u0‖2L2
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2) We conclude, by proving the following general result :

Let u ∈ H
1
2 such that ãu has no zeros in C+. If ϕu(ρ0) = 0 for some ρ0 > 0,

then ãu ≡ 1

(i) Using the complex analysis formula

ã(ζ) =
N∏
i=1

(
ζ − ζi
ζ − ζi

)
exp

(
1

2iπ

∫ ∞
−∞

dζ′

ζ′ − ζ
ln |ã(ζ′)|2

)
and an appropriate approximation (wn), one can prove that for all ρ > 0

ãwn(iρ)
n→∞−→ 1

(ii) By stability estimates, we deduce that

ãu ≡ 1 on iR+

The analyticity of ãu allows to conclude the proof
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Second step : End of the proof

- To complete the proof of the theorem, and with such decomposition at
hand, we prove that, up to a subsequence extraction and an appropriate
approximation (Beals-Coifman,...)

The coefficient ãUn admits at least a zero ζn such that

Re(ζn) ≤ −c0, n >> 1 with c0 > 0

- This leads to a contradiction, since by scale invariance and in view of the
conservation of the transition coefficient

ãUn(ζn) = ãu0(µnζn)

and we know that the real parts of the zeros of ãu0 are lower bounded

Re(µnζn) ≥ −C
Therefore

−
C

µn︸ ︷︷ ︸
n→+∞−→ 0

≤ Re(ζn) ≤ −c0︸ ︷︷ ︸
<0
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Idea of proof of the fact that ãUn admits at least a zero ζn

Two key ingredients :

• The closeness of ãUn and ãrn

ãUn(ζ)− ãrn(ζ)
n→+∞−→ 0

(i) Regularized Fredholm determinants

(ii) ã
V (`) ≡ 1

• By the analyticity and the asymptotic at infinity, ∃ π2 < θ0 < π such that

ãu0(ζ) 6= 0 , ∀ζ , θ0 ≤ arg(ζ) < π .

By scale invariance, conservation of the transmission coefficients, the
asymptotic and the closeness of ãUn and ãrn, we have

sup
ζ∈C+

arg ζ=θ0

∣∣∣∣1− ãrn(ζ)

ãUn(ζ)

∣∣∣∣ n→+∞−→ 0
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Then, using the bounds on the number of zeros of ã, we get

]
{
ζ ∈ C+ : ãUn(ζ) = 0, θ0 < arg ζ < π

}
≥

1

4π

(
‖Un‖2L2 − ‖rn‖2L2

)
︸ ︷︷ ︸

n→+∞−→
∑L0
`=1 ‖V

(`)‖2
L2(R)

Here involves the fact that there is at least a profile V (`) 6= 0

Idea of proof of Re(ζn) ≤ −c0, n >> 1 with c0 > 0

By contradiction, assuming that (up to a suitable approximation)

lim inf
n→∞ Re(ζn) ≥ 0

Then applying the Bäcklund transformation, we get a contradiction

The key property of the Bäcklund transformation is that it allows to add or

to remove eigenvalues of the Kaup-Newell spectral problem
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