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Aim : investigate the global well-posedness for the (DNLS) equation

Wy + Upr = ii@m(lﬂlz'U/), r €R
Ujp—0 = UQ

(DNLS){

e (DNLS) involves in several physical problems :
- Asymptotic regimes of the propagation of Alfvén waves in polarized plasmas
- MHD equation in the presence of the Hall effect,...

e A considerable literature dealing with the (DNLS) equation since 2
decades :

- Local well-posedness is fully understood
- Global well-posedness is not completely settled

- Study of associated solitary waves : stability, variational characterization,...
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Local well-posedness :

e Fully understood in the scale of Sobolev spaces

- Well-posedness for Cauchy data ug in H*(R), s > 5 and blow-up criterion
Hayachi-Ozawa (1992) in Hl-setting, Takaoka (1999) for H5(R), s 2%

- Ill-posedness in H5(R), s < % ;

Biagioni-Linares (2001), Takaoka (2001)

e Main difficulty

- Derivative in the nonlinear term which generates a loss of derivative when
investigating directly this nonlinear term

- One can overcome this difficulty by a gauge transformation

1, :
- The improvement from H! to HZ is technically very costly
M; NYU ABU DHABI, January 2021 3



Known results about global well-posedness

e Best results up-to-date

1
- ug in H2(R), with small mass [lug||%, < 47 : Guo-Wu (2017)

- ug in H%2(R) = {f € H?: z2f ¢ LQ} . Jenkins-Liu-Perry-Sulem (2020)
e [ wo different approches

- PDE approach

a) First series of results under the assumption ||u0||%2 < 27 : Hayashi-Ozawa
(1994), Colliander-Keel-Staffilani-Takaoka-Tao (2002),...

b) Results under the assumptions [lug||2, < 47 : Wu (2015), ...
- Inverse scattering approach (integrability structure) :

Pelinovsky-Saalmann-Shimabukuro (2017), Jenkins-Liu-Perry-Sulem (2018),
(2020)
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Studies in other frameworks
e On the Torus
1
- Local well-posedness in H2(T) : Herr (2006)

- Local well-posedness in EI{/Q(T) . Deng-Andrea-Nahmod-Yue (2019)
(spaces used by Griinrock)

- Local well-posedness under smallness condition on the mass : Mosincat-Oh
(2015), Mosincat (2017)

- Probabilistic approach : Andrea-Nahmod-Tadahiro-Oh-Rey-Bellet-Staffilani
(2012)

e On the half-line

e A priori estimates in low regularity Klaus-Schippa (2020),..
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Basic properties of the (DNLS) equation
e Symmetry . the change of variable x - —x =— + — F

- In what follows

Wy + Upr = —i@x(1|u|2u)

(DNLS){

e Invariances

- L2-critical : u(t,z) — uu(t,x) = \/ﬁu(,uzt,,ux), © >0

1
- 1/2 derivative gap in the H*%-scale : studies in H"“/2/||u||H7, R) = 1(-)2all

Griinrock (2005) : local well-posedness for ug € HY, 1 < r < 2
2

e (DNLS) is completely integrable

Infinite number of conservation laws, a Lax pair, explicit solitary waves,.
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There are two philosophies concerning the study of global well-posedness for
the (DNLS) equation :

- PDEs methods

behind the results with smallness condition on the mass
- Inverse scattering methods

behind the results in weighted Sobolev spaces

- In this work, we combine the two approaches to improve the known global
well-posedness results

m NYU ABU DHABI, January 2021 4



1
We prove the global well-posedness of (DNLS) for general initial data in H2 :

1
For any ug € H2(R), the Cauchy problem associated with (DNLS) is globally
well-posed, and the corresponding solution u satisfies

sup [lu(t)]| 1 < oo
teR H2(R)

e Our result closes the discussion in the setting of the Sobolev spaces H?

o If ug € H°(R), s > 1/2, then no turbulence occurs

S t s <
Sub lwC) | rs(ry < o0
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Keys tools in the known global well-posedness previous results : two
strikingly different strategies

e PDEs arguments : to show that |lu(t,-)|| ;s is bounded

- Conservation laws : in particular, in HY framework
M(u) = /R|u(t,x)|2d:c
— 1
Im/ t, t,x)dx —/ u(t, x *dx
| ult Dug(t,x)dr + o | Ju(t, @)

> 3 2 —— 1 6
/R (lux(t, 513>| — EIm|U(t, ZIZ)| w(t, x)uzs(t,x) + §|u(t7 g;)| )dw

P(u)

E(u)

- Gauge transformation Gq

v(t,z) = Gau(t,x) = et o |u(t’y)|2dyu(t, x)
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Idea of proof of Hayashi-Ozawa global result : ug € H! with ||uo||%2 < 27
e Gauge transformation v(t,x) = Gzu(t, x)
4

e Conservation laws

1
M(v) = Jugll32, E(v) = [[0zv(t,)||72 — 1—6Hv(t, )96

e Gagliardo-Nirenberg inequality

4
§) 2 4
IAlliLe = Sl0xflIZ2ll A7z

Then
1 1 2
J0r0(t, )22 < B@) + 14llv(t,)ISs < B@) + (o-lluoli?) llosu(t, )12

1
In H2 setting, the proof is more involved (I-method of Bourgain)
Colliander-Keel-Staffilani- Takaoka-Tao
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e Inverse scattering technics
- They are linked to the integrability structure of the equation
- The integrability structure of the equation imposes a sort of rigidness

- They require some regularity and decay : as for instance the weighted
Sobolev spaces

H?2(R) = {f € H*(R) : 2°f € L*(R)}
in the article of Jenkins-Liu-Perry-Sulem (2020)

- One can weaken the hypothesis on the spaces taking for instance H2n H1:1
as in the article of Pelinovsky-Saalmann-Shimabukuro, but by imposing some
generic conditions on the set of the scattering data

T he strategy amounts to solve an inverse problem by recovering u from the
scattering data
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General strategy of proof of the global well-posedness

- By contradiction assuming that there is (t,) such that

pn = |lu(tn, )II* 1 — +oo
H2(R)

1
- We rescale u(tn,-) defining U, = \/%_nu(tn,m) . (Up) bounded in H2(R)
- One can then apply the profile decompositions method to (U,) (bubbles) :
Brezis-Coron (1985),..., Gérard (1998), Merle-Vega (1998),..., Kenig-Merle

(2008),... Jaffard (1999), Bahouri-Majdoub-Masmoudi (2011),
Bahouri-Perelman (2014), Bahouri-Cohen-Koch (2011), Tintarev...

Other approaches : P.-L. Lions, Tartar, Murat-Tartar, Gérard,...

- The result we obtain here has additional properties coming from the
integrability structure of the equation

- Finally, we get a contradiction by using scattering transform tools

m NYU ABU DHABI, January 2021 12



e The starting point : Kaup-Newell paper (1978)

- (DNLS) is the integrability condition for the overdetermined system :
Opth = —7;03(/\2 + z‘AU) W
U
o = ( —i(2A* = A2 |u[D)o3 + (223 — A |[u|?)osU + iAUw) W

\ 7

T
A€ C, ¥(t,z,\) a C2-valued function, o3 the Pauli matrix

03=<(1) _Ol> and U(t,@:(ﬂ(gw) “%”)

- u satisfies the DNLS equation if and only if (Lax pair)

ou oY
— U, Tl =0
ot (‘9:1:_|_[7 ]

- The scattering transform is defined via the first equation

Lu(\)Y = 0, Lu(\) = i030; — A2 — i\U
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- The heart of the matter relies on the study of the operator L, ()\)
e If u € S, then there are unique solutions ¥, w; holomorphic on
Qy ={AeC: ImA?> 0}, C® on Q2 (Jost solutions)

sy = ¥l L) 4o

e = () 4o

This issue amounts to study a Volterra operator type : integrability condition
on wu IS needed

, as I — —o0

, asS x — +oo

e Since U is a traceless matrix, ay the Wronskian of ¢, and w;r IS
independent of z (transmission coefficient 1/ay,)

au(N) = det(7 (2, \), ¥ (2, )

e Other ways to define aq : a coefficient in the transfer matrix, regularized
Fredholm determinant that can be defined for u € L2
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o If u =wu(t) is a solution of (DNLS), then (using the second equation)

8tau(t)(>\) =0 <«& au(t)()\) = auo()\)
e a, Satisfies several useful properties :

- CLu(O) =1
- Invariances : auu()\) = au(%ﬁ), ay = ay(- — xg), ay = ae, , V0 € R

- Asymptotic behavior (that can be proved using a suitable transform
reducing L, (\) to a Zakharov-Shabat spectral problem)

lim ay(N) = HUHLQ(R)

‘A‘—)OO >\E§_|_

e We introduce, for ¢ € C with Im¢ > 0, ay(¢) = 2” ”LQ(R) au(+/C)

im  @u(¢) =1, |au(¢)| > 1 for¢ € R and [au(¢)] < 1 for¢ € Ry

In particular, Ina,(¢) (which is holomorphic on ¢ in C4 for [¢| sufficiently
large) plays an important role in the study of (DNLS)
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e Under the hypothesis that (i) a, does not vanish on the real line and ii) ay
has only simple zeros (1,...,{y in C4 (that hold generically in S(R)
Beals-Coifman,...), one has (by complex analysis arguments)

au(¢) = j]f[l (g = %) exp (5 [ C’df/c in ()

which leads to the following asymptotic expansion as |{| — +oco, ImM({ >0 :

INau(¢) = 3 Ep(u)¢ "

k>1

E} are, up to a constant, the conservation laws of (DNLS)

N 5 oo
P(u)=-8 3 1m¢G+= [ deinjau(©)?
1 T J—00

j:

M) =4y, arg(¢) — [ G AP

Jj=1 .

~N~

>0
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Crucial properties concerning the zeros of a,

e The real parts of the zeros of a,({) are low-bounded uniformly/ ||ul|
H

N|—

if @u,(¢p) = 0, then Re({p) > —C(||u||H1)

e Bounds on the number of the zeros of aq in the angles, using the
expression of the mass by means of its zeros and the trace on the real line

- _ 1 2
#{¢eCy: au(¢) =0, 0<fp<arg¢<m} < 2o llz2
e Under the hypothesis of Beals-Coifman, if @, 7 0 on the ray e0R_, then
(trace formula and complex analysis)
1 —|—ooei
jj{g‘e@+: auw(¢) =0, O<90<argg‘<7r}=—, /

297

ay, ()
ay(s)

ds + —||u||L2
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Summary

To u solution of (DNLS), we associate a, holomorphic in C4 :

T 2
o () = Gug u,(Q) = u($), @u(0) = 2112, 3,(0) 7 1

e Complex analysis formula (that holds generically)
N /
N ¢—Gj 1 o d¢ SVNT
(@ =] (;=2)exo (5. | In (<2
: ]1}1 ¢ —¢; 2im S0 ¢/ —¢
e Stability estimates, bounds on the number of the zeros and their real parts
e Inay, : holomorphic, trace formula,...

o If ay(Cp) = O, then there exists g with [|3g|/;2 = 1 such that

Lu(Ao)o =0, with (o= A3
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First step : Rigidity type theorem

2
1
If for ug € H2, pupn = [|u(tn)||? ;| — +oo, then there is 1 < Lg < s OH suc
H?2

that, up to subsequence extraction (U, = \/T_nu(tn,u;n))

O ()

TL—)OO
Un(y) = > VO —yn ) 4+ ra®), Itall o) =3 0, ¥2 < p < oo
(=1

h

1
with for all £ £ ¢, [y$ — (ﬁ’)| "Z%° 0, VW £ 0 in H2(R) and ay ) = 1.

Moreover, we have the stability estimates

L
1Unl22 =3 (IVO)2, + [Im]?2 +0(1), n— oo,
/=1

i
orthog:gma Ity

-ay@ =1= ||V(€)||L2 = 4km a finite number of profiles

symmetries) 2\/2

- If V(£> 2 — 4 ( —_— V(ﬁ) p—
H H 2 n (JZ) ]__|_43j
Gagliardo-Nirenberg inequality) Berestycki-Lions (1983)
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Scheme of the proof of the profile decomposition

- The standard profile decomposition techniques ensure that (but with L >0
1
and V) € H2) (up to subsequence extraction)

L
: L
Un(y) = > VO(y - ui?) + rk(y), tlimsup k|| » =50, ¥2 < p < o
ﬁ:O n—oo
Two additional informations : L > 1 and ay ) =1

- How to prove that there is at least one profile 1409, =*= 07

e If all the profiles V() = 0, then by construction ||Uy| ;4 "=3° 0 and
since P(Uy) = iP(u(tn)) = M—lnP(UO), we deduce that

Im /R Un(2) (Un)o(z)dz "= 0
e One cannot conclude with ||Uy|| 1 = 1! The difficulty is that the
H?2
1
momentum does not allow to control the H2-norm

e In Hl—framework, one can easily conclude using the energy
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e \We overcome this difficulty by proving that, for R large
enough, pu(p) =Im(nay(ip)), p > 0 belongs to LY ([R,+oo[) and that

Hu“?ﬁ(m{) SR,HuHLQ ||90u||L1([R,_|_OO[) + ||u||£LL4(R)
Trace formula (for |¢| large enough, with Ty (1/C) = i/C(io30: — ()~ 1U)
& TrTi(vVe) i plu()|? & TrT; (V<)
=5 Jp >

- T2
| U — - ’
nay(¢) QHUHLQ(R) k§2 L p+ 2¢ h—a k

which implies that

214 2
ou(p) = /Rd p=lu(p)|

—1—s
D +O ( ul| 1 >
ey lufl 2P ||HZ+S(R)

Lo=R) 2 [ Ipllacp)dp
[pI=R

oy, Used in works in other contexts

Killip-Visan (2019) and Koch-Tataru (2018), Klaus-Schippa (2020),...
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e Applying the above estimate to u(¢n,-) and using the conservation of ay,
we get

2 4
[u(tn, °)I|H%(R) SR uoll, 2 1Putts, ) It Hllultn, )l pa gy

=lleugll1

which implies that
|u(tn, ')”24(1@) > cpp, ¢ >0
e [ hen, by scale invariance
4
|Unll T4y > c

which implies that there is at least one profile 1749 =0

e A key information : a, ) = aug
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- Now how to prove that a,, ) =17

The proof of this property is more involved than the first one. It is based on
two main steps :

Step 1

In this step, we establish that, for all p > C(J|ug||;2) (pulp) =IMm(Inay(ip))),

ey (p) =0

and in passing, we prove that a,,) does not vanish

Vv (£

Step 2

In the second step, we complete the proof by proving the following general
result :

1
Let v € H2 such that @, has no zeros in C,. If pyu(po) = 0 for some pg > 0O,
then ay =1
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1) We prove that, for all p > C(Jlug||;2) (pulp) =Im(Inay(ip))),

ey (p) =0
e A profile decomposition for ¢ (p)

L
. . L
ou,(0) = > pyw@(p) + Py r(p)  with limsup &, 1.(p) =30
/=1

(i) Realization of a, as a regularized Fredholm determinant (Brascamp,
Gohberg-Krien, Dunford-Schwartz, ...)

(ii) Factorization of ay,, using the general profile decomposition of (Un) and
general properties of the regularized Fredholm determinants

e Thanks to the conservation of the a, (), the scale invariance and the
asymptotic at infinity, we get

w1, (p) = uo(pnp) =30, Vp>0
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e One can then conclude by showing that, for all ¢,

ey (p) =20

(i) First, we use the complex analysis formula

© = 11 (=8) e (5 [ 55 matF)

That holds generically, then wy, "=5° V() such that

@)

ip— ¢ 1 de¢ B
pw,(p) = > Imin ( —Zz) A / S 54 1In G, ()12
1<j<Np ZP_Cj 27T—oo §&<+p
Re(”™>0 N — y
- _ ) >0
>0
1o —
+ > Imln(. _‘Zl>
1<j<N, =G
ReC}L<O
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(ii) Second, we prove that

ip— ¢
> Imln(, _:7,1> marCy
1<j<N, =G

ReC?<O

which gives the result, thanks to the stability estimates
Now, how to establish the above property ?
Key argument : ay,) does not vanish on C

By contradiction, assuming that there is ¢g and g such that

Ly, (Ao)vo =0,  with |42 =1

Writing Ly, (Ao)to(- — 550)) = Ru(y), we easily find that |[Rnll;2 "=5° 0 the

orthogonality between the profiles
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By scale invariance and the conservation of the transition coefficient

ay, (Ao) = ayt,, ) (VEnAo) = aug(v/HnAo)
According to the asymptotic at infinity, this implies that
1
lagr, (Ao)| > 5 7 >> 1< Ly (Mo)is invertible

which leads to a contradiction, since L (M) is invertible and ||v¢p|l;2 =1

Then using the stability of the "transmission coefficient” (here involves the
information : a,,) does not vanish on C,), we deduce that

MG noee

sup

which ensures the result thanks to the mass conservation =

1{¢" Re(¢]) < 0} S llwnll72 S V)22 < lluoll?2
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2) We conclude, by proving the following general result :

1
Let v € H2 such that @y has no zeros in Cp. If pyu(po) = 0 for some pg > 0,
then ay =1

(i) Using the complex analysis formula
N /
_ C—G 1 oo d¢ -
a0 =1 (=) exn (5 [~ 7 nfa(HI?)
i—1 N6 — G 24w J—oc0 (' — ¢
and an appropriate approximation (wy), one can prove that for all p > 0

(ii) By stability estimates, we deduce that

T he analyticity of a, allows to conclude the proof
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Second step : End of the proof

- To complete the proof of the theorem, and with such decomposition at
hand, we prove that, up to a subsequence extraction and an appropriate
approximation (Beals-Coifman,...)

The coefficient a7, admits at least a zero ¢, such that

Re((n) < —cg, n>>1 with ¢ >0
- This leads to a contradiction, since by scale invariance and in view of the
conservation of the transition coefficient

aUn(Cn) — auo(,unCn)
and we know that the real parts of the zeros of aq, are lower bounded

Re(ﬂnCn) > —C
T herefore

C
—— < Re(¢n) < —cp
HUn by

—— <0

n—>_—|—>ooo
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Idea of proof of the fact that ay, admits at least a zero ¢
Two key ingredients :

e The closeness of a;;,, and ar,

ay, (€) — ar,(¢) "25% 0

(i) Regularized Fredholm determinants

e By the analyticity and the asymptotic at infinity, 3% < fp < 7 such that

aug(¢) =0, V¢, g <arg(¢) <.

By scale invariance, conservation of the transmission coefficients, the
asymptotic and the closeness of aqi;, and ar,, we have

sup |1 — ilrn(C) n2H g
ceCy aUn(C)
arg (=0
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Then, using the bounds on the number of zeros of a, we get

T

~ 1
H{¢e Tyt ay, (=0, 6g<arg¢<m}>_— ([Unlfz— lInli72)

Here involves the fact that there is at least a profile v () = 0
Idea of proof of Re((n) < —cpg, n>>1 with ¢ >0

By contradiction, assuming that (up to a suitable approximation)
liminf Re({n) > 0

Then applying the Backlund transformation, we get a contradiction

The key property of the Backlund transformation is that it allows to add or
to remove eigenvalues of the Kaup-Newell spectral problem
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