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Introduction

The measure-potential framework

Many models for large populations (Chemotaxis, mean-field games,
Hughes model,...) fit the following framework:

I A probability density m gives the population distribution;

I A ”potential”, ”pressure”, or ”value function” u that encodes
population effects on the environment;

I A PDE for u that depends on m (typically, nonlinear elliptic or
parabolic equation)

I An evolution PDE for m driven by the potential u.



Introduction

Mean-field games

I Mean-field games (MFGs) model systems with a large number
of rational agents who seek to minimize a cost functional that
depends on statistical or aggregated quantities.

I These models were introduced in the engineering community
by Caines, Huang and Malhamé and in the mathematical
community by Lasry and Lions.



Introduction

Mean-field models

A canonical MFG comprises:

I a Hamilton-Jacobi (HJ) equation

I a transport or Fokker-Planck (FP) equation

I The HJ and the FP equations are fully coupled and the FP
equation is the adjoint of the linearization of the HJ equation.



The PDEs

The workhorse of MFG theory is the system:{
−ut + |Du|2

2 + V (x) = g(m),

mt − div(mDu) = 0

with initial and terminal conditions{
u(x ,T ) = uT (x)

m(x , 0) = m0(x).

Here, m0 and uT are given, m0 ≥ 0 with
∫
Rd m0dx = 1.

Often, we take the domain of u and m to be Td × [0,T ].



Derivation of MFG models - deterministic problems

Optimal control and Hamilton-Jacobi equations

I We fix T > 0 and consider an agent whose state is x(t) ∈ Rd

for 0 ≤ t ≤ T .

I Agents can change their state by choosing a control in
v ∈ W = L∞([t,T ],Rd).

I The state of an agent evolves according to

ẋ(t) = v(t).



Derivation of MFG models - deterministic problems

I We fix a Lagrangian L̃ : Rd × Rd × [0,T ]→ R, with
v 7→ L(x , v , t) uniformly convex.

I Agents have preferences encoded by the functional,

J(v; x , t) =

∫ T

t
L̃(x(s), v(s), s)ds + uT (x(T )),

where ẋ = v with x(t) = x .

I Each agent seeks to minimize J in W. The value function is

u(x , t) = inf
v∈W

J(v; x , t).



Derivation of MFG models - deterministic problems

The Legendre transform, H̃, of L̃ is the Hamiltonian

H̃(x , p, t) = sup
v∈Rd

[
−p · v − L̃(x , v , t)

]
.

By the uniform convexity of L̃ in the second coordinate, the
maximum is achieved at a unique point, v∗ given by

v∗ = −DpH̃(x , p, t).



Derivation of MFG models - deterministic problems

Theorem (Verification Theorem)

I Let ũ ∈ C 1(Rd × [t0,T ]) solve the Hamilton–Jacobi equation
with the terminal condition uT (x).

I Let
v∗(t) = −DpH̃(x∗(t),Dx ũ(x∗(t), t), t)

and x∗(t) be the corresponding trajectory.

Then,

I v∗(t) is an optimal control

I ũ(x , t) is the value function, u.



Derivation of MFG models - deterministic problems

Transport equation

Let b : Rd × [0,T ]→ Rd be a Lipschitz vector field. The ODE{
ẋ(t) = b(x(t), t) t > 0,

x(0) = x

induces a flow, Φt , in Rd that maps the initial condition, x ∈ Rd ,
at t = 0 to the solution at time t > 0.



Derivation of MFG models - deterministic problems

Fix a probability measure, m0 ∈ P(Rd). For 0 ≤ t ≤ T , let m(·, t)
be the push-forward,Φt]m0, by Φt of m0 given by∫

Rd

φ(x)m(x , t)dx =

∫
Rd

φ
(
Φt(x)

)
m0dx .

For 0 ≤ t ≤ T , m(·, t) is a probability measure.



Derivation of MFG models - deterministic problems

Proposition

Assume that b(x , t) is Lipschitz continuous in x . Let Φt be the
corresponding flow and m = Φt]m0. Then, m ∈ C (R+

0 ,P(Rd))
and{

mt(x , t) + div(b(x , t)m(x , t)) = 0, (x , t) ∈ Rd × [0,T ],

m(x , 0) = m0(x), x ∈ Rd ,

in the distributional sense.



Derivation of MFG models - deterministic problems

Mean-field models I

I The mean-field game framework studies systems with
infinitely many competing rational agents.

I Each agent seeks to optimize an individual control problem
that depends on statistical information about the whole
population.

I The only information available to the agents is the probability
distribution of the agents’ states.



Derivation of MFG models - deterministic problems

I For each time t, m(x , t) is a probability density in Rd that
gives the distribution of the agents

I We set

L̃(x , v , t) = L(x , v ,m(·, t)).

and denote the Legendre transform of L by H.

I Each agent seeks to minimize a control problem whose value
function solves

−ut + H(x ,Dxu,m) = 0.

By the Verification Theorem, if u is a solution,
b = −DpH(x ,Dxu(x , t),m), is the optimal strategy. Because all
agents are rational, they use this strategy.



Derivation of MFG models - deterministic problems

Hence, u and m are determined by{
−ut + H(x ,Dxu,m) = 0

mt − div(DpHm) = 0.

We supplement this system with terminal data for the value
function uT : Rd → R and the initial distribution of agents
m0 : Rd → R+

0 .



Derivation of MFG models - deterministic problems

Example

Consider the Hamiltonian

H(p, x ,m) =
p2

2
+ V (x)− g(m)

I The first term corresponds to the moving cost v2

2 in the
Lagrangian;

I V encodes the spatial preferences of the agents (agents prefer
large values of V )

I typically, g is increasing and reflects crowd aversion of the
agents.



Benamou-Brenier formulation of Optimal transport

Optimal transport problem

Given two probability measures m0,m1 ∈ P(Rd), and we seek to
transport m0 into m1 while minimizing a transport cost.
More precisely, we seek a map T : Rd → R such that T ]m0 = m1

and minimizes ∫
Rd

|T (x)− x |2dν(x).

This problem has a long story: Kantorowich, McCann, Brenier,
Villani ....



Benamou-Brenier formulation of Optimal transport

Benamou-Brenier formulation

The Benamou-Brenier formulation of optimal transport consists of
minimizing ∫

Rd

∫ 1

0
m(x , t)|v(x , t)|2dxdt,

over all smooth velocity fields v(x , t), with trajectories T t(x), and
densities m(x , t) = T t

#m0, such that m(x , 0) = m0 and
m(x , 1) = m1.



Benamou-Brenier formulation of Optimal transport

The optimality conditions of this variational problem are
−ut + |Du|2

2 = 0

mt − div(mDu) = 0

m(x , t) ∈ Pac(Rd) ∀ t ∈ [0, 1]

m(x , 0) = m0,m(x , 1) = m1.

The optimal velocity field is v(x , t) = −Du(x , t).



Planning problem

Planning problem for MFGs

The Benamou-Brenier formulation of optimal transport is a
particular case of the planning problem for MFGs

−ut + |Du|2
2 = g(m)

mt − div(mDu) = 0

m(x , t) ∈ Pac(Rd) ∀ t ∈ [0, 1]

m(x , 0) = µ,m(x , 1) = ν.



Planning problem

Previous work

I The planning problem was introduced by P. L. Lions

I Using variational methods, several authors studied the
planning problem: Achdou, Camilli, Dolcetta; Graber,
Mészáros, Silva and Tonon;

I The parabolic case was studied by Porretta;

I Using different methods, Lavenant and Santambrogio
established related estimates to the ones we will discuss here;

I Following the ideas of Lions, S. Muñoz established the
existence of solutions when V = 0.



Lower bounds on the density for mean-field games

A key question

Consider the planning problem
−ut + u2

x
2 + V (t, x) = m

mt − (uxm)x = 0 (t, x) ∈ [0,T ]× T
m(0, x) = m0, m(T , x) = mT .

Is m > 0 if m0 > 0 and mT > 0?



Lower bounds on the density for mean-field games

Relevance of lower bounds

When V = 0, we have m = −ut + u2
x

2 , using this in the second
equation

−utt − uxuxt + uxuxt − u2
xuxx −muxx = 0;

that is,
−utt − (m + u2

x )uxx = 0,

Thus, if m > 0 the previous equation is uniformly elliptic.



Lower bounds on the density for mean-field games

What do we expect?

I Yes, if V = 0 (Lions + details in S. Muñoz paper)

I Maybe if V has small oscillation

I No, if V has large oscillation

High oscillation of V means that there exist regions that are
undesirable, and hence we expect that m can vanish.



Lower bounds on the density for mean-field games

A stationary example

The following stationary example illustrates the role of the
oscillation of V for this question:{

|Du|2
2 + V (x) = m + H

− div(mDu) = 0.



Lower bounds on the density for mean-field games

Let (u,m,H) be solution with m > 0 and
∫
Td mdx = 1.

Multiplying the second equation by u and integrating, we have∫
Td

m|Du|2 dx = 0.

Hence, because m does not vanish, u is constant.



Lower bounds on the density for mean-field games

Accordingly,
m = −H + V (x).

Using
∫
Td mdx = 1 and assuming without loss of generality∫

Td

Vdx = 0,

we obtain
m = 1 + V (x).



Lower bounds on the density for mean-field games

A time-dependent example

Let
m(t, x) = 1 + sin 2πx sin 2πt.

m is a probability density that vanishes at ( 1
4 ,

3
4 ) and ( 3

4 ,
1
4 ).

Replacing m into the second equation gives

u(t, x) = − 1

2π
cot(2πt) log[1 + sin(2πt) sin(2πx)].

Finally, we set

V (t, x) = m + ut −
u2
x

2
.



Displacement convexity

Displacement convexity

I The displacement interpolant between µ and ν is the
minimizer of the Benamou-Brenier problem.

I A functional, F : P(Rd)→ R, is displacement convex if
t 7→ F(ρt) is convex for all displacement interpolants ρt .

I Formally, we can differentiate twice F(ρt) to study
displacement convexity.



Displacement convexity

McCann introduced displacement convexity to study a gas model
with a density ρ ∈ Pac(Rd).

I Particles have an interaction potential

W(ρ) =
1

2

∫
Rd×Rd

W (x − y)dρ(x)dρ(y),

and an internal energy

U(ρ) =

∫
Rd

U(ρ(x))dx .

I The configuration of the gas minimizes

E (ρ) = U(ρ) +W(ρ).



Displacement convexity

Our goal is to identify functions U : R+
0 → R such that internal

energy

t 7→
∫

U(m(x , t))dx is convex,

when m(x , t) solves the first-order MFG.



Displacement convexity

For optimal transport, the internal energy is displacement convex if
the McCann condition below holds:

P(z) = U ′(z)z − U(z),

P ∈ C 1(R+
0 ), P(z) > 0,

P(z)

z1− 1
d

non-decreasing.



Displacement convexity

For example, if d = 1, and U(z) = zq,

P(z) = (q − 1)zq

So McCann condition holds if q < 0 or q > 1.



Displacement convexity

The convexity of the internal energy gives∫
U(m(x , t))dx 6

t

T

∫
U(m(x ,T ))dx+

(
1− t

T

)∫
U(m(x , 0))dx .

Hence, if U is bounded by below
∣∣∫ U(m(x , t))dx

∣∣ is bounded by
the initial and terminal data.



Displacement convexity in first-order mean-field games

Displacement convexity without potential

Theorem
Let m, u ∈ C∞(Td × [0,T ]), m > 0, solve{

−ut + H(Du) = g(m)

mt − div(mDpH(Du)) = 0

with g : R+
0 → R, H : Rd → R smooth, g non-decreasing, and H

convex. If U : R+
0 → R is such that the McCann condition holds,

then

t 7→
∫
Td

U(m(x , t))dx is convex.



Displacement convexity in first-order mean-field games

Proof of displacement convexity for first order MFGs

We have

d

dt

∫
U(m) = . . . =

∫
P(m) div(DpH),

and

d2

dt2

∫
U(m) =

∫ A︷ ︸︸ ︷
P ′(m)m div(DpH)2 +

B︷ ︸︸ ︷
P ′(m)DmDpH div(DpH)

+

C︷ ︸︸ ︷
P(m) div(D2

ppHD(H))−

D︷ ︸︸ ︷
P(m) div(g ′(m)D2

ppHDm) .

The key point is in estimating the terms A-D and establishing their
positivity.



Displacement convexity in first-order mean-field games

Proof of displacement convexity for first-order MFGs

In particular, we get

d2

dt2

∫
U(m) >

∫ (
P ′(m)m − P(m) +

1

d
P(m)

)
div(DpH)2

+ P ′(m)g ′(m)DmD2
ppHDm > 0.



Displacement convexity in first-order mean-field games

Congestion models

Application to congestion models

MFGs with congestion model correspond to the system
−ut + mαH

(
Du
mα

)
= g(m)

mt − div
(
mDpH

(
Du
mα

))
= 0 ∀ (x , t) ∈ Td × (0,T )

m(·, 0) = m0(·), m(·,T ) = mT (·)

for α > 0.
For H(p) = |p|β

β , t 7→
∫
Td m(x , t)pdx is convex for p depending on

α and β. As an application, we obtain L∞ bounds for the density.



Displacement convexity in first-order mean-field games

Lq Estimates

Lq estimates

Proposition

Let u,m ∈ C∞(Td × [0,T ]) solve the first order MFG with g ,H
smooth, g non-decreasing, and H convex. Then, for all
1 6 q 6∞,

‖m(·, t)‖Lq(Td ) 6 ‖m0(·)‖1− t
T

Lq(Td )
‖mT (·)‖

t
T

Lq(Td )
, ∀ t ∈ [0,T ].



Displacement convexity in first-order mean-field games

Lq Estimates

Proof

If f is smooth and positive, then ln f is convex if and only if

(ln f )′′ =

(
f ′

f

)′
=

f ′′f − (f ′)2

f 2
> 0;

that is,
f ′′f > (f ′)2.



Displacement convexity in first-order mean-field games

Lq Estimates

Proof

First, we consider the case 1 6 q <∞. Then,

d2

dt2

∫
m(x , t)q > . . . > (q − 1)2

∫
mq div(DpH)2.

Thus, (
d

dt

∫
mq

)2

=

(
(q − 1)

∫
mq div(DpH)

)2

6

(∫
mq

)(
d2

dt2

∫
mq

)
.

Thus, ln
(∫

mq
)

is convex.



Displacement convexity in first-order mean-field games

Lq Estimates

Proof

Therefore,

ln

(∫
m(x , t)q

)
6
(

1− t

T

)
ln

(∫
m0(x)q

)
+

t

T
ln

(∫
mT (x)q

)
= ln

((∫
m0(x)q

)1− t
T
(∫

mT (x)q
) t

T

)
.

Therefore,∫
m(x , t)q 6

(∫
m0(x)q

)1− t
T
(∫

mT (x)q
) t

T

.

Exponentiating the previous inequality to 1
q to obtain the result.



Displacement convexity in first-order mean-field games

Lq Estimates

Proof

For q =∞, we can pass to the limit as q →∞ to derive the
estimate for the supremum.



Displacement convexity in first-order mean-field games

Convexity in dimension 1

Finally, we address the one-dimensional case, d = 1. A direct
computation shows that the convexity of U implies the convexity
of t 7→

∫ 1
0 U(m(x , t))dx .



Displacement convexity in first-order mean-field games

Convexity in dimension 1

Accordingly, convexity holds for functions of the form
U(z) = (z + ε)−q, q > 0, ε > 0; that is,∫ 1

0

1

(m(x , t) + ε)q
dx 6

(
1− t

T

)∫ 1

0

1

(m0(x) + ε)q
dx

+
t

T

∫ 1

0

1

(mT (x) + ε)q
dx .



Displacement convexity in first-order mean-field games

Convexity in dimension 1

Now, raising both sides to the power 1
q and bounding the r.h.s, we

get

‖(m(·, t) + ε)−1‖Lq 6((
1− t

T

)∫ 1

0

1

(m0(x) + ε)q
dx +

t

T

∫ 1

0

1

(mT (x) + ε)q
dx

) 1
q

6 max

{∫ 1

0

1

(m0(x) + ε)q
dx ,

∫ 1

0

1

(mT (x) + ε)q
dx

} 1
q

= max{‖(m0(·) + ε)−1‖Lq , ‖(mT (·) + ε)−1‖Lq}.

By letting ε→ 0 and then q →∞, we get

‖m(·, t)−1‖L∞ 6 max{‖m0(·)−1‖L∞ , ‖mT (·)−1‖L∞}.



Extension to First-Order MFG with congestion

Theorem
Let m, u ∈ C∞(Td × [0,T ]), m > 0, solve{

−ut + mα(1−β) |Du|β
β = g(m)

mt − div(m1+α(1−β)Du|Du|β−2) = 0

with g : R+ → R smooth and non-decreasing. If β > 2 and

q + 2α(1− β) > 0 and 1−
1− 1

d

q + 2α(1− β)
− α(β − 1)

2
> 0

or 1 < β < 2 and

q + 2α(1− β) > 0 and 1−
1− 1

d

q + 2α(1− β)
− α

2
> 0,

then t 7→
∫
Td m(x , t)qdx is convex.



Extension to First-Order MFG with congestion

Corollary

Let (u,m) be solve the MFG with congestion with

β > 2 and α <
2

β − 1

or

1 < β < 2 and α < 2,

then, for every d > 1,

‖m(·, t)‖L∞(Td ) 6 max{‖m0(·)‖L∞(Td ), ‖mT (·)‖L∞(Td )}.



Mean field games with a potential

MFG with a potential

Now, we consider
−ut + |Du|2

2 + V (t, x) = g(m)

mt − div(mDu) = 0 in (0,T )× Td

m(0, x) = m0(x); m(T , x) = mT (x)



Mean field games with a potential

Assumptions

I There exists p > 0 such that the potential,
V : [0,T ]× Td → R, satisfies

‖∆V ‖L∞([0,T ]×Td ) <
2

T 2

1

p
.

I There exist positive constants, k0 and k1, such that the
boundary functions, m0 and mT , satisfy

0 < k0 6 m0(x),mT (x) 6 k1, x ∈ Td .



Mean field games with a potential

Theorem
Suppose that p > 0. Then, there exists a positive constant, C ,
depending only on the problem data and on p, such that

max
t∈[0,T ]

‖m‖Lp+1(Td ) 6 C .

Moreover, if p > 2 and d = 1 there exists a positive constant, C ,
depending only on the problem data and on p, such that

max
t∈[0,T ]

{‖m‖Lp+1(T), ‖m−1‖Lp−1(T)} 6 C .



Displacement Convexity For The Planning Problem With A Potential

If

U(z) = zs , s > 1,

we have the KEY INEQUALITY

d2

dt2

∫
Td

U(m) dx > −|α− 1|‖∆V ‖L∞(Td )

∫
Td

U(m)dx .

In one-dimensional case, d = 1, a direct computation shows that
the preceding estimate holds for s ∈ R \ (0, 1).



Displacement Convexity For The Planning Problem With A Potential

Definition
Suppose that a, b > 0 and c > 0. Let Fb

a (c) be the set of all
f ∈ C 2[0,T ], with f non-negative and satisfying{

f ′′(t) + cf (t) > 0 for all t ∈ [0,T ],

f (0) = a, f (T ) = b.



Displacement Convexity For The Planning Problem With A Potential

Lemma
Suppose that 0 < ε 6 2 and a, b > 0. Let c 6 2−ε

T 2 . Then, the

family of functions Fb
a (c) is uniformly bounded; more precisely, for

any f ∈ Fb
a (c), we have

0 6 f (t) 6
2(a + b)

ε
for all t ∈ [0,T ].



Displacement Convexity For The Planning Problem With A Potential

Proof I

We prove only the first estimate, the second one is similar.
Let s = q + 1. There exists ε > 0 such that

s‖∆V ‖L∞([0,T ]×Td ) 6
2− ε
T 2

.

Combining the Lemma and with the KEY INEQUALITY, we
deduce ∫

Td

ms dx 6
2

ε

(∫
Td

ms
0 dx +

∫
Td

ms
T dx

)
.



Further Estimates

Now consider the MFG:


−ut + |Du|2

2 + V (t, x) = mα in (0,T )× Td

mt − div(mDu) = 0 in (0,T )× Td

m(0, x) = m0(x); m(T , x) = mT (x) in Td .



Further Estimates

Theorem
Suppose that p > 2. Then there exists a positive constant, C ,
depending only on the problem data, such that

max
t∈[0,T ]

{
‖m‖L∞(Td )

}
6 C .

Moreover, if p > α + 1 and d = 1 there exists a positive constant,
C , depending only on the problem data and on p, such that

max
t∈[0,T ]

{
‖m−1‖L∞(T), ‖m‖L∞(T)

}
6 C .



Further Estimates

Proof

The proof of the theorem is divided into the propositions that
follow.



Further Estimates

Proposition

Suppose that d = 1. Suppose that for some r > max{1, α} there
exists a positive constant c , such that

max
t∈[0,T ]

∫
T

1

mr
dx < c .

There exists a positive constant, C , depending only on the problem
data and on c such that

max
t∈[0,T ]

‖m−1‖L∞(T) 6 C .



Further Estimates

Proof

For any s > 1, set

Ms = max
t∈[0,T ]

∫
T

1

ms
dx .

Fix q > r + α, and and set ` = 2r
q−α .

d2

dt2

∫
T

1

mq
dx ≥

= 4α
q(q + 1)

(q − α)2

∫
T

∣∣∣∣D ( 1

m
q−α

2

)∣∣∣∣2 dx − (q + 1)C

∫
T

1

mq
dx .



Further Estimates

Proof

After, a few inequalities

d2

dt2

∫
T

1

mq
dx > −2

(
qC 2γ+3C 2γ

`

) 1
1−γ

M
1

1−γ
r .

From which we eventually deduce

Mq 6 2
(
qC 2γ+3C 2γ

`

) 1
1−γ

M
1

1−γ
r T 2.

Applying Moser’s method, we get the iterative estimate

Mqn+1 6 C
(
qn+1C

2γn+3C 2γn
`n

) 1
1−γn M

1
1−γn
qn

from which the result follows.



Further Estimates

Proposition

There exists a positive constant, C , depending only on the problem
data, such that

max
t∈[0,T ]

‖m‖L∞(Td ) 6 C .



Further Estimates

Proof

The proof is similar in this case and holds for d > 1.



Further Estimates

Existence of solutions

Combining the a-priori estimates with the proof by S. Muñoz for
the case V = 0, we obtain

Theorem
Let m0,mT ,V ∈ C 4(T), and g(m) = mα for some α > 0.
Suppose m0,mT > 0. Then, if T is small enough, there exists a
unique (up to constants) classical solution
(u,m) ∈ C 3([0,T ]× T)× C 2([0,T ]× T) to the planning problem.



Further Estimates

Further credits

I Mher Safaryan

I Levon Nurbekyan
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