Construction of blow-up solution for Complex Ginzburg-Landau equation in some critical case.

Long Time Behavior and Singularity Formation in PDEs, NUY-AD.

Nejla Nouaili

January 13, 2021

Joint work with G.K.Duong (NYU-Abu Dhabi) and H.Zaag (Paris 13).

The complex Ginzburg Landau (CGL) equation

We consider the following equation

$$
\begin{array}{rcl}\n\partial_t u & = & (1+i\beta)\Delta u + (1+i\delta)|u|^{p-1}u - \gamma u \\
u(x,0) & = & u_0(x) \text{ for } x \in \mathbb{R}^N,\n\end{array} \tag{CGL}
$$

where

\n- •
$$
p > 1
$$
, β , δ and γ are reals.
\n- • $u(t) : x \in \mathbb{R}^N \to u(x, t) \in \mathbb{C}$.
\n- • $u_0 \in L^\infty(\mathbb{R}^N, \mathbb{C})$.
\n

Content

[The blow-up profile](#page-7-0)

[Proof](#page-19-0)

Physical motivation and Mathematical relevance for CGL

• Physical motivation: When $p = 3$,

The world of the complex Ginzburg-Landau equation, Aranson and Kramer 2002.

CGL appears:

- in the context of plane Poiseuille flow, see Stewartson and Stuart (1971) and Hocking, Stuart and Stewartson (1971);
- in the context of the binary mixture, see Kolodner, Bensimon, and Surko (1988).
- Mathematical relevance: Classical tools break down:
	- Maximum principle;
	- Variational formulation;
	- Energy methods.

History of blow-up in CGL equation

 $p = 3$, Formal approach

- Existence of blow-up solutions and blow-up behavior was obtained by Hocking and Stewartson (1972),
- Popp, Stiller, Kuznetsov and Kramer (1998), under some condition on β and δ :
	- Existence of blow-up solutions;
	- Determination of the blow-up Behavior.

Rigorous approach for $p > 1$

- • Construction, profile and stability, under some conditions on β and δ , - when $\beta = 0$, see Zaag (1998);
	- when $\beta \neq 0$, see Masmoudi and Zaag (2008).
- Case $\beta = \delta$: This is variational. Results by Cazenave, Dickstein and Weissler 2012.
- Plechac and Sverak (2001) Using a combination of rigourous results and numerical computations describe a countable family of self-similar singularities.
- Budd, Rottschafer and Williams (2005), construct, both asymptotically and numerically, multi-bump, blow-up, self-similar.

Cauchy problem and blow-up

- Cauchy problem welpossedness in $L^{\infty}(\mathbb{R}^{N}, \mathbb{C})$, Ginibre and Velo (1996-1997), Cazenave (2003) and Ogawa and Yokota (2004).
- Blow-up solutions If $T < \infty$, then $\lim_{t\to T} ||u(t)||_{L^{\infty}} = +\infty$.
- \circ Blow-up point The point a is a blow-up point if and only if there exists $(a_n, t_n) \rightarrow (a, T)$ as $n \rightarrow +\infty$ such that $|u(a_n, t_n)| \rightarrow +\infty$.

Content

[Introduction](#page-2-0)

2 [The blow-up profile](#page-7-0)

- **•** [History of the problem in the subcritical case](#page-8-0)
- **•** [Existence of the new profile in the critical case](#page-10-0) $\beta = 0$
- **•** [Existence of the new profile in the critical case](#page-12-0) $\beta \neq 0$

[Proof](#page-19-0)

Case $\beta = \delta = 0$, the heat equation

• The generic profile is given by

$$
(\mathcal{T}-t)^{\frac{1}{p-1}}u(x,t)\sim f_0(z) \text{ as } t\to \mathcal{T}
$$

where $f_0(z) = (p-1+b_0|z|^2)^{-\frac{1}{p-1}}$,

$$
z = \frac{x}{\sqrt{(T-t)|\log(T-t)|}} \text{ and } b_0 = \frac{(p-1)^2}{4p}
$$

See Hocking and Stewartson (1972), Galaktionov-Posashkov (1985), Berger-Kohn (1988), Herrero-Velzquez (1993). The constructive existence proof by Bricmont-Kupiainen (1994), Merle-Zaag. (1997) is based on:

- The reduction of the problem to a finite-dimensional one.
- The solution of the finite-dimensional problem thanks to the degree theory.
- Other profiles are possible.

Subcriticale case $\beta \neq 0$ and $\delta \neq 0$

If

$$
p - \delta^2 - \beta \delta(p+1) > 0, \qquad \qquad \text{(Subcritical)}
$$

then, Masmoudi and Zaag (2008) proved that

$$
(T-t)^{\frac{1+i\delta}{p-1}}|\log(T-t)|^{-i\mu}u(z\sqrt{(T-t)|\log(T-t)|},t)\sim f(z),
$$

where $f(z)=\kappa^{-i\delta} (p-1+b|z|^2)^{-\frac{1+i\delta}{p-1}}$, $\kappa=(p-1)^{-\frac{1}{p-1}}$

$$
b = \frac{(\rho - 1)^2}{4(\rho - \delta^2 - \beta \delta(\rho + 1))} \text{ and } \mu = -\frac{2b\beta}{(\rho - 1)^2}(1 + \delta^2)
$$

Critical case $\beta = 0$ and $\delta \neq 0$

Theorem (N. and Zaag,18) If

$$
p=\delta^2,
$$

then, there exists a solution $u(x, t)$, s.t.

• Blow-up profile

$$
(T-t)^{\frac{1+i\delta}{p-1}}|\log(T-t)|^{-i\mu}u(x,t)\sim f_c(z) \text{ as } t\to T,
$$

where

$$
f_c(z) = (p - 1 + b_c|z|^2)^{-\frac{1+i\delta}{p-1}}, z = \frac{x}{\sqrt{T-t}|\log(T-t)|^{1/4}},
$$

$$
b_c = \frac{(p-1)^2}{8\sqrt{p(p+1)}} \text{ and } \mu = \frac{8\delta b^2}{(p-1)^4}(1+p).
$$

Critical case $\beta \neq 0$ and $\delta \neq 0$

Theorem (Duong, N. and Zaag, 20) If

$$
p-\delta^2-\beta\delta(p+1)=0,
$$

then, there exists $\mu = \mu(\beta, \delta, p)$, s.t. CGL-eq has a solution $u(x, t)$, s.t.

• Blow-up profile

$$
(T-t)^{\frac{1+i\delta}{p-1}}e^{-i\nu\sqrt{|\log(T-t)|}}|\log(T-t)|^{-i\mu}u(x,t)\sim f_{cri}(z) \text{ as } t\to T,
$$

where

$$
f_{cri}(z) = (p - 1 + b_{cri}|z|^2)^{-\frac{1+i\delta}{p-1}}, z = \frac{x}{\sqrt{T-t}|\log(T-t)|^{1/4}},
$$

$$
\nu = -\frac{4b\beta(1+\delta^2)}{(p-1)^2}.
$$

$$
b_{cri}^2 = \frac{(p-1)^4(p+1)^2\delta^2}{16(1+\delta^2)(p(2p-1)-(p-2)\delta^2)((p+3)\delta^2+p(3p+1))} > 0,
$$

for all $\delta \in (-p_{cri}, p_{cri})$ and

$$
p_{cri} = \begin{cases} \sqrt{\frac{p(2p-1)}{p-2}} & \text{if } p > 2\\ +\infty & \text{if } p \in (1,2] \end{cases}
$$

Comments

The exhibited behavior is new in two respects:

- The scaling law: $\sqrt{(T-t)}|\log(T-t)|^{\frac{1}{4}}$ instead of the laws of subcritical case , $\sqrt{(T-t)|\log(T-t)|}.$
- The profile function: $f_{cri}(z)=(\rho-1+b_{cri}|z|^2)^{-\frac{1+i\delta}{\rho-1}}$ is different from the profile of the subcritical case , namely $f(z)=(\rho-1+b|z|^2)^{-\frac{1+i\delta}{\rho-1}}$, in the sense that $b_{cri}\neq b$

Idea of the proof

We follow the the constructive existence proof used by Bricomont-Kupiainen (1994), Merle-Zaag (1997) for standard semilinear heat equation and Masmoudi and Zaag (2008) for the CGL equation in the subcritical case.

The method is base on:

- The reduction of the problem to a finite-dimensional one ($N+1$ parameters);
- The solution of the finite-dimensional problem thanks to the degree theory.

Stability of the constructed solution

Thanks to the interpretation of the $(N + 1)$ parameters of the finite-dimensional problem in terms of the blow-up time in (\mathbb{R}) and the blow-up point (in \mathbb{R}^N), the existence proof yields the following:

Theorem (Duong, N. and Zaag: Stability)

The constructed solution is stable with respect to perturbation in initial data.

Consider initial data \hat{u}_0 of the solution of (CGL) with blow-up time \hat{T} , blow-up point \hat{a} and profile f_{cri} centred at (\hat{T}, \hat{a}) .

Then, $\exists V$ neighborhood of \hat{u}_0 s.t. $\forall u_0 \in V$, $u(x, t)$ the solution of (CGL) blows up at time T , at a point a, with the profile f_{cri} centred at(T , a).

[Proof](#page-19-0)

Content

[Introduction](#page-2-0)

[The blow-up profile](#page-7-0)

3 [Proof](#page-19-0)

- [A formal approach for the existence result](#page-20-0)
- [A sketch of the proof of the existence result](#page-26-0)

A formal approach to find the ansatz $(N = 1)$

•The method of matched asymptotic expansions; Herrero, Galaktionov and Velázquez (1991), Tayachi and Zaag (2015), N. and Zaag (2018). • Following the standard semilinear heat equation case, we work in similarity:

$$
w(y, s) = (T - t)^{\frac{1+i\delta}{p-1}} u(x, t), y = \frac{x}{\sqrt{T - t}}
$$
 and $s = -\log(T - t)$.

We need to find a solution for the following equation defined for all $s > s_0$ and $v \in \mathbb{R}$:

$$
\partial_s w = (1 + i\beta)\partial_y^2 w - \frac{1}{2}y\partial_y w - \frac{1 + i\delta}{\rho - 1}w + (1 + i\delta)|w|^{p-1}w,
$$

such that

$$
0<\varepsilon_0\leq \|w(s)\|_{L^\infty(\mathbb{R})}\leq \frac{1}{\varepsilon_0}.
$$

We suppose that $w(rs^{1/4}, s) = R(r, s)e^{i\varphi(r, s)}$ where $r = |y|.$

$$
\begin{cases}\n\partial_{s} R = \frac{1}{\sqrt{s}} \left[R'' - R(\varphi')^{2} - \beta (2R'\varphi' + R\varphi'') \right] \\
+ R'r \left(\frac{1}{4s} - \frac{1}{2} \right) - \frac{R}{\rho - 1} + |R|^{p-1} R, \\
\partial_{s} \varphi = \frac{1}{\sqrt{s}} \left[\varphi'' - \beta (\varphi')^{2} + \frac{1}{R} (2R'\varphi' + \beta R'') \right] \\
+ \varphi' r \left(\frac{1}{4s} - \frac{1}{2} \right) - \frac{\delta}{\rho - 1} + \delta |R|^{p-1}.\n\end{cases}
$$

we consider the following ansatz, inspired by the work of Popp and al

$$
R(r,s) = R_0(r) + \frac{R_1(r)}{\sqrt{s}} + \frac{R_2(r)}{s} + \dots
$$

$$
\varphi(r,s) = \Phi(s) + \varphi_0(r) + \frac{\varphi_1(r)}{\sqrt{s}} + \frac{\varphi_2(r)}{s} + \dots
$$

where $\Phi(s) = \nu$ √ $\overline{s} + \mu \ln s$ and ν, μ unknown. order 1 of the system gives us

$$
R_0(r) = (p - 1 + br^2)^{-\frac{1}{p-1}},
$$

\n
$$
\varphi_0(r) = -\frac{\delta}{p-1} \ln (p - 1 + br^2).
$$

order $\frac{1}{s^{1/2}}$, gives us:

$$
-\frac{1}{2}R'_1r-\frac{R_1}{\rho-1}+\rho|R_0|^{p-1}R_1+R''_0-R_0\varphi_0^2-\beta(2R'_0\varphi_0'+R_0\varphi_0'')=0,
$$

$$
R_1(r) = \frac{r^2}{(p-1+br^2)^{\frac{p}{p-1}}} \times \left[-\frac{2b(\delta\beta-1)}{p-1}r^{-2} + \frac{8b^2(p-(p+1)\delta\beta-\delta^2)}{(p-1)^3}\left(\ln|r|-\frac{\ln(p-1+br^2)}{2}\right) + \mathcal{C}(\beta,\delta) \right]
$$

The resolution of equation on φ at order $\frac{1}{s^{1/2}}$ gives:

$$
\varphi_1(r) = \left[-\nu - \frac{4b\beta(1+\delta^2)}{(p-1)^2} \right] \ln|r| + \frac{2\beta(1+\delta^2)b}{(p-1)^2} \ln(p-1+br^2) - \frac{2b}{(p-1)^2} \left((p+3)\delta + \beta(2p+\delta^2(p-3)) + \frac{\mathcal{C}\delta(p-1)^3}{2b^2} \right) (p-1+br^2)^{-1}.
$$

By the regularity of φ_1 at 0, the contribution of $\ln |r|$ need to be removed.

$$
\nu=-\frac{4b\beta(1+\delta^2)}{(\rho-1)^2}.
$$

The order $1/s$ of the equation on R gives us

$$
b_{cri}=\frac{(p-1)^4(p+1)^2\delta^2}{16(1+\delta^2)(p(2p-1)-(p-2)\delta^2)((p+3)\delta^2+p(3p+1))},
$$

and

$$
\mu = f(p,\beta,\delta) + \frac{2\beta(1+\delta^2)}{p-1}\mathcal{C}.
$$

From the above approach, we can formally derive the profile of our solution

$$
w(y,s) \sim e^{i(\nu\sqrt{s}+\mu\ln s)}\left(p-1+b_{cri}\frac{|y|^2}{s^{1/2}}\right)^{-\frac{1+i\delta}{p-1}}.
$$

Theorem in selfsimilar variables

Theorem (Duong,N. and Zaag)

$$
\sup_{|y| < M s^{\frac{1}{4}}} \left| W(y, s) e^{-i(\nu \sqrt{s} + \mu \log s + \theta(s))} - \left\{ f_{cri} \left(\frac{y}{s^{1/4}} \right) + \frac{a(1 + i\delta)}{s^{\frac{1}{2}}} + \frac{1}{s} \mathcal{F}(y) \right\} \right|
$$
\n
$$
\leq C \frac{(1 + |y|^5)}{s^{\frac{3}{2}}},
$$
\nand $\theta(s) \to \theta_0$ as $s \to \infty$ $(t \to \tau)$, such that

$$
|\theta(s)-\theta_0|\leq \frac{C}{s^{\frac{1}{4}}}
$$

with

$$
f_{cri}(z) = (p - 1 + b_{cri}z^2)^{-\frac{1+i\delta}{p-1}},
$$

and

$$
\mathcal{F}(y) = \mathcal{A}_0(\delta)h_0(y) + \mathcal{A}_2(\delta)h_2(y) + \tilde{\mathcal{A}}_2(\delta)\tilde{h}_2(y).
$$

Strategy of the proof

The use of topological methods in the analysis of singularities for blow-up phenomena seems to have been introduced by Bressan (1992). Bricomont and Kupiainen (1994) then Merle and Zaag (1997) for the semilinear heat equation.

The Solutions we construct are obtained through a **topological** "shooting method":

- The reduction of the problem to a finite-dimensional one;
- The solution of the finite-dimensional problem thanks to the degree theory.

This strategy was adapted for:

- Degenerate neckpinches in mean curvature flow, Angenent and Velázquez 97,
- the Heat equation with subcritical gradient exponent in Ebde and Zaag (2011), with critical power nonlinear gradient termTayachi and Zaag 2015 ;
- The complex heat equation N. and Zaag (2015).
- the CGL equation: in Zaag (1998) and Masmoudi and Zaag (2008);
- \bullet the supercritical gKdV and NLS in Côte, Martel and Merle (2011);
- the semilinear wave equation in Côte and Zaag (2013), for the construction of a blow-up solution showing multi-solitons.

The strategy of the proof $(N = 1)$

We recall our aim: To consruct a solution $w(y, s)$ of the equation in similarity variables:

$$
\partial_s w = (1 + i\beta)\partial_y^2 w - \frac{1}{2}y\partial_y w - \frac{1 + i\delta}{\rho - 1}w + (1 + i\delta)|w|^{p-1}w,
$$

such that

$$
w(y,s) \sim e^{i(\nu\sqrt{s} + \mu \log s)}\varphi(y,s)
$$

where

$$
\varphi(y,s) = \kappa^{-i\delta} (p-1+b\frac{y^2}{s^{1/2}})^{-\frac{1+i\delta}{p-1}} + (1+i\delta) \frac{a}{s^{1/2}}
$$

Idea:

We linearize around φ , introducing $q(y,s)$ and $\theta(s)$

$$
w(y,s) = e^{i(\nu\sqrt{s} + \mu\log s + \theta(s))}(\varphi(y,s) + q(y,s))
$$

In that case, our aim becomes to find $\theta\in C^1([-\log \mathcal{T}, \infty),)$ such that $q(y, s)$ is defined for all $(y, s) \in \times [-\log T, \infty)$ and

$$
\|q(s)\|_{L^\infty}\to 0\,\,\text{as}\,\,s\to\infty
$$

Modulation

$$
\Im\left(\int q\rho_\beta dy\right)-\delta\Re\left(\int q\rho_\beta dy\right)=0.
$$

This choice of $\theta(s)$ kills one neutral mode given by $h_0(y)$.

Decomposition of $q(y, s)$ into inner and outer parts

The variable $z = \frac{y}{c^1}$ $\frac{y}{s^{1/4}}$ plays a fundamental role. Thus we will consider the dynamics for the outer region $|z| > K$ and the inner region $|z| < 2K$. Consider a cut-off function

$$
\chi(y,s)=\chi_0\left(\frac{|y|}{s^{1/4}}\right),\,
$$

where $\chi_0 \in C^{\infty}([0,\infty),[0,1])$, s.t. $supp(\chi_0) \subset [0,2]$ and $\chi_0 \equiv 1$, in [0, 1]. Then, we introduce

$$
q = q_{inner} + q_{outer}
$$

Remark: q_{outer} is easily controlled, because the spectrum of $\mathcal{L}_{\beta,\delta} + V_1 + V_2$ is negative in the outer region.

 $q(y, s)$ satisfies for all $s \geq s_0$ and $y \in \mathbb{R}$,

$$
\partial_s q = \mathcal{L}_{\beta,\delta} q - i \left(\frac{\nu}{2\sqrt{s}} + \frac{\mu}{s} + \theta'(s) \right) q + V_1 q + V_2 \bar{q} + B(q,y,s) + R^*(\theta',y,s),
$$

where

$$
\mathcal{L}_{\beta,\delta}q = (1+i\beta)\partial_y^2 q - \frac{1}{2}y \cdot \partial_y q + (1+i\delta)\Re q,
$$

\n
$$
V_1(y,s) = (1+i\delta)^{\frac{p+1}{2}} \left(|\varphi|^{p-1} - \frac{1}{p-1} \right),
$$

\n
$$
V_2(y,s) = (1+i\delta)^{\frac{p-1}{2}} \left(|\varphi|^{p-3}\varphi^2 - \frac{1}{p-1} \right),
$$

\n
$$
B(q,y,s) = (1+i\delta) \left(|\varphi + q|^{p-1}(\varphi + q) - |\varphi|^{p-1}\varphi - |\varphi|^{p-1}q - \frac{p-1}{2} |\varphi|^{p-3}\varphi(\varphi\bar{q} + \bar{\varphi}q),
$$

\n
$$
R^*(\theta',y,s) = R(y,s) - i \left(\frac{\nu}{2\sqrt{s}} + \frac{\mu}{s} + \theta'(s) \right) \varphi,
$$

\n
$$
R(y,s) = -\partial_s \varphi + \partial_y^2 \varphi - \frac{1}{2}y \cdot \partial_y \varphi - \frac{(1+i\delta)}{p-1}\varphi + (1+i\delta)|\varphi|^{p-1}\varphi
$$

The linear operator $\mathcal{L}_{\beta\delta}$

Note that $\mathcal{L}_{\beta,\delta}$ is not self-adjoint and is not diagonalisable.

$$
\mathsf{L}^2_{|\rho_\beta|}=\{g\in\!\mathsf{L}^2_{loc}(\mathbb{R},\mathbb{C})|\int_\mathbb{R}|g(y)|^2|\rho_\beta(y)|\mathsf{d} y<\infty\}\text{and}
$$

$$
\rho_{\beta}(y) = \frac{e^{-\frac{|y|^2}{4(1+i\beta)}}}{(4\pi(1+i\beta))^{1/2}}.
$$

The spectrum of $\mathcal{L}_{\beta,\delta}$ is given by

$$
spec(\tilde{\mathcal{L}})=\{1-\frac{m}{2}|m\in\mathbb{N}\}
$$

Jordan block's decomposition of $\mathcal{L}_{\beta,\delta}$

For all $n \in$, there exists two polynomials

$$
\begin{array}{ll}\nh_n &= if_n + \sum_{j=0}^{n-1} d_{j,n} f_j, \text{ where } d_{j,n} \in \mathbb{C} \\
\tilde{h}_n &= (1 + i\delta) f_n + \sum_{j=0}^{n-1} \tilde{d}_{j,n} f_j, \text{ where } \tilde{d}_{j,n} \in \mathbb{C},\n\end{array}
$$

$$
\mathcal{L}_{\beta,\delta}h_n = -\frac{n}{2}h_n,
$$

\n
$$
\mathcal{L}_{\beta,\delta}\tilde{h}_n = \left(1 - \frac{n}{2}\right)\tilde{h}_n + c_nh_{n-2}, \text{ with } c_n = n(n-1)\beta(1+\delta^2),
$$

 $f_i(y) = c_i H_i \left(\frac{y}{2\sqrt{1}} \right)$ 2 √ $1+i\beta$ where H_i is Hermite polynomial.

 f_i are the eigenfunctions of the linear operator

$$
\mathcal{L}_{\beta}v = (1 + i\beta)\partial_{y}^{2}v - \frac{1}{2}y \cdot \partial_{y}v.
$$
\nNejla Novalili

\nCorstuction of blow-up solution for Complex

\nJanuary 13, 2021 34 / 41

Some examples of polynomials h_n and \tilde{h}_n .

$$
h_0(y) = i, \n h_1(y) = iy, \n h_2(y) = iy^2 + \beta - i(2 + \delta\beta), \n \tilde{h}_1 = (1 + i\delta)y, \n h_2(y) = iy^2 + \beta - i(2 + \delta\beta), \n \tilde{h}_2 = (1 + i\delta)(y^2 - 2 + 2\beta\delta), \n \tilde{L}_{\beta,\delta}\tilde{h}_0 = \tilde{h}_0, \n \tilde{L}_{\beta,\delta}\tilde{h}_1 = \frac{1}{2}\tilde{h}_1, \n \tilde{L}_{\beta,\delta}\tilde{h}_2 = 2\beta(1 + \delta^2)h_0 = 2i\beta(1 + \delta^2), \n \tilde{L}_{\beta,\delta}\tilde{h}_6 = -\tilde{h}_4 + 12\beta(1 + \delta^2)h_2, \n \tilde{L}_{\beta,\delta}\tilde{h}_6 = -2\tilde{h}_6 + 30\beta(1 + \delta^2)h_4.
$$

effect of the different terms

- The potential terms V_1 and $V_2\colon\thinspace V_1+V_2\to 0$ in ${\mathcal L}^2_{|\rho_\beta|}(\mathbb R).$ The effect of $V_1 + V_2$ in the blow-up area is regarded as a perturbation of the effect of $\mathcal{L}_{\beta,\delta}$.
- The nonlinear term B : It is quadratic $|B(q)|\leq C|q|^2$
- The rest term R^* : It is small $\|R^*(.,s)\|_{L^\infty}\leq \frac{C}{\sqrt{2}}$ $\frac{1}{s}+|\theta'(s)|.$

Decomposition of the inner part

We decompose q_{inner} according to the sign of the eigenvalues of \mathcal{L}

$$
q_{inner} = \sum_{n \leq M} \mathcal{Q}_n(s) f_n(y) + q_-(y, s),
$$

=
$$
\sum_{0}^{1} \tilde{q}_n \tilde{h}_n + \tilde{q}_2 \tilde{h}_2 + \left(\sum_{3}^{M} \tilde{q}_n \tilde{h}_n + \sum_{0}^{M} q_n h_n \right) + q_-(y, s)
$$

- We choose $M\geq 4(\sqrt{1+\delta^2}+1+2\max\limits_{y\in\mathbb{R}, s\geq 1, i=1,2} |V_i(y,s)|)$, then $q_$ is easily controlled.
- Smalness of the modulation parameter $\theta(s)$

$$
|\theta'(s)| \leq \frac{C}{s^{\frac{5}{4}}}, \text{ where } C > 0.
$$

• It remains then to control \tilde{q}_0 , \tilde{q}_1 and \tilde{q}_2 .

Control of \tilde{q}_2

This is delicate, because it corresponds to the direction $(1 + i\delta)h_2(y)$, the null mode of the linear operator $\mathcal{L}_{\beta,\delta}$.

We need to refine the contribition of the potentials $V_1 + V_2$, the nonlinear term B and the rest term R^* , this is delicate because we are studying the critical problem. we obtain

$$
\tilde{\textbf{q}}'_2 = \tilde{\textbf{H}}_0 \frac{\tilde{\textbf{q}}_2}{\sqrt{s}} + \tilde{\textbf{H}}_1 \frac{\tilde{\textbf{q}}_2}{s} + \frac{\tilde{\textbf{K}}_1}{s^{3/2}} + \frac{\tilde{\textbf{K}}_2}{s^2} + O(\frac{1}{s^{9/4}})
$$

Cancelation of \tilde{H}_0 give us the value of ν and a. Cancelation of $\tilde{\mathcal{K}}_1$ give us the value of $b_{cri}.$

$$
\tilde{H}_1\leq -\frac{3}{2}.
$$

In the subcritical case, $\tilde{H}_1 = -2$. In the critical case $\beta=0$, $\tilde{H}_1=-\frac{3}{2}$ $\frac{3}{2}$.

Control of \tilde{q}_2

$$
\tilde{q}_2' = \tilde{H}_1 \frac{\tilde{q}_2}{s} + \frac{\tilde{K}_2}{s^2} + O\left(\frac{1}{s^{9/4}}\right)
$$

We introduce $\tilde{Q}_2 = \tilde{q}_2 - \frac{\tilde{A}_2}{s}$, then we have

$$
\tilde{Q}_2' = \tilde{H}_1 \frac{\tilde{Q}_2}{s} + \frac{\tilde{A}_2(\tilde{H}_1 + 1) + \tilde{K}_2}{s^2} + O\left(\frac{1}{s^{9/4}}\right)
$$

Cancelation of order $\frac{1}{s^2}$ gives us μ . Conclusion \tilde{Q}_2 and \tilde{q}_2 can be controlled as well.)

The finite dimentional problem \tilde{q}_0 and \tilde{q}_1

The remaining components correspond respectively to the projection along $\tilde{h}_0 = (1+i\delta)$ and $\tilde{h}_1 = (1+i\delta)y$, the positive direction of $\mathcal{L}_{\beta,\delta}.$ Projecting the equation

$$
\partial_s q = \mathcal{L}_{\beta,\delta} q - i \left(\frac{\nu}{2s^{1/2}} + \frac{\mu}{s} + \theta'(s) \right) q + V_1 q + V_2 \bar{q} + B(q,y,s) + R^*(\theta',y,s),
$$

we obtain

$$
\tilde{Q}'_0 = \tilde{Q}_0 + O\left(\frac{1}{s^{7/4}}\right), \text{ where } \tilde{Q}_0 = \tilde{q}_0 - \frac{\tilde{\mathcal{A}}_0}{s} \\\\ \tilde{q}'_1 = \frac{1}{2}\tilde{q}_1 + O\left(\frac{1}{s^{3/2}}\right).
$$

with given initial data at s_0 by $\,\tilde{Q}_0 = d_0,\,\,\,\tilde{q}_1 = d_1.$

This problem can be easily solved by contradiction, using index Theory. There exist a particular $(d_0,d_1)\in\mathbb{R}^2$ such that the problem has a solution $(\tilde{Q}_0(s), \tilde{q}_1(s))$ which converges to $(0, 0)$ as $s \to \infty.$

Open problem

How a collapse of the solutions of the CGLE may be suppressed for suitable parameters?

- Kaplan, Kuznetsov and V. Steinberg 94.
- Kramer, Kuznetsov, Popp and Turitsyn 95.
- Popp, Stiller, Kuznetsov and Kramer 98.

Consider the CGL equation ($N = 1$, $p = 3$, $\beta = 0$, $\delta >> 15$) in modulus and phase $u=Ae^{i\phi}$ and let $k:=\partial_x\phi$. How to explain that the phase gradien k supress the explosive growth of

amplitude A?

Thank you !