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Introduction

The measure-potential framework

Many models for large populations (Chemotaxis, mean-field games,
Hughes model,...) fit the following framework:

P> A probability density m gives the population distribution;

> A "potential”, "pressure”, or "value function” u that encodes
population effects on the environment;

» A PDE for u that depends on m (typically, nonlinear elliptic or
parabolic equation)

» An evolution PDE for m driven by the potential wu.
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Introduction

Mean-field games

» Mean-field games (MFGs) model systems with a large number
of rational agents who seek to minimize a cost functional that
depends on statistical or aggregated quantities.

» These models were introduced in the engineering community
by Caines, Huang and Malhamé and in the mathematical
community by Lasry and Lions.
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Introduction

Mean-field models

A canonical MFG comprises:
» a Hamilton-Jacobi (HJ) equation
» a transport or Fokker-Planck (FP) equation

» The HJ and the FP equations are fully coupled and the FP
equation is the adjoint of the linearization of the HJ equation.
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The PDEs

The workhorse of MFG theory is the system:

|Dul? —
—u + -+ V(x) = g(m),
my — div(mDu) =0

with initial and terminal conditions
u(x, T) = ur(x)
m(x,0) = mg(x).

Here, mg and u7t are given, mg > 0 with [p4 modx = 1.
Often, we take the domain of u and m to be T9 x [0, T].
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Derivation of MFG models - deterministic problems

Optimal control and Hamilton-Jacobi equations

» We fix T > 0 and consider an agent whose state is x(t) € R?
for0<t<T.

> Agents can change their state by choosing a control in
veWw=L>(t, T],RY).
» The state of an agent evolves according to

) J
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Derivation of MFG models - deterministic problems

> We fix a Lagrangian [ : R? x R x [0, T] — R, with
v — L(x, v, t) uniformly convex.

» Agents have preferences encoded by the functional,

T ~
J(vix, £) = /t [(x(s),v(s), s)ds + ur(x(T)),

where x = v with x(t) = x.

» Each agent seeks to minimize J in WW. The value function is

u(x, t) = v|en)ﬁv J(v; x, t).



Derivation of MFG models - deterministic problems

The Legendre transform, A, of L is the Hamiltonian

FI(X7P7 t) = sup [—P' v — E(Xa v, t)] :
veRd

By the uniform convexity of L in the second coordinate, the
maximum is achieved at a unique point, v* given by

v = —Dpl:l(x,p, t).
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Derivation of MFG models - deterministic problems

Theorem (Verification Theorem)
> Let ii € CY(R? x [to, T]) solve the Hamilton—Jacobi equation
with the terminal condition ut(x).
> Let B
v (t) = —DpH(x*(t), Dyii(x*(t), t), t)
and x*(t) be the corresponding trajectory.
Then,
» v*(t) is an optimal control

» i(x,t) is the value function, u.
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Derivation of MFG models - deterministic problems

Transport equation

Let b: R x [0, T] — R? be a Lipschitz vector field. The ODE

{(r>—b< x(t),t) t>0,

induces a flow, ®f, in R? that maps the initial condition, x € RY,
at t = 0 to the solution at time t > 0.
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Derivation of MFG models - deterministic problems

Fix a probability measure, mg € P(R9). For 0 < t < T, let m(-, t)
be the push-forward,®ttmg, by ®* of mg given by

/Rd o(x)m(x, t)dx = /Rd ¢ (P*(x)) modx.

For0<t< T, m(-,t) is a probability measure.
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Derivation of MFG models - deterministic problems

Proposition

Assume that b(x, t) is Lipschitz continuous in x. Let ®! be the
corresponding flow and m = ®tmg. Then, m € C(R{, P(RY))
and

me(x, t) + div(b(x, t)m(x,t)) = 0,  (x,t) € RY x [0, T],
m(x,0) = mp(x), x € RY,

in the distributional sense.
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Derivation of MFG models - deterministic problems

Mean-field models |

» The mean-field game framework studies systems with
infinitely many competing rational agents.

» Each agent seeks to optimize an individual control problem
that depends on statistical information about the whole
population.

» The only information available to the agents is the probability
distribution of the agents’ states.
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Derivation of MFG models - deterministic problems

» For each time t, m(x, t) is a probability density in R? that
gives the distribution of the agents

> We set
L(x,v,t) = L(x,v,m(-,t)).
and denote the Legendre transform of L by H.

» Each agent seeks to minimize a control problem whose value
function solves

—u + H(x, Dxu, m) = 0.

By the Verification Theorem, if u is a solution,
b = —DpH(x, Diu(x,t), m), is the optimal strategy. Because all
agents are rational, they use this strategy.
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Derivation of MFG models - deterministic problems

Hence, u and m are determined by

—ur + H(x, Dxyu,m) =0
m; — div(Dp,Hm) = 0.

We supplement this system with terminal data for the value
function ur : RY — R and the initial distribution of agents
mg : RY — Rar.
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Derivation of MFG models - deterministic problems

Example

Consider the Hamiltonian

P2
H(p,x,m) = 2+ V(x) - g(m)

» The first term corresponds to the moving cost "72 in the
Lagrangian;

» V encodes the spatial preferences of the agents (agents prefer
large values of V)

> typically, g is increasing and reflects crowd aversion of the
agents.
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Benamou-Brenier formulation of Optimal transport

Optimal transport problem

Given two probability measures mg, m; € P(R9), and we seek to
transport mg into m; while minimizing a transport cost.

More precisely, we seek a map T : R? — R such that Timg = m
and minimizes

/ | T(x) — x|2dy(x).
Rd

This problem has a long story: Kantorowich, McCann, Brenier,
Villani ....
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Benamou-Brenier formulation of Optimal transport

Benamou-Brenier formulation

The Benamou-Brenier formulation of optimal transport consists of

minimizing
1
/ / m(x, £)|v(x, £)|2dxdt,
R? Jo

over all smooth velocity fields v(x, t), with trajectories T!(x), and
densities m(x, t) = T/mo, such that m(x,0) = mg and
m(x,1) = m;.
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Benamou-Brenier formulation of Optimal transport

The optimality conditions of this variational problem are

D2
—Ut+| 2u| =0

m; — div(mDu) = 0
m(x,t) € Pac(RY) V te]0,1]

m(x,0) = mg, m(x,1) = my.

The optimal velocity field is v(x, t) = —Du(x, t).
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Planning problem

Planning problem for MFGs

The Benamou-Brenier formulation of optimal transport is a
particular case of the planning problem for MFGs

2
—Ur + @ = g(m)

my — div(mDu) = 0
m(x,t) € Pac(RY) V t€0,1]
m(x,0) = p, m(x,1) = v.
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Planning problem

Previous work

» The planning problem was introduced by P. L. Lions

» Using variational methods, several authors studied the
planning problem: Achdou, Camilli, Dolcetta; Graber,
Mészéros, Silva and Tonon;

» The parabolic case was studied by Porretta;

» Using different methods, Lavenant and Santambrogio
established related estimates to the ones we will discuss here;

» Following the ideas of Lions, S. Mufioz established the
existence of solutions when V = 0.
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Lower bounds on the density for mean-field games

A key question

Consider the planning problem

—ur + u?)% + V(t,x)=m
my — (uxm)x =0  (t,x) €[0, T] x T
m(0,x) =mg, m(T,x)=mr.

Ism>0if mg>0and mr > 07

%')))},
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Lower bounds on the density for mean-field games

Relevance of lower bounds

2
When V =0, we have m = —u; + %, using this in the second
equation

2 .
—Upt — UxUxt + Uxlyt — Uy — Muy = 0;

that is,
—ugt — (M4 U2t = 0,

Thus, if m > 0 the previous equation is uniformly elliptic.
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Lower bounds on the density for mean-field games

What do we expect?

» Yes, if V =0 (Lions + details in S. Mufioz paper)
» Maybe if V has small oscillation
» No, if V has large oscillation

High oscillation of V means that there exist regions that are
undesirable, and hence we expect that m can vanish.
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Lower bounds on the density for mean-field games

A stationary example

The following stationary example illustrates the role of the
oscillation of V for this question:

D 4 v(x)=m+H
—dlv(mDu) =0.
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Lower bounds on the density for mean-field games

Let (u, m, H) be solution with m > 0 and [ mdx = 1.
Multiplying the second equation by v and integrating, we have

/ m|Dul? dx = 0.
Td

Hence, because m does not vanish, u is constant.
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Lower bounds on the density for mean-field games

Accordingly,
m=—H+ V(x).

Using de mdx = 1 and assuming without loss of generality

/ Vdx = 0,
Td

m=1+ V(x).

we obtain
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Lower bounds on the density for mean-field games

A time-dependent example

Let
m(t,x) =1+ sin27xsin 27t.

m is a probability density that vanishes at (%, 3) and (3, 1).
Replacing m into the second equation gives

u(t,x) = —% cot(27t) log[1 + sin(2nt) sin(27x)].

Finally, we set
2
V(t,x) =m+ up — 7’(

((((0\*‘_—_
e



Displacement convexity

Displacement convexity

» The displacement interpolant between p and v is the
minimizer of the Benamou-Brenier problem.

» A functional, F : P(Rd) — R, is displacement convex if
t — F(p') is convex for all displacement interpolants p*.

» Formally, we can differentiate twice F(p") to study
displacement convexity.
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Displacement convexity

McCann introduced displacement convexity to study a gas model
with a density p € P,(R9).

P Particles have an interaction potential

>WM=EAWWW&—W@MMMA

and an internal energy

WM=WUWWW'

» The configuration of the gas minimizes

E(p) =U(p) + W(p).



Displacement convexity

Our goal is to identify functions U : Ra’ — R such that internal
energy

t— / U(m(x,t))dx is convex,

when m(x, t) solves the first-order MFG.

%')))},
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Displacement convexity

For optimal transport, the internal energy is displacement convex if
the McCann condition below holds:

P(z) = U(2)z - U(z),
P e CU(RY). P(2) >0,
P@z)

= non-decreasing.
zd
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Displacement convexity

For example, if d =1, and U(z) = z9,

P(z) = (g —1)z°

So McCann condition holds if g < 0 or g > 1.
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Displacement convexity

The convexity of the internal energy gives

/ U(m(x, 1)dx < + / U(m(x, T))det (1~ %) / U(m(x, 0))dx.

Hence, if U is bounded by below | [ U(m(x, t))dx| is bounded by
the initial and terminal data.
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Displacement convexity in first-order mean-field games

Displacement convexity without potential

Theorem
Let m,uc C=(T9 x [0, T]), m >0, solve

—ur + H(Du) = g(m)
m; — div(mDp,H(Du)) =0

with g : ]R.ar — R, H:RY = R smooth, g non-decreasing, and H
convex. If U : RSL — R is such that the McCann condition holds,
then

t— U(m(x,t))dx is convex.
Td
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Displacement convexity in first-order mean-field games

Proof of displacement convexity for first order MFGs

We have
d .
E/U(m): :/P(m)dlv(DpH),
and
2 A B
o [ um = [ Pman(,) + P (m)DmD, Ha(D,H)
C D

+ P(m) div(D2,HD(H)) — P(m) div(g’(m) D2, HDm)

The key point is in estimating the terms A-D and establishing their
positivity.

X



Displacement convexity in first-order mean-field games

Proof of displacement convexity for first-order MFGs

In particular, we get

e / U(m) > /<P’(m)m— P(m) + %P(m)) div(D,H)?
+ P'(m)g’(m)DmD?,HDm > 0.

)
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Displacement convexity in first-order mean-field games

Congestion models

Application to congestion models

MFGs with congestion model correspond to the system

—uy + m*H (32) =g(m
— div (mD,H (24)

)
m(-,0) = m°(:), m(, T) =mT()

N =
o

Y (x,t) € T9 x (0, T)

for a > 0.
For H(p) = |pﬂ| . t = J3a m(x, t)Pdx is convex for p depending on
« and B. As an application, we obtain L® bounds for the density.
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Displacement convexity in first-order mean-field games
L9 Estimates

L9 estimates

Proposition

Let u,m € C=(T9 x [0, T]) solve the first order MFG with g, H
smooth, g non-decreasing, and H convex. Then, for all

I<g< oo,

11—t L
Im, )l ooy < 1) paghey | T Ol fagzay: ¥ £ € [0, T,

%')))},
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Displacement convexity in first-order mean-field games
L9 Estimates
Proof

If f is smooth and positive, then In f is convex if and only if
! / f'f — (f/)z
" .
(Inf)" = <7) =—F >0;

that is,
f'f > ()2

) J
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Displacement convexity in first-order mean-field games
L

9 Estimates

Proof

First, we consider the case 1 < g < co. Then,
d? q 2 q i 2
e m(x,t)?>... > (q—1)° [ mIdiv(D,H)".

Thus,

(2 (- foraioon)
(o) (5 )

Thus, In (f mq) is convex.
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Displacement convexity in first-order mean-field games
L9 Estimates

Proof

Therefore,



Displacement convexity in first-order mean-field games
L9 Estimates
Proof

For g = 0o, we can pass to the limit as ¢ — oo to derive the
estimate for the supremum.

=)
-
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Displacement convexity in first-order mean-field games
G

onvexity in dimension 1

Finally, we address the one-dimensional case, d = 1. A direct
computation shows that the convexity of U implies the convexity
of t = [ U(m(x, t))dx.

) J
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Displacement convexity in first-order mean-field games

Convexity in dimension 1

Accordingly, convexity holds for functions of the form
U(z) = (z+¢)79 q = 0,e > 0; that is,

1 1 1 1
/0 (mx.6) 7297 2 S (1_ %)/0 (mO(x) + )1

t (1 1
*?/o CUOEDDe

%')))},

((



Displacement convexity in first-order mean-field games

Convexity in dimension 1

Now, raising both sides to the power % and bounding the r.h.s, we
get

I(m(- ) + &) lwo <

1 1 1 1 :
<max{ 0 (m°(x)+s>qu’/o (mT(x)+e)qu}
= max{[[(m°() + &) 1o, [(mT () + ) e}

By letting € — 0 and then g — oo, we get

Im(, £) oo < max{[[m®() 7 oo, lmT ()7 oo}



Extension to First-Order MFG with congestion

Theorem
Let m,u € C=(T9 x [0, T]), m > 0, solve

E
—ug + m (=P P — g(m)
m; — div(m***(=8) py|Du|#=?) = 0

with g : Rt — R smooth and non-decreasing. If 3 > 2 and

1-1 o —1)
20(1 - B) = d1-— d — >
g+2a(l—p5)>0 an v e 5 0
orl< f<2and
1-1 o
2001 - 6) >0 andl— ———39——— — — >0,
q+2a(1-5) A G )

then t — [rq m(x,t)%dx is convex. (S



Extension to First-Order MFG with congestion

Corollary
Let (u, m) be solve the MFG with congestion with

2
=22 and a< ——

B—-1
or
1<fB<2 and a<?2,

then, for every d > 1,

Im(-, )] oo ey < max{[|m® ()l oo (ray, m T ()l oo ey}

%')))},
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Mean field games with a potential

MFG with a potential

Now, we consider

—ue + 125 1 V(t,x) = g(m)
m; — div(mDu) = 0 in (0, T) x T
m(0,x) = mo(x); m(T,x) = my(x)

)
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Mean field games with a potential

Assumptions

» There exists p > 0 such that the potential,
V[0, T] x T9 — R, satisfies

21
AV Lo (o, T1x19) < 75

P> There exist positive constants, ky and ki, such that the
boundary functions, mg and my, satisfy

0 < ky < mo(x),mT(x) < ki, xE€ Td.
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Mean field games with a potential

Theorem
Suppose that p > 0. Then, there exists a positive constant, C,
depending only on the problem data and on p, such that

(2% [ml[p+1(rey < C.

Moreover, if p > 2 and d = 1 there exists a positive constant, C,
depending only on the problem data and on p, such that

-1
[max lmlloacmy, Im™ s} < €

X



Displacement Convexity For The Planning Problem With A Potential

Uiz)=2z° s=>1,
we have the KEY INEQUALITY

d2

12 /11‘d U(m)dx > —|a — 1[[[AV/|| oo (ra) /’]I‘d U(m)dx.

In one-dimensional case, d = 1, a direct computation shows that
the preceding estimate holds for s € R\ (0, 1).
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Displacement Convexity For The Planning Problem With A Potential

Definition
Suppose that a,b > 0 and ¢ > 0. Let F2(c) be the set of all
f € C?[0, T], with f non-negative and satisfying

{f”( )+ cf(t) >0 forallte]0,T],
f(0)=a, f(T)=

)
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Displacement Convexity For The Planning Problem With A Potential

Lemma
Suppose that 0 < e <2 and a,b> 0. Let c < _5. Then, the

family of functions F2(c) is uniformly bounded; more precisely, for
any f € Fb(c), we have

2(at b
% for all t € [0, T].

0<f(t) <
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Displacement Convexity For The Planning Problem With A Potential

Proof |

We prove only the first estimate, the second one is similar.
Let s = g+ 1. There exists € > 0 such that

2—¢
SIAV[ oo (po, 1peme) < —2

Combining the Lemma and with the KEY INEQUALITY, we

deduce
S 2 S S
/mdxé—(/ modx—i—/ dex).
Td 13 Td Td



Further Estimates

Now consider the MFG:

—up 4+ 2L V(e x) = me in (0, T) x T¢
my — div(mDu) =0 in (0, T)x T

m(0,x) = mo(x); m(T,x)=my(x) in T9.

)
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Further Estimates

Theorem

Suppose that p > 2. Then there exists a positive constant, C,
depending only on the problem data, such that

oo < C.
2 {Imli e < €

Moreover, if p > a+ 1 and d = 1 there exists a positive constant,
C, depending only on the problem data and on p, such that

1y ot < C.
tgfoa’%{llm oo (rys Ml oo (my }

D
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Proof

follow.

The proof of the theorem is divided into the propositions that
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Further Estimates

Proposition
Suppose that d = 1. Suppose that for some r > max{1, a} there
exists a positive constant c, such that

1
max —dx <ec.
te[0,T] JT m’

There exists a positive constant, C, depending only on the problem
data and on c such that

-1
max ||lm com < C.
2% [m™ | oo () <

) J
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Further Estimates

Proof

For any s > 1, set

1
Ms = max —dx.
te[o,T] J m*®

Fix ¢ > r + a, and and set ¢ = -2

q—a’
d? 1
@ —dX >
2
4aq(q+1) p(—L dx—(q+1)c/idx.
( _04)2 T qua T m9

%')))},

((



Further Estimates

Proof

After, a few inequalities

d? 1 2943 ~2v ﬁ ﬁ
T TWdx>—2(qc )T M

From which we eventually deduce
_1 1
Mq ) <qc2’7+3cez’7) -y Mrlj T2.

Applying Moser's method, we get the iterative estimate

1

1
29043 290 \ 1= p g1
M., < C (qn+1c c? ) M

) J

from which the result follows.
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Further Estimates

Proposition
There exists a positive constant, C, depending only on the problem
data, such that

max ||m||; « < C.
te[o,T]H | oo (1o <

) J
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Proof

The proof is similar in this case and holds for d > 1.

<='/)
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Further Estimates

Existence of solutions

Combining the a-priori estimates with the proof by S. Mufioz for
the case V = 0, we obtain

Theorem

Let mg, m7,V € C*(T), and g(m) = m® for some o > 0.
Suppose mg, mt > 0. Then, if T is small enough, there exists a
unique (up to constants) classical solution

(u,m) € C3([0, T] x T) x C?([0, T] x T) to the planning problem.
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Further credits

» Mher Safaryan

» Levon Nurbekyan
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