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1. Motivations
Goal: Stability of stationary solution H of a nonlinear wave
equation (in dimension 1).
Example: • H ≡ 0 stationary solution of
(∂2

t − ∂2
x + 1)u = N(u) = O(u2), u → 0. If Cauchy data are of

size ε� 1 in a space of smooth decaying functions, then
‖u(t, ·)‖L∞ = O(εt−

1
2 ), t → +∞ (Lindblad-Soffer, D., Stingo).

• The kink H(x) = tanh(x/
√
2) is a stationary solution of the φ4

model
(∂2

t − ∂2
x )φ = φ− φ3.

Write φ(t, x) = H(x) + ϕ(t
√
2, x
√
2). Then the perturbation ϕ

solves (
D2
t − (D2

x + 1 + 2V (x))
)
ϕ = κ(x)ϕ2 +

1
2
ϕ3

where
Dt = 1

i ∂t ,V (x) = −3
4 cosh−2

(
x
2

)
∈ S(R), κ(x) = 3

2 tanh
(
x
2

)
.

Known results • Orbital stability of H (Henry, Perez and
Wreszinski). 2
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• Kowalczyk, Martel and Muñoz: Asymptotic stability locally in
space.
Operator −∂2

x + 2V (x) has [0,+∞[ as absolutely continuous
spectrum and two eigenvalues −1 and −1

4 .
Restriction: From now on we consider only odd perturbations ϕ.
Then if Y is a normalized eigenfunction associated to eigenvalue
−1

4 , we may decompose

(ϕ(t, x), ∂tϕ(t, x)) = (u1(t, x), u2(t, x))︸ ︷︷ ︸
Proj. on a.c. spectrum

+(z1(t), z2(t))Y (x).

Theorem (KMM)
If (ϕ, ∂tϕ)|t=0 is small in H1 × L2 and odd, then∫ +∞

−∞

[
|z1(t)|4 + |z2(t)|4

]
dt < +∞

∫ +∞

−∞

∫
R

[
(∂xu1)2 + u2

1 + u2
2
]
(t, x)e−c0|x | dxdt < +∞.

3



• Kowalczyk, Martel and Muñoz: Asymptotic stability locally in
space.
Operator −∂2

x + 2V (x) has [0,+∞[ as absolutely continuous
spectrum and two eigenvalues −1 and −1

4 .
Restriction: From now on we consider only odd perturbations ϕ.
Then if Y is a normalized eigenfunction associated to eigenvalue
−1

4 , we may decompose

(ϕ(t, x), ∂tϕ(t, x)) = (u1(t, x), u2(t, x))︸ ︷︷ ︸
Proj. on a.c. spectrum

+(z1(t), z2(t))Y (x).

Theorem (KMM)
If (ϕ, ∂tϕ)|t=0 is small in H1 × L2 and odd, then∫ +∞

−∞

[
|z1(t)|4 + |z2(t)|4

]
dt < +∞

∫ +∞

−∞

∫
R

[
(∂xu1)2 + u2

1 + u2
2
]
(t, x)e−c0|x | dxdt < +∞.

3



• Kowalczyk, Martel and Muñoz: Asymptotic stability locally in
space.
Operator −∂2

x + 2V (x) has [0,+∞[ as absolutely continuous
spectrum and two eigenvalues −1 and −1

4 .
Restriction: From now on we consider only odd perturbations ϕ.
Then if Y is a normalized eigenfunction associated to eigenvalue
−1

4 , we may decompose

(ϕ(t, x), ∂tϕ(t, x)) = (u1(t, x), u2(t, x))︸ ︷︷ ︸
Proj. on a.c. spectrum

+(z1(t), z2(t))Y (x).

Theorem (KMM)
If (ϕ, ∂tϕ)|t=0 is small in H1 × L2 and odd, then∫ +∞

−∞

[
|z1(t)|4 + |z2(t)|4

]
dt < +∞

∫ +∞

−∞

∫
R

[
(∂xu1)2 + u2

1 + u2
2
]
(t, x)e−c0|x | dxdt < +∞.

3



ε−4

Theorem (KMM)
If (ϕ, ∂tϕ)|t=0 is small in H1 × L2 and odd, then∫ +∞

−∞

[
|z1(t)|4 + |z2(t)|4

]
dt < +∞

∫ +∞

−∞

∫
R

[
(∂xu1)2 + u2

1 + u2
2
]
(t, x)e−c0|x | dxdt < +∞.

3



2. Statement of main theorem
Recall that the (odd) perturbation ϕ solves

(E )
(
D2
t − (D2

x + 1 + 2V (x))
)
ϕ = κ(x)ϕ2 +

1
2
ϕ3.

We decompose ϕ = Pacϕ+ a(t)Y , with Pac = spectral projector
on a.c. spectrum and a(t) = 〈ϕ,Y 〉. One gets(

D2
t −

3
4

)
a(t) = 〈κ(x)ϕ2 +

1
2
ϕ3,Y 〉(

D2
t − (D2

x + 1 + 2V (x))
)
(Pacϕ) = Pac

(
κ(x)ϕ2 +

1
2
ϕ3).(S)

We want to solve (E ) or (S) with initial data at t = 1, that are
smooth enough, decaying and small i.e. that will be of the form
ϕ|t=1 = εϕ0, ∂tϕ|t=1 = εϕ1 with

‖ϕ0‖Hs+1 + ‖ϕ1‖Hs + ‖xϕ0‖H1 + ‖xϕ1‖L2 ≤ 1,

with ε� 1 and s large enough.
4



Theorem
There is ρ0 ∈ N and for any ρ ≥ ρ0, any c > 0, any θ′ ∈]0, 1

2 [, any
large enough N, s, there are ε0 > 0,C > 0 such that the solution to
(S) with odd initial data of size ε < ε0 is defined for t ∈ [1, ε−4+c [
and one has the estimates

a(t) = 〈Y , ϕ〉 = e it
√

3
2 g+(t)− e−it

√
3

2 g−(t)

|g±(t)| ≤ Cε√
1 + tε2

, |∂tg±(t)| ≤ Cε√
1 + tε2

t−
1
2

‖Pacϕ(t, ·)‖W ρ,∞ ≤ Ct−
1
2 (ε2
√
t)θ
′

‖〈x〉−2ND j
tPacϕ(t, ·)‖W ρ,∞ ≤ Ct−

3
4 (ε2
√
t)θ
′
, j = 0, 1.

Remarks: • For an equation(
D2
t − (D2

x + 1 + 2V (x))
)
ϕ = NL(x , ϕ) and a potential without

bound states, Germain and Pusateri prove a O(εt−
1
2 ) L∞ bound.

a
a
a 5
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Theorem
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3
4 (ε2
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t)θ
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Remarks: • If t � ε−4, possible logarithmic loss
‖Pacϕ(t, ·)‖L∞ = O

(
log t√

t

)
. See Lindblad, Lührmann and Soffer for(

D2
t − (D2

x + 1)
)
ϕ = a(x)ϕ2 + b(x)ϕ3 Lindblad, Lührmann, Soffer and

Schlag for
(
D2

t − (D2
x + 1 + 2V (x))

)
ϕ = Pac(a(·)u2).

• Our bounds imply the integral bounds of KMM (up to time ε−4).
5



3. The case of NLKG
Recall the bootstrap argument for small perturbations of the zero
solution of NLKG i.e. small solutions to (Dt − p(Dx))u = |u|2u,
with p(ξ) =

√
1 + ξ2. If L+ = x + tp′(Dx), one gets the optimal

dispersive estimates proving the set of inequalities

‖u(t, ·)‖Hs ≤ Aεtδ

‖L+u(t, ·)‖L2 ≤ Aεtδ

‖u(t, ·)‖L∞ ≤
Aε√
t
.

(EA)

Bootstrap: Assume (EA) with 0 < δ � 1, s � 1, ε� 1,A� 1 on
[1,T ]. Using the equation, show that then (EA/2) holds on [1,T ].
Idea of proof to show the second inequality in (EA/2): Use that
[L+,Dt − p(Dx)] = 0 to write

(Dt − p(Dx))(L+u) = L+

(
|u|2u

)
= OL2

(
‖u‖2L∞‖L+u‖L2

)
.

Apply energy inequality to get second in equality in (EA/2).
6



3. The case of NLKG
Recall the bootstrap argument for small perturbations of the zero
solution of NLKG i.e. small solutions to (Dt − p(Dx))u = |u|2u,
with p(ξ) =

√
1 + ξ2. If L+ = x + tp′(Dx), one gets the optimal

dispersive estimates proving the set of inequalities

‖u(t, ·)‖Hs ≤ Aεtδ

‖L+u(t, ·)‖L2 ≤ Aεtδ

‖u(t, ·)‖L∞ ≤
Aε√
t
.

(EA)

Bootstrap: Assume (EA) with 0 < δ � 1, s � 1, ε� 1,A� 1 on
[1,T ]. Using the equation, show that then (EA/2) holds on [1,T ].
Idea of proof to show the second inequality in (EA/2): Use that
[L+,Dt − p(Dx)] = 0 to write

(Dt − p(Dx))(L+u) = L+

(
|u|2u

)
= OL2

(
‖u‖2L∞‖L+u‖L2

)
.

Apply energy inequality to get second in equality in (EA/2).
6



4. Some ideas of proof
The equation satisfied by Pacϕ is(

D2
t − (D2

x + 1 + 2V (x))
)
(Pacϕ) = Pac(Non linearity).

Idea: Reduce that equation to (Dt − p(Dx))u = |u|2u.
1st Step: Conjugation through wave operators.
Define A = −1

2∂
2
x + V (x), A0 = −1

2∂
2
x ,

W+ = s− limt→+∞ e itAe−itA0 . Then one knows that
W ∗

+[D2
x + 2V (x)]Pac = D2

xW
∗
+Pac. Setting w = W ∗

+Pacϕ, this
implies(

D2
t − (D2

x + 1)
)
w = b(x ,Dx)∗

[
κ(x)[a(t)Y + b(x ,Dx)w ]2

]
+
1
2
b(x ,Dx)∗

[
(a(t)Y + b(x ,Dx)w)3]

where b(x , ξ) is a pseudo-differential symbol of order zero with
∂b
∂x (x , ξ) = O(〈x〉−∞), x → ±∞.
Setting u± = (Dt ± p(Dx))w , one may rewrite this second order
equation as a first order system.

7
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Step 2: Elimination of quadratic terms by normal form.
Equation on the unknown u+:(
Dt − p(Dx)

)
u+ = a(t)2 Y2︸︷︷︸

∈S(R)

+a(t)3 Y3︸︷︷︸
∈S(R)

+ a(t) Q ′1(x , u+, ū+)︸ ︷︷ ︸
linear in (u+,ū+) with coeff. in S(R)

+ Q2(x , u+, ū+)︸ ︷︷ ︸
quadratic in (u+,ū+) with coeff. with derivative in S(R)

+ Q3(x , u+, ū+).︸ ︷︷ ︸
cubic in (u+,ū+) with coeff. with derivative in S(R)

The worst term above is Q2. One eliminates it through a “time
normal form” à la Shatah, finding a new quadr. form Q̃2 such that(
Dt − p(Dx)

)
[u+ − Q̃2(x , u+, ū+)]

= same terms as above except that Q2 is replaced by Q ′2

where Q ′2(x , u+, ū+) is still quadratic, but with coefficients in S(R).
8
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Step 3: Elimination of source terms.
Let uapp be the solution of the linear equation(

Dt − p(Dx)
)
uapp = a(t)2Y2 + a(t)3Y3

uapp|t=1 = 0.

Then one gets(
Dt − p(Dx)

)
[u+ − Q̃2(x , u+, u−)− uapp]

= a(t)Q ′1(x , u+, ū+) + Q ′2(x , u+, ū+) + Q3(x , u+, ū+).

Proposition
One may decompose uapp = u′app+ + u′′app+ + u′app− + u′′app− with for
t ≤ ε−4

‖L+u
′app
± (t, ·)‖L2 ≤ Ct

1
4 (ε2
√
t)

‖L+u
′′app
± (t, ·)‖L∞ ≤ C log t log(1 + ε2t)

|u′app± (t, x)| ≤ C
ε2
√
t√
t

(
1 + t−

1
2

∣∣∣x ± t

√
2
3

∣∣∣)−1

9
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Step 4: Elimination of linear term.
Set ũ =

[
ũ+

ũ−

]
with ũ− = −ũ+ and define in the same way ũapp.

Then the preceding equation may be rewritten(
Dt −

[
p(Dx) 0

0 −p(Dx)

]
− V(t)

)
ũ

=M3(ũ, ũapp)︸ ︷︷ ︸
cubic

+M′2(ũ, ũapp)︸ ︷︷ ︸
quadratic

(∗)

where V(t) is a matrix of linear operators (whose entries are of the
form b(t, x ,Dx), with b(t, x , ξ) symbol of order zero, with
coefficients rapidly decaying in x). Set L =

[
L+ 0
0 L−

]
with

L± = x ± tp′(Dx). Then L does not commute to the V(t) term in
(∗). One constructs a “wave operator” C (t) such that

C (t)

(
Dt−

[
p(Dx) 0

0 −p(Dx)

]
−V(t)

)
=

(
Dt−

[
p(Dx) 0

0 −p(Dx)

])
C (t).
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Step 5: Further step of normal forms and bootstrap.
The preceding reductions lead to(

Dt −
[
p(Dx) 0

0 −p(Dx)

])
C (t)ũ = C (t)M3 + C (t)M′2.

One performs “space-time normal forms” in order to reduce the
cubic term essentially to

[
|ũ+|2ũ+

|ũ−|2ũ−

]
and to eliminate, up to

remainders, the quadratic one. One is then in position to perform a
bootstrap argument relying on estimates of the form

‖ũ+(t, ·)‖Hs = O(εtδ)

‖L+ũ+(t, ·)‖L2 = O((ε2
√
t)θt

1
4 )

‖ũ+(t, ·)‖L∞ = O
((ε2
√
t)θ
′

√
t

)
.

The second estimate is obtained commuting L+ to the equation.
The last one follows deducing from the PDE an ODE.
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Step 6: Study of the non dispersive component.
Recall that we had to study a system made of the coupling between
a PDE and an ODE given by:(

D2
t −

3
4

)
a(t) = 〈κ(x)ϕ2 +

1
2
ϕ3,Y 〉

where ϕ = Pacϕ+ a(t)Y . One needs to obtain bounds in
Cε(1 + tε2)−

1
2 for a. After normal forms one is reduced to

Dtg(t) =
(
α− i

√
6

18
Ŷ2(
√
2)2
)
|g(t)|2g(t) + remainders

where α is real and Y2 is an explicit function in S(R). To get a
solution defined for any t ≥ 1, one needs a condition on Y2, namely
that Ŷ2(

√
2)2 < 0. This is the Fermi Golden Rule. It is evident

that Ŷ2(
√
2) is purely imaginary, so that the condition to check

reduces to Ŷ2(
√
2) 6= 0. This condition had been checked

numerically by Kowalczyk, Martel and Muñoz. Actually, it reduces
to the computation of the integral of an explicit function, that may
be done by residues.
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