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Introduction

What happens with roots of polynomials or entire functions under
differentiation is a classical problem.

Gauss, Lucas 1860-70s: zeroes of p′ lie in the convex hull of the
polynomial p.

Polya, Wiman 1930-40s: famous conjectures regarding behavior of roots of
some entire functions under differentiation. Some solutions: Craven,
Csordas and Smith 1987, Sheil-Small 1989.

Marcel Riesz 1920s: the smallest gap between roots of real valued
polynomial grows under differentiation (later J. v. Szökefalvi-Nagy,
Walker).

A tendency towards “crystallization” - roots of higher order derivatives
lining up along ideal lattice - has been conjectured for some classes of
entire functions by Farmer-Rhoades 2005 and proved in random setting by
Pemantle-Subramanian 2017, and for certain random trigonometric
polynomials by Farmer-Yerrington 2006.
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Michael Berry 2005: universal nature of oscillations in higher order
derivatives of entire functions and connection to quantum theory.

Steinerberger 2018: formal derivation of a PDE that should control
evolution of roots under differentiation for a real valued polynomial pn(x),
x ∈ R, of large degree n, in the case where initially roots are distributed
according to a smooth density u0(x). The aim is to understand the zeroes

of p
(k)
n (x), with k ∼ tn, 0 < t < 1.

The PDE is given by

∂tu +
1

π
∂x

(
arctan

(
Hu

u

))
= 0 (1)

or

∂tu +
1

π

uΛu − Hu∂xu

u2 + Hu2
= 0.

Here H is the Hilbert transform and Λ = (−∆)1/2.

One differentiation corresponds to time step 1/n, so roots of p(k)(x),
k = tn, are conjectured to be distributed according to u(x , t).
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Surprisingly, the same PDE was formally derived by Shlyakhtenko and Tao
2020 as the evolution equation for free fractional convolution of a
probability measure on R (an object in free probability).

The free convolution of two probability measures µ� ν can be defined to
be the law of X + Y , where X , Y are freely independent noncommutative
random variables with law µ and ν respectively. The notion can be
generalized to µ�k for k ≥ 1 (free fractional convolution). This object is
relevant, in particular, for non-commutative central limit theorem (leading
to Wigner’s semicircle law).

Hoskins and Kabluchko 2020 provide a different way to compute the

distribution of the roots of p
(tn)
n (x), in the limit n→∞. Then they

rigorously connect differentiation of polynomials and free fractional
convolution; their result applies for each fixed time in the limit of degree
n→∞, and does not directly involve the PDE (1).
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We will consider the periodic setting, namely, a class P2n of trigonometric
polynomials

p2n(x) =
n∑

j=1

(aj cos jx + bj sin jx) =
2n∏
j=1

sin
x − xj

2

that will be assumed to have exactly 2n distinct roots xj ∈ S,
j = 1 . . . , 2n. These roots are assumed to be distributed according to a
smooth density u0.

Note that the process of “crystallization” under differentiation for such
polynomials is not hard to understand on elementary level. As we
differentiate k ∼ An times, the highest order coefficients gain ∼ eA factor
compared to all other coefficient, creating spectral gap. As k →∞, zeroes
should converge to ideal lattice. Rate estimates and details are harder!

Our goal is to link evolution of roots under differentiation and
Steinerberger’s PDE in this setting.

Alexander Kiselev (Duke University) The Flow of Roots



The Global Regularity

The Steinerberger’s PDE is critical, and looks similar to the equation

∂tρ+ ρΛρ− Hρ∂xρ = 0. (2)

The difference is the additional factor of u2 + Hu2 in the denominator,
which makes analysis harder. The equation (2) has appeared in several
contexts.

1. A model in dislocation theory: several works, earliest by Head 1972.
Self-similar solutions.
2. The model of porous media flow: Caffarelli-Vazquez 2011, 2015. Hölder
regularity of weak solutions.
3. Euler alignment model of collective behavior: many results.
Shvydkoy-Tadmor 2017 proved global regularity.
4. As a simplified model of the SQG equation: Chae, A. Cordoba, D.
Cordoba, Fontelos 2005; Castro-D. Cordoba 2008

Granero-Belinchon 2020: local well-posedness in H2, global regularity for
small data for the Steinerberger’s equation.
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Recall the Steinerberger’s PDE:

∂tu +
1

π

uΛu − Hu∂xu

u2 + Hu2
= 0. (3)

Theorem

The equation (3) with Hs , s > 3/2 periodic initial data such that
u0(x) > 0 for all x ∈ S has a unique global smooth solution u(x , t).
Moreover, we have exponential in time convergence to equilibrium

‖u(·, t)− ū‖∞ ≤ C0e
−σt ,

and exponential in time decay of all derivatives

‖∂kx u(·, t)‖∞ ≤ Cke
−σt

with σ = 2
π2ū

and with constants Ck that may only depend on u0.

The proof is trickier than that for critical SQG or Euler alignment model!
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The Connection

Recall that a polynomial p2n(x) ∈ P2n satisfies p2n(x) =
∏2n

j=1 sin
x−xj

2 .

Denote x̄j =
xj+xj+1

2 . Define the error

E t
j = x tj+1 − x tj −

1

2nu(x̄ tj , t)
, j = 1, · · · , 2n. (4)

Here x tj are the roots of p(2nt)(x).

Theorem

Let u0 ∈ Hs(S), s > 7/2. Suppose that u0(x) > 0 for all x ∈ S, and∫
S u0(x) dx = 1. Let u(x , t) be solution of (3) with the initial data u0, and

let p2n be any trigonometric polynomial that at the initial time obeys (4)
with u = u0 and ‖E 0‖∞ ≤ Z0n

−1−ε for some ε > 0. Then there exists
positive constant n0(u0,Z0, ε) such that if n ≥ n0(u0,Z0, ε), the following
estimate holds true for all times t ≥ 0 :

‖E t‖∞ ≤ C (u0)
(
Z0n

−1−ε + n−3/2t
)
e−

4
π
t(1+O(n−ε/2)).
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Remarks

For the global regularity proof, we need the density to be bounded away
from zero. This cannot hold in the real line case, so new ingredients are
needed.

A surprising fact is that we can control the error for all times.
This is enabled by analysis of the error propagation equation. It turns out
to have the form

E t+∆t − E t

∆t
= LtE t + errors.

where Lt is a nonlinear operator of diffusive type that in the main order is
similar to a modulated discretized fractional Laplacian −Λ. In fact, in the
limit of large n and large time Lt converges to exactly the dissipative term

− uΛ

π(u2 + Hu2)
∼ − 1

πū
Λ

Many further interesting questions!
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The Formal Derivation

If p2n(x) =
∏2n

j=1 sin
x−xj

2 , then

p′2n(x) =
1

2
p2n(x)

2n∑
j=1

cot
x − xj

2
.

Let ym ∈ (xm, xm+1) be the roots of p′2n, m = 1, · · · , 2n. In this case

2n∑
j=1

cot
ym − xj

2
= 0.

Split the sum into two parts:

2n∑
j=1

cot
ym − xj

2
=

∑
|xj−ym|≤n−1/2

cot
ym − xj

2︸ ︷︷ ︸
Im

+
∑

|xj−ym|>n−1/2

cot
ym − xj

2︸ ︷︷ ︸
IIm

.
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For the near field Im,

Im =
∑

|xj−ym|≤n−1/2

2

ym − xj
+ O(1).

Since the summation range is small, replace xj in the sum by the ideal

lattice x̃j = xm + j−m
2nu(x̄m) . Recall the cotangent identity

π cotπx =
1

x
+
∞∑
k=1

(
1

x + k
+

1

x − k

)
.

Then we expect that

∑
|xj−ym|≤n−1/2

2

ym − xj
∼

2u(x̄m)n1/2∑
k=−2u(x̄m)n1/2

2

ym − xm + k(2nu(x̄m))−1

∼ 4πnu(x̄m) cot(2πnu(x̄m)(ym − xm)).
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For the far field IIm, as the distribution of {xj} is close to u(x), we
formally get∑
|xj−ym|>n−1/2

cot
ym − xj

2
∼ 2n

∫
|y−ym|>n−1/2

u(y) cot
ym − y

2
dy ∼ 4πnHu(ym).

Putting together the two expressions, the leading order O(n) term reads

u(x̄m) cot(2πnu(x̄m)(ym − xm)) + Hu(ym) = 0.

This leads to

ym − xm ∼ −
1

2nπu(x̄m)
arctan

(
u(x̄m)

Hu(ym)

)
.

From this microscopic flux we can formally pass to the Steinerberger’s
equation.
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A sketch of the proof of global regularity

Recall

∂tu +
1

π

uΛu − Hu∂xu

u2 + Hu2
= 0.

Local well-posedness is standard; u0 ∈ Hs , s > 3/2 leads to unique
solution u(x , t) such that

u ∈ C ([0,T ];Hs(S)) ∩ L2([0,T ],Hs+1/2(S)); tku ∈ C ((0,T ],Hs+k(S)).

One can show that the solution can be extended beyond a time T > 0 if
and only if ∫ T

0
‖∂xu‖L∞

(
1 + ‖∂xu‖4

L∞
)
dt < +∞.

In addition, there is a maximum principle: if m(t) = minx u(x , t),
M(t) = maxx u(x , t) then m(0) ≤ m(t) ≤ u(x , t) ≤ M(t) ≤ M(0), ∀ t.
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For global regularity, we use control of the modulus of continuity

ω(ξ) =

{
ξ − ξ3/2 0 < ξ ≤ δ
δ − δ3/2 + γ log

(
1 + 1

4 log(ξ/δ)
)

ξ > δ.

Recall that if u obeys ω, then Hu obeys

Ω(ξ) = C

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

)
.

One can show that

Ω(ξ) . ω(ξ)

(
4 + log

ξ

δ

)
for large ξ.

As usual, we need to show that ω is conserved by evolution with arbitrary
period. For this, we look at the breakthrough scenario where ω is touched
by the solution and prove estimates on the flow and dissipative parts:

u(x , t1)− u(y , t1) = ω(ξ), ξ = |x − y |.
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The difficulty is that due to more complex form of the coefficients, we are
only able to bound the flow term by . ω′(ξ)Ω(ξ)2 in the large ξ range.
The standard bound on dissipative term in the large ξ range yields
. −ω(ξ)

ξ . To get conservation of ω, we need the large ξ balance

ω(ξ)

ξ
& ω′(ξ)ω(ξ)2(log ξ)2, or

1

ξ(log ξ)2
& ω(ξ)ω′(ξ)

which is only possible for bounded ω.

The source of the difficulty is the scenario where Hu(x)� H(u(y) but the
bulk of the dissipative estimate comes from Λu(x). The denominator
u(x)2 + Hu(x)2 suppresses the dissipative contribution in this case.

The solution is to realize that although the standard dissipative bound is in
general sharp (it saturates for the profile u(z) ∼ 1

2ω(2z)sgn(z)), it can be
improved in the non-symmetric scenario described above. There is an
extra contribution from the lack of symmetry enforced by the above
scenario. This extra contribution can be used to control the flow term.
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A sketch of the error propagation analysis

Recall the microscopic flux

ym − xm ∼ −
1

2nπu(x̄m)
arctan

(
u(x̄m)

Hu(ym)

)
,

and recall that

x tm+1 − x tm =
1

2nu(x̄m)
+ E t

m.

To derive the propagation of errors equation, we have to look at the pairs
of roots, since

E t+∆t
m − E t

m =
1

2nu(x̄ tm)
− 1

2nu(ȳ tm)
+ ym+1 − xm+1 − ym + xm.

We need to make estimates on the microscopic flux quite precise, and to
use the cancellations present in Im+1 − Im and IIm+1 − IIm.
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For example, the main dissipative term in the short range comes from

2

ym+1 − xj+1
− 2

ym − xj
=

−2(ym+1 − ym − xm+1 + xm) + 1
n ( 1

u(x̄j )
− 1

u(x̄m) ) + 2(Ej − Em)

(ym+1 − xj+1)(ym − xj)
.

The blue terms from the last line can be offset with the difference of the
corresponding idealized lattice terms. The red ones provide dissipation!

There are many error terms one needs to control: supercritical, critical and
subcritical. An example of supercritical term is

A1,m ∼ n−2
∑

|j−m|&n1/2

cot
ym − xj

2
Ej .

A direct absolute value estimate of A1,m would be of the order

n−2
∑

|j−m|&n1/2

n

|j −m|
‖E‖∞ ∼ n−1 log n‖E‖∞.
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The bound ∼ n−1 log n‖E‖∞ in discrete evolution equation for E t would
lead to uncontrolled growth in time ∼ 1 (corresponding to n iterations).
Instead, one can use oddness of cot to rewrite

A1,m ∼ n−2
∑

|j−m|&n1/2

cot
ym − xj

2
(Ej − Em) + better error

and absorb into dissipation.

There are many critical error terms that are of the order n−1‖E‖∞ or
“forcing” terms that do not depend on E - largest are of the order
∼ n−5/2. The former terms would lead to a growth by constant factor over
time ∼ 1. It turns out that all critical terms have a factor of u′, u′′, or u′′′

in front of them, so they decay in time and at some point become weaker
than dissipation.
If we denote

δ(t) = ‖u′‖L∞ + ‖u′′‖L∞ + ‖u′′′‖L∞ ,

the final result is:
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Theorem

The error E t
m propagates according to the evolution equation

E t+∆t − E t = LtE t + O
(
δn−5/2 + δn−1‖E t‖∞

)
+ O(n−3/2‖E t‖∞ + (log n)2‖E t‖2

∞ + n(log n)2‖E t‖3
∞),

where the operator Lt is a diffusive operator given by

(LtE t)m =
∑
j ,j 6=m

κt(j ,m)(E t
j − E t

m).

The diffusion coefficients κt(j ,m) satisfy

κt(j ,m) =
1

16π2n2(u2 + Hu2) sin2 x t+∆t
m −x tj

2

×

(
1 + O(n−1/2 + δ|j −m|n−1 + n log n‖E‖∞ + better errors)

)
Alexander Kiselev (Duke University) The Flow of Roots



The dissipative term does not control the mean of the error Em, but note
that

∫
S u(x , t) dx = 1 does not depend on time. Using midpoint Riemann

sum, we have∫ 2π

0
u(x , t) dx =

∑
j

(
u(x̄ tj , t)(x tj+1 − x tj ) + O(x̄n−3)

)
=
∑
j

(
1

2n
+ E t

j u(x̄ tj , t) + O(δn−3)

)
= 1 +

∑
j

E t
j u(x̄ tj , t) + O(δn−2).

This leads to
2n∑
j=1

E t
j u(x̄ tj , t) = O(δn−2)

for all t. This provides a Poincaré-type constraint for our setting and this
along with earlier remarks makes infinite time control possible.
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Discussion

1. Our results show that the Steinerberger’s equation approximates
evolution of roots of a class of trigonometric polynomials under
differentiation very well for large n. We need the root spacing to be regular
on small scale (microscale errors ∼ n−1−ε are acceptable), but variations
in spacing can be large on unit scale.

2. A similar scheme should work for the compact support real line case,
but free boundary needs to be understood.

3. In the real line case, there is a connection with minor process for
random matrices. The analog for the periodic setting is currently unclear.
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